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RATIONAL POINTS ON THE MODULAR CURVES Xsplit(p)
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© 1984 Martinus Nijhoff Publishers, The Hague. Printed in The Netherlands

For a prime number p, let Xsplit (p) be the modular curve defined over Q
which corresponds to the modular curve

i.e., Xsplit (p) ~ C ~ 0393split (p) BH ~ P1(Q), where H = {z ~ C+Im(z) &#x3E; 0}.
We call the points ~ 0393split(p)BP1(Q) the cusps on Xsplit(p). Then

Xsplit(p)B{cusps} is the coarse moduli space (/Q) of the isomorphism
classes of elliptic curves with an unordered pair of independent sub-
groups of rank p (see [9]). We here discuss the Q-rational points on

Xsplit(p). For the prime numbers p  7, Xsplit(p) P1Q. Mazur [10]
III§6 showed that for each prime number p = 11 or p  17, there are
finitely many Q-rational points on Xsplit(p). We have no results for
Xsplit (13). Let y be a non cuspidal Q-rational point on Xsplit(p) (p  5).
Then there exists an elliptic curve E defined over Q with independent
subgroups A, B of rank p such that the set {A, B} is Q-rational and the
pair ( E, {A, B}) represents y (see [3] VI Proposition (3.2)). Let p = pp be
the représentation of the Galois action of Gal(Q/Q) on the p-torsion
points Ep(Q). Then p(Gal(Q/Q)) is contained in the normalizer of the
split Cartan subgroup Aut A(q) X Aut B(Q) ( c Aut Ep(Q)
GL2(lFp). The "expected" 0-rational points on Xsplit(p)B{cusps} (p 
11?) are those which are represented by the elliptic curves with complex
multiplication. Let E be an elliptic curve defined over Q which has
complex multiplication over an imaginary quadratic field k. Let p  5 be
a rational prime which splits in k. Then there are two independent
subgroups A, B of rank p such that the pair ( E, {A, B 1) represents a non
cuspidal Q-rational point on Xsplit(p). We call such a point a C.M.point.

Let X0(p) be the modular curve (/Q) corresponding to the modular
group 03930(p) and J0(p) the jacobian variety of X0(p). Let wp be the
fundamental involution of X0(p):(E,A)~(E/A,Ep/A), where E. =
ker(p: E - E ). Denote also by wp the automorphism of J0(p) which is
induced by the involution wp. Put Jj(p) = J0(p)/(1 + wp)J0(p). Denote
by n(p) the number of the Q-rational points on Xsplit(P) which are
neither cusps nor C.M.points. Our main result is the following.
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THEOREM (0.1): Let p = 11 or p  17 be a prime number such that the
Mordell-Weil group of Jj(p) is of finite order. Then n ( p ) = 0, provided
p ~ 37.

For the primes p, 11  p  300, except for p = (13), 151(?), 199(?),
227(?) and 277(?), the assumption in (0.1) above is satisfied (see [10] p.
40, [21] Table 5 pp. 135-141). For p = 37, we know that

J0(37)(Q)Z/3Z (see loc.cit.), but we see only that n(37)  1, see
(5.A). We may conjecture that n(p) = 0 for p  11, P =1= 13(?), ~ 37(?).
The outline of the proof of (0.1) above is as follows. Let Xsp.Car( p) be the
modular curve (/Q) corresponding to the modular group

Let w be the fundamental involution of XsP.car (p) : ( E, A, B) ~ ( E, B, A),
which is represented by ( 0 1 1). Then Xsplit(p) = Xsp.Car(p)/w&#x3E;. Let
y be a non cuspidal Q-rational point on Xsplit(p) and x, w(x) the
sections of the fibre (Xsp.Car(p))y. Then x, w(x) are defined over a
quadratic field k. Denote by Jlsp.Car( p) and Jlsplit (p) the normalizations
of the projective j-line X0(1)P1z in Xsp.Car( p) and Xsplit(p), respec-
tively. We denote also by y (resp. x and w(x)) the Z-section (resp. the
Ok-sections) of Jlsplit( p) (resp. Xsp.Car(p)) with the generic fibre y (resp. x
and w( x )) above. Firstly, we show that y 0 Fp is not a supersingular point
and x, w(x) are the sections of the smooth part of Xsp.Car(p) (see (1.4),
p  11 ). Secondly, we show that y ~ Fp is not a cusp and that the rational
prime p splits in k, see (3.1), (3.2). Then there exists an elliptic curve E
defined over Fp such that the pair (E, (ker(Frob), ker(Ver))) represents
y 0 F., where Frob is the Frobenius map : E ~ E(03C1) = E and Ver is the
Verschiebung : E = E (P) - E. Define the morphism g of Xsp.Car ( p) to
Jo(p) by

Then g induces the morphism g- of Xsplit(p) to J0(p), i.e., g( x )
mod(l + wp)J0( p) = g-(y). Denote also by g (resp. g-) the morphism of
Xsp.Car(p)smooth to the Néron model J0(p)/z over the base Z (resp. of
q-split (p )smooth to J0(p)/z). Then for the k-rational point x as above,
g(x)~Fp = 0, see (3.3). Then the assumption #J-0(p)(Q)  oo implies
that g-(y) = 0. Let ( E, {A, B}) (/Q) be a pair which represents y. Then
by the condition g-(y) = 0, using the result of Ogg [14] Satz 1, we get E
E/B, provided p ~ 37.

Further, we get the following estimate of n(p). Let J0(p) be the
"Eisenstein quotient" of J0(p), see [10].
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THEOREM (0.2): n(p)  dim J0(p) - dim 0(p) for p  17.

In §5, we discuss the cases for p = 13 and 37.

Notation: For a rational prime q, Qurq denotes the maximal unramified
extension of 0 q and W(Fq) denotes the ring of integers of Qurq. For a
finite extension K of Q, Qq or Qurq, OK denotes the ring of integers of K.
Let A be an abelian variety defined over K and G a finite subgroup of A
defined over K. Then A/OK denotes the Néron model of A over the base
(9K and G/eJK denotes the flat closure of G in A/OK (which is a quasi finite
flat subgroup scheme, see [17] §2). For a subscheme Y of a modular curve
X (/Z), yh denotes the open subscheme YB (supersingular points on
Y ~ Fp 1 for the fixed rational prime p.

§ l. Preliminaries

Let p  5 be a prime number and Xsp.Car = Xsp.Car(p) the modular curve
(/Q) corresponding to the modular group

Xsp.Car is the coarse moduli space (/Q) of the isomorphism classes of the
generalized elliptic curves with an ordered pair of independent subgroups
of rank p (see [3], [9]). Let w be the fundamental involution of

Xsp.Car: (E, A, B) ~ ( E, B, A ). Then Xsplit = Xsplit(p) = Xsp.Car/w&#x3E;. De-
note by Xsp.Car = Xsp.Car(p), Xsplit = Xsplit( p) and X= Xo ( p) the normali-
zations of the projective j-line X0(p) ~ P§ in XSp.Car, Xspht and X = Xo ( p ),
respectively. Let 03C0 be the canonical morphism of Xsp.Car to Et which is
generically defined by (E, A, B) ~ (E, A). For a subscheme Y of a
modular curve /Z, Y’ denotes the open subscheme YB{supersingular
points on Y 0 Fp 1 of Y. The special fibre X~ Fp is reduced and has two
irreducible components, say Z and Z’, which intersect transversally at the
supersingular points on X~ Fp (see [3] VI§6). Z’ (resp. Z’h ) is the coarse
moduli space (/Fp) of the isomorphism classes of the generalized elliptic
curves with a subgroup A of rank p such that A 03BCp (resp.Z/pZ),
isomorphic locally for the étale topology (see loc.cit.). The fibre 03C0-1( Z)
has one irreducible component Zl, and Zh1 ~ Zh is radicial of degree p.
The fibre 03C0-1(Z’) has two irreducible components Z’ and E. The
multiplicity of E is p - 1 (see [15]) and Zrh1 Z’h is an isomorphism
(see loc.cit.). The fundamental involution w exchanges Z, by Z’ and fixes
E. These components Zl, Z’ and Erea intersect transversally at the

supersingular points on Xsp.Car ~ Fp.
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Here, 0 and oo are the cuspidal sections which correspond to (G_ X
Z/pZ, Z/pZ, vp) and (G,,, X Z/pZ, itp, Z/PZ) (resp. (Gm X
Z/pZ, ZjpZ) and (Gm, itp», see [3] II.

(J.J)N.B. (see [3] V, VII). Let %"’ be the algebraic stack which represents
the following functor: for a scheme S (/Z), Y’(S) is the set of the

isomorphism classes of the generalized elliptic curves C with an isomor-
phism a : Cp Z/pZ X ju.. Then Y’ is an open subspace of Mhp( = Mhp,
which is a scheme for p  3, see loc.cit. VII p. 300). Let 03930(p), 0393sp.Car(p)
be the finite adèlic modular groups

The natural morphisms of Mp to Msp.Car(p)h = Mhp/0393sp.Car(p) and to
M0(p)h = Mhp/03930(p) induce the surjective morphisms of Y’ ~ Fp onto
Zrh1 and onto Z’h. The subgroup of 03930(p) consisting of the elements
which fix W’ is 0393sp.Car(p). For a geometric point x on Z’", let (C, A)
(/Fp) be the pair which represents x. Then Aut(C, A) ~ Tsp.Car(p)
(mod p). Therefore, 03C0: Z’h1  Z’h is an isomorphism and Z,h is the
coarse moduli space (/Fp) of the isomorphism classes of the generalized
elliptic curves with an ordered pair ( A, B ) of subgroups of rank p such
that (A, B)  (Z/pZ, 03BCp), isomorphic locally for the étale topology.
The morphism 03C0 induces Zh1 ~ Zh : ( C, B, A) ~ ( C, B), so that Zh1 ~
Zh is radicial of degree p.

Let K be a finite extension of Qurp of degree e with the ring (9 = ffl K of
integers.
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THEOREM (1.2) (Raynaud [17] §3 Proposition (3.3.2), Oort-Tate [16]): Let
G, ( i = 1, 2) be finite flat group schemes of rank p over Spec (9 and f :
G1 ~ G2 a homomorphism such that f o K: Gi 0 K  G2 0 K is an
isomorphism. Then,

(1) If e  p - 1, then f is an isomorphism.
(2) If e = p - 1 and f is not an isomorphism, then G, (Z/pZ)/O and

G2 03BCp/O.

LEMMA (1.3): Let E be a semistable elliptic curve defined over K with
independent subgroups A, B of rank p defined over K. If e  p - 1, then

E /(!) ~ Fp is not supersingular and (E/O)p = A /(!) ~ B/O, which is finite,
where A/O, B/O are the flat closures of A and B in the Néron model E/O.

PROOF: (1.3.1). The case when E/O is an elliptic curve (i.e., proper).
A /(!) and B/O are finite, hence they are finite flat group schemes.

Consider the following morphisms f and fA induced by the natural
morphism of E onto E/B by the universal property of the Néron models:

Then fA ~ K: A = f(A) ( c E/B ) is an isomorphism. By the condi-
tion e  p - 1, fA is an isomorphism, see (1.2) above. Then (E/O)p = A/O
C BLo. If (E/O)p(Fp) = {0}, then (E/O)p ~ Fp
Spec Fp[X, Y]/(Xp, Yp) as schemes. For a supersingular elliptic curve
F(/Fp), FpSpec Fp[X]/(Xp2) as schemes. Therefore, E/O ~ IFp is not
supersingular.
(1.3.2). The case when E/O has multiplicative reduction.
We have the following exact sequence (see e.g., [8] Part 16):

Then A or B Z/pZ. By the condition e  p - 1, using the universal
property of the Néron model E/O, we see that (Z/pZ)/O c E/O. The
connected component (E/O)0p of (Ej(!))p of the unity is isomorphic to
03BCp/O, see e.g., loc.cit., [3] VII. Then (E/O)p  03BCp/O ~ (Z/pZ)/O are
finite schemes. Then, by the same way as in (1.3.1) above, we get
(Ej(!))p = A/O ~ B/O. 0

COROLLARY (1.4): Let E be an elliptic curve defined over Qurp with

independent subgroups A, B of rank p such that the set (A, BI is Q ur -ra-
tional. Let y be a W(f p )-section of .¥split whose generic fibre is represented
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by the pair (E, {A, B}). If p  11, then y is a section of the smooth part of
Xsplit.

PROOF: Let x, w(x) be the sections of the fibre (Xsp.Car)y, which are
defined over an extension K’ of Qurp of degree  2. We may assume that
the triple ( E, A, B ) represents x ~ K’. There exists an extension K of Qurp
of degree e with el4 or e|6 over which E has semistable reduction (see e.g.,
[19] §5 (5.6)). We may take K with e = 4 or e = 6. Then K’ c K. Let (9
denote (9K. Then the triple (E/O, A/(!), B/O) represents the section x ~ (9:
Spec (9--+ Xsp.Car. By the condition that e  11 - 1  p - 1, x ~ Fp is a
section of zf ~ Z’h1, see (1.1), (1.3) above. D

§2. Modular curves and Jacobian variety of Xo(p)

Let J = J0(p) be the jacobian variety of X = X0(p), C the cuspidal
subgroup of J which is generated by the class c1((0)-(~)). Put J- =
J0(p) = J/(1 + wp) J. Mazur [10] defined the "Eisenstein quotient" of J.
Put T = End J, which is generated by the Hecke operators Tl and wp, for
the rational primes l ~ p, see [10] II Proposition (9.5). Let P be the ideal
of T generated by 111 = 1 + 1- Tl and wp + 1, for the rational primes l ~ p,
which is called the "Eisenstein ideal". The Eisenstein quotient J = 0(p)
is the quotient of J by the (Q-rational) abelian subvariety (~n1Pn) J.

THEOREM (2.1) (Mazur loc.cit.): The natural morphism J~ induces an
isomorphism of C of order n = num(( p - 1)/12) onto the Mordell-Weil
group of J and J is an optimal quotient of J-. Further, the natural

morphisms  are isomorphisms.

PROPOSITION (2.2) (Mazur loc.cit. II Lemma (12.5)): If p ~ 1 mod 8, C/z
(= the flat closure of C in the Néron model J/z) contains the multiplicative
group 03BC2/z.

Let Ci, Cp be the morphisms of Xsp.car to J defined by ( E, A, B) ~
cl((E, A ) - (0)) and ~ cl((E/B, Ep/B) - (0)), respectively. Put g = CI
- Cp : ( E, A, B) ~ cl((E, A ) - (E/B, Ep/B)),

Then g induces the following commutative diagram:
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We denote also by g, g- and g the morphisms 

the universal property of the Néron models), respectively. Let = 0(p)
~ Spec 7L be the minimal model of X = X0(p) (see [3] VI§6). Let be
the isomorphism induced by the duality of Grothendieck (see [11] §2):

where Cot JI, is the cotangent space of J/z at origin and S2 is the sheaf of
regular differentials (see loc.cit., [3] p. 161). For a rational prime q, let
R = W(Fq) be the ring of integers of Qurq and x: Spec R _ Xsmooth a
section. Denote by Spec R[[q]] the completion of Xalong the section x.

PROPOSITION (2.3) (Mazur [11] §2 Lemma (2.1)): The following diagram is
commutative up to sign:

Denote by u the natural morphism of J,, onto j... By [11] Corollary
(1.1), Cot J/ z 0 0= q can be regarded as a subspace of Cot J/ z 0 0= q-==-
H0( ~ IF q’ 03A9)( = H0(X ~ 0= q’ 9), see [3] p. 162 (2.3)), for q =1= 2.

LEMMA (2.4) ( Mazur [11] §3): Under the notation as above, let x = 0 or 00
( = the cuspidal sections). If p = 11 or p  17, for each rational prime q =1= 2,
there exists a form 03C9 = Lamqmdqjq E Cot j/z such that al E Z q.

Let m : X- Y be a morphism of schemes. The morphism m is a
formal immersion along a section x of X if m-«-9’ = OX,x, where
OY,f(x) and (9 x,x are the completions of the local rings along the sections
f(x) and x, respectively. If m*(OY,f(x)/mf(x)) = OX,x/mx and Cotx(m) :
Cotf(x)Y~ CotxX is surjective, then m is a formal immersion along x
(see E.G.A.IV, 17.44). Here, mf(x) and mx are the maximal ideals of the
local rings at f(x) and x.
PROPOSITION (2.5): Let q =1= 2 be a rational prime. If p = 11 or p  17,
ug ~ Zq: Xsp.Car ~ Z smoothq ~ J/ z q is a formal immersion along the cuspidal
sections 0 and 00. Further, if q =1= 2 nor p, ug 0 Z qis a formal immersion
along any cuspidal section Of Xsp.Car 0 z q.

PROOF: There are p + 1 cuspidal sections 0, oc and Xi of Xsp.Car which
correspond to 0, oc and 1ji (1  i  p - 1) by the canonical identifica-
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tion of Xsp.Car ~ C with  where H = {z ~ C|Im(z)
&#x3E; 0} . The cuspidal sections 0 and oo are Q-rational, and x, are Q(03B6p)-ra-
tional, where 03B6p is a primitive p-th root of 1. Let Ms.C = Msp.Car( p) and
M0(p) be the fine moduli stacks corresponding to finite adèlic modular
groups 0393sp.Car(p) and 03930(p), respectively, see (1.1). The correspondence
of the local coordinates along the cuspidal sections 0 and oo is as follows:

For each rational prime q, Cot(03C0) (resp. Cot(wp03C0w)): Cot0X~ Zq~
Cot0Xsp.Car ~ Zq is an isomorphism (resp. a 0-map). Take a form w E Cot
/zq as in Lemma (2.4) (for q ~ 2), then by Proposition (2.3), Cot( ug) =
Co q Cot /z ~ Cot 0 Xsp.Ca, ~ Zq sends w to + al E

To investigate the cuspidal sections x,, we consider all over R =

Z[1/2p, 03B6p]. The group a ~ (Z/pZ) } acts trivially on

Ms.C 0 R. The correspondence of the local coordinates along the cuspidal
sections xl is as follows:
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The Tate curves along these cuspidal sections are as follows (see [3] VII):

Here, Z/pZ(q1/p) and Z/pZ(03B6pql/p) are the subgroup schemes of the
Tate curve Gqm/qz generated by the sections q1/p and SpqlIP, respec-
tively. Consider the morphism Wp?Tw: ( E , A, B ) -
( E/B, Ep/B)(xi ~ xp-103C00wp~):

along x,

Here, a(i) is an integer congruent to i -’ mod p. Take the local coordi-
nates along x,, oo and 0 such that

are the identity maps of R-modules R. Then

for a primitive p-th root of 1. Take a form 03C9 ~ Cot /zq as in Lemma
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(2.4), then by Proposition (2.3), Cot(ug)(03C9) = ± a1(1 - 03B6) ~ ( R ~ Zq) .
D

§3. Rational points on Xsplit(p)

Let p  11 be a prime number. Let y be a non cuspidal Q-rational point
on Xsplit = Xsplit ( p ) and x, w(x) the sections of the fibre (Xsp.Car)y. Then
there exists a number field k of degree  2 over which x and w(x) are
defined. We denote also by y (resp. x and w(x)) the Z-section (resp.
fflk-sections) of Xsplit (resp. Xsp.Car) with the generic fibre y (resp. x and
w(x)) above. There exists an elliptic curve E defined over 0 with

independent subgroups A, B of rank p such that the set {A, B} is

Q-rational and the pair (E, {A,B}) represents y = y ~ Q (see [3] VI

Proposition (3.2)). Then A and B are defined over k. By Corollary (1.4), x
and w(x) are the sections of Xsmoothsp.Car. We call that y (or x ) has potentially
good reduction at a prime q if E has potentially good reduction at q.

PROPOSITION (3.1): Under the notation as above. If p ~ 13 ( 11), y has
potentially good reduction at the rational prime q =1= 2.

PROOF: Denote by 0, YI (1  i  ( p - 1)/2) the cuspidal sections of Xaplit
which are the images of (0, ~} and {xl, xp-1}, respectively. If y does
not have potentially good reduction at a rational prime q, then y ~ Fq =
0 ~ IF q or = y, ~ Fq for an integer i. The latter case occurs only when
q ~ ± 1 mod p. Denote also by C the cyclic subgroup of the image of the
cuspidal subgroup C = c1((0) - (~))&#x3E; by the natural morphism of J
onto j, see (2.1). Then see

loc. cit.. If y ~ Fq = 0 ~ Fq, Then (y) = 0. If y ~ Fq = yi ~ Fq, then

(y) = the image of c1((0) - (~)). Then by Proposition (2.5), y = 0 or
= yi, which is a contradiction (see [11] Corollary (4.3)). D

LEMMA (3.2): Under the notation as above. The sections x and w(x) are not
Q-rational and the prime p splits in k.

PROOF : The modular curve X0(p2) is isomorphic over Q to XSP,Car =
Xsp.Car(p): ( E, A) ~ (E/Ap, A/Ap, Ep/Ap), where Ap = ker(p : A ~
A). For. thé primes p (7), X0(p2)(Q) = (0, ~}, see [11], [6,7], [13].
Therefore, x and w(x) are not Q-rational and w(x) = x03C3 for 1 ~ 03C3 ~

Gal(k/Q). If p ramifies in k, then w(x)~Fp = x03C3~Fp = x~Fp. If

p remains prime in k, then w(x) ~ IFp2 = x ° ~ Fp2 = ( x ~ Fp2)(p),
where (x ~ Fp2)(p) is the image of x ~ Fp2 by the Frobenius map:
Xsp.Car ~ Fp ~ Xsp.Car ~ IFp. The irreducible components Z1, Z’1 and Erea
are Fp-rational, see §1 (1.1). In both cases above, x ~ IFp2 is a section of E,
see loc.cit. But, x ~ IFp2 is a section of Zh1 U Z’i , see (1.4). D
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PROPOSITION (3.3): Let x and w(x) be the sections as above for a rational
prime p =1= 13 ( 11) and g the morphism of Xsmoothsp.Car to J/z defined in §2 :
(E, A, B)~c1((E, A) - (E/B, Ep/B)). Then g(x) ~ Fp =
g(w(x)) ~ Fp = 0.
PROOF: By Corollary (1.4), x ~ Fp and w(x) ~ Fp are the sections of
Zh1 U Z’h1, see (3.2) above. We may assume that x ~ Fp is a section of Zh1,
changing x by w(X) if necessary. Then there exists an elliptic curve E
defined over Fp such that the triple (E, ker (Frob), ker(Ver)) represents
je 0 P and (E, ker(Ver), ker(Frob)) represents w(x) ~ IFp’ where Frob is
the Frobenius map: E~E=E(p) and Ver is the Verschiebung: E =
E(p)~ E. Put A = ker(Frob) and B = ker(Ver). Then ( E, A ) represents
03C0(x) ~ Fp and (E/B, Ep/B) represents wp03C0w(x) ~ Fp. The following
diagram is commutative:

i.e., (E, A)(E/B, Ep/B). Therefore 03C0(x) ~ Fp = wp03C0w(x) ~ Fp.
Then g(x) ~ Fp = g(w(x)) ~ Fp = 0. D

COROLLARY (3.4): Under the notation and the assumption on p as above.
Let g, g be the morphisms defined in §2. Then (y) = 0. If the Mordell- Weil
group of J- is finite, then g-(y) = 0.

PROOF: By Theorem (2.1), (y) ~ Zp is a section of the finte étale

subgroup which is the image of C see (2.1). Then
(y) = 0, see (3.3) above. If the Mordell-Weil group of J- is finite, then
g-(y)  Zp is a secton of the image of C/zp see (2.1). ~

REMARK (3.5): By this corollary (3.4), we see that y ~ Fp ~ yi ~ Fp for all
rational primes q. Because, g(yi) = the image of the generator cl((0) -
(~)) of C, which is of order n = num(( p - 1))/12), see (2.1).

COROLLARY (3.6): If p ~ 1 mod 8, then y has potentially good reduction at
q = 2.
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PROOF: If y does not have potentially good reduction at q = 2,
then y (D F2 = 0 ~ F2. The morphism Cot(03C0); Cot0X ~ Z2
Cot0Xsp.Car ~ Z2 is an isomorphism and Cot(wp03C0w) : Cot0X ~ Z2 ~
Cot0Xsp.Car. ~ Z2 is a 0-map, see (2.5). It is enough to show that there
exists a form w E u*(Cot J/Z2) such that w(0 ~ F2) ~ 0, where u:

J/z2 ~ jl ’ 2 is the natural morphism. The cyclic subgroup C/z2 contains
the multiplicative group 03BCp/z2, see (2.2). Consider the morphism u 0 Z 2 :

By Theorem (1.2) and (2.1), u|03BC2/z2 2 is an isomorphism. Then

u*(Cot /z2) ~ F2 ~ fol, which is a T = Z[T,, wp],,,P-module. Using the
q-expansion principle (see [11] §3), we get a desired form. D

To prove the main theorem, we need the following result of Ogg [14]
Satz 1.

THEOREM (3.7) (Ogg, loc. cit.): Let p be a prime number such that the
genus go ( p ) of X = X0(p)  2. Then the group Aut X0(p) of automor-
phisms of X ~ C = wp&#x3E;, provided p =1= 37.

REMARK (3.8): Aut X0(37)Z/2Z X Z/2Z, see loc.cit., [12] §5.

THEOREM (3.9): Let p = 11 or p  17 be a prime number such that the
Mordell- Weil group of J-=Jo-(p) is of finite order. Then Xsplit(p)(Q)
consists of the cusps and the C. M. points.

PROOF: Let y be a non cuspidal Z-section of Xsplit = Xsplit(p) and x a
section of the fibre (Xsp.Car)y. Let (E, (A, B}) (/Q) be a pair which
represents y (see [3] VI Proposition (3.2)). Denote by g+ = g+(p) the
genus of X0+(p) = X0(p)/wp&#x3E;. If g+=0, then J = J -, which has the
Mordell-Weil group of finite order (see [10] p. 40, [21] Table 5 pp.

135-141). By Corollary (3.4), 0 = g(x) = cl((03C0(x))-(wp03C0rw(x))). Then

03C0(x) = wp03C0w(x), because g0(p)  1 for p = 11 and p  17. Then

E=E/B (/Q), hence E is an elliptic curve with complex multipli-
cation. If g+ &#x3E; 0, by Corollary (3.4), 0 = (1 - wp)g(x) = cl((03C0(x)) +
(03C0w(x)) - (wp(03C0(x)) - (wp03C0w(x))). Then there exists a rational function
f on Xo ( p ) whose divisor (f) = (03C0(x)) + (’1Tw(x)) - (wp03C0(x)) -
(wp’1Tw(x)). If the degree of f  1, by the same way as above, we see that y
is a C.M. point. If the degree of f = 2, then X0(p) has the hyperelliptic
involution y such that 03B303C0(x) = 03C0w(x). By Theorem (3.7) above, such a y
exists only when p = 37 (, g0(p)  2). D
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§4. Effective bound of rational points

In this section, we estimate the number of the Q-rational points on
Xl,lit = Xsplit(p) for p  17. Let y be a non cuspidal Q-rational point on
Xsp,;t (p  17) and x, w(x) the sections of the fibre (Xsp.Car)y, which are
defined over a quadratic field k. The rational prime p splits in k and x,
w( x ) become Zp-sections of the smooth part of Xsp.Car, see (1.4), (3.2).
Let g (resp. g) be the morphism of Xsmoothsplit (resp, Xsmoothsp.Car) to the Néron
/z (resp. J/z) and u: J/z ~ /z the natural morphism as in §2. Then
(y) = ug(x) = ug(w(x)) = 0, see (3.4). Denote by 1(p) the number of
the Zp-sections x of Xsp.Car which satisfy the following conditions (CI),
( C2 )?

(CI ) x ~ Qp are neither cusps nor C.M. points.
( C2 ) x ~ Fp are sections of Z’t (see §1(1.1)) and ug(x) = 0.

One of the sections x and w(x) of the fibre (Xsp.Car)y satisfies the

condition (C2). If a Z p-section x of Xsp.Car satisfies the condition ( C2 ) and
x ~ Fp = 0 ~ Fp, then x is the cusp 0, see (2.5). Denote by n(p) the
number of the Z-sections of Xsplit whose generic fibres are neither cusps
nor C.M. points. Then n(p)  1(p). Estimating 1(p), we get the follow-
ing.

THEOREM (4.1 ) : n(p)  dim J - dim  for p  17.

Example: 1(37) = 1, see (5.A).
For a point z E Z"(Fp), z ~ 0 0 Fp,

m(z) = Minimum ( the order of zero of cj at z}.

Let l(z)=l(p,z) be the number of the Zp-sections of Xsp.Car which
satisfy the conditions ( CI), ( C2 ) above and

where 03C0: Xsp.Car ~ W Xo (p) is the canonical morphism (see §1). We
estimate 1(p) by the following way. Firstly, we show that there exist at
most m(z)+1 Zp-sections of g(sp.Car which satisfy the conditions (C2),
(C2) above. Secondly, we show that the Deuring lifting (see e.g., [8] Part
13§5) satisfies the conditions ( C2 ), (C2) above. Then l(z)  m(z) for
z ~ Z’h(Fp), z ~ 0 ~ Fp. Finally, using the Riemann-Roch theorem, we
estimate Lzm(z).

LEMMA (4.2): ~(z)  m(z).

PROOF: Let x be a JLp-Sectlon of Xsp.Car which satisfies the conditions
(C2), (Cz) for z ~  The morphism ug = uC, - uCp (see
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§2) is defined by

Consider the morphism

where g = dim j. By Proposition (2.3) and by the fact that 03C0 is isomor-

phic formally along the section x (see §1), we see that for an integer i,

1  i  ,

with m = m(z) + 1 and am ~ Z p. Similarly, we see that (uCp)*(t1) ~
apmqpm + a’pm+1qpm+1 + ... (mod p) with a’pm ~ Z p, see (1.1), (2.5). By
the condition (C2), uC1(x) = uCp(x). J/z ~ Fp is a split torus Gm 

(see [15], [10] Appendix). The
section uC1(x)~Fp=uCp(x) ~ Fp is defined by 
for c, E f"pX. Let v be the morphism: /zp (x1, x2) ~ x1 -
x2. Then 

cj)(1 ~ u-1j - c-1j). For an integer (ug)*(uk-1) = c-1kbmqm + ... with
bm ~ F p. Then (ug)*(ti) ~ b’mqm + ... (mod p ) with b’m ~ Z p. In the

following, we show that there exists a C.M. point satisfying the condi-
tions (C2), (C2). Let E(/Fp) be an elliptic curve with the modular

invariant j(E) = j(z). Then the triple ( E, ker(Ver), ker(Frob)) represents
x ~ IFp, see §1(1.1). Let F be the Deuring lifting of E (see e.g., [8] Part 13
§5), which is defined over a subfield K of Qurp (see loc. cit., Theorem_13).
Let a, â be the endomorphisms of F such that a ~ IFp = Ver and 03B1 ~ Fp =
Frob (see loc.cit., Theorem 12). Put A = ker( a : F ~ F) and B = ker(a : F
- F). Then the triple ( F, A, B ) represents a fflKsection x of Xsp.Car such
that x ~ Fp = x ~ Fp. By the same way as in Proposition (3.3), we can see
that (F/B, Fp/B)=(F, A). Then, g() ~ 0. The rest of this lemma
owes to the following sublemma.

SUBLEMMA (4.3): Let f(t) = 03A3n1antn be a formai power series with

an ~ W(Fp). Suppose that f(t) ~ artr + ... (mod p) with ar ~ 0 mod p.
Then there are at most r solutions of f(t) = 0 in pW(Fp). If r = 2 and
al =1= 0, there exist two solutions of f(t) = 0 in pW(Fp). D
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PROOF OF THEOREM (4.1) : By Lemma (4.2), l(p)  m(p)  03A3m(z). Put

g = g0(p) = dim J, g = 0(p) = dim J and let g+ = g+(p) be the genus of
X+0(p) = X0(p)/wp&#x3E;. Let a, (1  i  r = g - 2g+ + 1) be the Fp-rational
supersingular points and /31’ 03B2l(p) (1  i  g+) the non Fp-rational super-
singular points on X ~ Fp. Put D1= 03A3l(03B1l), D2 = 03A3i(03B2l) + 03A3l(03B2l(p)) and
Do = 03A3zm(z)(z). Then Cot J/zp ~ Fp can be regarded as a g-dimensional
subspace of H0(Z’ ~ Fp, 21(- Do + Dl + D2 )) (see [11] Corollary (1.1),
[3] p. 162 (2.3)). For an effective divisor D  D1 + D2, put V(D) =
Cot 03A91(-D0 + D)) and let S be the set of the
divisors {D  Dl + D2|D &#x3E; 0, V(D) ~ {0}}. Take a divisor D(1) E S such
that deg D(1)  deg D for all D ~ S. Then deg D(1)  m(p) + 2. The
fundamental involution wp acts by ( -1) on Cot J/zp 0 Fp and wp(03B2l) =
03B2l(p) (see [15], [10] Appendix), so that if w E Cot J has a pole at 8,
(resp. /3/P»), then w has also a pole at 03B2(p)l (resp. /31). Therefore,
dim V(D + (03B2l) + (03B2(p)l))  dim V(D )+ 1 for D  D1 + D2. We can

choose the divisors D(1)  D(2)  ...  D() such that D( i) E S and
dim V(D(l)) = i for the integers i, 1  i  g. Put D(1) = E + F with E  Dl
and F  D2, and let s, 2 t be the degrees of E and F, respectively. Then

 = dirn /zp  Therefore, we get
the following:

In paticular, l(p)  g - g. D

§5. Further results

We here discuss the cases for p = 13 and 37.

(5.A) A result for p = 3 7

Let f+ = q-2q2-3q3+ ... (resp.f- = q + q3 + ...) be the new form
on 03930(37) of weight 2 with the eigen value + 1 (resp. -1) of w37, see [1].
Put 03C9+= f+dq/q and 03C9- = f_dq/q, which are basis of HD(X, 2)
Spec Z is regular (p = 37), see [3] VI §6). On ZX0(1) ~ F37 =

Pl(j) 0 F37,
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(see [3] p. 162 (2.3), [21] Table 6, pp. 142-144). There are at most two
Z 37-section of Xsp.Car = Xsp.Car(37) which satisfy the condition (C2) and
(CJ for the point z E Z’h with the modular invariant j(z) = 6. One of
them is the Deuring lifting of z whose ring of endomorphisms (9 = Z[(-1
+ 7/-3)/2]. The class number of the order O is two (e.g., [8] Part 8
Theorem 7). The modular curve Xo (37) is defined by the equation:

where f = f+/f- and Z = 1 + q + ... (, q = exp(27TH z), see [12] §5).
The fundamental involution W37 acts by w*37(Z, f) = (Z, - f) and the
hyperelliptic involution S acts by S*(Z,f) = ( - Z, f ), see loc.cit.. Let Z
be the Deuring lifting of Z F with the modular invariant j(1) n 6
mod 37. Let K be the Hilbert class field associated with O. The rational

prime 37 splits in K. Fix an embedding of K into Q37. For T E Gal(K/Q),
ug(l (ug())03C4 = 0 and zT ~ F37 is a section of Zf U Z’h1, see (1.1),
(1.4). Choose T, E Gal(K/Q) ( Tl = id., i = 1, 2) such that 03C4, 0 F37 are the
sections of Z’. Then l = 03C4’ satisfy the condition (C2) in §4. By the
uniqueness of the Deuring lifting (see [8] Part 13 Theorem (13)), the
modular invariant j(2) ~ 6 mod 37. Put w = (ug)*(03C9-). Then

03C9(1 ~ F37) = 0 and 03C9(2 ~ F37) ~ 0. Therefore, 03C9(z1) ~ 0 (, because if
03C9(1) = 0, then 03C9(2) = 03C9(1)03C42 = 0). There exists a Z37-section of

Xsp.Car(37) which satisfies the conditions ( Cl ), ( C2 ), see (4.2), (4.3). We
here discuss it. Put T = exp(203C0-1 /3), rl = 1 - 10 T, T2 = 1 + 1103C4, L = Z
+ Z03C4 and E = C/L. Denote by 80, 03B4~ and 8, (1  i  36) the points on
Xo (37) which are represented by the pairs (E, (1 37Z03C41 + L)/L), (E,
(1 37Z03C42 + L)/L) and (E, (1 37Z(03C41 + i03C42) + L)/L), respectively. Let H be
the subgroup of (Z/37Z) X generated by 11 mod 37. Then 8, = 03B4j if and
only if 1 * j mod H. Let e+ be the points defined by (f-1,f-3Z)=
(0, ± -1). The field of rational functions on Xo (37) is Q(j(z),j(37z)).
The divisors of the rational functions j(z), f - 1 and f + 1 are (j(z)) =
(03B40) + (03B4~) + 303A3l mod H(03B4l)-(~)-37(0), (f-1)=(~)+(03B3~)-(03B5+)-
(E_) and (f+1)=(0)+(03B30)-(03B5+)-(03B5-). where 03B3~ = S(~) and Yo =

S(0). We can easily see that Z[1/2 - 37, X, Y]/(X2 + y6 + 9y4 + lly2
- 37) is smooth. Then the modular function j( z ) is of the form

with some polynominals p(Y), q(Y) ~ O[Y]. The points defined by
(Z,f) = (±37, 0) correspond to the elliptic curves (/Q(37)) with
complex multiplication, so that q(O) =1= 0. The cusps oc, 0 are defined

respectively by (Z, f) = (4, 1) and = (4, -1), so that p(1)+4q(1)~0
and p(-1)+4q(-1)~0. The non cuspidal points 03B3~, Yo are defined

respectively by (Z, f ) = ( - 4, 1) and = ( - 4, -1), so that p (1) - 4q(1) =
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p(-1)-4q(-1)= 0. Therefore, q(±1) ~ 0. The special fibre e, 0 F37 of
the fixed points 03B5+ of Sw37 is the supersingular point (/F37). Xo(37)(Q) =
f 0, oo, yo, -Y. 1, see [12] §5. For the rational points on Xsplit(37), we get
the following.

PROPOSITION (5.1): If n(37) = 1, then there exists a Q-rational solution of
the equation q(Y) = 0. Conversely, if q(Y) = 0 has a 0-rational solution,
then n (37) = 1.

PROOF: Firstly, suppose that there exists a Q-rational point y on

Xsplit (37) which is neither a cusp nor a C.M.point. Let x, w(x) be the
sections of the fibre (Xsp.Car)y, which are defined over a quadratic field k
and w(x) = x03C3 for 1 ~ (J E Gal(k/Q), see (3.2). As was seen in the proof
of Theorem (3.9), there exists a rational function g(/Q) on X0(37) of
degree 2 whose divisor ( g ) = (03C0-(x)) + (03C0w(x)) - (w3703C0(x)) -
(W3717w(x». Then S03C0(x) = 03C0w(x)(=03C0(x)03C3), so that a = f(03C0(x)) ~ Q
(and a ~ ±1). Let b ( E k ) be the square root of - a6 - 9a 4 - 11 a 2 + 37.
We may assume that the points 03C0(x), 7T w( x) are defined by (Z, f ) = ( b, a )
and = ( - b, a ), respectively. The modular invariant j(03C0(x)) = j(03C0w(x))
of 03C0(x) and 7TW(X) = Si7(x) is written by ( p(a) + q(a)b}/(a - 1)(a +
1)37 = {p(a)-q(a)b}/(a-1)(a+1)37. Hence, q(a) = 0. Conversely,
suppose that the equation q(Y) = 0 has a solution Y = a ~ Q . Let z, S(z)
be the points on X0(37) which are defined by (Z, f) = (b, a) and
= ( - b, a) for a square root b of - a6 - 9a4 - 11a2 + 37. As a ~ +1, so
that Q(b) is a quadratic field and z ~ S(z), S(z) = z’ for 1 ~ 03C3 ~

Gal(Q(b)/Q). The modular invariant j(z) = j(z03C3) ~ Q. If z is a C.M.

point, then z is represented by an elliptic curve E (/Q) with Q(b)-ra-
tional subgroup A of rank 37. Then z a is represented by the pair ( E, A03C3),
and (E, A03C3)  ( E/A, E37/A), Le., ZO = W37(z). As noted before, a ~ 0,
so that z is not a C.M. point. Let F be an elliptic curve defined over Q
with the modular invariant j(F) =j(z), and p the representation of the
Galois action of Gal(Q/Q) on the 37-torsion points F37(Q). There is a
quadratic extension K of Q(b) such that 03C1(Gal(Q/K)) is contained in a
Borel subgroup ( c GL2(F37)). Then p(Gal(Q/Q)) is contained in a Borel
subgroup or in the normalizer of a split Cartan subgroup, see [19] §2, [9]
§2 p. 120. The first case does not occur, because z is not 0-rational. D

(5. B) Some results for p = 13

Because of the fact that X0(13)P1, we can not apply the same
method as for the other primes p  11. We here discuss the case p = 13
under additional conditions. Let y be a non cuspidal 0 -rational point on

Xsplit (13), which is represented by a pair ( E, (A, BI) for an elliptic curve
defined over Q. Then the triple ( E, A, B ) represents a point on XsP.car (13),
which is defined over a quadratic field k, see (3.2). Consider the represen-
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tation P2 of the Galois action of G = Gal(Q/Q) on the 2-torsion points
E2(Q). If y is a C.M.point, then  where Gk =
Gal(Q/k). We set the following condition (C):

Under the condition (C) above, there occur the following three cases:

and

Denote by X0393 the modular curve (/Z) corresponding to the finite adèlic
modular group 0393 ~ GL2() (see §1(1.1)), and put X0393 = X0393 ~ Q. In the
case ( C-1), let 03930, fI and r respectively the modular groups fo = 03930(26),
fI = Io(2) n 0393sp.Car(13) and r = 03930(2) n 0393split(13). In the case ( C-2) (resp.
( C-3)), let ro, 03931 and r respectively the modular groups fo = 0393non.sp.Car(2)
~ 03930(13), 03931 = 0393non.sp.Car(2) ~ 0393sp.Car(13) and 0393 = 0393non.sp.Car(2) ~ 0393split(13)

, where 0393non.sp.Car(2) = {g ~ GL2()|g3 ~
mod 2} . Under the condition (C-i), ( y, E ) represents a non cuspidal
Q-rational point on Xr. In the rest of this section, we prove the

following.

THEOREM (5.2): Let Xr be as above. Then Xr(Q) consists of the cusps and
the C. M. points.

Define the involutions w of X03931 by: Case (C-1): (E, A, B, C) ~
( E, B, A, C), Case (C-2): ( E, A, B, a mod F 4)~
( E, B, A, a mod F4 ), Case ( C-3): ( E, A, B, a mod F4 ) ~
( E, B, A, a’ mod F4 ), where A, B are subgroups of rank 13, 
and a, a’ are the 2-level structures such that a =1= a’ mod F 4(, IF 4x 
GL2(1F2)). Then Xr = X03931/w&#x3E;. Define the involution Wo of Xro by: Case
(C-1): (E, A, C)~ (E/A, E13/A, (C + A)/A), Case (C-2):
( E, A, a mod F 4) ~ ( E, A, a’ mod F 4), Case (C-3):
( E, A, a mod F 4)~ (E/A, E13/A, a’ mod F 4), where a, a’ are the
2-level structures such that 03B1 ~ a’ mod IF 4x. Let J be the jacobian variety
of Xro, 77 the canonical morphism of X03931 to X03930 and put J- = J/(1 + w0) J.
In the case (C-1), Xro is of genus 2 and J-(Q) Z/3Z (see [21] Table
1, pp. 81-113). In the cases ( C-2) and (C-3), Xro is of genus 1. The
modular curve X0393(2)~03930(13) is isomorphic over Q to X0(4·13) (see [3] IV
Proposition (3.16) : 03930(4·13)=g{0393(2)~(13)}g-1 for g
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with h E GL2() such that h = 1 mod 4 and h ~ 01 - ’ 0) mod 13). In
the cases (C-2) and (C-3), the double covering X03930 ~ X0(13) ramifies at
the cusps 0 and oo . The class c1((0)-(~)) is of order 2 and J(Q)
Z/2Z (see [21] Table 1). Let w be the base of H0(X03930, 03A91) (in the cases
(C-2), ( C-3)), then w*003C9 = -03C9 (see [21] Table 3 pp. 116-122), so that
J- = J.

where X0393+ = X03930/w0&#x3E;. Define the morphism g of X03931 to J by
~ Cl«7r(x» - (woirw(x»). Then g induces the morphism g- of Xr to
J- :

Denote also by g (resp. g-) the morphism of Xsmooth03931 (resp. Xsmooth0393) to the
Néron model J/z (resp. J-/z). The modular curve X0(13) ~ X0(1) is

defined by the following equation (Fricke, see [13]):

The modular curve Xsp.car(13) is the normalization of the curve defined
by the equation:

Let y be a non cuspidal Q-rational point on Xsp,;t (13) and x, w(x) the
sections of the fibre (Xsp.Car(13))y, which are defined over a quadratic
field k. Then w(x) = x03C3 for 1 ~ 03C3 ~ Gal(k/Q) (see (3.2)) and x, w(x)
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correspond to the points defined by (X, Y) = (a, a03C3) and ( a a, a ) for
a E k, respectively.

LEMMA (5.5): Under the notation as above. Suppose that y has potentially
good reduction at a prime q of k. Then (ordqa, ordq a03C3) = (o, 0) if q13, =
(0, 0), (1, 0) or (0, 1) if q Il 3.

PROOF: By the assumption, ordq j(y)  0. If q13, by the equation (5.3)
above, we can easily see that ord q a = ordqaa = 0. The rational prime 13
splits in k, see (3.2). If q Il 3, ord q a, ord q a a = 0 or 1. By the equation (5.4)
above, (ordqa, ordqa03C3) =1= (1, 1). 0

For a rational prime q, let Iq be the inertia subgroup Gal(Q 
There exists an elliptic curve E defined over Q with independent sub-
groups A, B of rank 13 such that the set f A, B 1 is Q-rational and the

pair (E, (A, B}) represents y. Let p4 be the representation of the Galois
action of Gal(Q/Q) on the 4-torsion points E4(Q).

LEMMA (5.6): Under the notation as above. If a rational prime q ramifies in
k, then the modular invariant j(y) 1728 mod q. If moreover q 9L 2, 03C14(Iq)
contains a subgroup isomorphic to Z/4Z.

PROOF: If q ramifies in k, then q ~ 13 (see (3.2)) and y ~ Fq is
a ramification point of the double covering Xsp.car(13) ~ Fq ~ Xsplit
(13) ~ Fq. Then j(y) ~ 1728 mod q. Let p be the representation of the
Galois action on the 13-torsion points E13(Q). Then for a rational prime
q ~ 2, 13, 03C14(Iq)03C1(Iq)(SL2(F13)) (see [19] §5). Let q ~ 2 be a
rational prime which ramifies in k and q the prime of k lying over q with
the inertial subgroup Iq = Gal(kq/kurq). For T E Iq B Iq , 03C1(03C4) is not con-

tained in the split Cartan subgroup Aut A(Q) X Aut B(Q) and det 03C1(03C4)
= 1. Then the order of 03C14(03C4)( = the order of 03C1(03C4)) = 4. 0

PROOF OF THEOREM (5.2): Let y be a non cuspidal Q-rational point on
Xr and x, w(x) the sections of the fibre (X03931)y, which are defined over a
quadratic field k. By the same way as in Proposition (2.5), (3.1), we see
that y has potentially good reduction at the rational prime q = 13.

Case (C-1): Changing x by w(x), if necessary, we may assume that

x ~ F13 is represented by (F, ker(Frob), ker(Ver), C), where F is an
elliptic curve defined over F 13 and C is a subgroup of order 2 such that
Frob(C = C, see (1.1), (1.4), (3.2). Let ( F, Â, B ) be the Deuring lifting
of (F, ker(Frob), Ker(Ver)) and a the endomorphism of Ê corresponding
to Frob by the reduction map, see (4.2). Let C be the subgroup of Ê of
rank 2 whose reduction (mod 13) = C. Then the reductions of C and
03B1() (mod 13) are C = Frob(C). Then a(è)= C. Let x be the point on
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Xr, which is represented by ( F, Â, B, ). By the same way as in Lemma
(4.2), we see that 03C0-()= w003C0w(), hence g() = 0. Because J-(Q)
Z/3Z, g-(y) = 0, see (3.4). The form 0 =A w E Cot J;-, 0 F 13 has one
simple zero on each irreducible component of x0(26) ~ F13 (see [11] 
Corollary (1.1), [3] p. 162 (2.3)). Therefore, there exists at most one

0-rational point on X0393 which is neither a cusp nor a C.M. point, see the
proof of Theorem (4.1). Let w2 be the involution of X0393 defined by
(E, {A, B}, C) ~ (E/C, {(A + C)/C, (B + C)/C}, E2/C). If y is

not a C.M.point, then w2(y) ~ y. Therefore, y is a C.M. point.
Case (C-3): There exists an elliptic curve F defined over F13 such that ( F,
ker(Frob), ker(Ver), a mod IF 4X) represents x ~ F13, where a is a 2-level
structure and F 4 c;. GL2(1F2). The rational prime 13 splits in k (see (3.2))
and 03C12(Gk) ~ 1F4x. Then ( F, A, a mod  FI3jB, a mod F 4),
i.e.,  see (3.3). Because J = J- has the

Mordell-Weil group  Z/2Z, g-(y)= 0. Then y is a C.M. point, see
the proof of Theorem (3.9).
Case (C-2): There corresponds to y an elliptic curve E defined over Q
which satisfies the condition (C-2). The double covering XI,. Xo(13)
ramifies at the cusps and J = J- has the Mordell-Weil group Z/2Z.
Let 0, oo and z, be the cusps on Xrl lying over respectively 0, oo and x,
on Xsp.car(13), see (2.5). Let Js0 be the connected component of J/Z13 ~ F13
of the unity. We see that 03C0(x) ~ F13 ~ w003C0w(x) ~F13 and g(x) mod Jso
= cl((0) - (~)) mod J0s (~J0s). For a rational prime q26, if x ~ Fq =
z, 0 Fq, then g(x) = g(z;) = 0. Let w e H0(X03930, ~ ll[1/2], 03A9)
Cot J/z[1/2] (see [11] Corollary (1.1), (2.3)), where 3Íro - Spec Z is the

minimal model. Then 03C9(0) = - 03C9(~) is a unit of Z[lj2]. For a rational
prime q ~ 2, g*03C9(0) ~ 0 mod q, g*03C9(~) ~ 0 mod q (cf. the proof of

(2.5)). Therefore, y has potentially good reduction at the primes q =1= 2, see
(2.5), (3.1). By Lemma (5.6), only the prime q = 2 ramifies in k and E has
potentially good reduction at q = 2. Hence, E has everywhere potentially
good reduction. Then k = Q(-1), because the prime 13 splits in k.
Then y corresponds to a point defined by (X, Y) = (a, a03C3) for a E

Z[ 1 ], see (5.5). As y is a Q-rational point, so the modular invariant
j(y) = j(a) ~ Q. Using Lemma (5.5), (5.3), we see that y is a C.M. point
corresponding to one of the points defined by a = - 3 ± 2-1 and
- 2± 3-1. D

References

[1] A.O.L. ATKIN and J. LEHNER: Hecke operators on 03930(m). Math. Ann. 185 (1970)
134-160.

[2] B.G. BERKOVIC: Rational points on the jacobians of modular curves. Math. USSR
Sbornik 30 (4) (1976) 478-500.

[3] P. DELIGNE and M. RAPOPORT: Schémas de modules des courbes elliptiques. Vol. II of
the Proceedings of the International Summer School on modular functions, Antwerp
(1972). Lecture Notes in Math. 349. Berlin-Heidelberg-New York: Springer 1973.



136

[4] M.W. KENKU: The modular curve X0(39) and rational isogeny. Math. Proc. Cambridge
Philos. Soc. 85 (1979) 21-23.

[5] M.A. KENKU: The modular curves X0(65) and X0(91) and rational isogeny. Math.
Proc. Cambridge Philos. Soc. 87 (1980) 15-20.

[6] M.A. KENKU: The modular curve X0(169) and rational isogeny. J. London Math. Soc.
(2) 22 (1980) 239-244.

[7] M.A. KENKU: On the modular curves X0(125), X1(25) and X1(49). J. London Math.
Soc. (2) 23 (1981) 415-427.

[8] S. LANG: Elliptic functions. Reading, Mass.: Addison-Wesley.
[9] B. MAZUR: Rational points on modular curves. Proceedings of a conference on

modular functions held in Bonn 1976. Lecture Notes in Math. 601. Berlin-Heidelberg-
New York: Springer 1977.

[10] B. MAZUR: Modular curves and the Eisenstein ideal. Publ. Math. I.H.E.S. 47 (1977).
[11] B. MAZUR: Rational isogenies of prime degree. Inv. Math. 44 (1978) 129-162.
[12] B. MAZUR and H.P.F. SWINNERTON-DYER: Arithmetic of Weil curves. Inv. Math. 25

(1974) 1-61. 
[13] J.F. MESTRE: Points rationnels de la courbe modulaire X0(169). Ann. Inst. Fourier,

Grenoble 30-2 (1980) 17-27.
[14] A. OGG: Über die Automorphismengruppe von X0(N). Math. Ann. 228 (1977)

279-292.

[15] M. OHTA: On reduction and zeta functions of varieties obtained from 03930(N) (to
appear).

[16] F. OORT and J. TATE: Group schemes of prime order. Ann. Scient. Éc. Norm. Sup.
Série 4, 3 (1970) 1-21.

[17] M. RAYNAUD: Schémas en groupes de type (p, ... , p). Bull. Soc. Math. France 102

(1974) 241-280.
[18] K. RIBET: Endomorphisms of semi-stable abelian varieties over number fields. Ann.

Math. 101 (1975) 555-562.
[19] J.S. SERRE: Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Inv.

Math. 15 (1970) 259-331.
[20] J. Tate: p-divisible groups. Proceedings of a conference on local fields, Driebergen, 1966.

Berlin: Springer-Verlag (1967), pp. 158-183.
[21] B.J. BIRCH and W. KUYK (eds.): Modular functions of one variable IV. Lecture Notes

in Math. 476.

(Oblatum 6-1-1982 &#x26; 22-11-1983)

Department of Mathematics
Faculty of Science
University of Tokyo
Hongo, Tokyo 113
Japan

Appendix

Here, we give an another proof of the theorems of Kenku in [4,5].

THEOREM (Kenku, loc. cit.): The Q-rational points on Xo ( p. 13) are the cusps, for p = 3, 5
and 7.

PROOF: We use the following results.

(A.1 ) (Berkovic [2J). There exists a factor (/Q) of the jacobian variety of X0(N) whose
Mordell-Weil group is of finite order, for N = 39, 65 and 91.
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(A.2) (see /11] §4). If x is a non cuspidal Q-rational point on X0(N) for the integer as
above, then x has potentially good reduction at the primes q ~ 2.

Let x be a non cuspidal 0 - rational point on X0(p · 13) for p = 3, 5 or 7. Then x is

represented by an elliptic curve E defined over Q with subgroup A of rank 13 and C of
rank p which are defined over Q (see [3] VI Proposition (3.2)). Let À (resp. pp ) be the
representation of the Galois action of G = Gal(Q/O) on A(Q) (resp. on the p-torsion
points Ep(Q)). For a rational prime q, let Iq be the inertia subgroup Gal(Qq/Qurq) and Àq
the restriction of À to Iq. If q16·p·13, 03C1p(Iq)03BB(Iq) is isomorphic to a subgroup of
Z/4Z or Z/6Z (see [19] §5). If q = 3 and p ~ 3, 03C1p(I3)03BB(I3) is isomorphic to a
subgroup of SL2(Z/4Z) (see loc.cit.), so that 03BB(I3) is isomorphic to a subgroup of Z/4Z or
Z/6Z. If x has potentially multiplicative reduction at q = 2, then 03BB22 = 1. If x has potentially
good reduction at q = 2, then 03C1p(I2)03BB(I2) is isomorphic to a subgroup of SL2(F3) (see
loc.cit.), so that X(/2) is isomorphic to a subgroup of Z/4Z or Z/6Z. By our assumption,
pp (G) is contained in a Borel subgroup of GL2 (Fp), so that for any rational prime q =1= p,
03C1p(Iq) is isomorphic to a subgroup of Z/6Z if p = 3 or 7, and to one of Z/4Z if p = 5.
Further, as À is a character of G, so X6p = 1 if p = 3 or 7, and 03BB4p = 1 if p = 5. Therefore,
03BB6q = 1 if p = 3 or 7, and 03BB4q = 1 if p = 5 for the rational primes q ~ 13. Put e = 6 if p = 3 or
7, and e = 4 if p = 5. Then the order of 03BBp(I13) divides e, so that E has good reduction over
the extension of Qur13 of degree e, (A.2), loc.cit. Let 03B813 be the cyclotomic character induced
by the Galois action of G on 03BC13(Q). Put ~13 = Bi3 for an integer r. Then by the

fundamental property of the finite flat group schemes (see (1.2)), Xi3 = Of3 for an integer a,
0  a  e. Therefore, re --- a mod 12, so a = 0 or e (see [11] §5). Changing E by E/A, if

necessary, we may assume that ÀÍ3 = 1. Then X6 = 1 if p = 3 or 7, and ~4 =1 if p = 5.
Denote also by À the corresponding character of the idèle group QÂ of O. For a rational
prime ql26, put vq = 03BB proj(Q AZ q Z~Z q). Let kq be the subfield of Qq
corresponding to the character vq. Then kq is a totally ramified extension of Q q. Let Oq be
the ring of integers of kq. Then E/Oq is an elliptic curve (see (A.2)). Therefore, for each
rational prime qj26, we have the relation: 03BB(03C3q) + q03BB(03C3q)-1 ~ Tr(o ) mod 13, where 03C3q is

the Frobenius element of the prime of kq and Tr( oq ) is the trace of aq on the Tate module
T13(E/Oq)(Fq) (see [11] §6). Then we should have the following congreuences

for any rational prime q26. But, the congruences above are not satisfied for q = 3 if p = 3
or 7, and for q = 5 if p = 5. 0


