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RATIONAL POINTS ON THE MODULAR CURVES X, ;;(p)
Fumiyuki Momose

For a prime number p, let X, ( p) be the modular curve defined over Q
which corresponds to the modular curve

To(p)={(¢ B)esLa@ib=c=00ra=d=0modp}),

e, Xg(p)®C = pl"(p)\H U P'(Q), where H = {z € C|Im(z)> 0}.
We call the points € Pm(p)\IP (@) the cusps on X.,,(p). Then
Xpie(P)\ {cusps} is the coarse moduli space (/Q) of the isomorphism
classes of elliptic curves with an unordered pair of independent sub-
groups of rank p (see [9]). We here discuss the Q-rational points on
X,piu( p). For the prime numbers p <7, Xsp,i,(p)LPc],. Mazur [10]
I11§6 showed that for each prime number p =11 or p > 17, there are
finitely many Q-rational points on X, (p). We have no results for
Xopiir (13). Let y be a non cuspidal Q-rational point on X, (p) (p > 5).
Then there exists an elliptic curve E defined over Q@ with independent
subgroups 4, B of rank p such that the set { 4, B} is Q-rational and the
pair (E, { 4, B}) represents y (see [3] VI Proposition (3.2)). Let p = p, be
the representation of the Galois action of Gal(Q/Q) on the p-torsion
points E (Q) Then p(Gal(Q /Q)) is contained in the normalizer of the
split Cartan subgroup Aut 4(Q) X Aut B(Q) (C Aut E (Q)—
GL,(F,)). The “expected” Q-rational points on X; p)\{cusps} (p=
11?) are those which are represented by the elliptic curves with complex
multiplication. Let E be an elliptic curve defined over @ which has
complex multiplication over an imaginary quadratic field k. Let p > 5 be
a rational prime which splits in k. Then there are two independent
subgroups A4, B of rank p such that the pair (E, { 4, B}) represents a non
cuspidal Q@-rational point on X ( p). We call such a point a C.M.point.

Let X,(p) be the modular curve (/Q) corresponding to the modular
group I,(p) and Jy(p) the jacobian variety of X,(p). Let w, be the
fundamental involution of X,(p):(E, A)~ (E/A, E,/A), where E, =
ker(p: E - E). Denote also by w, the automorphism of J,(p) which is
induced by the involution w,,. Put J; (p) =Jy(p)/(1 + w,)Jo(p). Denote
by n(p) the number of the Q-rational points on X ; (p) which are
neither cusps nor C.M.points. Our main result is the following.
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116 Fumiyuki Momose [2]

THEOREM (0.1): Let p =11 or p > 17 be a prime number such that the
Mordell-Weil group of J; (p) is of finite order. Then n( p)= 0, provided
p+37.

For the primes p, 11 < p < 300, except for p = (13), 151(?), 199(?),
227(7) and 277(?), the assumption in (0.1) above is satisfied (see [10] p.
40, [21] Table 5 pp. 135-141). For p = 37, we know that
Jo B37)(Q)—=1Z/3Z (see loc.cit.), but we see only that n(37)< 1, see
(5.A). We may conjecture that n(p)=0 for p > 11, p # 13(?), # 37(?).
The outline of the proof of (0.1) above is as follows. Let X, (p) be the
modular curve (/Q) corresponding to the modular group

sp.Car

Typcar(P) = {(‘c’ Z) €SL,(Z)lb=c=0 modp}.

Let w be the fundamental involution of X, c,.(p): (E, 4, B)—= (E, B, A),

which is represented by ((1) (1)) Then X, (p) = X, car(P)/{W). Let

y be a non cuspidal Q-rational point on X,;(p) and x, w(x) the
sections of the fibre (X, c,(p)),- Then x, w(x) are defined over a
quadratic field k. Denote by %, . Car( p) and Z,;,(p) the normalizations
of the projective j-line Z,(1)—=—P} in Xsp.car(P) and X, (p), respec-
tively. We denote also by y (resp. x and w(x)) the Z-section (resp. the
0O,-sections) of Z,( p) (resp. Z, c,.( p)) with the generic fibre y (resp. x
and w(x)) above. Firstly, we show that y ® F, is not a supersingular point
and x, w(x) are the sections of the smooth part of Z, c,.(p) (see (1.4),
p > 11). Secondly, we show that y ® F, is not a cusp and that the rational
prime p splits in k, see (3.1), (3.2). Then there exists an elliptic curve E
defined over F, such that the pair (E, {ker(Frob), ker(Ver)}) represents
y ® F,, where Frob is the Frobenius map: E — E‘”’=E and Ver is the
Verschlebung E=E” - E. Define the morphism g of X, . (p) to

Jo(p) by

g: (E,A, B)~cl((E,A)—(E/B, E,/B)).

Then g induces the morphism g~ of X ;(p) to Jy (p), ie., g(x)
mod(l +w,)Jo(p)=g (y). Denote also by g (resp. g~) the morphism of
Z . car( p)s'“""‘h to the Néron model Jy(p),, over the base Z (resp. of
Z i P)*™" to Jy(p) 7). Then for the k-rational point x as above,
g(x)®F, =0, see (3.3). Then the assumption #J; (p)}Q)< oo implies
that g‘(y) =0. Let (E, {4, B}) (/Q) be a pair which represents y. Then
by the condition g7(y) =0, using the result of Ogg [14] Satz 1, we get E
—=_E/B, provided p # 37.
Further, we get the following estimate of n(p). Let .70( p) be the
“Eisenstein quotient” of J,( p), see [10].
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THEOREM (0.2): n( p) < dim J,( p) — dim Jy( p) for p > 17.
In §5, we discuss the cases for p =13 and 37.

Notation: For a rational prime g, Q7" denotes the maximal unramified
extension of @, and W(lF ) denotes the ring of integers of Q;". For a
finite extension K of @, @, or QF, O denotes the ring of mtegers of K.
Let A be an abelian variety defined over K and G a finite subgroup of 4
defined over K. Then 4 ,,_denotes the Néron model of 4 over the base
Ok and G, denotes the flat closure of G in 4 ,,, (which is a quasi finite
flat subgroup scheme, see [17] §2). For a subscheme Y of a modular curve
X (/Z), Y" denotes the open subscheme Y\ {supersingular points on
Ye® TI-:I,} for the fixed rational prime p.

§1. Preliminaries

=X

B

Let p > 5 be a prime number and X, c,, =
(/Q) corresponding to the modular group

p.car(P) the modular curve

Ty ca(P)= {(‘C' Z) e SL,(Z)[pb=c=0 modp}‘

X,p.car 18 the coarse moduli space (/Q) of the isomorphism classes of the
generalized elliptic curves with an ordered pair of independent subgroups
of rank p (see [3], [9]). Let w be the fundamental involution of

spCar (E A B)'_)(E B A) Then spht spht(p) pCar/<w> De-
note by sp.Car ‘@‘sp Car( p)’ spllt spln( P) and =% (P) the normali-
zations of the projective j-line Z,( p) = P} in Xsp.cars Xspiie a0d X = X, (p),
respectively. Let 7 be the canonical morphism of £, ¢,  to Z which is
generically defined by (E, 4, B)— (E, A). For a subscheme Y of a
modular curve /Z, Y" denotes the open subscheme Y\ {supersingular
pointson Y ® ?p} of Y. The special fibre Z® F, is reduced and has two
irreducible components, say Z and Z’, which intersect transversally at the
supersingular points on Z® F, (see [3] VI§6). Z" (resp. Z*) is the coarse
moduli space (/F,) of the isomorphism classes of the generalized elliptic
curves with a subgroup 4 of rank p such that A—=—p , (resp. =7 /pZ),
isomorphic locally for the étale topology (see loc.cit.). The fibre 7~ 1(Z)
has one irreducible component Z,, and Z¥ — Z" is radicial of degree p.
The fibre #~1(Z’) has two irreducible components Z; and E. The
multiplicity of E is p — 1 (see [15]) and Z’ = Z'* is an isomorphism
(see loc.cit.). The fundamental involution w exchanges Z, by Z] and fixes
E. These components Z,, Z{ and Ered intersect transversally at the

supersingular points on £, c,, ®
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0®F
- /”\
‘QﬁsP.Car ® IFP E x\*/x ::
Z;
w0 ®F,
/ \\ ‘%ﬁsplit ® |Fp
0&F, Z,uz
Z —_—
\
£.® u:p M ’ E ‘\/
z ’
o ®F

Here, 0 and oo are the cuspidal sections which correspond to (G,, X
Z/p2, 2/pZ, p,) and (G, X Z/pZ, p,, Z/pZ) (tesp. (G, X
Z/pZ,2/pZ) and (G,,, ,)), see [3] IL.

(1.1)N.B. (see [3] V, VII). Let €’ be the algebraic stack which represents
the following functor: for a scheme S (/Z), €’(S) is the set of the
isomorphism classes of the generalized elliptic curves C with an isomor-
phisma: C,-—=— 7 /pZ X p,- Then €’ is an open subspace of//lﬁ( = M:,
which is a scheme for p > 3, see loc.cit. VII p. 300). Let Iy ( p), T, cor(P)
be the finite adelic modular groups

T,(p)= {(2’ Z) € GL,(Z)|c=0 modp},

b R
Fsp.Car(P)z{(? d)EGLz(Z)|bEcEOmodp}.

The natural morphisms of M, to M, ¢, (p)"' =M, /T c,(p) and to
My(p)'= Mp" /To(p) induce the surjective morphisms of ¢’ ® F, onto
Z't and onto Z". The subgroup of I'y(p) consisting of the elements
which fix €’ is T, ¢, (p). For a geometric point x on Z*, let (C, 4)
(/F,) be the pair which represents x. Then Aut(C,A)C T, (p)
(mod p). Therefore, 7: Z'}—=_, Z'" is an isomorphism and Z'* is the
coarse moduli space (/F,) of the isomorphism classes of the generalized
elliptic curves with an ordered pair (A4, B) of subgroups of rank p such
that (4, B)—=~_(Z/pZ, p,), isomorphic locally for the étale topology.
The morphism 7 induces Z* — Z": (C, B, A)—— (C, B), so that Z}+—
Z" is radicial of degree p.

Let K be a finite extension of Q," of degree e with the ring ¢ = O of
integers.
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THEOREM (1.2) (Raynaud [17] §3 Proposition (3.3.2), Oort-Tate [16]): Let
G, (i=1, 2) be finite flat group schemes of rank p over Spec O and f:
G,—— G, a homomorphism such that f® K: G,® K-~ G,® K is an
isomorphism. Then,
(1) If e<p —1, then f is an isomorphism.
(2) If e=p —1 and f is not an isomorphism, then G,—=—(Z /pZ) ,, and
G,—1,,0-

LeMMA (1.3): Let E be a semistable elliptic curve defined over K with
independent subgroups A, B of rank p defined over K. If e <p — 1, then
E, o®F, is not supersingular and (E,;),=A,,® B,,, which is finite,
where A ,,, B, are the flat closures of A and B in the Néron model E ,,.

PROOF: (1.3.1). The case when E , is an elliptic curve (i.e., proper).

A, and B, are finite, hence they are finite flat group schemes.
Consider the following morphisms f and f, induced by the natural
morphism of E onto E /B by the universal property of the Néron models:

f
B/@C E/a_’ (E/B)/co

u_’
A I

Then f,® K: A—= f(A) (C E/B) is an isomorphism. By the condi-
tion e < p — 1, f, is an isomorphism, see (1.2) above. Then ( /ch A0
® B,,. If (E,z), (IF )= {0}, then (E,,), ~
Spec IF [ X, Y]/( X7, Y?) as schemes For a supersingular elhptlc curve
F( /!F ) F, ) as schemes. Therefore, E,,® IF is not
supersingular
(1.3.2). The case when E ,, has multiplicative reduction.

We have the following exact sequence (see e.g., [8] Part 16):

O-p,—E,-2/pZ—0.

Then A or B—=_Z /pZ. By the condition e < p — 1, using the universal
property of the Néron model E ,, we see that (Z/pZ),,C E,,. The
connected component (E /0)2 of (E,p), of the unity is isomorphic to
K, 0, se€ eg., loccit, [3] VIL Then (E,),—~p,,,®(Z/pZ),, are
finite schemes. Then, by the same way as in (1.3.1) above, we get
(E;p),=A,00B,5 O

CoROLLARY (1.4): Let E be an elliptic curve defined over Q" with
independent subgroups A, B of rank p such that the set { A, B} is Q' -ra-
tional. Let y be a W(IF )-section of &, whose generic fibre is represented
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by the pair (E, { A, B}). If p > 11, then y is a section of the smooth part of
‘%‘splil .

PROOF: Let x, w(x) be the sections of the fibre (£, ¢, ),, which are
defined over an extension K’ of @, of degree < 2. We may assume that
the triple (E, 4, B) represents x ® K'. There exists an extension K of Q"
of degree e with e|4 or e|6 over which E has semistable reduction (see e.g.,
[19] §5 (5.6)). We may take K with e=4 or e=6. Then K' Cc K. Let ¢
denote 0. Then the triple (E 4, 4 0, B, ;) represents the section x ® ¢:

Spec O— %, c,,- By the condition that e<11-1<p—1, x® F is a
section of Z! U Z'*, see (1.1), (1.3) above. O

§2. Modular curves and Jacobian variety of X,(p)

Let J=J,(p) be the jacobian variety of X = X,(p), C the cuspidal
subgroup of J which is generated by the class c1((0) — (o0)). Put J~ =
Jo (p)=J/(1 + w,)J. Mazur [10] defined the “Eisenstein quotient” of J.
Put T = End J, which is generated by the Hecke operators 7, and w,, for
the rational primes / # p, see [10] II Proposition (9.5). Let £ be the ideal
of T generated by n,=1+/— T, and w, + 1, for the rational primes / # p,
which is called the “Eisenstein ideal”. The Eisenstein quotient J = Jy( p)
is the quotient of J by the (Q-rational) abelian subvariety (0, ,.£#")J.

THEOREM (2.1) (Mazur loc.cit.): The natural morphism J— J induces an
isomorphism of C of order n=num(( p —1)/12) onto the Mordell-Weil
group of J and J is an optimal quotient of J~. Further, the natural
morphisms J(Q) ,,——— J (Q),,,—— J(Q) are isomorphisms.

PROPOSITION (2.2) (Mazur loc.cit. Il Lemma (12.5)): Ifp=1mod 8, C,,
(= the flat closure of C in the Néron model J,3) contains the multiplicative

group ;s z.

Let C,, C, be the morphisms of X, c,, to J defined by (E, 4, B)—>
c((E, A)— (0)) and — cl((E/B, E,/B)—(0)), respectively. Put g = C,
-G, (E, A, B)p—-) c((E, A)— (E/B E,/B)),

xC,

XspCar LT IxI .
(x,y)F—x—y

Then g induces the following commutative diagram:

can.

——
Xsp.Car Xsplll

g l G g C&
can. can> .~

J — J‘——»J.
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We denote also by g, g~ and g the morphisms f;,mg:;h —J,z,
Eomeott— J 7 and Zoneo"— J , which are induced by g, g~ and g (by
the universal property of the Neron models), respectively. Let Z=Z,( p)
—— Spec Z be the minimal model of X = X,(p) (see [3] VI§6). Let ¢ be

the isomorphism induced by the duality of Grothendieck (see [11] §2):
1:CotJ,,—=— H(Z, Q),

where Cot J ; is the cotangent space of J,, at origin and £ is the sheaf of

regular differentials (see loc.cit., [3] p. 161). For a rational prime g, let

R=W(F,) be the ring of integers of @4 and x: Spec R —Z ™" a

section. Denote by Spec R[[¢]] the completion of £ along the section x.

PROPOSITION (2.3) (Mazur [11] §2 Lemma (2.1)): The following diagram is
commutative up to sign:

CotJx =~ H(Z®R,Q)

Cot

) w=Y a4
q
Cot =R >q,

Denote by u the natural morphism of J,, onto J ',z By [11] Corollary
(1. 1), Cot J ,2 ® F, can be regarded as a subspace of CotJ,, ® F,—~—
H° (ﬂ’@IF Q)= H°(92’®IF Q), see [3] p. 162 (2.3)), forq#2

LEMMA (2.4) (Mazur [11] §3): Under the notation as above, let x =0 or oo
(= the cuspidal sections). If p =11 or p > 17, for each rational prime q # 2,
there exists a form w =YXa,,q"dq/q € CotJ,; such that a, € Z.

Let m: X— Y be a morphism of schemes. The morphlsm mis a
formal 1mmer51on along a section x of X if m (0,, 1) = QXX, where
Oy sxyand b, x.x are the completions of the local rings along the sections
f(x) and x, respectively. If m*(Oy ;(.,/m.,) = Ox ./m, and Cot,(m):
Cot,,,Y—> Cot, X is surjective, then m is a formal immersion along x
(see E.G.A.IV, 17.44). Here, m,, and m, are the maximal ideals of the
local rings at f(x) and x.

PROPOSITION (2.5): Let g+ 2 be a rational prime. If p=11 or p>17,
ug®Z i %y car ® Zs‘“°°'h =J,, isa formal immersion along the cuspidal
secttons 0 and oo. Further, if q # 2 nor p, ug® Z , is a formal immersion
along any cuspidal section of Xy, c,, ® Z .

PrROOF: There are p + 1 cuspidal sections 0, oo and x; of %, c,, which
correspond to 0, oo and 1/i (1 <i<p—1) by the canomcal identifica-
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tion of X, ¢, ® C with I, ,,(p)\H UP'(Q), where H = {z € C|Im(z)
> 0}. The cuspidal sections 0 and co are Q-rational, and x, are Q(§, )-ra-
tional, where , is a primitive p-th root of 1. Let # =4, c,.(p) and
A ,( p) be the fine moduli stacks corresponding to finite adelic modular
groups I, c,.(p) and I ( p), respectively, see (1.1). The correspondence
of the local coordinates along the cuspidal sections 0 and oo is as follows:

'/”S.C
/ \
q Spec Z[[g "] ——— Spec  Z[[¢'/"]] ¢'/*
q /p | | ql/p
Mo(p)
/d)/
q Spec Z[[q]] = Spec  Z[[¢""1l 4'/7

Wp

g ~——- 4"

For each rational prime g, Cot(7) (resp. Cot(w,mw)): Cot,Z® Z }—>
CotZ,.car ® Z, is an isomorphism (resp. a 0-map). Take a form «» € Cot
J, z, 3 in Lemma (2.4) (for g #2), then by Proposition (2.3), Cot(ug) =
Cot(uC,) — Cot(uC,): CotJ,; —> Cot T e, ®Z, sends w to +a, €
zZx.
q
To investigate the cuspidal sections x,, we consider all over R =

Z[1/2p,¢,]. The group {(g 2_1)

A . ® R. The correspondence of the local coordinates along the cuspidal
sections Xx; is as follows:

ac(Z/pz) x} acts trivially on

M. ®R Spec R[[¢'/?1] q'/*

s.C

0
My(p)®R <~ Spec Rl[¢""]] ¢'/*

S S

Spec R[[q]] ¢
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The Tate curves along these cuspidal sections are as follows (see [3] VII):
@ 4" 2/p2(q""), T/PL(§,q""))

— 1 =1 l
(@27 /(g7 1) (927 /4% 1/pZ(q""))
(97/9% n,)

Here, Z/pZ(q‘/") and Z /pZ(,q'/?) are the subgroup schemes of the
Tate curve 47" /q% generated by the sections ¢'/” and ¢,q'/?, respec-
tively. Consider the morphism w,7w: (E, A B)—

(E/B, E,/B)(x;— x,,_ — 0+L> co):
along x,

(92" /9%, 2/pZ(q""), T/pZ(§,9""))
g-;;(:)ql/p \

gpa(l)ql/p (?'zlﬂ/qz’ Z/pZ(gpq’/p), Z/Pz(ql/p))
0

along x,,_

|| | o Yesnam

§0g' e (G /g% T /pT(EgP), T/pL(q'P))
1 !
q'” (@7 /9%, 1/p2(q""?), Z/pL(S; 'q""))
I l
q'” (%" /4%, 2/p2(q""))

q\// along 0
(?'Z/qz’ "'p) wP
along oo

Here, a(i) is an integer congruent to i~ ! mod p. Take the local coordi-
nates along x,, co and O such that

Cot(7): Cot(#® R—=— Cot, %, c,, ® R
Cot(w,): Cot,,2® R—=—s Cot,Z® R

are the identity maps of R-modules R. Then
Cot(w,7w): Cot ,,2® R—> Cot, %, c,, ® R:1—§,

for a primitive p-th root ¢ of 1. Take a form w € Cot J/ z,as in Lemma
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(2.4), then by Proposition (2.3), Cot(ug)(w)= ta,(1-{)E(R®Z )"
Od

§3. Rational points on X, (p)

Let p > 11 be a prime number. Let y be a non cuspidal Q-rational point
on X, = X (P) and x, w(x) the sections of the fibre (X, c,,),- Then
there exists a number field k of degree <2 over which x and w(x) are
defined. We denote also by y (resp. x and w(x)) the Z-section (resp.
O,-sections) of Z_;;, (resp. Z, c,,) With the generic fibre y (resp. x and
w(x)) above. There exists an elliptic curve E defined over Q with
independent subgroups 4, B of rank p such that the set {4, B} is
Q-rational and the pair (E, { 4, B}) represents y =y ® Q (see [3] VI
Proposition (3.2)). Then A4 and B are defined over k. By Corollary (1.4), x
and w(x) are the sections of fl’si,'f‘c":,'h. We call that y (or x) has potentially
good reduction at a prime g if E has potentially good reduction at g.

PROPOSITION (3.1): Under the notation as above. If p #13 (> 11), y has
potentially good reduction at the rational prime q + 2.

PrOOF: Denote by 0, y, (1 <i<(p —1)/2) the cuspidal sections of Z;,
which are the images of {0, o} and {x,, x,_;}, respectively. If y does
not have potentially good reduction at a rational prime g, then y ® F, =
0®F, or =y ®F, for an integer i. The latter case occurs only when
g = +1 mod p. Denote also by C the cyclic subgroup of the image of the
cuspidal subgroup C = {c1((0) —(o0))) by the natural morphism of J
onto J, see (2.1). Then g(y)® Z[1/2]€ Crz21/0——(Z/NZ) 711 3, S€€
loc. cit.. If y®F,=0®F,, Then g(y)=0. If y®F,=y,®F,, then
g(y) = the image of c1((0)—(o0)). Then by Proposition (2.5), y=0 or
=y,, which is a contradiction (see {11] Corollary (4.3)). O

LEMMA (3.2): Under the notation as above. The sections x and w(x) are not
Q-rational and the prime p splits in k.

PrOOF: The modular curve X,(p?) is isomorphic over Q to X, c, =
Xpca(P): (E, A)—>(E/A,, A/A,, E,/A,), where A, =ker(p: A~
A). For. the primes p (=7), X,(p*)XQ)= {0, oo}, see [11], [6,7], [13].
Therefore, x and w(x) are not Q-rational and w(x)=x° for 1 #o €
Gal(k/Q). If p ramifies in k, then w(x)®F,=x"®F,=x®F,. If
p remains prime in k, then w(x)®F,=x"®F,. = (x®F,:)",
where (x ®F,.)”) is the image of x®F,. by the Frobenius map:
Z . car ® F,— Z, ¢, ® F,. The irreducible components Z;, Z] and E, 4
are [ -rational, see §1 (1.1). In both cases above, x ® F 2 is a section of E,
see loc.cit. But, x ® F 2 is a section of Z}' U Z'7, see (1.4). O
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PROPOSITION (3.3): Let x and w(x) be the sections as above for a rational
prime p # 13 (> 11) and g the morphism of Q”s;mé’f,‘h to J,, defined in §2:
(E, A, B)—> cl((E, A)— (E/B, E,/B)). Then g(x) ®F, =
gw(x))®F,=0.

PrROOF: By Corollary (1.4), x®F, and w(x)®F, are the sections of
Zhu Z't, see (3.2) above. We may assume that x ® F, is a section of zh,
changmg x by w(X) if necessary. Then there exists an elliptic curve E
defined over F, such that the triple (E, ker (Frob), ker(Ver)) represents
x®F, and (E, ker(Ver), ker(Frob)) represents w(x) ® F,,, where Frob is
the Frobenius map: E— E = E‘?) and Ver is the Verschiebung: E =
E”— E. Put A = ker(Frob) and B = ker(Ver). Then (E, A) represents
7(x)®F, and (E/B, E,/B) represents w,mw(x)®F,. The following
diagram is commutative:

Ver
E _———’E

&/

E,/B

e, (E,A)—=—(E/B, E,/B). Therefore m(x)®F,=w,mw(x)®F,.
Then g(x)®F,=g(w(x))®F,=0. O

COROLLARY (3.4): Under the notation and the assumption on p as above.
Let g, § be the morphisms defined in §2. Then g(y)= 0. If the Mordell-Weil
group of J~ is finite, then g~ (y)=0.

PrOOF: By Theorem (2.1), g(y)®Z, is a section of the finte étale
subgroup which is the image of C/z —=—(Z/nZ),4 , see (2.1). Then
g(y)=0, see (3.3) above. If the Mordell-Weil group of J™ is finite, then
g (y)®Z, is a secton of the image of C/z,, see (2.1). O

REMARK (3.5): By this corollary (3.4), we see that y® F, # y, ® F, for all
rational primes g. Because, g(y;) = the image of the generator c/((0) —
(o0)) of C, which is of order n = num(( p — 1))/12), see (2.1).

COROLLARY (3.6): If p =1 mod 8, then y has potentially good reduction at
q=2.
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PrOOF: If y does not have potentially good reduction at g=2,
then y ® F, =0® F,. The morphism Cot(7); Cot,Z® Z, =,
Cot, SpCa,@ 22 is an isomorphism and Cot(w,mw): Cot,Z® Z ,—
CotyZpcar ®Z, is a O-map, see (2.5). It is enough to show that there
exists a form weu*(Cot J,z,) such that w(0®F,)#0, where u:
J,z,—J,z, 1s the natural morphlsm The cyclic subgroup C,, contains
the multiplicative group p, ,, , see (2.2). Consider the morphism u ® Z ,:
Tz, = Jp,
U U

Moyz,— M2z,

By Theorem (1.2) and (2.1), u|p,,,, is an isomorphism. Then
u*(Cot J/z )®F, # {0}, which is a T = Z[T,, w,],, ,-module. Using the
g-expansion principle (see [11] §3), we get a desued form. O

To prove the main theorem, we need the following result of Ogg [14]
Satz 1.

THEOREM (3.7) (Ogg, loc. cit.): Let p be a prime number such that the
genus go(p) of X=X,(p)=2. Then the group Aut X,(p) of automor-
phisms of X® C = (w,), provided p # 37.

REMARK (3.8): Aut X,(37)—=12/2Z X Z /2Z, see loc.cit., [12] §5.

THEOREM (3.9): Let p=11 or p > 17 be a prime number such that the
Mordell-Weil group of J~=J; (p) is of finite order. Then X, (p)Q)
consists of the cusps and the C. M. points.

PROOF: Let y be a non cuspidal Z-section of Z,;, =%, (p) and x a
section of the fibre (%, ¢, ),- Let (E, {4, B}) (/Q) be a pair which
represents y (see [3] VI Proposition (3.2)). Denote by g,=g.(p) the
genus of Xg(p)=Xo(p)/{w,). If g,=0, then J=J", which has the
Mordell-Weil group of finite order (see [10] p. 40, [21] Table 5 pp.
135-141). By Corollary (3.4), 0 = g(x) = c/((7(x)) — (w,mw(x))). Then
7(x)=w,mw(x), because go(p)>1 for p=11 and p>17. Then
E_~= E/B (/Q), hence E is an elliptic curve with complex multipli-
cation. If g, >0, by Corollary (3.4), 0=(1—w,)g(x)=cl((7(x))+
(mw(x)) = (w,(m(x)) — (w,mw(x))). Then there exists a rational function
f on Xy(p) whose divisor (f)= (7(x))+ (7w(x)) — (w,7(x)) —
(w,mw(x)). If the degree of f < 1, by the same way as above, we see that y
is a C.M. point. If the degree of f=2, then X,( p) has the hyperelliptic
involution y such that yn(x)= #w(x). By Theorem (3.7) above, such a y
exists only when p =37 (, go(p)=>2). O
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§4. Effective bound of rational points

In this section, we estimate the number of the Q-rational points on
Xopiit = Xepiie(p) for p>17. Let y be a non cuspidal Q-rational point on
X,piie (P >17) and x, w(x) the sections of the fibre (X, ¢,,),, which are
defined over a quadratic field k. The rational prime p splits in k£ and x,
w(x) become Z ,-sections of the smooth part of Z, c,,, see (1.4), (3.2).
Let g (resp. g) be the morphism of Z3i*" (resp. Z7™") to the Néron
J, 7 (resp. J,z) and u: J,;,— J,, the natural morphism as in §2. Then
g(y)=ug(x)=ug(w(x))=0, see (3.4). Denote by /( p) the number of
the Z -sections x of %, -, which satisfy the following conditions (C)),
(Gy):

(Cy) x® Q, are neither cusps nor C.M. points.

(C,) x ®F, are sections of Z'" (see §1(1.1)) and ug(x)=0.
One of the sections x and w(x) of the fibre (%, ¢, ), satisfies the
condition (C,). If a Z -section x of £, ¢, satisfies the condition (C,) and
x®F,=0®F,, then x is the cusp 0, see (2.5). Denote by n(p) the
number of the Z-sections of Z{,;;, whose generic fibres are neither cusps
nor C.M. points. Then n( p)<!(p). Estimating /( p), we get the follow-

ing.
THEOREM (4.1): n(p)< dim J — dim J for p > 17.

Example: 1(37) =1, see (5.A).
For a point z€ Z"(F,), z#0®F,,

m(z)= Minimum {the order of zero of wat z }.
weCotJ/z,®F,,

Let /(z)=1I(p, z) be the number of the Z ,-sections of Z,c, which
satisfy the conditions (C,), (C,) above and

(C,)7m(x)®F,=2,

where m: Z, c,,—— = Z,(p) is the canonical morphism (see §1). We
estimate /( p) by the following way. Firstly, we show that there exist at
most m(z)+1 Z ,-sections of Z, c,, which satisfy the conditions (C,),
(C,) above. Secondly, we show that the Deuring lifting (see e.g., [8] Part
13§5) satisfies the conditions (C,), (C,) above. Then /(z)< m(z) for
z€Z"(F,), z#0®F,. Finally, using the Riemann-Roch theorem, we

estimate >, m(z).
LEMMA (4.2): £(z) < m(2).

PROOF: Let x be a Z ,-section of Z, c,, which satisfies the conditions
(Gy), (C,) for z € Z'"(F,), z # 0 ® F,,. The morphism ug = uC, — uC, (see
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§2) is defined by

‘g-sp.Car Zsmoolh r® Zsmooth X IR Zsmoolh
1r><w ,TW
_’J/z,, XJ/Z” _’J/z,,

(the cusp 0) = 0, (xy, x,) = x; — X,

Consider the morphism uC, of Z,,¢,, ® Z;"" to J, 2,

p Car

— —_
(ucl)*:mj/lp,u(‘l{x)—)mﬂ" - ®Z,,.x
Il
Z,[lty,.... 5] Z,[[q]]

where g = dim J. By Proposition (2.3) and by the fact that = is isomor-
phic formally along the section x (see §1), we see that for an integer i,
1<ig<g,

(uC)*(t)=a,q" +a,,q" "+ ...(mod p)

with m=m(z)+1 and a,€Z,. Similarly, we see that (uC,)*(t,)=
a,,q"" + a,,.. 197" + ... (mod p) with a,,€Z,, see (1.1), (2.5). By
the condition (Cz) uCl(x)— uC (x) J ® IF is a split torus G,, X
. XG,, = Spec F,[u;, uy 1. JUg, Uz | (see [15] [10] Appendix). The
section uC,(x)®[F =uC, (x)®IF is defined by (u,, costg)=(Cp5..0567)
for ¢, €F,°. Let v be the morphlsm J/z ><J/z {z , (xl, X)X, —
X,. Then v*(u—l)—c“'(u ®1—c)+c(1®u l)+(uj®1—
cY1®u'—¢; 1) For an mteger k, (ug)*(uk -D=¢; bmq"’ + ... with
b eF). Then (ug)*(1,) = . (mod p) with b, €Z5. In the
following, we show that there exists a C.M. point satisfying the condi-
tions (C,), (C,). Let E(/F,) be an elliptic curve with the modular
invariant j( E)=j(z). Then the triple (E, ker(Ver), ker(Frob)) represents
x ®F,, see §1(1.1). Let F be the Deuring lifting of E (see e.g., [8] Part 13
§5), Wthh is defined over a subfield K of Q" (see loc. cit., Theorem 13).
Let a, & be the endomorphisms of F such that a® IF = Verand a ® lF
Frob (see loc.cit., Theorem 12). Put 4 = ker(a: F — F )and B= ker(a F
— F). Then the triple (F, 4, B) represents a 0y-section X of Z, ,, such
that X ® F, = x ® F,. By the same way as in Proposition (3.3), we can see
that (F/B, F,/B)—=—(F, A). Then, g(%)=0. The rest of this lemma
owes to the following sublemma.

SUBLEMMA (4.3): Let f(t)=ZX,.a,t" be a formal power series with
a, € W(IF ). Suppose that f(t)=a,t"+ ...(mod p) with a, =0 mod p.
Then there are at most r solutions of f (t) 0 in pW(IF )- If r=2 and
a, # 0, there exist two solutions of f(t)=0 in pW([F ). O
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PROOF OF THEOREM (4.1): By Lemma (4.2), /(p) < m(p)=Xm(z). Put
g=go(p)=dimJ, §=g,(p)=dimJ and let g, = g_( p) be the genus of
Xo (P)=Xo(p)/{w,). Leta, (1 <i<r=g—2g,+1) be the F,-rational
supersingular points and B, 87’ (1 <i< g,) the non F,-rational super-
smgular points on Z&F,. Put D, =% («a,), D,=%,(B,)+X,(B{") and

=3 ,m(z)(z). Then Cot J 2,® IF can be regarded as a g-dimensional
subspace of H'(Z' ® !F Ql(— D0 + D, + D,)) (see [11] Corollary (1.1),
[3] p- 162 (2.3)). For an effective divisor D <D, + D,, put V(D)=
CmLZ®F¢WH%Z®F Q%.D+D»mﬂktsthSaohm
divisors’ {D <D, + D,|D>0, V(D)# {0}}. Take a divisor D;, € S such
that deg D;,<deg D for all DE€S. Then deg Dm >m(p)+2. The
fundamental involution w, acts by (—1) on CotJ,; ® IF and w,(B,)=
BP) (see [15], [10] Appendlx) so that if w € Cot J ® F, ‘has a pole at B,
(resp. B{?’), then w has also a pole at B(” / (resp ,B ). Therefore,
dim V(D + (B) +(B")) < dim V(D) +1 for D<D,+ D,. We can
choose the divisors Dy < Dy <...< Dy, such that D, €S and
dim V(D) =i for the integers i, 1 <i<g Put Dy,=E+ Fwith E<D,
and F < D,, and let s, 2¢ be the degrees of E and F, respectively. Then
g= dlmJ/z ®IF <(g—-2g,+1)—s+ (g, —1t)+1. Therefore, we get
the followmg

s+i<g—g,—§+2
O<s<g—2g,+1

0<r<g,

m(p)+2<s+2t

I(p)<m(p).
In paticular, /(p)<g—g O
§5. Further results
We here discuss the cases for p =13 and 37.

(5.4) A result for p = 37

Let f,=qg—2q>—3¢>+ ... (tesp. f_=¢q+q>+ ...) be the new form
on I'j(37) of weight 2 with the eigen value +1 (resp. —1) of wy,, see [1].
Put w,=f,dq/q and w_=f_dq/q, which are basis of H’(Z, Q)
(%— Spec Z is regular ( p = 37), see [3] VI §6). On Z—=_Z,(1) ® F,, =
P'(j)®Fy,

—dj o _ —(j=6)dj
J2—6j—6 (j*—6j—6)(j—38)

W, =
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(see [3] p. 162 (2.3), [21] Table 6, pp. 142-144). There are at most two
Z y;-section of X ,, =%, cor(37) Which satisfy the condition (C,) and
(C,) for the point z € Z"" with the modular invariant j(z)= 6. One of
them is the Deuring lifting of z whose ring of endomorphisms 0= Z[(—1
+7Y=3)/2]. The class number of the order 0 is two (e.g., [8] Part 8
Theorem 7). The modular curve X,,(37) is defined by the equation:

Z2= —f0—9f* —11f2+ 37,

where f=f./f_and Z=14+q+ ... (, g= exp(2W\/le), see [12] §5).
The fundamental involution wy, acts by w¥(Z, f)=(Z, —f) and the
hyperelliptic involution S acts by S*(Z, f)=(—Z, f), see loc.cit.. Let 7
be the Deuring lifting of z € Z'* with the modular invariant j(Z)= 6
mod 37. Let K be the Hilbert class field associated with @. The rational
prime 37 splits in K. Fix an embedding of K into @ ,,. For r € Gal( K/Q),
ug(2")=(ug(#))"=0 and " ®F,, is a section of ZJ U Z", see (1.1),
(1.4). Choose 7, € Gal(K/Q) (1, = id., i = 1, 2) such that z" ® [, are the
sections of Z]. Then Z, = 2" satisfy the condition (C,) in §4. By the
uniqueness of the Deuring lifting (see [8] Part 13 Theorem (13)), the
modular invariant j(Z,) % 6 mod 37. Put o = (ug)*(w_). Then
w(Z; ®F;;,)=0 and w(Z,® F;;)# 0. Therefore, w(z,)# 0 (, because if
w(Z,)=0, then w(Z,)=w(Z,)?=0). There exists a Z,-section of
Zp.car(37) which satisfies the conditions (C,), (C,), see (4.2), (4.3). We
here discuss it. Put 7 = exp2m/—1 /3), 7, =1 - 107, 7, =1+ 111, L=2Z
+Z7 and E=C /L. Denote by §,, 8., and §, (1 <i < 36) the points on
X,(37) which are represented by the pairs (E, (35Z7 +L)/L), (E,
(35Z7,+ L)/L) and (E, (35Z(m, + i)+ L)/L), respectively. Let H be
the subgroup of (Z/37Z)* generated by 11 mod 37. Then §, = §, if and
only if i=j mod H. Let &, be the points defined by (f !,/ 3Z)=
(0, +V—1). The field of rational functions on X, (37) is Q(j(2), j(372)).
The divisors of the rational functions j(z), f—1 and f+ 1 are (j(z))=
(80)+ (8,0)+ 3Z, moa #(8)— (20) = 37(0), (f~1)=(00)+(,)— (£,) —
(e2) and (f+1)=(0)+(y,)— (e,) — (e_), where y,, = S(c0) and v, =
S(0). We can easily see that Z[1/2-37, X, Y]/(X*+ Y®+9Y*+ 11Y?
— 37) is smooth. Then the modular function j(z) is of the form

(= 2 aln)Z
= 0

with some polynominals p(Y), ¢(Y)€ Q[Y]. The points defined by
(Z,f)=(£V37,0) correspond to the elliptic curves ( /Q(/37)) with
complex multiplication, so that ¢(0)# 0. The cusps oo, 0 are defined
respectively by (Z,f)=(4,1) and = (4, —1), so that p(1)+44(1)+0
and p(—1)+44q(—1)# 0. The non cuspidal points v, vy, are defined
respectively by (Z, f)=(—4,1) and =(—4, —1), so that p(1) —4q(1)=
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p(—1)—=4g(—1)=0. Therefore, g(+1)# 0. The special fibre ¢, ® F;; of
the fixed points & , of Swy, is the supersingular point (/F3;). X,(37)(Q) =
{0, 00, Y5> Ya }» S€€ [12] §5. For the rational points on X,;(37), we get
the following.

PROPOSITION (5.1): If n(37) =1, then there exists a Q-rational solution of
the equation q(Y)= 0. Conversely, if ¢(Y)=0 has a Q-rational solution,
then n(37)=1.

Proor: Firstly, suppose that there exists a Q-rational point y on
X.piie (37) which is neither a cusp nor a C.M.point. Let x, w(x) be the
sections of the fibre (X, c,,),, which are defined over a quadratic field &
and w(x)= x° for 1 # o € Gal(k/Q), see (3.2). As was seen in the proof
of Theorem (3.9), there exists a rational function g(/Q) on X,(37) of
degree 2 whose divisor (g) = (7(x)) + (7w(x)) — (wy;7(x)) —

(wy;mw(x)). Then S7(x)=aw(x)(=7(x)°), so that a=f(7(x))€Q
(and @ # +1). Let b( € k) be the square root of —a® — 9a*— 11a® + 37.
We may assume that the points 7(x), #w(x) are defined by (Z, f) = (b, a)
and = (—b, a), respectively. The modular invariant j(7(x))=j(mw(x))
of m(x) and ww(x)= Sw(x) is written by { p(a)+q(a)b}/(a—1)(a+
1)* ={p(a)—q(a)b}/(a—1)a+1)*. Hence, g(a)=0. Conversely,
suppose that the equation ¢(Y) = 0 has a solution Y =a € Q. Let z, S(z)
be the points on X,(37) which are defined by (Z, f)= (b, a) and
= (—b, a) for a square root b of —a®—9a*—11a®+37. Asa+# +1, so
that Q(b) is a quadratic field and z # S(z), S(z)=2z° for 1+0€
Gal(Q(b)/Q). The modular invariant j(z)=;(z°)€ Q. If z is a CM.
point, then z is represented by an elliptic curve E (/Q) with Q(b)-ra-
tional subgroup A4 of rank 37. Then z° is represented by the pair (E, A7),
and (E, A°)—=(E/A, Ey;/A), i.e., z° = wy;(z). As noted before, a # 0,
so that z is not a C.M. point. Let F be an elliptic curve defined over Q
with the modular invariant j(F)=j(z), and p the representation of the
Galois action of Gal(@ /Q) on the 37-torsion points Fy,(Q). There is a
quadratic extension K of @(b) such that p(Gal(Q/K)) is contained in a
Borel subgroup (C GL,(F,)). Then p(Gal(Q/Q)) is contained in a Borel
subgroup or in the normalizer of a split Cartan subgroup, see [19] §2, [9]
§2 p. 120. The first case does not occur, because z is not Q-rational. O

(5.B) Some results for p =13

Because of the fact that X,(13)—=_P!, we can not apply the same
method as for the other primes p > 11. We here discuss the case p =13
under additional conditions. Let y be a non cuspidal Q-rational point on
X,piic(13), which is represented by a pair (E, { 4, B}) for an elliptic curve
defined over Q. Then the triple (£, 4, B) represents a point on X, ¢,.(13),
which is defined over a quadratic field k, see (3.2). Consider the represen-
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tation p, of the Galois action of G = Gal(Q /Q) on the 2-torsion points
Ey(Q). If y is a C.M.point, then p,(G,)—F—GL,(F,), where G, =
Gal(Q k). We set the following condition (C):

(C) p(G,)+-GL,(F,).
Under the condition (C) above, there occur the following three cases:
(C1) py(G)—=127,22.
(C2) p(G)cz/3zZ.
(C-3) p,(G)—=GL,(F,) and p,(G,)—=2Z/3Z.

Denote by % the modular curve (/Z) corresponding to the finite adelic
modular group I' C GLz(i) (see §1(1.1)), and put X =2 ® Q. In the
case (C-1), let I}, I'; and T respectively the modular groups I'y = I})(26),
[ =T5(2) N Ty car(13) and T' =T5,(2) N [, (13). In the case (C-2) (resp.
(C-3)), let T, I, and T respectively the modular groups Iy = I}, o car(2)

N I10(13)9 1"1 = Fnon.sp.Car(z) N Fsp.Car(13) and I'= I-‘non.sp.Ce\r(z) N 1—‘split(13)

[reo v =(1(§7E))): where Tmcu@= (g = GLDIg =1

mod 2}. Under the condition (C-i), (y, E) represents a non cuspidal
Q-rational point on X. In the rest of this section, we prove the
following.

THEOREM (5.2): Let Xy be as above. Then X-(Q) consists of the cusps and
the C.M. points.

Define the involutions w of X by: Case (C-1): (E, A4, B, C)——
(E, B, A, C), Case (C-2): (E, A, B, a mod F;)—

(E, B, A, a mod FJ), Case (C-3): (E, A, B, a mod F;)—
(E, B, A, o’ mod F,*), where 4, B are subgroups of rank 13, C_~_Z /2Z
and a, o' are the 2-level structures such that a# o’ mod F;(, F;*G
GL,(F;)). Then X1 = X}, /{w). Define the involution w, of X, by: Case
(C-1): (E, A, C)—> (E/A, E;5;/A, (C + A)/A), Case (C-2):
(E, A, a mod F)— (E, A, a’ mod FJ), Case (C-3):
(E, A, a« mod F;')— (E/A, E\5/A, « mod F;°), where a, ' are the
2-level structures such that a # o’ mod F;*. Let J be the jacobian variety
of X , m the canonical morphism of . to 2 and put J~=J /(1 + w)J.
In the case (C-1), Xy, is of genus 2 and J (Q)—=-Z /3Z (see [21] Table
1, pp. 81-113). In the cases (C-2) and (C-3), Xy, is of genus 1. The
modular curve Xy, 3, is isomorphic over Q to X,(4 - 13) (see [3] IV

Proposition (3.16): T,(4-13)=g{T'(2)NT,(13)} g~ ' for g=((2) (1))h
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with h € GL2(2) such that A=1mod 4 and A E((l) —(1) mod 13). In

the cases (C-2) and (C-3), the double covering X, — X,(13) ramifies at
the cusps 0 and oo. The class ¢1((0) — (o0)) is of order 2 and J(Q)—
Z/2Z (see [21] Table 1). Let w be the base of H( X, ') (in the cases
(C-2), (C-3)), then wfw = —w (see [21] Table 3 pp. 116-122), so that
J =J.

%r(,@":ls
By B,

B B,
; PR

Case(C-2) Case(C-3)

where 2. =% /(w,). Define the morphism g of X to J by
+—— cl((7(x)) — (wymw(x))). Then g induces the morphism g~ of X to
J:

can.

Xl‘,_>X1‘
gl G lg

can.
J —=>J .
Denote also by g (resp. g7) the morphism of Z "™ (resp. Z ™" to the

Néron model J,; (resp. Jz). The modular curve X,(13) iR X,(1) is
defined by the following equation (Fricke, see [13]):

J(X)=(X>+5X+13)(X*+7X3+20X2+ 19X+ 1)°/X. (5.3)

The modular curve X, c,,(13) is the normalization of the curve defined
by the equation:

0= J(—XHL) (5.9)

Let y be a non cuspidal Q-rational point on X,; (13) and x, w(x) the
sections of the fibre (X, c,(13)),, which are defined over a quadratic
field k. Then w(x)=x° for 1 +# o € Gal(k/Q) (see (3.2)) and x, w(x)
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correspond to the points defined by (X, Y)=(a, a’) and (a° a) for
a € k, respectively.

LEMMA (3.5): Under the notation as above. Suppose that y has potentially
good reduction at a prime q of k. Then (ord a, ord a’)= (0, 0) if q/13, =
(0,0),(1,0) 0r (0, 1) if a13.

PROOF: By the assumption, ord j(y)> 0. If g/13, by the equation (5.3)
above, we can easily see that ord ;a = ord ,a® = 0. The rational prime 13
splits in k, see (3.2). If |13, ord ,a, ord ;a® = 0 or 1. By the equation (5.4)
above, (ord a, ord ,a°)# (1,1). O

For a rational prime g, let I, be the inertia subgroup Gal(ﬁ,,/@;’).
There exists an elliptic curve E defined over Q@ with independent sub-
groups A, B of rank 13 such that the set { 4, B} is Q-rational and the
pair (E, { A, B}) represents y. Let p, be the representation of the Galois
action of Gal(Q /@) on the 4-torsion points E,(Q).

LEMMA (5.6): Under the notation as above. If a rational prime q ramifies in
k, then the modular invariant j(y)= 1728 mod q. If moreover q # 2, p,(1,)
contains a subgroup isomorphic to Z /4Z.

PrOOF: If g ramifies in k, then g+#13 (see (3.2)) and y®F, is
a ramification point of the double covering Z,c,.(13)®F, —aél'spm
(13)®F,. Then j(y)=1728 mod g. Let p be the representation of the
Galois action on the 13-torsion points E, 3(Q) Then for a rational prime
q#2, 13, p(1,)—=p(I,)(G SL,(F,;)) (see [19] §5). Let g+ 2 be a
rational prime which ramifies in k and g the prime of & lying over g with
the inertial subgroup I, = Gal(k /ki"). For re I \1,, p(7) is not con-
tained in the split Cartan subgroup Aut 4(Q) X Aut B(Q) and det p(7)
= 1. Then the order of p,(7)(= the order of p(7))=4. O

PrROOF OF THEOREM (5.2): Let y be a non cuspidal Q-rational point on
Xr and x, w(x) the sections of the fibre (X, ),, which are defined over a
quadratic field k. By the same way as in Proposition (2.5), (3.1), we see
that y has potentially good reduction at the rational prime g = 13.

Case (C-1): Changing x by w(x), if necessary, we may assume that
x ® [F,; is represented by (F, ker(Frob), ker(Ver), C), where F is an
elliptic curve defined over F,, and C is a subgroup of order 2 such that
Frob(C) = C, see (1.1), (1.4), (3.2). Let (F, A, B) be the Deuring lifting
of (F, ker(Frob), Ker(Ver)) and a the endomorphism of F corresponding
to Frob by the reduction map, see (4.2). Let C be the subgroup of F of
rank 2 whose reduction (mod 13)= C. Then the reductions of C and
a(C) (mod 13) are C = Frob(C). Then a(C)= C. Let % be the point on
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Xy, which is represented by (F, 4, B, €). By the same way as in Lemma
(4.2), we see that 7(X) = w,mw(X), hence g(x)=0. Because J(Q)—
Z/3Z, g (y)=0, see (3.4). The form 0+ w € CotJ;; ® F;; has one
simple zero on each irreducible component of x,(26)®[F,; (see [11]
Corollary (1.1), [3] p. 162 (2.3)). Therefore, there exists at most one
Q-rational point on X which is neither a cusp nor a C.M. point, see the
proof of Theorem (4.1). Let w, be the involution of X defined by
(E, {A4,B}, C)—>(E/C, {(A+C)/C,(B+C)/C},E,/C). If y is
not a C.M.point, then w,(y) # y. Therefore, y is a C.M. point.

Case (C-3): There exists an elliptic curve F defined over F,; such that (F,
ker(Frob), ker(Ver), a mod [F;*) represents x ® [F,,, where a is a 2-level
structure and F; G GL,(F,). The rational prime 13 splits in k (see (3.2))
and p,(G,)C F;. Then (F, A, a mod F;)—=—(F/B, F,;/B, a mod F}°),
ie, m(x)®F,;=wmw(x)®F,;, see (3.3). Because J=J" has the
Mordell-Weil group —=— Z /27, g (y)=0. Then y is a C.M. point, see
the proof of Theorem (3.9).

Case (C-2): There corresponds to y an elliptic curve E defined over Q
which satisfies the condition (C-2). The double covering X — X,(13)
ramifies at the cusps and J =J~ has the Mordell-Weil group—~_7 /27.
Let 0, co and z, be the cusps on X, lying over respectively 0, co and x,
on X, c,(13), see (2.5). Let J; % be the connected componentof J,, ®F;
of the unity. We see that w(x)@ Fis # wyrw(x) @ F,5 and g(x) mod JO
= cl((0) — (o)) mod J” (#J,). For a rational prime g[26, if x® F, =
z, ®IF then g(x)=g(z,)=0. Let wEHO(Q’F ® Z[1/2)], Q)_
Cot J 21,2 (see [11] Corollary (1.1), (2.3)), where 3 r, > Spec Z is the
minimal model. Then «w(0)= —w(00) is a unit of Z[1 /2]. For a rational
prime g+ 2, g*w(0)# 0 mod g, g*w(o0)# 0 mod g (cf. the proof of
(2.5)). Therefore, y has potentially good reduction at the primes g # 2, see
(2.5), (3.1). By Lemma (5.6), only the prime ¢ = 2 ramifies in k and E has
potentially good reduction at g = 2. Hence, E has everywhere potentially
good reduction. Then & =Q(/—1), because the prime 13 splits in k.
Then y corresponds to a point defined by (X, Y)=(a, a’) for a€
Z[V—1], see (5.5). As y is a Q-rational point, so the modular invariant
Jj(¥)=Jj(a) € Q. Using Lemma (5.5), (5.3), we see that y is a C.M. point
corresponding to one of the points defined by a= —3 + 2Y/—1 and

—-2+3/-1. O
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Appendix
Here, we give an another proof of the theorems of Kenku in [4,5].

THEOREM (Kenku, loc. cit.): The Q-rational points on X, ( p. 13) are the cusps, for p =3, 5
and 7.

PROOF: We use the following results.

(A.1) (Berkovic [2]). There exists a factor (/Q) of the jacobian variety of X,(N) whose
Mordell-Weil group is of finite order, for N = 39, 65 and 91.
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(A.2) (see [11] §4). If x is a non cuspidal Q-rational point on Xy(N) for the integer as
above, then x has potentially good reduction at the primes g # 2.

Let x be a non cuspidal Q —rational point on Xy(p-13) for p=3, 5 or 7. Then x is
represented by an elliptic curve E defined over @ with subgroup 4 of rank 13 and C of
rank p which are defined over Q (see [3] VI Pr@osition (3.2)). Let A (resp. p,) be the
representation of the Galois action of G = Gal(Q/Q) on A(Q) (resp. on the p-torsion
points E,,(E)). For a rational prime ¢, let I, be the inertia subgroup Gal(aq/ﬂg’) and A,
the restriction of A to 1. If ¢f6-p-13, p,(I,)—=-A(],) is isomorphic to a subgroup of
Z/4Z or Z/6Z (see [19] §5). If ¢=3 and p +# 3, p,(/3)—=-A(1;) is isomorphic to a
subgroup of SL,(Z /4Z) (see loc.cit.), so that A(1;) is isomorphic to a subgroup of Z /4Z or
Z /6Z. If x has potentially multiplicative reduction at ¢ = 2, then A3 = 1. If x has potentially
good reduction at ¢ = 2, then p,(I,)—=-A(l;) is isomorphic to a subgroup of SL,(F;) (see
loc.cit.), so that A(1,) is isomorphic to a subgroup of Z /4Z or Z /6Z. By our assumption,
p,(G) is contained in a Borel subgroup of GL,(F,), so that for any rational prime q # p,
p,(1,) is isomorphic to a subgroup of Z/6Z if p=3 or 7, and to one of Z/4Z if p=S5.
Further, as A is a character of G, so )\‘; =1lif p=3or7 and X:, =1 if p =S. Therefore,
)\6q=1 if p=3or7 and X:,=1 if p =5 for the rational primes g #13. Pute=6if p =3 or
7,and e =4 if p =5. Then the order of A ,(1,5) divides e, so that E has good reduction over
the extension of Q{5 of degree e, (A.2), loc.cit. Let 8,5 be the cyclotomic character induced
by the Galois action of G on p,3(Q). Put x,;=0;; for an integer ». Then by the
fundamental property of the finite flat group schemes (see (1.2)), x{3 = 613 for an integer a,
0 < a < e. Therefore, re =amod 12, so a=0 or e (see [11] §5). Changing E by E/A, if
necessary, we may assume that A§;=1. Then A*=1 if p=3 or 7, and x*=1 if p=5.
Denote also by A the corresponding character of the idéle group QX of Q. For a rational
prime gl26, put v, =X proj(@% —~—2Z; XZ——1Z7). Let k, be the subfield of @,
corresponding to the character »,. Then &, is a totally ramified extension of Q. Let @, be
the ring of integers of k,. Then E /0, is an elliptic curve (see (A.2)). Therefore, for each
rational prime ¢J26, we have the relation: A(o,)+ q)\(oq)‘1 = Tr(o,) mod 13, where o, is
the Frobenius element of the prime of k, and Tr(o,) is the trace of o, on the Tate module

p q
T3(E /%)(IF 4) (see [11] §6). Then we should have the following congreuences

1+q55Tr(oq6) mod 13if p=3or7,
1+q“sTr(aj) mod 13if p =5,

for any rational prime gJ26. But, the congruences above are not satisfied for g =3 if p =3
or7,and forg=5if p=5. O



