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1. Introduction

If X is an algebraic variety defined over an algebraically closed field k,
then associated to X are two homeomorphic varieties, the weak normali-
zation X* of X, defined by Andreotti and Bombieri [2], and the Lipschitz
saturation X of X, defined by Pham-Teissier [12], and Lipman [8] (see
Section 2 for the definitions). Since X* is maximal among varieties

birationally homeomorphic to X it follows that if X is weakly normal, i.e.
X* = X, then also X* = X = X. The main result of this paper shows that
if X is obtained from a nonsingular projective variety by means of a
linear projection from a center in general position, then X* = X. An old
conjecture of Andreotti-Bombieri states that in this situation X is in fact
weakly normal, from which our result would immediately follow. We will
briefly review the status of this conjecture and the relationship of the
present paper to the Andreotti-Bombieri conjecture.

Assume that dim X = n and that X is obtained by generic linear
projection of a nonsingular Y into P n + r( k). Then if k = C the conjecture
is known to be true when r = 1 and when r &#x3E; (n - 1)/2 [1,3]. If char

k = 0 then the conjecture is known to be true for r = 1 [4].
The technique used in proving the weak normality theorem for r = 1

depended heavily upon being able to compute the depth of the structure
sheaf of X and this seems highly unlikely to be possible if the codimen-
sion of X is at least 2. The other case which has been proved, r &#x3E; (n - 1)/2,
relies upon explicit canonical forms for the singularities which arise. Each
such singularity is checked directly to be weakly normal. Again, this is
not a technique which can be exploited to obtain the general conjecture.

The result to be proved in the present paper is valid for all r and for
arbitrary characteristic. Of course, it already follows from the weak
normality conjecture in the range of dimensions and codimensions where
that conjecture has been proved, but outside that range, it is a new result.
The motivation for studying the relationship between weak normality
and Lipschitz saturation (at least when k = C) is provided by a result of
Spallek [14,15]. The result of Spallek states that if Y is a (reduced)
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complex space and if g is a weakly holomorphic function on Y which is
m-times continuously differentiable across the singular set of Y, then if m
is sufficiently large g is automatically holomorphic. For k = C our result
states that any continuously holomorphic function g on a variety X with
only ordinary singularities is automatically Lipschitz. But at present we
are unable to prove any automatic differentiability of g. If this were

possible then we could apply Spallek’s theorem to conclude that X is
weakly normal.

The way one compares the weak normalization and Lipschitz satura-
tion is via the double point schemes studied in Kleiman [7] and Roberts
[13]. The relevant definitions and results are recalled in Sections 2 and 3
and the proof of the main theorem occupies most of Sections 4 and 5.
Theorem 5.1 is the main result of the paper.

2. Preliminaries

All rings are assumed to be commutative with identity; k will denote a
fixed algebraically closed field. Suppose A c B are two k-algebras such
that B is integral over A. The inclusion of k in A induces a natural map
B 0 k B - B ®A B. Let I be the kernel of this map and define two rings
AB* and ÂB as follows.

2.1. DEFINITION:

In (a) Rad(I) denotes the nilradical of I and in (b) I refers to the
integral closure of the ideal I in the algebra B 0 k B. This is defined by

Since I c Rad( 1 ) there is an inclusion of k-algebras :

The ring ÂB is called the Lipschitz saturation of A in B while AB* is
called the weak normalization of A in B. If B is the normalization of A,
then ÂB and AB* are denoted by Â and A* respectively and are called the
Lipschitz saturation and weak normalization of A respectively. The
concept of Lipschitz saturation was introduced by Pham-Teissier [12] (see
also Lipman [8]), while the concept of weak normalization was intro-
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duced in a different form by Andreotti-Bombieri [2]. The paper of
Manaresi [9] contains the verification that the definition of weak normal-
ity we have given above agrees with the original definition.

These concepts will now be applied to schemes over k. By algebraic
variety over k is meant a reduced separated scheme of finite type over k.
Let (X, tfl x) be an algebraic variety over k, let ( X #, (9x.) be the
normalization of X and let 7T X" - X be the normalization map. There
is a map of schemes X # X xX# -+ X # X k X # corresponding to the map
of sheaves (9x. 0 k Ox. ---&#x3E; ox. 0 0, Ox#. Let I be the kernel of this

sheaf map, and define the sheaves (OX) and (0x)* locally by means of
Definition 2.1. Each of these sheaves is representable as the structure
sheaf of a variety over k and from Lemma 2.2 one obtains the following
sequence of maps of k-varieties.

Furthermore, ax* _ ( ax ) * and CX = (Cg x) and the morphisms f and g
are homeomorphisms. The variety X is the Lipschitz saturation of X and
X* is the weak normalization of X. X is said to be Lipschitz saturated if
X = X and X is said to be weakly normal if X = X*. From lemma 2.3 one
obtains

2.4. LEMMA: If X is weakly normal, then X is Lipschitz saturated.

The converse of lemma 2.4 is false. For example, if char k =A 2, 3 then
X = Spec k [ t 2, t 3 is Lipschitz saturated, but X* = Spec k [ t ].

The main result of this paper is that if X is obtained by generic
projection of a nonsingular projective variety defined over k, then

X* = X. Of course, this would be automatic if X were weakly normal,
but, as indicated in the introduction, this stronger result can be proved
only in some special cases at present.

3. Subtransversality

Let f : X - Y be a morphism of nonsingular algebraic varieties defined
over k. Let ’1T:( X X X)’ --&#x3E; X x X be the morphism obtained by blowing
up the diagonal à x in X X X and let E = 03C0-1 (0394X) be the exceptional
divisor. Let J ~ O(X X)’ be the sheaf of ideals defining the subscheme
((f f)°03C0)-1(0394Y)~(X X)’ and let I = O(X X)’ [ - E ] be the invert-
ible sheaf of ideals defining the exceptional locus E.

3.1. DEFINITION: (a) The double point scheme Z(f) is the subscheme of
( X X X )’ defined by the sheaf of ideals I-1J.

(b) The morphism f is said to be weakly subtransversal if Z( f ) =  or if
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Z(f) is reduced of dimension 2(dim(X)) - dim(Y) and if dim(Z(f)~
E ) = 2(dim(X)) - dim(V)-1, (or Z(f) ~ E =,O).

(c) The morphism f is said to be strongly subtransversal if Z(f) =  or
if Z( f ) is smooth of dimension 2(dim(X)) - dim(Y) and if Z(f) is

transversal to E.

3.2. LEMMA: If f is a weakly subtransversal morphism, then J is a reduced
sheaf of ideals.

PROOF: Let m = dim(Y). Then J is defined locally by m functions
Fl, ... , Fm and E is defined locally by a single function u. Let g = Fj/u.
These are well defined functions since J c I. Let x be a closed point of
Z(f) ~ E and let A be the local ring of (X  X)’ at x. The weak

subtransversality assumption implies that the ideal ( gl, ... , gm, u ) is an

unmixed ideal of A of height m + 1, and since A is Cohen-Macaulay it
follows that gl, ... , gm, u is an A-sequence. This implies that ( gl, ... , gm)
n ( u ) = (g1u, ..., gmu) and since both ideals on the left are radical ideals,
one has that J = (g1u, ..., gm u ) is a radical ideal in A.

Consider an imbedding X C: P ’ and a morphism fL : X ~ P m induced
by projection from a linear subspace L of PN with codim ( L ) = m + 1
and xn L =,d.

3.3. THEOREM: Let X ~ PN be nonsingular. Then, if the linear subspace L
is chosen in general position, the associated projection fL : X - pm is weakly
subtransversal. ( If char k &#x3E; 0 it may be necessary to reimbed X in a larger
projective space before applying the projection. We refer the reader to

Robert’s paper [13] for the precise conditions concerning this reimbedding.)

PROOF: Theorem (0.2) of Robert’s paper [13] shows that Z( fL ) is smooth
of dimension 2(dim(X)) - m if L is chosen in general position. It remains
only to check that dim(Z(fL) ~ E ) = 2(dim(X))-m- 1 (or Z( fL ) n E
= ) for L chosen in general position. But this is a consequence of
Kleiman’s transversality theorem [6] as follows. If H is the Grassman

variety that parametrizes lines in PN, the secant map (X  X)B0394X ~ H
extends to a morphism T: (X  X)’ H. If L is a fixed linear subspace
of PN of codimension m + 1, then the schubert subvariety of H defined
by S = {03BB ~ H: 03BB ~ L ~  and 03BB ~ L} is smooth and Z(fL) = ~-1(S)
([13] page 70). Now let G = Aut (PN) and apply Kleiman’s theorem 2( i )
[6] to the pair of maps S - H and E  (X X X)’  H to conclude the
proof.

3.4. REMARKS: (a) Theorem 3.3 is true with the stronger conclusion that
fL is strongly subtransversal if char k ~ 2. This is proved by the tech-
niques of Robert’s paper. Since we shall not need this stronger result we
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do not present the details; however, note that if char k = 0 then part (ii)
of Kleiman’s Theorem 2 [6] applies to the proof of Theorem 3.3 pre-
sented above to conclude the strong subtransversality of fL.

(b) In the case k = C, Theorem 3.3, with the stronger conclusion of
strong subtransversality, also follows from Theorem 19.3 of Andreotti-
Holm [3] and from Mather’s theory of generic linear projections [10,11].

4. Cohomology of blowing-up

Let (A, m) be a regular local ring of dimension r, and let X = Spec A ; 03C0:

X’ ~ X will denote the blow-up of X with center m. Thus X’ = Proj
(~~n=0mn). Let E = 03C0-1(m) be the exceptional divisor. With these nota-
tions there is the following result.

4.1. PROPOSITION: Hq( X’, (9 [ sE 1) = 0 for q &#x3E; 0 and s  r.

PROOF. Let F=O[sE] and note that F = OX’(-s). By the formal func-
tion theorem

where X’n = X’  X Spec (A/mn). Now X’ is just the ringed space

(E, OX’/In) where I = ir - 1 (m)·(OX’ is the sheaf of ideals defining E. In
particular X’1 ~ E = P r-1( k) where k is the residue field of A. There is an
exact sequence of sheaves on E:

Furthermore, F|E ~ OE(-s) and In/In+1 - OE(n). Therefore, tensoring
with F gives an exact sequence

But F1 = OPr-1(k)(-s) so Hq(X’1, F1) = 0 in the range q &#x3E; 0 and s  r by
Serre’s theorem on the cohomology of projective space ([5] p. 225). Then
by induction, Hq(X’n, Fn ) = 0 so that Hq(X’, F)^m = 0. But Hq(X’, F) is a
finitely generated A-module so it follows that Hq(X’, F) = 0.
Now consider the following situation. Let A be a regular noetherian

ring and p E X = Spec A be a prime ideal of height r. Let 7T X’ ~ X be
the blowing-up of X with center Y = V(p) and let E =03C0-1(Y) be the
exceptional divisor.

4.2. PROPOSITION: With the above notations, Hq(X’, (9[sE]) = 0 for q &#x3E; 0
and s  r.
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PROOF: Let M = H7(X’, (9 [ sE ]). Then M is a finitely generated A-module
and Supp (M) ç V(p). Thus M = 0 if and only if Mp = 0. Consider the
flat base change map.

Then Mp ~ Hq(X", v*(9[sE]) ([5], p. 255). But blowing-up commutes
with flat base change, so X" is the blow-up of Spec Ap at the maximal
ideal pAp and the result then follows from Proposition 4.1.

5. Main theorem

5.1. THEOREM: Let /’ X ~ Y be a weakly subtransversal morphism of
nonsingular algebraic k-varieties. Then the scheme X X YX ~ (f X f)-1(0394Y)
is reduced.

PROOF: Let qr: (X  X)’ ~ X  X be the blow-up of X  X along the
diagonal and let E denote the exceptional divisor. Since Z(f)BE = (f
f)-1(0394Y)B0394X ([13], p. 63) it is only necessary to study (f f)-1(0394Y)
along the diagonal of X. Thus let a be a closed point of X and consider
two cases.

Case 1. 03C0-1(a, a) ~ Z(f) = . In this case it follows from Lemma 1.2
of Roberts [13] ] that the tangent map df(a): Ta X ~ Tf(a)Y is injective.
Thus f*: mf(a)/m2f(a) ~ ma/m2a is surjective so by Nakayama’s lemma
f*mf(a)=ma. Hence (f f)-1(I0394Y,(f(a),f(a))) = I0394x,(a,a) and the result is
proved in case 1.

Case 2. 03C0-1(a, a) ~ Z(f) ~ . By localizing at a and f(a) we may
reduce to the situation in which X = Spec A and Y = Spec B where A and
B are regular local rings of dimension n = dim X and p = dim Y respec-
tively. Then let xl, ... , xn be a regular system of parameters for A and
y1, ..., yP a regular system of parameters for B. Define 03A6J in 0393((X X X)’,
O(X X)I) by 03A6J = 03C0*((f*yJ ~ 1 - 1 0 (f*yj)) for 1  j  p. Since f is

weakly subtransversal, Lemma 3.2 implies that J = (03A61, ..., 03A6p). r2( Xx X)’
is a reduced sheaf of ideals. Let R = R(03A61, ..., 03A6p) be the sheaf of
relations of the sections 03A61, ..., (Dp.

5.2. LEMMA: H1((X X)’, R) = 0.

Assuming the lemma for the moment, we will complete the proof of
the theorem. From the lemma there is an exact sequence 0393(( X X X)’,
Op(X X)’) ~ 0393((X X X)’, J) ~ 0. Let F = f*yj 0 1 - 1 ~ f*yJ and suppose
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G E rade F1, ... , Fp). Then 03C0*G is a global section of J since J is reduced.
Thus 03C0*G = 03A3pJ=1CJ03A6J=03A3pJ=1CJ03C0*FJ where CJ is a global section of

O(X X)’. But 0393((X X)’, O(X X)’) ~ 0393(X X, O(X X)) so G E

(F1...,Fp). O(X X) and the theorem is proved.
It remains to prove the lemma. Let M = xJ ~ 1 - 1 0 je and Uj’ = 1 ~ xJ

for 1  j  n. Then u1, ..., un, u’1,...,u’n generate the maximal ideal in
O(X X),(a,a) while u 1, ... , un generate the ideal I0394X,(a,a). The blowing-up of
(X  X), (a, a)) along (0394X, (a, a )), i.e. (X  X)’, is a closed subscheme
of pn-1. Its ideal is defined by the functions uitj - tiuj for 1  i, j  n.
Let W be the affine open subset of (X  X)’ determined by t, ~ 0. Then
on W the divisor E is defined by u, and the subtransversality assumption
implies that the functions (i) = 03A6j/ui (1  j  p) define an O| W, sequence.
Therefore, on W there is an exact Koszul resolution 

where (9 is the structure sheaf of (X X X)’ and if {e03B11...03B1k: 1  03B11  ... 

03B1kp} is a basis for (9(e) then the differential d(i)k: O(pk)|Wt -+ (f) k-1 is

defined by

Also a i = (~(i)1,...,~(i)p) (f) Since ui~(i)k - m - uj~(j)k on Wi n W , one
concludes that on W ~ Wj

We would like to glue the sequence in (5.1) into a sequence of bundle
maps on (X X X)’. If {s(k)i} is a section of the kth bundle with transition
functions {h(k)ij}, then (5.3) implies that

Thus, in order for the d(i)k to glue together into a bundle map it must be
true that h(k)ij = (ui/uj)h(k-1)ij. Taking h(1)ij= 1 we conclude that there is a
resolution of J by locally free sheaves:
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where d1(h1,...,hp)=03A3Pk=1hk03A6k, and the other dk are defined locally as
in (5.1).
Now split the resolution of J into a sequence of short exact sequences.

For q &#x3E; 1, the q th short exact sequence has a long exact cohomology
sequence which contains the following segment:

According to Proposition 4.2, since codim 0394X = n, we will have Hq(( X X
X)’, (f)[ qE]) = 0 and Hq+1((X X)’, O[qE]) = 0 for all n &#x3E; q &#x3E; 0. But the

vanishing is also true for q  n since Hq((X X X)’,·) vanishes identically
for q  n = dim X when X is affine. Thus we will get an isomorphism
H1((X  X)’, R) ~ Hp-1((X X)’, O[(p-1)E]) = 0 which proves
Lemma 5.2 and hence the theorem.

Combining Theorem 5.1 with Theorem 3.3 one obtains immediately
the equality of weak normality and Lipschitz saturation for generic
projections.

5.3. THEOREM: Let X c P ’ be nonsingular. If L is a linear subspace of PN
of codimension m + 1 (m  dim X) and fL : X ~ Pm is the corresponding
projection, let YL = fL(X). If L is chosen in general position, then YL* = L.
( As in Theorem 3.3, if char k &#x3E; 0, it may be necessary to reimbed X before
applying the projection.)

PROOF: The normalization of YL is just X and fL is the normalization
map. According to Theorem 3.3 and Lemma 3.2, if L is chosen in general
position then fL is weakly subtransversal so that Theorem 5.1 applies to
show that IL=(fL fL)-1(I0394YL) is a reduced sheaf of ideals. Thus

IL ~ IL ~ Rad(IL)~IL. Hence IL = IL and the equality of YL * and L
follows from Definition 2.1.
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