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O 1983 Martinus Nijhoff Publishers, The Hague. Printed in the Netherlands

0. Introduction

(a) General remarks

The Hodge structure of a smooth algebraic curve C consists of its
Jacobian variety J( C ) together with the principal polarization de-
termined by the intersection form Q on Hl(C, Z). It is well known that
this is equivalent to giving the pair ( J( C ), 8), where 8 c J( C) is a
divisor uniquely determined up to translation by the property that its
fundamental class be Q under the identification H2( J( C), Z);:
Hom( A2Hl ( C, Z), Z). Beginning with the inversion of the elliptic integral
and continuing through current research, the polarized Hodge structure
( J( C ), O ) has played an essential role in the theory of algebraic curves.
As signposts we mention Abel’s theorem, the Jacobi inversion theorem,
Riemann’s theorem, the Riemann singularity theorem, the Andreotti-
Mayer theorem, and the use of the Jacobian variety in the study of
special divisors (cf. [2] and [20] for precise statements of these results). In
sum, one might say that in addition to the direct geometric arguments
that one expects to use in studying algebraic curves, Hodge theory
provides an additional unexpected and penetrating technique.

The theory of abelian integrals on curves was partially extended to
higher dimensions by Picard, Poincaré, and Lefschetz, among others (cf.
[41], [32]). This development culminated in the work of Hodge in the
1930’s (cf. [27]), and constitutes what is now called classical Hodge
theory for a smooth projective variety.

In recent years classical Hodge theory has been extended to general
algebraic varieties (mixed Hodge theory; cf. [10], [17]) and to families of
algebraic varieties (variations of Hodge structure, cf. [ 16], [9]). These two
extensions interact in the precise description of the limiting behaviour of
the Hodge structure of a variety as it acquires singularities (cf. [44], [46]).

* Research partially supported by NSF Grant Number MCS 810-2745.
** Research partially supported by NSF Grant Number MCS 79-01062.

* * * Research partially supported by NSF Grant Number MCS 78-07348.
* Research partially supported by NSF Grant Number MCS 780-4008.
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At present one may feel that Hodge theory and its extensions constitutes
a subject of formal symmetry and some depth (cf. the recent papers [6],
[8], and [50]).

Given this it is reasonable to expect that Hodge theory should have
applications to algebraic geometry at least somewhat comparable to what
happens for curves. But unfortunately this is not yet the case. Certainly
classical Hodge theory has its well known applications (Lefschetz (1,1)
theorem, Hodge index theorem, etc.), and there are more recent isolated
successes such as the global Torelli theorem for K3 surfaces (cf. [40],
[39]) *. The two extensions of Hodge theory have applications to local
and global monodromy questions, which in turn has applications to
degeneration problems (cf. [ 13] and [48] for further applications to Torelli
questions). Also, variation of Hodge structures has been useful in classifi-
cation questions (cf. [15], [28]), and mixed Hodge theory has proved
fruitful in the study of singularities (cf. [43] for just one nice application).
Nevertheless, we feel that some of the expected deep interaction between
Hodge theory and geometry is not yet present in higher dimensions, as
evidenced by the lack of progress on the fundamental problem of higher
codimensional algebraic cycles.

If one accepts this premise then there naturally arises the question as
to why? Partly the reason may be historical: It is possible to argue that
the extent to which the theory of curves was developed by transcendental
methods is simply a reflection of the training of the 19th century
mathematicians. Subsequently, the theory of algebraic surfaces was al-
ready largely developed by the Italian school some thirty years before
Hodge’s work, essentially by extending their projective methods for

studying curves. Finally, the theory of higher dimensional varieties is still
in its infancy. But this ignores the lack of progress on cycles, as well as
other matters such as the fact that the Torelli theorem seems to be

frequently true (in some form - cf. [5], [7], [47] and [48]), and to this
extent the Hodge structure provides good moduli.
We suggest that there is a more precise technical reason for this lack of

interaction between Hodge theory and geometry. Namely, it is the fact
that

in higher dimensions a generic Hodge structure
does not come from geometry

(this is formulated more precisely in Section 1 (au (1)** In particular,
there appears to be no natural way of attaching to a polarized Hodge
structure of weight n &#x3E; 2 a geometric object such as 0398. (2) Put differently,

* Since this paper was written, Ron Donagi has proved that the period map has degree one
in the case of almost ail hypersurfaces in Pn. His paper will appear in this journal.

**These numbers refer to notes at the end of the paper.
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theory has yet to take into account the special features of those Hodge
structures arising from an algebraic variety.
Now even though a general Hodge structure of weight n &#x3E; 2 does not

come from geometry, there are indications that a non-trivial global
variation of Hodge structure does arise geometrically. Moreover, Hodge
theory is frequently most useful in investigating problems in which there
are parameters (here we mention the theory of moduli, and the Picard-
Lefschetz method of studying a given variety by fibering it by a general
pencil of hypersurface sections). Motivated by these observations, in this
series of papers we shall introduce and study a refinement of a Hodge
structure called an infinitesimal variation of Hodge structure. (3) As with
a usual Hodge structure this is given by linear algebra data. However,
whereas a Hodge structure has no algebraic invariants, an infinitesimal
variation has too many invariants. Consequently, our main task has been
to isolate a few of those (five, to be precise) that have geometric
interpretations. In this paper we shall give these five constructions, and
shall then study the first of these in detail.

Before turning to more specific remarks, we should like to emphasize
that this work is experimental and raises more questions than it answers.
Moreover, two of the most important integredients in the definition of a
polarized Hodge structure, the iritegral lattice and the second Hodge-Rie-
mann bilinear relation, thus far play only a minor role in the theory of
infinitesimal variations of Hodge structure. However, each of our five
constructions does provide direct interaction between formal Hodge
theory on the one hand and the geometry of projective varieties on the
other.

Finally, we should like to acknowledge valuable conversations with
Chris Peters about infinitesimal variations of Hodge structure. His criti-
cism and suggestions have been extremely useful, and a set of unpub-
lished notes by Peters-Steenbrink was quite helpful in preparing this

manuscript. We are indebted to the referee, who did an exceptionally
careful job and forced us to insert occasional readable passages.

Also, we would like to thank Joanne S. Kirk, our typist for her skill
and patience.

(b) Specific remarks

This paper is organized as follows:
In Section 1 we recall the requisite background material, and from

among the plethora of invariants of an infinitesimal variation of Hodge
structure list five that have thus far proved useful in geometry. (4)

In Section II we give some results, under the title of infinitesimal

Schottky relations, (5) concerning the first of these constructions.
Finally, in Section III we study high degree hypersurface sections of a

fixed variety, and among other things give some computations of infini-
tesimal Schottky relations in this case.
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In more detail, associated to an infinitesimal variation of Hodge
structure V = {Hz, Hp,q, Q, T, 8 } there is a linear system of quadrics

that we call the infinitesimal Schottky relations of V. In case V arises from
a Ist-order deformation of a smooth, projective variety X there is an

exact sequence

where IcpK(x)(2) is the linear system of quadrics through the canonical
model cP K (X) and

with

being the obvious map. The mysterious ingredient here is ker À, (6) and in
Section II(b) we consider the case where the lst-order deformation occurs
in a fixed Pv. We define the Gauss linear system

to be the subspace generated by quadratic differentials vanishing on
ramification loci of some projection X - P n ( n = dim X), and prove that

In Section 2(c) we refine this result and, as an illustration of one of our
main heuristic principles (2.c.1 ), show that

where

are the generalizations of the two main maps in Brill-Noether theory [2].
In Section 3(a) we introduce some commutative algebra formalism

into the theory of infinitesimal variation of Hodge structure and use this
to prove a strenthened infinitesimal version of a classical result of M.
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Noether. Finally, in Section 3(b) we discuss the infinitesimal Torelli
conjecture and use again the commutative algebra formalism to verify
some special cases (one of which is known) of this conjecture.

Scattered througout are a number of examples and little results. Also,
we rederive and put in a general setting the main theorem of [4]. Finally,
from time to time we pose specific problems and conjectures, such as the
global Torelli for extremal varieties (cf. (3.b.27)).

1. Preliminaries

(a) Review of definitions from Hodge theory *

DEFINITION: A Hodge structure of weight n, denoted by {Hz, HP,q}, is

given by a finitely generated free abelian group Hz together with a Hodge
decomposition

on its complexification He = H, 0 C.
Associated to (H., Hp,q} is a Hodge filtration

a decreasing filtration on H satisfying the condition that

be an isomorphism for p = 0,..., n. Conversely, a decreasing filtration

that satisfies ( 1. a.1 ) gives a Hodge structure {Hz, Hp,q} of weight n
where

The Hodge numbers are defined by

* A good general reference and source of specific references for this section is [17].
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EXAMPLE: The n t h cohomology of a compact Kâhler manifold X gives a
Hodge structure of weight n where

(the notations are standard, and are given in Chapter 1 of [20]). This is
our main example; others may be obtained by applying linear algebra
constructions to Hodge structures coming from compact Kähler mani-
folds.

DEFINITION: A polarized Hodge structure of weight n, denoted by
(Hz, HP,q, Q }, is a Hodge structure (H., HP q) of weight n together with
a bilinear form

that satisfies

We shall refer to (I) and (II) as the Hodge-Riemann bilinear relations.
In terms of the Hodge filtration ( 1.a.0) they are

where the Weil operator C is defined by

EXAMPLE: A polarized algebraic variety ( X, 03C9) is given by a compact,
complex manifold X together with the Chern class w = CI (L) of an ample
line bundle L - X.

We will identify ( X, w ) with ( X, w’) when 0 - w = 0 - w’.
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Suppose that dim X = n + k and recall that the primitive cohomology is

Because of the hard Lefschetz theorem

and Lefschetz decomposition

we may think of the primitive cohomology as providing the basic

building blocks for the cohomology of X. Setting

we obtain a polarized Hodge structure of weight n.
A sub-Hodge structure of a Hodge structure (HZ@ HP,q} is given by

{H’z, H,p,q} where HZ c Hz is a subgroup, H’p,q = H’ r1 Hp,q, and where

In this case there is a natural quotient Hodge structure {H"z, H"p,q} where

More generally, a morphism X between Hodge structures {Hz, JIP,q},
{H’z, H,p,q} of respective weights n, n + 2 m is given by a linear map

satisfying

In this case the kernel, image, and cokernel of À are all Hodge structures.
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Given Hodge structures {Hz, Hp,q}, {H’z, H’p’,q’} of respective weights
n, n’, the complexification of H, 0 H’z, and Home, H’z) have natural
Hodge decompositions of respective weights n + n’ and n - n’.
A sub-Hodge structure {H’z, H’P,q) of a polarized Hodge structure

{Hz, Hp,q, Q } inherits a natural polarization form Q = Q H’z. In partic-
ular, Q’ is non-degenerate and the complement

has an induced polarized Hodge structure where, e.g., H"p’q = HP,q r1 H".
The standard constructions of linear algebra also leave invariant the

set of polarized Hodge structures.

DEFINITION: A Hodge structure { HZ , Hp,q} is said to arise from geometry
in case it may be obtained from the Hodge structures of polarized
algebraic varieties by standard linear algebra constructions. (7)

EXAMPLE : If f : Xi Y is a morphism of smooth projective varieties, then
setting

gives a Hodge structure arising from geometry.
By our remarks, any Hodge structure arising from geometry will have

a polarization induced from the standard polarizations on the cohomol-
ogy of polarized algebaric varieties, and we shall generally consider it
with such a polarization.

To define the classifying spaces for polarized Hodge structures, we
assume given a finitely generated free abelian group HZ , a nondegenerate
bilinear form

satisfying the (skew) symmetry relation preceding the Hodge-Riemann
bilinear relation, and Hodge numbers h p’ q satisfying

where sgn QR in the signature of Q on HIR = H, 0 R.
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DEFINITION: The classifying space D is the set of all polarized Hodge
structures {Hz, Hp,q, Q} where Hz, Q are given above and h P, q =

dim HP, q.
If we let

be the automorphisms of HIR that preserve Q, the G operates on D in the
obvious way. It is well known that, under this action, D is a homoge-
neous complex manifold of the form

where H c G is a compact subgroup. (cf. [ 19], [18], and [44]). To describe
the complex structure on D is is convenient to give the following

DEFINITION: The dual classifying space D is the set of all filtrations { Fp }
that satisfy the first Hodge-Riemann bilinear relation ( I ).

If Gaz, H ) is the Grassmann manifold of all linear subspaces FP c H
where dim FP = f p, then there is an obvious inclusion

and it may be proved that D is a smooth algebraic subvariety. In fact, if

is the complexification of G, then it may be shown that Ge acts

transitively on D. Thus D is a homogeneous algebraic variety of the form

where B c Gc is a parabolic subgroup. It may further be shown that

is the open G-orbit of a point; consequently D is a homogeneous complex
manifold with H = G r1 B.

Before defining a variation of Hodge structure we need to describe a
distinguished sub-bundle Th ( D ) c T(D). For this we recall that if W E
G ( k, H ) is a k-plane in the vector space H, then there is a canonical
identification
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described as follows: if w E W and 1 OE TW ( G ( k, H )), then we choose an
arc (MÇ) in G(k, H) with Wo = W and tangent 1, and vectors w(t) E W
with w(O) = w. Then the homomorphism 1 OE Hom( W, H/ W ) is given by

Combining this with (l.a.5) gives an inclusion

where F={Fp}~. If we write elements on the right hand side of
(l.a.7) as 1 = ~p&#x3E;103BEp where 03BEp~ Hom(FP, HjFP), then it is easy to see
that TF ( D ) is the set of 03BE=~03BEp satisfying the conditions: the diagram

is commutative, and

Because of ( 1.a.8) we may unambiguously write the last equation as

We then define the horizontal space

by the additional condition

It is clear that these horizontal subspaces give a holomorphic subbundle

invariant under the action of Gc, and we set
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DEFINITION: A variation of Hodge structure is given by a mapping

where S is a complex-analytic variety, r is a subgroup of Gz=
Auto, Q ), and (p satisfies the following conditions:

(i) (p is holomorphic (this makes sense since r acts properly discon-
tinuously on D and therefore lrBD is a complex-analytic variety);

(ii) T is locally liftable; i.e., each point sES has neighborhood GLl in
this cp [ % lifts to a mapping

and

(iii) cp is horizontal in the sense that the differential of one (and hence
any) local lifting (l.a.12) satisfies

We shall sometimes abuse notation and write this as

The horizontality condition (l.a. 13) is sometimes referred to as the

infinitesimal period relation.
If 7r : ~S denotes the universal covering of S with the fundamental

group 7T’t(S’, zou oj being viewed as a group of deck transformations of
S, then the local liftability property implies that there is a diagram of
holomorphic mappings

Moreover, there is a monodromy representation

with the property that

If we agree to identify holomorphic vector bundles over S with locally
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free sheaves of 6s-modules, then the trivial bundle S X H induces on S a
locally free sheaf 9C having an integrable connection

the Gauss-Manin connection. Since H = Hz 0 C there is a locally con-
stant subsheaf Xz c X. Moreover, the Hodge structure at §3(§) OE D
induces a filtration

at s = ff (9), where the Fp are the holomorphic vector bundles over S
obtained by pulling back the universal sub-bundle over G(f P, H ) via the
map Du Gaz, H ). If we define the Hodge bundles by

then there is a Coo ( not holomorphic) Hodge decomposition

Finally, the quadratic form on Hz induces a locally constant quadratic
form Q on 9C, and the infinitesimal period relation is

Summarizing, the variation of Hodge structure gives the data

subject to the conditions explained above. ,

Conversely, given the data (1.a.16) subject to the above conditions we
may construct a variation of Hodge structure

In the sequel we shall interchangeably think of a variation of Hodge
structure as given by the data (l.a.16) or by a holomorphic mapping
( 1. a.17).

EXAMPLE: Let X, S be connected complex manifolds and let
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be a smooth proper morphism with connected fibres XS = f -1 ( s ). Sup-
pose moreover that there is a commutative diagram

where os is the projection onto S. We shall refer to this situation as a
projective family ( XS }S E s- We fix a base point so OE S and set Hz =
Hn(Xso’ Z)~Hnprim(Xs0, Q). Since the hyperplane class 03C9~H2(Xs0, Z)
and cup-product are both invariant under the action of the fundamental
group ’1TI(S, s0) on Hn(Xs0, Z), there is induced on Hz a bilinear form Q
and linear representation

Setting r = 03C1(03C01(S, so )) we may define a mapping

by

(p ( s ) = {polarized Hodge structure on Hn (Xs’ Z) ~ Hnprim Xs, Q)}.

It is well known that the three conditions for a variation of Hodge
structure are satisfied (cf. [9], [19]).
We shall say that such a variation of Hodge structure arises from a

geometric situation. (Actually, this concept should be extended in an

analogous manner to saying that a fixed Hodge structure arises from
geometry in case it is constructed by linear algebra from Hodge struc-
tures of polarized varities, but we shall not discuss this extension here.)
We shall have occasion to use the following

DEFINITION: An extended variation of Hodge structure is given by a
complex-analytic variety 9H and a holomorphic mapping

such that the restriction of cp to a dense Zariski open subset S c 9l is a
variation of Hodge structure in the usual sense.

What this means is that there is a proper analytic subvariety Z c 9l
such that on ,S = M - Z we have a variation of Hodge structure as
previously defined, but T may fail to be locally liftable in the neighbor-
hood of points s E Z.
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EXAMPLE: Let ’5’g be the Teichmüller space [3] for compact Riemann
surface of genus g &#x3E; 1 and rg the Teichmüller modular group. Then (cf.
[11])

is a quasi-projective variety whose points are in a one-to-one correspon-
dence with the smooth algebraic curves of genus g. The classifying space
for the polarized Hodge structures of curves is the Siegel generalized
upper-half-plane 9C , and the usual period mapping of curves gives an
extended variation of Hodge structure

The mapping qq fails to be locally liftable around points of Mg corre-
sponding to curves having non-trivial automorphisms (except that the
hyperelliptic involution doesn’t count when g = 2). The aforementioned
notes of Peters-Steenbrink contain an excellent discussion of fine vs.

coarse moduli schemes.

REMARK: Given any variation of Hodge structure

where S is a Zariski open set in a smooth algebraic variety S, there is a
maximal Zariski open set S’ c S to which W extends to define an

extended variation of Hodge structure

where T’ is proper. To obtain S’ we look at the divisor components Di of
S - S. If the local monodromy transformation around a simple point of
some Di is of finite order, then by [21] we may holomorphically extend 99
across Dl - (~j~1 Di n Dj). Call this new mapping

If W is a codimension &#x3E; 2 component of 9 - S,, then (pl 1 is locally
liftable in % n S1 where p is a neighborhood of a general point of W. By
[18] we may then extend ip to all of . Continuing in this way we obtain
our maximal extension of (1.a.18).

Needless to say this process is easier to carry out in theory than in
practice (take S~ Pd(d+3)/2 to be the parameter space for plane curves
of degree d and S c S the open set corresponding to smooth curves). In
fact, one of the central problems in application of Hodge theory is to
determine which degenerate varieties must be added in order to make the
period mapping proper (cf. [ 13], [14]).
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Finally, we shall use the following:

DEFINITION: Let 9!L be a moduli scheme for some class of polarized
algebraic varieties, and suppose that the Hodge structure of a general
member of 0lè gives an extended variation of Hodge structure

We shall say that the weak global Torelli theorem holds in case cp has

degree one (as a mapping onto its image).
We note that this depends on the particular subgroup r c Aut(Hz, Q ).

In practice period mappings (1.a.19) frequently are finite-to-one, but
there seem to be no criteria enabling us to say that cp is a Galois covering,
so that the weak global Torelli theorem holds for a suitable r.

(b) Review of intermediate Jacobians and normal functions

To a Hodge structure {Hz, Hp,q} of weight n = 2 m - 1 we associate the

following complex torus J. As a real torus

To define the complex structure on J we set

so that

If we make the identification

and denote by A the lattice obtained by projecting Ha to H", then J is
the complex torus given by

We note that the Lie algebra of J is

EXAMPLE : For the Hodge structure {Hz, Hp,q} associated to H2m-1(X, Z)
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for X a compact Kâhler manifold, the resulting complex torus is the mth
intermediate Jacobian J(m)(X).(9)

For later purposes it will be convenient to have an alternate descrip-
tion of Jm(X). Set

If dimc X=n, then the cup-product pairing

is non-degenerate, and hence the dual of the Lie algebra of Jm(X) is
canonically given by (10)

and therefore

where A* is the image of the map

defined by

In the sequel we will drop the "03B1".
Intermediate Jacobians are useful in the study of cycles on a smooth

algebraic variety X, as will now be briefly described. We denote by
Zm(X) the group of codimension - m algebraic cycles on X and by

the subgroup of cycles homologous to zero. Using the description (l.b.5)
of Jm(X) we define the Abel-Jacobi mapping

by assigning to each Z E Zmh(X) the linear function on H2n-2m+1 1 ’(X)
given by



125

where C is a chain with aC = Z. It is known (cf. [ 19], [21], and [33]) that u
varies holomorphically with Z, and therefore maps to zero in Jm(X) the
subgroup

of cycles rationally equivalent to zero. Moreover, u satisfies the following
differential condition: Denote by

the subspace of the Lie algebra of Jm(X) given by

and suppose that {Zb}b~B is a complex-analytic family of codimension-m
algebraic cycles on X. Choosing a base point bo E B there is a holomor-
phic mapping

defined by

The differential restriction is

or equivalently by what was said above

Returning to the general discussion, suppose that {Hz, Hp,q, Q} is a
polarized Hodge structure of weight 2m - 1. Using the bilinear form
there is a natural identification

Thus
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where A* is the image of the map

We remark that there are natural identifications

Using the second of these, the polarizing form Q may be viewed as
class

By the first Hodge-Riemann bilinear relation, q~H1,1(J)~H2(J,Z)
and is therefore the Chern class of a holomorphic line bundle L ~ J. The
curvature 8 of this line bundle is given by the second Hodge-Riemann
bilinear relation, from which it follows that (see [44])

In particular, if m = 1 then (J, 0398) is a polarized abelian variety. In any
case, if B is a complex-analytic variety and

is a holomorphic mapping satisfying

then 8 &#x3E; 0 on the image variety u(B).
According to (l.b.6), this is the situation for Abel-Jacobi mappings. (11)
Referring to the discussion in Section 1(a), it is essentially clear how to

define a variation of Hodge structure

in the absence of a polarizing form: We should be given an analytic
variety S, a locally free sheaf H~S having an integrable connection V,
a subsheaf Hz c 3C of locally constant sections, and holomorphic sub-
bundles ’1f P c 3C such that all axioms for a variation of Hodge structure,
other than those involving the polarizing form, are satisfied.

Suppose now that {Xz, Hp,q, p , S} is a variation of Hodge structure
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of weight 2 m - 1. In the obvious way we may construct a complex
analytic fibre space

of complex tori J, =03C0-1(s). We shall also denote by g the corresponding
sheaf of holomorphic sections of this fibre space, and by

the sheaf of Lie algebras. Thus there is an exact sheaf sequence

Observing that the Gauss-Manin connection

satisfies

there is an induced map

DEFINITION: (i) The sheaf of normal functions is the subsheaf

defined by the kernel of the mapping (l.b.8)
(ii) A normal function is a global cross-section

REMARKS : (i) When S is a quasi-projective variety, a normal function will
be required to satisfy an additional "growth condition" at infinity (cf.
[22], [12]).

(ii) In general, for any variation of Hodge structure the sections v of
the subsheaf

defined by the condition
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where V E H is any lifting of v, will be said to be quasi-horizontal; these
are the sections that have geometric meaning.

EXAMPLE: Suppose that

is a proper and smooth holomorphic mapping between complex mani-
folds where % is Kâhler (but may not be compact). Let U =

{Hz, Hp,q, p , S} be the variation of Hodge structure with

where Xs=f-1(s). Let Z~X be a codimension-m analytic cycle such
that each intersection

is homologous to zero (note: in practice, X will be algebraic and we may
vary Z by a rational equivalence, so that the intersections (l.b.9) are
defined). We set

where

is the Abel-Jacobi mapping. It is known ([21]) that vZ is a holomorphic
section of $ - S and that is satisfies

where v is defined by (l.b.8). Moreover, in case 9C and X are algebraic,
vZ satisfies the required growth conditions (cf. [12]), and therefore defines
a normal function.

EXAMPLE: In moduli problems one is frequently given not only the
variation of Hodge Structure but also a (perhaps multi-valued) normal
function.

For instance, let 91* be the moduli space of non-hyperelliptic smooth
curves of genus 4. We will identify these curves with their canonical
models C c P3, and recall that
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where Q, V are respectively a quadric surface, cubic surface. In general,
Q is smooth and the difference of the two rulings on Q cuts out a pair of
distinct g 3 "s on C. Labelling these g 3 "s by 1 D and 1 D’l, there is given over
M*4 a normal function v, defined up to ± 1, by

This normal function vanishes over the locus of curves having an
effective theta characteristic, and from the infinitesimal invariant 8v
defined in Section 1 (c) below (which also equals 03B4(-v)) we may recon-
struct a general curve C E M*4.

For another example we consider the family {Xs}s~S of smooth quintic
threefolds Xs~P4, where S~P (Sym5 C5) is the natural parameter
space. On a general XS there are 1002 distinct lines LJ, and considering
differences we obtain (very) multivalued normal functions by setting

As one motivation for studying normal functions we suggest [23] and
[50]. In particular we would like informally to recall one result from these
papers. To state this we assume given a variation of Hodge structure
{Hz, Hp,q, V, S} of weight 2m - 1 and a normal function v~H0 (S, gn).
Using the exact cohomology sequence

of (1.b.7) we define the fundamental class ~(v) by

EXAMPLE: Let f : % - S be as in the example above, and let 2 c ex be a
codimension-m cycle satisfying (l.b.9). Then, on the one hand X has a
fundamental class z~ H2m(X, Z). On the other hand the Leray spectral
sequence

degenerates at E2 (cf. [ 10]), and hence modulo torsion there is a natural
inclusion

Under this inclusion the fundamental class of vx may be shown to be
equal to » (see [50]).
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Now suppose that X~Pr is a smooth projective variety of dimension
2 m . Denote by S~Pr* the Zariski open set {Hs}s~S of hyperplanes such
that

is smooth, and define

by 9C = {(s, x ) : x E X,). Then the projection

gives a family of the type we have been considering. Suppose that

is a primitive integral class of type ( m, m), and denote by ~~ H2m(X,Z)
the pullback of qo to X. The result we are referring to is

Given qo satisfying (1.b.12), there exists a normal function
v with fundamental class ~(v) = TJ. (12) (1.b.13)

(c) Infinitesimal variations of Hodge structure and some invariants

DEFINITION: An infinitesimal variation of Hodge structure V =

{Hz, Hp,q, Q, T, 03B4} is given by a polarized Hodge structure {Hz, Hp,q, Q}
together with a vector space T and linear mapping

that satisfies the two conditions:

REMARKS: Condition (l.c.2) is just (l.a.9), while (1.c.1) may be explained
as follows:

Given a variation of Hodge structure
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which for present purpose we write as a variable Hodge filtration

for each point so E S there is an associated infinitesimal variation of

Hodge structure given by

Given 03BE1, 03BE2 ~ Ts0(S) we choose local coordinates (s’, .... Sm) around so
so that 

Then for a holomorphic section 03C8(s) Fps c H we have

which in particular implies that,

i.e.,

so this equation is just (l.c.l) for the infinitesimal variation of Hodge
structure (l.c.3). The slightly subtle point is that, even though the
infinitesimal variation of Hodge structure (l.c.3) depends only on the
first order behaviour of the mapping T and so, that the condition (l.c.2)
be satisfied depends on second order considerations.

Put somewhat differently, every linear subspace E c T{Fp}(D) of the
tangent space to D at a point {Fp} E D is the tangent space to many local
submanifolds N c D passing through {Fp}, but there are non-trivial
conditions on E in order that we may choose N to be an integral
manifold of the horizontal differential system I on D. (13)

DEFINITION: The infinitesimal variation of Hodge structure v =

{Hz, Hp,q, Q, T, 03B4} is said to arise from geometry in case there exists a
projective family X ~ S, where 

whose associated variation of Hodge structure is V.
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REMARKS: An exposition, from the point of view of this paper, of what it
means to have a projective family with base space (1.c.4) is given in
Chapter VII of [2]. Again, the slightly subtle point is that not every

family with base (1.c.4) gives rise to an infinitesimal variation of Hodge
structure. It turns out that for this a sufficient condition is that X~S be
the restriction of a projective family over Spec(C[s1,..., sm]/m3) (i. e., we
should have a 2nd order variation of the central fibre). (14)

The matters are reconsidered somewhat more systematically below, cf.
the discussion following (1.c.11).

Because of the homogeneity of D there are no linear algebra invariants
of a polarized Hodge structure (although there may be other invariants
that are transcendental in the coordinates (in D ) of the Hodge structure,
such as the theta divisor of a principally polarized abelian variety). On
the other hand, there are a plethora of linear algebra invariants of an
infinitesimal variation of Hodge structure, (15) and the problem then
becomes one of sifting out from among this multitude those that have
geometric meaning in case the infinitesimal variation of Hodge structure
arises from geometry. We shall now give five invariants that have

geometric significance and that have proven useful in applications.
In this discussion, V = {Hz, Hp’ q, Q, T, 8) will be a fixed infinitesimal

variation of Hodge structure of weight n.
Construction #1. Given a vector space U we identify Hom(U, GLl *)

with GLl * 0 U*, and will denote by Hom(s)(U, U*) = Sym2U* the sub-
space of symmetric transformations in Hom(U, U*) (thus, (p E
Hom(s)(U, U*) means that ~~(u1), U2) = (CP(U2)’ u1~ for all Ul, U2 E

U). For a polarized Hodge structure {Hz, Hp,q, Q} there are natural
isomorphisms

induced by the non-degenerate pairing

Given 03BE1,..., 03BEn~ T, the linear mapping

is, using respectively (l.c.l) and (l.c.2), readily seen to be symmetric in
03BE1,..., 03BEn and symmetric as an element in Hom(Hn,o, Hn,0*). Thus we
have a linear mapping
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that will be referred to as the nth iterate of the differential 8. The dual of
(l.c.6) is a linear mapping

that will be referred to as the n’h interate of the codifferential 03B4*.

DEFINITION: J(V) will denote the linear system of quadrics on PH0,n
given by the kernel of 03B4*n.

In this way, to an infinitesimal variation of Hodge structure we have
intrinsically associated a linear systems of quadrics that will itself have
invariants such as the base locus, locus of singular quadrics, etc.

Construction #2. This is a variant of the first construction. We
consider the symmetric linear transformation

DEFINITION: We denote by 03A3p,k ~ PT the determinantal variety defined
by

As special cases we set

the latter is given by

In this paper we shall discuss the projective interpretation of the first
invariant (and of a generalization of it to be given below), and in the
third paper of this series we will discuss the geometric meaning of the
second invariant. In each case there are specific open questions, and a
deeper understanding of infinitesimal variations of Hodge structure

depends on their resolution together with further computation of exam-
ple.

Construction #3: This invariant will be defined in case of even weight
n = 2m.
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DEFINITION: Given a Hodge structure {Hz, Hp,q} of weight n = 2m, the
space of Hodge classes is defined by

DEFINITION: Given an infinitesimal variation of Hodge structure V =
{Hz, Hp,q, Q, T, 03B4} of weight 2 m and Hodge class y E H;,m, we set

This invariant will be discussed in the second paper of this series. If y is

the fundamental class of a primitive algebraic m-cycle r on a smooth
variety X of dimension 2 m, then it will be easy to see that (taking k = m )

where the left hand side denotes the holomorphic 2m-forms vanishing on
the support of the cycle r. There is a generalization of (l.c.9) to the
intermediate Hodge groups Hm+k,m-k, and in some cases we will be able
to prove that (l.c.9) is an equality. In this way we will be able to show,
e.g., that a smooth surface X~P3 with the same infinitesimal variation
of Hodge structure as the Fermat surface Fd ={xd0+xd1+xd2+d3=0}
must be projectively equivalent to Fd, for d5.

These first three constructions give invariants of an infinitesimal
variation of Hodge structure, which is linear algebra data abstracting the
description of the differential of a variation of Hodge structure. Our next
construction will be based on the 1st t order behaviour of a normal

function, and for this some preliminary discussion is necessary.
To begin we consider a classifying space D for polarized Hodge

structures of odd weight 2m - 1. Over D v’e may, in the obvious way,
construct a fibre space

of complex tori whose fibre over a point {Fp}~ D is the corresponding
intermediate Jacobian

The action of G. = Aut(Hz, Q ) on D lifts to an action on J. Given any
variation of Hodge structure
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the corresponding family of complex tori g ~ S introduced in Section 1

(b) is obtained by pulling back the universal family (l.c.l 0) to the

universal covering S of S, and then passing to the quotient by the action
of Ir, (S). Thus we may think of J - D is being a classifying space for
families of polarized intermediate Jacobians.

There is, however, one important difference. Whereas D is a homoge-
neous space for the group G = Aut(HR, 0), so that any two tangent
spaces to D "look alike", the automorphism group of (l.c.l0) is the

discrete group Gz, whose action on J is very far from being transitive.
For example, in the classical case where D = Hg is the Siegel generalized
upper-half-space and J ~ Hg is the versal family of principally polarized
abelian varieties, this non-homogeneity is reflected by the very fortunate
circumstance that the theta divisor is different for different abelian
varieties. It is for this reason that there is no existing theory of " the
differential of a normal function". In fact, it seems difficult to give good
geometric meaning to all of the first order behaviour of a normal
function.
On the other hand, we can give meaning to at least part of this

infinitesimal behaviour as follows: First, we observe that it makes

perfectly good sense to speak of a variation of Hodge structure

when S is a non-reduced analytic space. * For example, when

where m = {s1,..., sm} is the maximal ideal in C[s1,..., sm], a variation
of Hodge structure

may be thought of as a k t h order variation of a given Hodge structure (or,
equivalently, as a k-jet of variation of Hodge structure). With this

terminology, an infinitesimal variation of Hodge structure V =

{Hz, Hp,q, Q, T, 03B4} gives

where

* The referee remarks that here the Gauss-Manin connection is not determined by (l.c.l 1).
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Secondly, let (1.c.11) be a variation of Hodge structure of weight
2m - 1 with

the corresponding family of complex tori, and v~H0(S, gh) a normal
function; observe that this also makes sense when S is non-reduced.

DEFINITION: An infinitesimal normal function (V, v) is given by an
infinitesimal variation of Hodge structure V together with v E H0(S1, th)
where S1 is the analytic space (l.c.12) (when k = 1) and g ~ SI is given
by (1.c.13). (16)

We are now ready to define the invariant 8 v associated to an infinitesi-
mal normal function. The construction proceeds in two steps.

Step one. Given an infinitesimal variation of Hodge structure V =
{Hz, Hp,q, Q, T, 03B4} of weight 2 m - 1, we define

by the condition

(what we mean here is that 03B4() = 0 for any liftings of t, w to T,
H m, m -’ respectively).

Using the notation of construction #2 and setting h=hm,m-1, the
projection of E on the first factor induces a fibering

whose fibre over 1 OE 03A3m-1,h-1~PT is the projective space P(ker 03B4(03BE)).
Consequently, from the theory of determinantal varieties (cf. Chapter II
of [2] for a discussion from this point of view) it follows that (I.c. 16) is a
natural candidate for a desingularization of 03A3m-1,h-1, by analogy with
the standard desingularization of the m X m matrix of rank  r.

Step two. Let (V, v ) be an infinitesimal normal function and

any lifting that induces v. Such liftings clearly exist, and any other lifting
is of the form
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where

For a tangent vector 1 OE T, it follows from these equations that

in particular, denoting by Fm+03B4(03BE)Fm~Fm-1 the span of pm and

03B4(03BE)Fm in F’-1,

On the other hand, by the differential condition that defines normal
functions,

If we now observe that

and

then we may give the

DEFINITION: The infinitesimal invariant 8v is given by

REMARKS: (i) If we denote by O(k, l) the restriction to  of the line
bundle OPT(k)~ OPHm,m-1(l) on PT PHm,m-1, then

(ii) The motivation for this construction stems from the following
differential geometric consideration: Let H be a vector space of even
dimension 2 p and G=G(p,H) the Grassmann manifold of p-planes
F c H. Over G we have the universal bundle sequence
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where the fibres are respectively

Given on open set qL c G and holomorphic section v~H0(U, Q ) we ask
the question:

Is v the projection of a constant section v E H?

Since there is no GL(H)-invariant connection on Q, this question does
not appear to have an easy natural answer.

However, if we make the standard identification

and define

by

where

then the pullback of Q to E has a natural partial connection. That is,
given any lifting v of v the expressions

are well-defined (up to scalars) on E. The vanishing of (l.c.19) is clearly a
necessary condition that v be induced from a constant section of H - G,
and provides the motivation for our construction of 03B4v. (17)

Our last invariant is also motivated by local differential geometric
considerations of the Grassmannian, together with the following analogy:
In Euclidean differential geometry (i.e., in the study of submanifolds of
IR N), it is the 2nd order invariants interpreted as 2nd fundamental form
that play the dominant role. Therefore it makes sense to look also for 2nd
order invariants of a variation of Hodge structure. Following some
preliminary remarks on the Grassmannian, we will define one of these.

Let H be an n-dimensional vector space and denote by F(H) the set
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of all frames {e1,..., en} in H. On F(H) we have the structure equations
of a moving frame (cf. the exposition in [24])

where we use summation convention and the index range 1  ij, k  n.
Now let G = G ( p, H) be the Grassmann manifold of p-planes F c H.
There is a fibering

defined by

If we use the additional index range

then from

we infer that the forms (mf) are horizontal for the fibering (l.c.21), and
in fact give a basis for

Now let M ~ G be a submanifold of codimension r and set 5(M) =
03C0-1(M). Then on F(M) there is, at each point, an r-dimensional space
of matrices b = (b03B103BC) giving the relations

that define the conormal spaces N*(M) to T(M) in T(G). Setting

the exterior derivative of (l.c.23) gives, using (l.c.20),
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Let 03C91,...,03C9m be a local coframe on M, where m=p(n-p)-r is the
dimension of M, and use the additional index range

Then on F(M) we have

This relation plus the Cartan lemma imply that

The quadratic differential form

is well defined in ’3j-(M) and is a section of

It will be convenient to write (l.c.26) as

where the multiplication is symmetric multiplication of 1-forms.
The fibres of (l.c.21) are given by linear substitutions

If we set

then it is straightforward to verify that, under a substitution (1.c.28),

On the other hand, the quadratic differential forms (l.c.29) are just the
2 X 2 minors of the linear transformation in the subspace
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(these linear transformations may be viewed as matrices whose entries are
elements of T*F(M)).

DEFINITION: The 2nd fundamental form of M in G ( p, H) is the space of
quadratic differential forms

REMARKS: (i) If T = TF(M) is a typical tangent space to M, then the base
base locus

of the quadrics 03C903BB03BC03B103B3~ Sym2 T* is well-defined; in fact, it is clear that

Then the 2nd fundamental form of M in G ( p, H ) cuts out a well-defined
linear system of quadrics on Ei. However, it contains information even
when Y-, is empty.

(ü) If we view the tangent spaces to M as linear subspaces

then we have canonical inclusions

Thus, associated to M c G ( p, H ) there is a Gauss map

defined by

As in ordinary Euclidean differential geometry, the differential of y
contains the information in the 2nd fundamental form.

Finally we can define our last Hodge-theoretic invariant. With S2
given by (l.c.12) we consider a 2nd order variation of Hodge structure

of odd weight 2m - 1. If dim H = 2 p there is an associated map
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induced by the map

DEFINITION: The 2nd fundamental form of the 2nd order infinitesimal
variation of Hodge structure is given by the 2nd fundamental form of
03C8(S2) in G( p, H).

In Part IV of this series of papers we will geometrically interpret the
second fundamental form for familities of algebraic curves, and also for
some special higher dimensional examples.

2. Inf initesimal Schottky relations

(a) The basic diagram

With our previous notation (cf. (l.c.121)

we recall that an infinitesimal variation of Hodge structure V =

{Hz, Hp,q, Q, T,03B4} is said to come from geometry (cf. the discussion
above (l.c.4)) in case there exists a projective family

whose associated infinitesimal variation of Hodge structure is V. Thus, in
particular

In practice this means the following: First the central or reduced fibre of
(2.a.1) should be a smooth polarized variety (X,03C9) whose n t h primitive
cohomology is the Hodge structure {Hz, Hp,q, Q). Next, with the nota-
tion (2.a.2), we denote by

the Kodaira-Spencer mapping [29]. A basic fact is that the differential 8 of
the variation of Hodge structure associated to (2.a.1 ) may be expressed in
terms of p, and when this is done we may sometimes "compute" the
infinitesimal variation of Hodge structure V. (18)

More precisely, we first ignore the polarization and ask how the
subspace
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moves when X is deformed in the direction of a tangent vector 03BE =
03A3i03BEi~/~si~ T. Recalling that

the answer is that the differential

is given by cup-product with 03C1(03BE). (19) Equivalently, the diagram

is commutative, where K is the mapping given by cup-product (see [19]).
One consequence is that, since (2.a.1) is a projective family,

for all 03BE~ T. Recalling the definition of the primitive cohomology, it
follows that the cup-product with 03C1(03BE) maps primitive spaces to primitive
spaces. In other words, setting

the diagram (2.a.4) has the following commutative sub-diagram

Summarizing, if we set 8 = ~ 8p then the differential of the variation of
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Hodge structure associated to (2.a.l) is expressed by the commutativity of
the diagram

where p is the Kodaira-Spencer mapping.
In our work we shall use the following:

DEFINITION: The infinitesimal Torelli theorem holds for the polarized
variety (X, m) in case the mapping

is injective.

REMARKS: There are several ways in which this definition is a misnomer.

The most serious is the phenomena pointed out in Oort and Steenbrink
[38] that, due to the presence of automorphisms, the period map with
source the coarse moduli scheme may be injective although the tangent
mapping K for the period map with source the fine moduli space may fail
to be injective.

Our goal is to interpret cohomologically, and eventually geometrically,
the Ist construction in Section 1 (d). For this some preliminary remarks
are necessary. Namely, we shall define natural mappings

denoted by

For this we use the Dolbeault isomorphism

For a vector-valued (0, 1) form given locally by
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we set

In other words, thinking of 0 as a section of Hom(T, T ) where T ~ X is
the holomorphic tangent bundle, 03B8q is the induced section of

Hom(AqT, 039BqT). It is easy to verify that the polarization of the map
(2.a.9) induces on Dolbeault cohomology a natural map (2.a.8). In

particular, if

then (2. a. 9) is given for q = n by

We remark that the natural sheaf map

together the the ordinary cup-product induce

and (2.a.8) is the composite. The reason it is symmetric is that both the
cup-product and (2.a.11) are alternating.
We also remark that the composition of the Kodaira-Spencer mapping

(2.a.3) with (2.a.8) induces

We now consider the iterated differential

of the infinitesimal variation of Hodge structure associated to (2.a.1)
(here we drop the subscript on 03B4). Although completely straightforward
to verify, (20 ) a basic fact is:



146

The following diagram is commutative

where pq is given by (2. a.12) and K by cup-product.

In particular when q = n - 2 k we have

When k = 0 this diagram reduces to

The dual of (2.a.15) gives what we shall call our basic diagram (21)

Here, v is the usual multiplication of sections (it is easily verified that this
is the dual of K ), and 03BB=(03C1n)*. As will be seen below, the basic diagram
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provides one link between the infinitesimal variation of Hodge structure
and the projective geometry of X.

For example, recalling the definition

of the linear system of quadrics associated to the infinitesimal variation
of Hodge structure V arising from (2.a.1), we have the exact sequence

DEFINITION: In case the infinitesimal variation of Hodge structure V
arises from geometry, we shall refer to g(V) as the infinitesimal Schottky
relations for the projective family IX - SI that defines V.

The motivation for this terminology comes from the case of algebraic
curves discussed below.

To interpret the infinitesimal Schottky relations we consider the
canonical mapping

Choosing a basis 03C90, 03C91,..., 03C9r for H0(X, K ) gives a set of homogeneous
coordinates in

and we shall refer to pr as the space of the canonical image of X. It is
clear that:

ker v = 1 cP K( X) (2) is the space of quadrics in Pr that pass through the
canonical image ~K(X).

Moreover, in case the quadrics in Pr cut out a complete linear system (i.e.
v is onto), then (2.a.16) reduces to

EXAMPLE: Suppose that X = C is a smooth curve of genus g &#x3E; 2, and let

be the 1 st order part of the local moduli space ( Kuranishi space, cf. [31])
of C. Then
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and À is an isomorphism. It is well known that if g = 2 or g &#x3E; 3 and C is
non-hyperelliptic, then

is surjective (this is the theorem of Max Noether, cf. [20] and [47]). In this
case the infinitesimal Torelli theorem holds (in fact, when suitably
interpreted it always holds - cf. [38]).

EXAMPLE: (Continuation of preceding example): Now suppose that C is
non-hyperelliptic, non-trigonal, and not a smooth plane quintic. A gen-
eral curve of genus g &#x3E; 5 has this property. By the theorem of

Babbage-Enriques-Petri (cf. [20] and [42])

i. e., the canonical curve is the intersection of the quadrics in g(V). Form
this we conclude that:

The weak global Torelli theorem holds
for smooth curves of genus g  5. (2.a.21)

PROOF: Suppose the extended period mapping

has degree d  1, and choose a Z which is a non-singular point of the

variet ~(Mg) and also Z is a regular value of the map Mg ~ ~(Mg),
and such that

consists of d distinct curves of genus g &#x3E; 5, each of which satisfies

(2.a.20). Then the Ci all have the same 1 st order infinitesimal variation of
Hodge structure, and hence all the ~K(Ci) must coincide. This can only
happen if d = 1.

Briefly, whenever we have a moduli space whose general member can be
reconstructed from its infinitesimal variation of Hodge structure (of any
order), then the weak global Torelli theorem holds. *

REMARK: Later we shall extend this result to the case g = 4, using the
infinitesimal invariant 03B4v associated to the naturally defined normal
function.

* This has been carried through by Ron Donagi for hypersurfaces in Pn.
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Of course, (2.a.21) follows from the usual Torelli theorem for curves
for which there are by now a large number of proofs (cf. [2]). However, it
has the advantage of using only ingredients that generalize to higher
dimension (in particular, it does not use the theta divisor).

(b) Infinitesimal Schottky relations and the Gauss linear system

Suppose that V={Hz, Hp,q, Q, T, 03B4} is an infinitesimal variation of

Hodge structure of weight n arising from a projective family (2.a.l)
whose central fibre is an n-dimensional polarized algebraic variety (X, 03C9).
We consider the canonical mapping

and assume for the moment that the quadrics in P’ cut out the complete
linear system H0(X, K2); i.e., the mapping

should be surjective. Then (2.a.14) gives the exact sequence

where X is the mapping

induced from the dual of the n t h iteratie of the Kodaira-Spencer mapping
(2.a.3). Since ker v is just the linear system of quadrics passing through
(PK(X), we may interpret ker À as a linear subsystem of the system cut
out on ~K(X) by the quadrics in IP r. From the exact sequence (2. b.2) we
see the geometric interpretation of the infinitesimal Schottky relations g (V)
resides in understanding the linear subsystem

We shall give a geometric theorem that explains part of ker À. (22)
To explain this we assume given a projective embedding

We denote by L ~ X the hyperplane line bundle and assume that
cl (L) is a rational multiple of the polarizing class w. If N ~ X is the
normal bundle, then it is well-known that T=H0(X, N ) parametrizes
the Ist order deformations of X in PN (cf. [30]). We therefore consider
the corresponding projective family
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where S1 = Spec C[s1,..., sm]/m2 and

and assume that (2.b.5) gives an infinitesimal variations of Hodge struc-
ture V (this is satisfied, e.g., if the deformations of X ~ PN corresponding
to 03BE ~ H0(X,N) are all unobstructed). We recall that the Kodaira-

Spencer mapping

is the coboundary map in the exact cohomology sequence of

where 8pN is the tangent sheaf of P N.
We denote by G(n, N ) the Grassmannian of pn’s in PN and consider

the Gauss mapping

If u = (ut,..., un) are local holomorphic coordinates on an open set

GLlc X and

is a holomorphic mapping from % to CN+1 - {0} that gives the inclusion
U ~ X c P N via the projection CN+1 - {0} ~ PN, the composition of y
with the Plücker embedding

is given by

Denoting by H - G(n, N) the hyperplane line bundle, it follows from

(2.b.7) that

Consequently, the Gauss mapping is given by a sub-linear system of
1 KL"’ 11 on X, and we denote by

the corresponding linear subspace.
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DEFINITION: The Gauss linear system, denoted by 03932K, is the image of

EXAMPLE : Suppose that

is a smooth hypersurface with defining equation

The Gauss map

is the restriction to X of the map

given by

If deg X = d, then K = OX(d - n - 2) (K = Kx) and KLn+ 1 ~ x(d - 1).
It is clear that r in (2.b.9) is the subspace of H0(X, OX(n - 1)) ~
(homogeneous forms of degree n - 1} spanned by the âF laxi(x). Conse-
quently the Gauss linear system

is simply the homogeneous part of degree 2d - 2n - 4 in the Jacobian ideal

The result we wish to prove here is the

THEOREM: The Gauss linear system is always included the space of infinites-
imal Schottky relations g(V). More precisely, in the basic diagram (2.a.16)
we have

We will give two proofs of this result. The first one involves a
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somewhat novel idea in deformation-theoretic computations, while the
second will lay the ground for later proofs of similar results.

FIRST PROOF: This proof shows that the relation

has a "universal character"; i.e., is a consequence of pulling back
relations on a certain flag manifold under the refined Gauss map defined
below.

To set up we denote by Cp = 0398PN ~ ex the restriction to X of the
tangent bundle to PN and consider the big commutative diagram

Here, 03A6P ~ ~N+1L, the middle column is the restriction to X of the Euler
sequence on PN, (26) the bottom row is the standard sequence (2.b.6), and
9b = 03C0-1(0398). Recalling that the fibre of L ~ PN over p E pN is just the
line L p c C "’ corresponding to p, we may interpret fibre of 03A6 ~ X as
being the ( n + 1 )-plane

lying over the usual projective tangent plane Tp(X) ~ Pn to p. (27)
We denote by G = G(O, n, N ) the manifold of all flags

and consider the refined Gauss mapping

defined for p E X by
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In other words, the flag in CN+1 corresponding to the flag (2.b.12) in I? N
is

From this follows our first main observation:

(2.b.11) is the pullback to X under the refined Gauss (2.b.13)
mapping y of a similar universal diagram over G.

We shall denote this similar diagram by the same symbols as in (2.b.11)
but with a hat over the entries; thus

and so forth.
The exact sequence (2.b.6) is defined by an extension class

and clearly

where

defines the extension

N,ext we recall the following linear algebra construction: Given vector
spaces A, B, C and 03C8~ A 0 B 0 C, there is induced a vector

Indeed, we may think of

as a matrix whose entries are linear functions of C*. Then the n X n
minors of Ç are homogeneous polynomials of degree n on C* and give
the element (2.b.15), viewed as sitting in Hom( AnA*, 039BnB) 0 SymnC.
We now use the Dolbeault isomorphism
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and for each point p E X apply the above linear algebra construction
when

and 03C8=03C8(p) is the value at p of a Dolbeault representative of the
extension class 0/. This gives

and our second main observation is:

The n th iterate of the differential
SymnHo(X, N) 0 HO(X, K) ~ H"(X, O) (2.b.17)
of the infinitesimal variation of Hodge structure
corresponding to (2.b.5) is induced by the cup-product
with 4,’" in (2.b.16).

This follows from the naturality of cup-products with exact cohomology
sequences plus the observation that the coboundary map in the exact
cohomology sequence of (2.b.6) is given by cup-product with the exten-
sion class 4,.
Now we observe that there are homogeneous line bundles Z and K

over G that pull back under ÿ to L and K over X. In fact, there is an
obvious diagram

such that 03C01°  is the given inclusion Xc P N and ’112 0 Y = y. In particu-
lar

We consider the cup-product pairing
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and claim: Theorem (2.b.10) will follow if we can show that

in (2.b.18). This is because:

(it is easy to see that 03C0*2H0(G(n, N ), O(1)) = H0(G, n+1)));
(ii) The observation that (2.b.19) implies that on X the mapping

is zero;
and

(iii) Noting that

so that by (ii)

which implies the desired result.
To establish (2.b.19) we will prove the stronger

LEMMA: Hn(G, in+l ~ Symn*) = (0).

PROOF: We consider the manifold

of all flags in CN+I 1

where Sk is a linear subspace of dimension k. Clearly, the natural

mapping

defined by
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is a projective bundle with fibres the lines in CN+1/Sn+1. Thus

is the projective bundle associated to k - G. We denote by E the
tautological line bundle on Pk whose fibres are

(note that the fibre of N over a point {S1~Sn+1~CN+1}~G is

Using the standard isomorphism

a spectral sequence argument applied to (2.b.21) gives

Now consider the natural fibering

defined by

The fibres of w are p n’s, and the restrictions of E and L to a typical fibre
are given by

Since

the Leray spectral sequence of (2.b.23) implies that

When combined with (2.b.22) we obtain the lemma. Q.E.D.
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REMARK: Since H"(P", O(-n-1))~(0), the lemma is false for

Hn ( G, n+1 1 o Symn+1*). In this respect, Theorem (2.b.10) appears to
be somewhat delicate.

SECOND PROOF: In this argument all cohomology will be computed over
X, and so we just write H1(X,0398)=H1(0398), etc. The Kodaira-Spencer
mapping

may be reinterpreted as follows: Let so, s1,...,sr be a basis for H°(L)
and set

Then, for each p E X

each define bundles of ranks 1 and n + 1, respectively, on X. (The
notation in (2.b.24) means this: In terms of a local trivialization of L and
local coordinates z 1, ... , zn on X, define the indicated vectors s(p),
~s/~zi(p) E Cr+1 ~ HO(L)*. Then the resulting subspaces are indepen-
dent of choices.)

The inclusion

is the dual of the evaluation map

and so

The map
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is an isomorphism, so

The sequence (2.b.6) can now be rewritten

If

and if we lift g to a Coo section of H0(L)* 0 L

then

Thus locally

where (b1,...,bn) transforms as a element q of D0,1(0398). An especially
nice form of this equation is to write

where a s is the image of the canonical element of 8 = (S1/S0) ~ L 0 S2’ x
in (H0(L)*/S0) ~ L 0 Qi (cf. (2.b.26)), and J represents the contraction

Note that 3g represents 03C1(g) in H1(0398).
The Gaussian system arises from the map

wedged n + 1 times to give
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By (2.b.26) we have

If eo,..., er is the standard basis for C " " 1 = HO(L), the map

is

The Gaussian system is just the image r2K of

We wish to show that if

then

annihilates r2K. Recalling (2.b.28) we have

where the boldface wedges are really "double wedges", being a wedge
both as vectors in H°(L) and as differential forms. This double wedge is
symmetric rather than anti-symmetric. The contraction symbol J denotes
the duality

So

If
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then

and thus under the Serre duality pairing

we have shown that TI A TI A ... 1B TI annihilates 03932K. Q.E.D.

EXAMPLE: Referring to the example preceeding the statement of (2.b.l0),
it can be shown (cf. [4] and §3.(b) below) that:

In case X c P n + 1 is a smooth hypersurface of degree d  2 n + 4,
equality holds in Theorem (2.b.10); i.e. (28)

In down to earth terms, suppose we set

(~ SymkCn+2*), and suppose we are given the following data:

Then we claim that (loc. cit.) :

A general hypersurface X c P n + 1 o f degree
d  2 n + 4 can be reconstructed, up to a projective (2.b.31)
transformation, from the data (2.b.30).

PROOF : By (2.b.29) we know the homogeneous component

of the Jacobian ideal in degree 2 d - n - 4. Since 2d-2n-4d- 1, we
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may apply Macaulay’s theorem (cf. [4] for a "residue proof") to de-
termine

To establish (2.b.31) it remains to prove the

LEMMA: If Aut X = (e}, then X is uniquely determined, up to a projective
transformation, by the Jacobian ideal J,. (2.b.32)

PROOF: Let G21d c Sd parametrize the smooth hypersurfaces of degree d in
pn, 1, and let G = c Aut G?l,d be the group of transformations induced by
the projectivities on Pn+1. By, Mumford’s theorem [37] the following
quotient exists

and moreover if X E Ud has no automorphisms (which is generically the
case if d  3), (30) then the corresponding point of Md is smooth with
tangent space a subspace of H1(X, 0398). Now suppose that X, X’ have the
same Jacobian ideals

Set F = (1 - t ) F + tF’. Then in particular

for F smooth, hence for a general t. This says exactly that F projects to
an arc in Md whose tangent vector is identically zero, (31) and thus this
arc must be constant. Equivalently, the hypersurfaces Ft(x)=0 are all
projectively equivalent to X. Q.E.D.

REMARK: Unfortunately, we cannot use (2.b.31) to prove the weak global
theorem for hypersurfaces of large degree. What must be additionally
established is that the assumption (ii) is superfluous. Intuitively the
reason to this is as follows: If we consider the composite map

then by (2.b.29)

It follows that the purely Hodge-theoretic object ker 8*" has two pieces, a
fixed part ker a, and then the variable part ker 03B2F c Sym2(Sd-n-2)/ker a.
To make sense out of this seems to require 2nd order information on the
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variation of Hodge structure corresponding to X~Pn+1, and the for-
malism for this is only partially developed.

It is perhaps worth remarking on the nature of the problem in the case
of a plane curve given in affine coordinates by

The period matrix has entries

and what must be done is to tell from the periods (2.b.33), for a fixed
p ( x, y ) of degree d - 3 and all cycles y, whether p(x,y) is decomposa-
ble ; i.e.

As will be seen below, this problem can be resolved in a number of
special cases.

(c) Infinitesimal Schottky relations and the generalized Brill-Noether theory

We denote by Wrd the set of pairs (C, L) where C is a smooth curve of
genus g and L ~ C is a line bundle satisfying
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subvariety of the moduli space M(d-1)(d-2)/2 is given by smooth plane
curves of degree d  5. (33)

Although it is possible to make (2.c.1 ) more precise we shall not do so
here. (34) We would like to observe that if one takes Urd rather than ’5A
as a model for local moduli spaces in higher dimensions, then all the
various phenomena such as singularities, obstructions, nowhere reduced
moduli schemes, etc. already occur in the curve level where they are more
visible. More importantly, there is the general Brill-Noether theory that
may be used as a model for questions such as Torelli and finding the
infinitesimal Schottky relations, of which the latter will be the object of
this section.

Specifically, we recall the recipe for computing the Zariski tangent
space T c H1(C, 0398) to the image 0lL;,d of 61lf; near a point (C, L ) E Wrd.
From the natural mapping

there is constructed a natural "derived" map

and Brill-Noether theory gives that

Moreover, under the natural map

A2HO( C, L ) 0 H0(C, KL - 2 ) maps to ker po (this is clear), and in [2] it is
shown that

has image the Gauss linear system corresponding to the Gauss map

associated to

In other words we may say that in the Brill-Noether theory the Gauss
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linear system gives the "easy " part of the equations that define T(Mrg,d).
(Actually, "easy" has the following precise geometric meaning: Given
(C,L)~Urd, the Gauss linear system describes those directions
H1(C,0398) such that every pencil in ILI deforms to first order in the

direction 03BE. As will be seen below, there are examples where 03932K = (0) but
03BC1~0).

In the preceding section we determined that part of the infinitesimal
Schottky relations for a general X~PN corresponding "easy" part of the
infinitesimal Brill-Noether theory for curves, and in this section we shall
give the analogue of po and u in general.
We will use repeatedly that for a vector bundle E and a subbundle F

of E, there is a collection of exact sequences

where the bundles A; are defined inductively as the kernels of each new
sequence.

Let L - X be a holomorphic line bundle over a smooth variety of
dimension n. Let So, S, be the bundles defined in (2.b.24), and let Qo, Q1
be the quotient bundles defined by the exact sequences

(Since only the variety X is involved we will write H0(L) in place or
HO(X, L), etc.)

There is the obvious sequence

We will define maps for 0  k  n/2



165

and prove the

THEOREM : For an infinitesimal variation of Hodge structure arising from
geometry, and with

dual to 03C1n-2k in (2.a.12), we have

PROOF: From (2.b.26) and (2.c.4)-(2.c.6) we have a diagram

Tensoring with 03A9n-2k(L-n) and taking cohomology gives

where the vertical sequence is exact. The map 03C8k is defined by the vertical
map indicated, it is cup product with the extension class in H1(03A91) of the
vertical sequence of (2.c.9) - this extension class is a multiple of c1(L).
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The composition indicated by a dotted arrow defines 03BC0,k. By the vertical
exactness we obtain

The map

is the canonical projection.
From (2.c.4) and (2.c.5), we obtain the sequence

As Q* is a sub-bundle of the trivial bundle H0(L) and S’ô = L, we obtain

Tensoring with 03A9n-2k (L-n-1) and taking H2k we obtain a map

From the map

tensored with 03A9n-2k (L-n-1) we obtain

The commutative diagram
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shows that 03BC0,k ° Tk 
= 0. The commutative diagram

shows that ’ITk 0 03B3k = 03BC1,k ° 7’k’

Properties (iii) and (iv) are somewhat deeper. If

then by (2.b.28), and using notations from there,

Given a class in H2k-1(03A9n-2k~03A9n-1), we may represent its Dolbeault
class by

Under the isomorphism

we get

where a, 03B1# are related by

If we lift 03B1# to

using (2.c.9), then

Let
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and extend fi to

So

Thus if 17 E T,

This proves (iii).
To prove (iv), assume

is an element of ker 03BC0,k, i.e.

then

Now
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where we can work mod s as the class lies in Hn(039Bn(S1/S0)* ~ L-n) ~
Hn(K).

When k = 0, 4k and irk drop out of the picture and the maps (2.c.7)
can be written as

It may be easily verified that the image of y is the Gaussian linear system
03932K~H0(X,K2) defined in the preceding section. When k = 0, n = 1
the maps (2.c.10) reduce to those encountered in the Brill-Noether

theory.

EXAMPLE: Let X~Pn+1 be a smooth hypersurface of degree d with
defining equation

Denote by S = ~k0Sk the graded ring C[x0,x1,...,xn+1] and by J
JF = ~kd-1JF,k the Jacobian ideal

Then, as will be discussed in Section 3(b), it is well known (cf. [4], [22])
that there are natural residue isomorphisms

In particular, assume that

and set

Then
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and the first non-vanishing group is

(since 1  d - 2, the Jacobian ideal is zero in this degree).
Either from [4] or from the discussion in Section 3 (b) below, we have

the

PROPOSITION: (i) With the above notations and assumptions.
image 03BCl,k = image YK’
(ii) In the dual (2.c.15)

of the diagram (2.a.14) we have

ker 03B4*n-2k=v-1k(image 03B3k),

and the right hand side is given by

v-k (image yk)=~-1(JF,2l)

where TI is the multiplication mapping

As a consequence we have the main result from [4].

COROLLARY: A general smooth cubic hypersurface X~P3m+
1 is uniquely

determined by its infinitesimal variation of Hodge structure. (2.c.17)

PROOF : In this situation we have

and (2.c.14) together with (2.c.15), (2.c.16) gives
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Thus, from the infinitesimal variation of Hodge structure of X we may
determine the Jacobian ideal JF c S. By Lemma (2.b.32) we may then
reconstruct a general cubic hypersurface X c P3m+

1 from its infinitesi-

mal variation of Hodge structure.

REMARK: Referring to (2.b.30) and (2.b.31), the point here is that, in the
present case, part (ü) of the data (2.b.30) is not required.

EXAMPLE: We shall give an example where the Gauss linear system
r2K = (0) but 03BC1 ~ 0. Let L1, L2 be a pair of skew lines in P3 and Xo a
surface of degree 8 having à = L + L2 as a double curve and no other
singularities. An easy Bertini argument shows that such surfaces Xo exist,
and we denote by

the normalization and set L=03C0*OX0(1). Then

where I0394 is the ideal sheaf of A. In particular

By the first equation the Gauss linear system r2 K = (0). We shall com-
pute 03BC0 and IL 1.

For this we choose homogeneous coordinates [x0, x1, y 0, y’ ] so that

Then the elements of H0(X, KL-2) are quadrics

Suppose that

where
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If 03BC0(r) = 0 then it is easy to see that r’ = r" = 0. Writing r = r we have

The condition that 03BC0(r)=0 is thus

It follows that dim ker 03BC0 = 1 and image 03BC1 is spanned by

EXAMPLE (continued): If instead we require that Xo have a double curve
along à = LI + L2 + L3 where L1, L2, L3 are three skew lines, we may
easily see that

In this case the infinitesimal period relations are more difficult to

describe as they cannot be detected from the kernel of the iterated
differential 03B42.

3. Inf initesimal variations of Hodge structure associated to very ample
divisors

(a) The infinitesimal M. Noether theorem

The main result of this section is theorem (3.a.16), which is a strengthen-
ing and generalization of a classical result of M. Noether. Its proof
introduces some element of commutative algebra into the theory of
infinitesimal variations of Hodge structure, and may therefore provide a
technique of interest in other contexts.

In this section we will use the following notations:

y is a smooth variety of dimension n + 1  2;
L - Y is an ample line bundle with c1(L) = w;
X~|L| is a smooth divisor (thus dim X = n );
s~H0(Y,L) is a section with (s) = X, and using s we make the

identification

where 03A9kY((q+ 1)X) is the sheaf of mermorphis k-forms
on Y having a pole of order ( q + 1) along X.
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We begin by recording the following basic cohomology diagram (with
C -coefficients) :

concerning which we make following remarks:
(i) the diagram (3.a.2) is obtained by applying Poincaré-Lefschetz

duality to the exact homology sequence of the pair (Y, X);
(ii) the restriction mapping r are injections, by the Lefschetz hyper-

plane theorem;
(iii) the mappings w are injections, by the " hard" Lefschetz theorem

(the right-hand w is an isomorphism);
(iv) the residue mapping R is dual to the " tube over cycle mapping"

03C4:Hn(X)~Hn+1(Y-X);
(v) the group Hn+1(Y-X) has a mixed Hodge structure [10] with

2-stage weight filtration

and where j, R are morphisms of mixed Hodge structures;
and

(vi) the direct sum decompositions hold

Regarding the second direct sum decomposition we set

Here, fixed refers to the variation of Hodge structure given by Hn(X)=
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~p,q=nHp,q(X) as X varies over smooth divisors in |L|. It is a general
fact ([ 10], [17]) that a global variation of Hodge structure is completely
reducible; in our case there is a reduction

where Hnf(X) is a trivial direct summand of the above variation of

Hodge structure. As will be proved below, Hnv(X) is " truly variable". We
also note that

where the first is an orthogonal direct sum decomposition relative to the
polarizing form on Hnprim(X).

To state our first result, we recall that since Y - X is an affine variety

where the right hand side is the algebraic de Rham cohomology computed
from the complex of regular rational differentials on Y - X (df. [26]).

THEOREM: If Hn(03A9bY(qX)) = 0 for p  0, n &#x3E; 0, q &#x3E; 0, in particular if
L - Y is sufficiently ample, then the Hodge filtration FqHn+ 1(Y - X) is
given by the order of pole along X. In particular (35)

COROLLARY: There are exact sequences

The corollary follows from the theorem together with the fact that
(3.a.2) is a diagram of mixed Hodge structures (all but one of which is a
pure Hodge structure) with maps being morphisms of mixed Hodge
structures ([10]).
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COROLLARY: If L - Y is a sufficiently ample and X = (s) E IL is smooth,
then (36)

This result is clear from (3.a.8). It is one of those purely algebraic facts,
whose proof however is transcendental.

Sketch of proof of (3.a.7) and (3.a.8): Since this result is essentially
contained in [22] we shall only outline the proof. To begin, if we define

then there are exact sequences

(valid for q &#x3E; 1), and

where R is the Poincare residue operator. From (3.a.l0) we infer the paii
of sequences

valid for q &#x3E; 2, and

We assume that L - Y is ample enough that

It follows that we have:
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Using these sequences from top to bottom leads to a proof of (3.a.7) and
(3.a.8). Q.E.D.

Before stating the infinitesimal M. Noether theorem we need one
additional notation. The tangent space Ts(|L|) to the complete linear
system |L| at X = ( s ) is given by

where N = L 0 Ox is the normal bundle of X in Y (from the exact
s

cohomology sequence of 0 - (9 y - L - N - 0, we see that the inclusion
is an equality of h1(OY) = 0). We also have a sequence

arising from the diagram

and we define
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(Explanation: T is the tangent space to ILI modulo automorphisms
induced from Y.) We note that if L ~ Y is sufficiently ample, then a in
(3.a.14) will be an isomorphism. Moreover, from the exact cohomology
sequence of the vertical exact sheaf sequence in (3.a.15) we infer that

is the image of Ts(|L|) under the Kodaira-Spencer mapping. Thus we may
think of T as the tangent space to that part of the moduli of X coming
from |L|. We denote by V = {Hz, Hp,q, T, 0394} the corresponding infinites-
imal variation of Hodge structure; thus

and

is given by 03B4(03BE) = cup-product with the Kodaira-Spencer class 03C1(03BE) E
H’( X, 8 x ).

DEFINITION: The subspace Hp,qi.f.(X)~Hp,q(X) of classes that are infini-
tesimally fixed under V is defined by

REMARKS: A more accurate terminology would be that Hp,qi.f.(X) consists
of those classes whose Hodge types does not infinitesimally change. (37)

We then have the (cf. (3.a.4) for the definition of Hp,qf(X)).

INFINITESIMAL M. NOETHER THEOREM: For L ~ Y sufficiently ample and
any smooth X E IL | (3.a.16)

PROOF: We set
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Then M is a finitely generated S -module (cf. [45]), and consequently M.
is generated by elements in degree  qo. Equivalently, we have

Replacing L by Lq° we may assume that

By Theorem (3.a.7), we infer from (3.a.18) that

where the map 8 is induced by the differential in the infinitesimal
variation of Hodge structure V. Using the Lefschetz decomposition we
have

and we denote by Q the corresponding direct sum of the polarizing forms
on the Hn-2kprim(X). Then using

(3.a.18) is equivalent to the assertion:

But (3.a.20) is obviously equivalent to the infinitesimal M. Noether
theorem. Q.E.D.

COROLLARY (Lefschetz): Let SCILI be the open dense set of smooth
X~|L|. Then the monodromy representation.

has no factors on which ’1TI(S) acts as a finite group.

PROOF: Since our considerations are local, we may pass to a finite

covering of S and it will suffice to show that Hnv(X) has no non-trivial



179

03C01(S)-invariant subspace H’. Setting H,p,q = H’ E Hp°q(X) and using
that H’ = ~p+qH’p,q is a sub-Hodge structure of Hnv(X) (cf. [10] and
[ 17]), we are reduced to theorem (3.a.16). Q.E.D.

REMARK: Using theorem (3.a.7) the proof of (3.a.16) actually gives a
statement about the variation of mixed Hodge structure on Hn+1(Y - X),
but we have not tried to formulate this precisely.

COROLLARY (cf. [36]): If X E ILI is generic and n = 2m, then

PROOF : If X is generic and -y (=- Hm,m(X, Z) is a Hodge class, then clearly
y E Hm,mi.f.(X). (38)

This corollary implies the well known

THEOREM OF M. NOETHER: Any curve on a generic surface X c p 3 of
degree d  4 is a complete intersection. (3.a.23)

PROOF: First, we may rephrase (3.a.16) as follows:

If X E ILI is smooth and y ~Hm,m(X,Z) E H2mv(X)
is a variable Hodge class ( thus we are in the case
n = 2m), then the set of directions e e T under
which y remains of type ( m, m) is a proper
linear subspace. (3.a.24)

Secondly, as (3.a.11) is true for d  0 and (3.a.14) is true for d  4, the
condition that OP3(d) be sufficiently ample so that (3.a.24) applies is
d  4 (cf. (3.a.ll)). We conclude then that:

For X c IF» 3 a generic surface of degree
d  4, the Picard number p (X) = 1.

Finally, (3.a.23) is a well-known consequence of this fact. Q.E.D. (39)
It is clear that theorem (3.a.16) (in the form (3.a.24)) is strenthening of

M. Noether’s theorem (3.a.23). However, it should also be possible to
improve (3.a.23) in a quantitative manner. To explain this, we remark
that for a surface X there are pg ( = h2,0) equations
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expressing the condition that an integral cycle y be a Hodge class. Thus,
in first approximation we expect that the property

should impose p - pg conditions on moduli. For K3 surfaces this is well
known: each time the Picard number increases by one, the number of
moduli decreases by one.
On the other hand the equations (3.a.25) may not be independent. For

example, let S~|OP2(d)| parametrize the smooth surface of degree d.
Since it is (d + 1) conditions that a surface X contains a line A (if X is
defined by F(x) = 0, then F must vanish at (d + 1 )-points of A), and
since the Grassmannian of lines in p 3 has dimension 4, the subvariety
S1 c S of smooth surfaces containing a line has expected codimension
d - 3. It can be proved that this dimension cannot be correct (even
scheme-theoretically), and so in this case when d &#x3E; 5 the equations
(3.a.25) fail to be independent.
Now if we denote by Sk c S the variety of the smooth surfaces

containing a non-complete intersection curve C c P 3 of degree k, then it
is geometrically plausible that " the higher the degree of C~P3, the
harder it is for a surface X to contain C"; (40) i.e., that

codim Sk-1  codim Sk .

this motivates the following:

CONJECTURE: For any k  1, codim Sk  d - 3, with equality holding, only
if k = 1. (3.a.26)

We will prove the inequality in (3.a.26) in the first non-trivial case
d = 5 of quintic surfaces XcI? 3. Thus, suppose that there is local piece
of hypersurface R c S such that every surface X corresponding to a point
of R has a primitive Hodge class y. Let X be the surface corresponding to
a smooth point of R, so that the tangent space T(R) is a hyperplane in
the tangent space T(S) = T corresponding to all variations of X c P3
(i.e., T = H°(X, Ox(d))). We denote by V={Hz, HP,q, Q, T, 8) the
infinitesimal variation of Hodge structure on H2prim(X) with tangent
splace T, and by y E H1,1z the primitive Hodge class (actually, the
condition that y be integral will not be used in the argument). By
assumption

In other words, the equations in t
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define the codimension one linear subspace T(R) of T. We shall show
that the condition that the equations (3.a.27) have rank one leads to a
contradiction.

Let [x0,x1,x2,x3] be homogeneous coordinates and S. = ~m0Sm =
C[XI@ x1, x 2, x3]. Then, via Poincaré residues

If the equations (3.a.27) have rank one, then we may choose coordinates
so that

Let F(X) = 0 be the defining equation of X~P3 and JF = ~md-1JF,m
the Jacobian ideal. Then by (3.a.8) (cf. (2.c.ll))

and we let y be represented by a form P(x) E S6. Setting Fa = aflaxe
(a = 0, 1, 2, 3), by the main result in [4] the equations (3.a.28) are

equivalent to (41)

A contradiction will be obtained if we show that these equations imply
Q E .IF.,6. By the local duality theorem (cf. [4], [20]) this will follow from
the assertion:

If I = {F0, FI, F2, F3; Xl, X2, x3} is the ideal generated
by the indicated forms, then (3.a.29)

Indeed, the ideal {x1, x 2, x3} generated by x’, x 2, x3 has codimension
one in Sm for all m. If I4 ~ S4 then

which means that all Fa(l, 0, 0, 0) = 0 contradicting the smoothness of X.
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(b) On the infinitesimal Torelli problem

In this section we will discuss the following conjecture:

Let L - Y be a sufficiently ample line bundle
over a smooth variety of dimension n + 1. Then
the infinitesimal Torelli theorem is true for (3.b.1 )
the variation of Hodge structure on Hn(X),
where X E |L| is general.

As partial evidence for (3.b.1 ) we will show now that it is true, in

stronger form, when n = 1. Suppose that Y = S is a smooth surface and
X = CE |L| is any smooth curve. From the cohomology sequence of the
adjunction sequence

We first may conclude that the canonical mapping 4PK: C ~ Pg-1 is

biregular onto its image; i.e., C is non-hyperelliptic (assuming of course
that L is sufficiently ample). From the cohomology diagram of (3.a.15)
we next infer that the Kodaira-Spencer map

is injective (we are using the notations just below (3.a.15)). Since C is
non-hyperelliptic we conclude that the differential of the period mapping

is injective.
In fact, much more is true. At the beginning of Section 2(c) (cf. (2.a.l))

we have discussed the principle that 61lf; be used as model for local
moduli spaces of higher dimensional varieties. From this point of view
the infinitesimal Torelli problem for higher dimensional varities has as
curve analogue the following question:

Does the period mapping

have injective differential?

Indeed, reflection shows that the Torelli problem (both infinitesimal and
global) for Wrd has much more the flavour of the Torelli problem in
higher dimensions than does the Torelli problem for ’DI 9’ (42) If we are at
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a point (C, L) E Wrd where C is non-hyperelliptic, then (3.b.2) is equiva-
lent to

Is the mapping

surjective?

Indeed, by Brill-Noether theory ([2]), (3.b.3) is equivalent to the map

having injective differential at (C, L ) (i.e., the gd given by ILl is unique in
the variational sense).
Now suppose that L ~ S is sufficiently ample, and in order to avoid a

technically more complicated statement assume also that S is a regular
surface. Then we shall prove that:

For k  2 and CE ILkl the mapping

is surjective (43)

PROOF: By the assumption of regularity we have

On the other hand, using KCL-1 = KSLk-1 ~ OC we obtain (using
hi(L1-k) = h’(KsL- 1) = 0 for i = 0 and k  2)

Thus it will suffice to show that

is surjective when k &#x3E; 2 and L - S is sufficiently ample, and this is well
known. Q.E.D.

In the remainder of this section we will discuss a variant of (3.b.1 )
where the Hodge structure on Hn(X) is replaced by the mixed Hodge
structure on Hn+1(Y-X). In this case we may use (3.a.7) to formulate
(3.b.1) as a question in commutative algebra (one that is, in a certain
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sense, dual to the infinitesimal M. Noether theorem (3.a.16)). Following
this general discussion we will use the formalism we have developed to
verify a couple of examples.

To begin we follow the notations from Section 3(a), especially that just
below (3.a.15) and the proof of Theorem (3.a.16). We shall also use the
sheaf sequence ( not exact)

derived from (3.a.15). With the identification

we define

by

where a is induced by (3.b.5) and r is the restriction to X, and then

It follows that E = ~q0 Eq is a graded S.-submodule of M. We note that
E. depends on X c Y. From Theorem (3.a.7) it follows that

In particular (cf. (3.a.9))

so that E is of finite C-codimension in M.
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Next, in the diagram

where a is again induced by (3.b.5) and r is restriction to X, we set

Then J. is a graded ideal in S., and moreover

Thus M./J. is a graded ((S./J.)-module. We remark that, replacing L by a
power if necessary, we may assume that

(recall that dim Y &#x3E; 2). From the third statement and the cohomology
diagram (3.b.6) we infer that

where T was defined below in (3.a.15), (T is naturally identified with the
tangent space to the family of affine varieties {Y - X} (X ~ |L|), modulo
automorphisms induced from Y). Combining this with the preceding
discussion we have the

PROPOSITION: The infinitesimal Torelli theorem for the variation of mixed
Hodge structure on Hn+1(Y - X) is equivalent to the pairing

being non-degenerate in the first factor.
It is a weaker conjecture than (3.b.1) that, for L - Y sufficiently

ample, the pairing in (3.b.7) is for general X non-degenerate in the first
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factor. Even though we are unable to prove this commutative algebra
assertion, we can use the formalism to verify some examples of conjecture
(3.b.1)

EXAMPLE: (cf. [4] and [22]). We take Y=Pn+1=PV with homogenous
coordinates x=[x0, x1,...,xn+1] and X c Y a smooth hypersurface of
degree d given by

We will show that the map

is injective whenever the right-hand side is non-zero, or equivalently
when

and

To describe the differential forms on Y with poles along X we shall give
their lifts under the projection

For this we use the notations

(thus 03C8~Akp has total homogeneity p + k, in the sense that 03C8(03BCx) =
03BCp+k03C8(x)),

is the Euler vector field. It is well known that

and consequently the orbits of e in V - (0) are just the fibres of (3.b.9).
From this we infer that the horizontal forms for the fibering (3.b.9) are
defined by (44)
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It is an elementary fact that the sequences

are exact.

PROOF: The Lie derivative Le03C8 of 03C8~Akp with respect to e is given by
each of the following formulae:

The exactness of the sequences (3.b.ll) follows by combining the rela-
tions (3.b.12). Q.E.D.

The pullback to V of any element in H0(03A9kPV((q + 1)X)) is

where (cf. footnote (44) )

Using (3.b.11) we write

When k = n + 1 this is
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It will be convenient to set

Then

and a general element in H0(03A9n+1PV((q + 1)X)) is

When k = n and the order of pole is q, (3.b.13) is

Accordingly we shall write

for a general element in H0(03A9nPV(qX)).
Comparing (3.b.15) with this equation and adjusting constants, the

condition

turns out, after an obvious computation, to be

By Euler’s theorem this is equivalent to

To summarize, we denote by
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the graded Jacobian ideal associated to F(x). Then with the notations

we have

The bilinear form Q on Hnprime(X) may also be described, as follows:
We recall the map

given by the Grothendieck residue

By homogeneity this map is zero unless k = p, and in this case the map

is an isomorphism. More generally, for any 03C3  0, Q’ = p - a &#x3E; 0, by
Grothendieck’s local duality theorem the pairing

given by

is non-degenerate. One of the results of [4] is that, with the identifications
(3.b.16), the Hodge pairing Q is (up to a constant) just (3.b.17).
A consequence of the non-degeneracy of the pairing (3.b.17) is that the

pairing
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is non-degenerate in each factor (Macaulay’s theorem). In particular,

is non-degenerate in the first factor if

and

Suppose we denote by Ud ~ PSd = |OPV(d)| the Zariski open set of
smooth hypersurfaces and set

Then

and from

it follows that

Thus

On the other hand, the Kodaira Spencer map

induces an injection (cf. [29])

(which is an isomorphism except when n = 1, d &#x3E; 5 or n = 2, d = 4). We
denote by {Hz, HP,q, Q, T, 03B4} the infinitesimal variation of Hodge struc-
ture induced by the 1 st order variations of X in Pn+1. Then we have the
identifications (3.b.17), (3.b.18) (for Q), (3.19), and the differential
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is given by (3.b.18). In particular,

is injective whenever hn-q,q~0, hn-q-1,q+1~0. Aside from the case
n = 2, d = 3 this gives a much stronger version of (3.b.l).

EXAMPLE: We let V, W be vector spaces of respective dimensions m + 1,
n + 1 and set

Over Y we denote by O(a, b ) the line bundle 03C0*1OPm(a) X 03C0*2OPn(b);
Thus

Let v°, ... , vm E V* and w°, ... , w" E W* be respective linear coordi-
nates, and denote by [ v, w ]= [ v°, ... , vm; w0,...,wn ] the corresponding
bihomogeneous coordinates on Y. If we define

then Sa, b is the space of forms F( v, w ) that are homogeneous of degree a
in v and degree b in w, and

is a bigraded ring.
Let X~|OY(a,b)| be a hypersurface given by F(v,w)=0. If we

define XV ~PV by F( v, 0) = 0, and XW c Pw by F(O, w) = 0, then we
assume that each of X, Xv, XW is smooth. For a, b &#x3E; 0 this is a Zariski

open subset of 10y(a, b)|. As in the previous example, we consider the
projection

and will describe the differential forms in H0(03A9kY((q+ 1)X)) by their
lifts to V X W. For this we consider the two Euler vector fields
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Together these vector fields generate a C* C*-action on (V - {0}) X ( W
- {0}) whose orbits are the fibers of (3.b.20). It follows that the forms in
H0(03A9kY((q + 1)X)) lift under (3.b.20) to forms

on V W, where 03C8 is a polynomial differential form in (v, w) that
satisfies (cf. footnote (44))

LEMMA: If 4, satisfies (3.b.21), then

where T is a bihomogeneous of bidegree ( A, B).

PROOF: We first claim that

where dw is the exterior derivative with respect to the w-variables. This
may be proved in the same way as the usual Cartan formula, by showing
that each side is a derivation and that these two derivations agree on
forms of degrees 0, 1.

It follows that

Taking k=m+n and using the notations (3.b.14), the forms in

H0(03A9m+nY((q+ 1)X)) are given by expressions
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Similarly, the forms in H0(03A9m+n-1Y(qX)) are

where Q’, R" have appropriate bihomogeneity restrictions. We set

and denote by

the bihomogeneous Jacobian ideal of F( v, w ). As in the ordinary hyper-
surface case, from (3.b.24) and (3.b.25) we deduce that the condition

is

As before, we conclude that (45)

and the pairing (3.b.7) is a part of

Finally, by applying Grothendieck’s local duality theorem to the ideal
{Fi, F03B1} (47) in S.,. = C[v0,..., vm, w0,...,wn] we may conclude that:

The pairing

is non-degenerate in the first factor, whenever
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In particular, the infinitesimall Torelli theorem holds for the variation of
mixed Hodge structure on Hm+n(PV PW - X) where X is a general
member of |O(a, b)|(a, b &#x3E; 0).

REMARK: When m + n = 2k + 1 is odd, then (cf. (3.a.8))

At the other extreme, when m = n, if we set

then the class

lives in FmH2n(PV PW - X), and is therefore represented by a form
(3.b.24) when q = n. We have not been able to compute what this form is.

REMARK: When m = 1 the variety Y = Pn  P1 has a natural embedding
(Segre embedding)

as a scroll. Then, for suitable (a, b) a smooth hypersurface X ~ 16 ( a, h)1
is extremal in the sense that the Hodge number hn,0(X) is maximal

among all non-degenerate varieties X~P2n+1 of degree d=a+b (cf.
[25]). Concerning extremal varieties we make the following

CONJECTURE: The global Torelli theorem is true for extremal varieties
X c P N, in the strong sense that if X, X’ c I? N are extremal varieties with
isomorphic Hodge structures then there is a projective automorphism of FN
taking X to X’. (3.b.27)

When n = 1 and N = g - 1 we have the usual global Torelli theorem
for non-hyperelliptic curves, since these are extremal ([20]).
When n = 1 and N &#x3E; g - 1, then the conjecture is true since an

extremal gN on a smooth curve is unique ([1] and [2]).
In general the above conjecture includes as a special case the same

conjecture for smooth hypersurfaces in Pn+1, since there are extremal.
Finally, it also includes the global Torelli theorem for polarized K3

surfaces, since these are also extremal.
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Notes

(1) The precise statement is this: A generic Hodge structure of weight n  2 with
h",o - 0 (and h2,0  2 in case n = 2) is not an algebro-geometric motif ([35]). The reason for
this result is that due to the infinitesimal period relation (which is non-trivial under the
above conditions), the family of Hodge structures coming from any family of algebraic
varieties is an integral manifold of a non-trivial Pfaffian differential system, and in

particular cannot cover an open set in the family of all polarized Hodge structures.



197

(2) In particular, " natural" includes holomorphically varying with parameters, which
rules out the theta divisor on Weil’s intermediate Jacobians (cf. [19] and [33]).

In this regard we remark that the behavior of the Abel-Jacobi map for general
intermediate Jacobians also departs radically from the situation for curves. In some ways
the difficulties in understanding the period map and the Abel-Jacobi map appear to be
parallel.

(3) An infinitesimal variation of Hodge structure is a first order invariant. However,
second order conditions must be fullfilled in order that the conditions of its definition be

met, so it is not just given by a subspace of the horizontal tangent space to the classifying
space for polarized Hodge structures. The point is that the horizontal distribution is not
integrable, and the "easy" part of the integrability conditions must be satisfied.

(4) One of these, the second fundamental form, is a 2nd order invariant whose

definition therefore depends on the data of a 2nd order infinitesimal variation of Hodge
structure. We have only defined this invariant in a special case, as giving the general
definition would take us too far afield.

(5) The classical Schottky problem is to determine the relations that must be satisfied
by a period matrix

in order that it be the period matrix of an algebraic curve. Our infinitesimal Schottky
relations are what the name suggests, except that when the weight of the Hodge structure is
 2 we do not determine all of the tangent space to the periods of a family of varieties but
only that part which we can geometrically interpret.

(6) For the universal family of curves, ker À = (0). However, when dim X &#x3E; 2 it may
well be that, even for the Kuranishi universal family, ker 03BB ~ (0), and geometrically
interpreting the linear subsystem jkcr À) of the bicanonical system |K2| is the major problem
encountered in understanding our first invariant.

(7) The proper concept is a motif [35], and using this theory one can make this
definition more precise and therefore more satisfactory. We hope that it will not be

misleading to leave matters on an intuitive level.

(8) Briefly, the invariant complex structures on HR/HZ are in 1-1 correspondence with
the complex structures on the real vector space HR. These are, in turn, in 1-1 correspon-
dence with splittings

HR~C=E~E.

In the case at hand we take E = H". To check that we don’t want the conjugate structure,
take Hz = H 1 ( C, Z) where C is a smooth curve. Then the Jacobian J( C ) is

where A is the projection of H’(C, Z) to H0,1(C).
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(9) We note that Jm(X) varies holomorphically with X.
There are also the intermediate Jacobians of Weil (cf. [33] and [49]), defined by the

procedure of footnote [1] by taking

In case (X, g) is a polarized algebraic variety these complex tori are naturally polarized
abelian varieties. Since they do not in general vary holomorphically with X, the role played
by their theta divisors is somewhat mysterious.

(10) For a complex torus J we always identify the dual of L(J) with the space H1,0(J)
of (translation-invariant) holomorphic differentials on J.

(11) It would seem that Hodge theory of weight n &#x3E; 2 is a relative theory, i.e., the

objects of interest are not so much the classifying spaces fBD and Jm(X) but are rather
the maps

satisfying the infinitesimal conditions arising from geometry. For example, even though the
tautological bundles over 0393BD and J’(X) are not positive, the restriction of their

curvature forms to Th(D) and Lh(Jm(X)) are positive, and this is what seems to be

important for applications.

(12) In this regard we recall that Lefschetz’ original proof [32] of his (1,1) theorem had
two ingredients. One is the association to a primitive Hodge class of the normal function
that would be associated to any algebraic cycle representing the given Hodge class. This is a
global step, and as indicated by (1.b.13) it generalizes to higher dimensions. The second
ingredient is local in the parameter space, and consists in applying the Jacobi inversion
theorem with dependence on parameters to construct the desired algebraic cycle. As is well
known this step breaks down in higher dimensions.

As we shall see later, for global reasons there are conditions imposed on the infinitesi-
mal invariant 8 v of the normal function associated to any primitive algebraic cycle as in the
last example in this section. It may be that a better understanding of these conditions will
give insight into questions about higher codimensional cycles.

(13) More precisely, giving the horizontal distribution Th ( D ) c T( D ) is equivalent to
giving Th(D) c T*(D). Over an open set % c D we choose holomorphic 1-forms 03B81,...,03B8s
that give a basis for Th(D). The equations

define the Pfaffian differential system I| Gâ,. An integral manifold of (*) is given by a
complex manifold S together with a holomorphic mapping

such that

If E is a typical tangent space to a smooth point of f(S), then since
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we have

It can be shown that:

An infinitesimal variation of Hodge structure is given by a point {FP} E D and linear map

whose image E satisfies the two conditions ( * ) and (* * ).
In the language of the theory of differential systems, the infinitesimal variations of

Hodge structure are identical with the integral elements of the Pfaffian system I on D.

(14) Equivalently, we consider the Kodaira-Spencer map (cf. Section 2a)

where X is the reduced fibre of X ~ S. If we consider the usual map

induced by the Poisson bracket [ , ] : 0398 ~ 0398 ~ e, then the extendability of X ~ S to
second order is equivalent to

for all i, j.
In Section 2(a) we will see that

is given by

where

is the cup-product mapping. It can be shown that

therefore, the equations

are necessary and sufficient that X ~ S give an infinitesimal variation of Hodge structure.

(15) In this regard we observe that the action of Gc on T( D ) is very far from being
transitive. For a simpler example consider the Grassmannian G( k, H) of k-plane E in a
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complex vector space H. The tangent space at E is naturally identified with Hom( E, H/E ).
Choose an isomorphism H = C m so that E = Ck, and think of Hom( E, H/E ) as given by
k x ( m - k ) matrices 03BE. The isotropy group of E is the group of matrices

and the action of this matrix on 03BE is

Thus, we are considering linear subspaces

under the action of GLk X GLm _ k given by ( * ).

(16) For curves an infinitesimal normal function is given by

where % - S1 is a 1 st order variation of a smooth curve C, and where E - X is an
invertible sheaf whose restriction to the reduced fibre C of g ~ S1 is L - C where
L E Pic°(C) is a line bundle of degree zero.

(17) This invariant will be discussed in Part III of this series of papers. One motivation
for the introduction of 8v is the following. Let {Cs}s~ S be a family of smooth curves,
{Ds=03A3tpt(s)-qt(s)}s~S a family of divisors of degree zero) on these curves (DsE
Div0(Cs)) and {03C9(s)~H0(Cs, 03A91Cs)}s~S a family of holomorphic 1-forms on the Ç.
Thinking of the Jacobian of Cs as 

we may describe the normal function v corresponding to the divisors Ds E Div0 (Cs0 by

When both Cs and 03C9(s) are constant in S, it is well known that differentiation of the
abelian sum ( * ) is one of the key steps in the study of algebraic curves (this leads to the
Brill - Noether matrix, cf. [2]). The definition of 8 v was arrived at by trying to make intrinsic
sense out of dv(s)/ds when C, is variable.

(18) Ideally, to "compute" should mean to interpret geometrically. However, aside from
curves, the group H1(X, 0398) is not particularly "geometric". One of our main techniques is,
in some case, to geometrically interpret classes naturally associated to 03B8~H1(X,0398) cf.
(2.a.10) below). Roughly speaking, our best insight seems to come by combining such
construction with the heuristic principle (2.c.1 ).

One example when we may immediately compute the " universal" infinitesimal variation
of Hodge structure is when X has trivial canonical bundle. Then
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and the first piece of the differential

is an isomorphism. In this case we can also say something non-trivial about the differential
system given by the infinitesimal period relation.

(19) The cup-product is the map

induced from the 0-liner mapping

given by

Beginning with the basic map

of Brill-Noether theory [2], the theory of infinitesimal variations of Hodge structure has
throughout a tri-linear algebra aspect.

(20) What this means is: just write out the equation to be verified in local coordinates.
We shall only occasionally do this.

(21) The reason for the terminology is that, by iterating the differential, we derive from
(2.a.7) a situation in which all higher cohomology dissappears and to some extent we have a
formal analogue of curve theory (in particular, quadratic differentials appear).

(22) As we shall try to explain below, the ultimate understanding of ker À seems to
involve a type of geometric question that, even for curves, is new. Although some insight
can be gained from Brill-Noether theory [2], obtaining a more satisfactory understanding is
one of the main outstanding problems of the theory.

(23) Alternatively, r is generated by the ramification divisors of all projections X -&#x3E; P n.

PROOF: The Schubert hyperplanes H039B defined for 039B a PN-n-1~PN by

generate the complete linear system |OG(n,N)(1)|. Since 03B3-1(H039B) is the ramification divisor
of the projection from A, our assertion follows.

It is to be emphasized that r is an incomplete linear system.

(24) In particular, 03932K = (0) unless H0(X,KL-(n+1))~(0). Line bundles with this

property seem to show many features of special divisors in the case of curves.
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(25) In the next section this result will be extended and generalized. However, we feel it
is worthwhile to prove the special case first, as it has several special features and also
suggests how the general argument should go.

(26) If PN = PV for a vector space V, then the Euler sequence is

where

with

being the Euler vector field.

(27) Using the notation just below (2.b.6), Lp is spanned by X( u) and 8p by X( u),
~X/~u1,...,~X/~un.

(28) The degree restriction d  2 n + 4 comes about because this is exactly the condition
that the mapping (2.b.1) be surjective.

(29) Equivalently, we should be given the Veronese cone c Sd- n - 2 of decomposable
elements (i.e., those of the form (L(x))d-n-2 where L(x) is a linear form).

(30) We remark that, if d =1= n + 2, then Aut X is induced by projectivities of pn+1. If
n  2 this follows from Pic X~Z, so that any automorphism of X must preserve KX =

OX(d-n-2) and therefore also OX(1). When n = 1 it is still true that any automorphism of
X preserves OX(1), but this is deeper (cf. [1]).

(31 ) For H(x) E Sd and A = (AtJ), the tangent to the arc

at t = 0 is

Thus, the tangent space to the G-orbit of H E Sd is JH,d C Sd.

(32) We shall follow the notations and terminology of [2]. It should be pointed out that
the Brill-Noether theory is interesting mainly in case when L - C is special in the sense that

One higher dimensional analogue of these conditions is:
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(dim X = n). The theory of infinitesimal variation of Hodge structure seems especially
suited to studying such varieties.

(33) We also would like to remark that the classical characterization of surface S with

pg(S) ~ 0 is that for any curve C on S with h1(OS(C)) = 0, the characteristic series OC(C) is
special (this follows from the cohomology sequence of 0 ~ OS ~ OS(C) ~ OC(C) ~ 0).

(34) In the case of surfaces, making (2.c.1) more precise means the following: Given a
very ample line bundle L - S, we consider pairs (C, LC) where C ~ 1 L k is a smooth curve,
k is sufficiently large, and Lc = L 0 OC. Then À = (C, LC) E 6lli’; and there is an isomor-
phism

(35) Hère we are using the identification (3.a.l) to interpret H0(03A9n+1Y(qX)) as the
image s·H0(03A9n+1Y ~ Lq)~H0(03A9n+1Y ~Lq+1).

(36) We are again using (3.a.l).

(37) In particular the fixed part of Hn(X), defined to be the maximal direct summand
on which the global monodromy acts as a finite group, consists a priori of Hnf(X) together
with a sub-Hodge structure H’ c Hnv(X) satisfying

We will prove below that H’ = (0).

(38) The point is this: Work in a small neighborhood G21 c S where there is no

monodromy. Given y E H2m(X, Z)~ H2mv(X), the set

is an analytic subvariety of U. If no V03B3 = Gl1 then U y Vy is nowhere dense, and in particular
a generic X~U - U 03B3V03B3. If V03B3 = Gl1 then clearly y E Hm,mi.f.(X).

(39) This condition 03C1(X) = 1 is equivalent to every line bundle or X being OX(k) for
same k, and it is well known that

is surjective for every k.

(40) This is too naïve on several counts. First the genus of C must be taken into
account. Secondly, if C is a plane curve (say a line), then the intersection of X with plane is
C + C’ where deg C’ = d - k.

(41) Here, "Res" denote the Grothendieck residue, given e.g. on page 66 of [4].

(42) For instance it will not always be the case that (2.b.2) holds. Moreover, even when
(3.b.2) does hold, the period mapping W: Wrd~ 0393BD may have degree larger than one. On
the other hand, if e.g. S c P is a smooth surface and CE l(9s(k)1 is a smooth curve with
L = OC(1), then for k sufficiently large the pair (C, L ) will be an exceptional special divisor
([2]) and one suspects that in general the gd ( = L J will be unique.
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(43) In the non-regular case we only consider that part of Wrd corresponding to pairs
( C, L) where C E |Lk| is smooth. If T c T(C,L) (Wrd) is the tangent space to this part of 6ùf;,
then the argument for (3.b.4) may be refined to show that the differential

is injective.

(44) We recall that for any situation

where M, N are smooth and

is surjective, the vertical space Vp(M/N) c Tp(M) is

and the horizontal space

is defined by

A form 03C8 on M is f*q for a (unique) form q on N if, and only if, both 4, and d03C8 are
horizontal.

(45) The condition that L=OY(a,b) be sufficiently ample is satisfied when a, b &#x3E; 0.

This follows by proof analysis of theorem (3.a.7), the point being that (3.a.11) holds for
such L.

(46) Since Aut(PV X P W) = Aut PV  Aut PW, the vector fields on PV X P W are all
of the form 0 = 03A3AlJvj~/~vl+03A3A03B103B2w03B2~/~w03B1. Any such vector field 0 lifts to an action on
O(a, b), and for F E H0(O(a, b))

It follows that a general element of JF,(a,b) is 8. F for a suitable vector field 0 as above.
Thus, in the notation of our general discussion,

(47) We note that this ideal has (m+1)+(n+1) generators which are polynomials on
V  W ~ C(m+1)+(n+1). Moreover the equations

have only the origin as common zero.

PROOF: If these equations are satisfied for some ( v, w), then by Euler’s theorem F( v, w ) = 0.
If v =1= 0, W =1= 0 then we obtain a singular point of X. If v = 0, W =1= 0, then we have a singular
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point of Xw. Finally, if v ~ 0, w = 0 we have a singular point of Xv. In all cases we

contradict our assumption.

(48) In general, we may describe Hm+nv(X) as the biprimitive part of the cohomology,
defined by

(Oblatum 3-XI-1981 &#x26; 21-VII-1982)
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