
COMPOSITIO MATHEMATICA

M. VAN DE VEL
Dimension of convex hyperspaces : nonmetric case
Compositio Mathematica, tome 50, no 1 (1983), p. 95-108
<http://www.numdam.org/item?id=CM_1983__50_1_95_0>

© Foundation Compositio Mathematica, 1983, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1983__50_1_95_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


95

DIMENSION OF CONVEX HYPERSPACES: NONMETRIC CASE

M. van de Vel

Compositio Mathematica 50 (1983) 95-108
@ 1983 Martinus Nijhoff Publishers, The Hague. Printed in the Netherlands

Abstract

Equality of rank and convex hyperspace dimension is extended from metric to nonmetric
spaces. This is done by means of a quotient technique for convex structures. We determine
some invariants of convex hyperspaces and we derive two combinatorial results on

subcontinua in a tree.

0. Introduction

It was shown in [12, 2.3] that for a separable metric convex structure with
connected convex sets, with compact polytopes, and with a certain

separation property (S4), the dimension of the convex hyperspace is

equal to the rank of the convex structure. The rank d = d(X) of a convex
structure is determined as follows. A set F c X is free if no point of F
belongs to the convex hull of the other points of F. For n  oo, d  n iff
no finite set with n + 1 or more points is free.

For the obtaining of the above result it was necessary to interpret
"dimension" both in a topological and in a convex setting. Each of these
interpretations is used to derive one inequality between convex hyper-
space dimension and rank. For separable metric spaces, both dimension
functions were shown to be equal in [10].

Recently, Jan van Mill and the author developed a quotient technique
for convex structures, which was used to obtain equality of 

" 

topological"
and "convex" dimension for nonmetric compact convex structures [6].
We will now use the same quotient technique to derive the above quoted
result without metrizability from the metric case. This is the main result:

0.1. THEOREM: Let X be a compact space equipped with a uniform and S4
convexity with connected convex sets. Then the dimension of 8*( X), the
convex hyperspace of X, equals the rank d(X) of X.

The term "dimension" need not be specified, since by the main result
of [6] all topological dimension functions ind, Ind, dim coincide with
"convex" dimension on compact spaces with a suitable convexity.

AMS Subject Classification: 54B20, 52A01, 54H99, 54F45.
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From 0.1 we also derive the following result for noncompact spaces:

0.2. THEOREM: Let X be equipped with a uniform and S4 convexity with
connected convex sets and with compact polytopes. Then the convex dimen-
sion of C*(X) equals the rank d(X) of X.

According to results in [9], there is a close relationship between the
(convex) dimension and certain invariants of a convex structure. For a
certain class of convex hyperspaces we determine the exact value of such
invariants as the rank and the Radon number, and we apply these results
to obtain some combinatorial theorems on subcontinua of trees.

Let us first explain the terminology used above.

1. Preliminaries

1.1. ABSTRACT CONVEXITY: A convex structure consists of a set X

together with a collection C of subsets of X, called convex sets, such that
6 is closed under the formation of intersections and of updirected unions.
In particular, 0, X E 6. It will also be assumed throughout that singletons
are convex. The family C is called a convexity on X.

The Chull of a set A c X is the convex set

For finite A, h(A) is called a polytope. A convex set with a convex

complement is called a half-space. The convex structure (X, e) has the
separation property S4 if for each two disjoint convex sets C, C’ in X there
is a half-space H with

See [2,7].

1.2. UNIFORM CONVEXITY: Let Il be a uniformity on X, defined in terms
of diagonal entourages, and let 6 be a convexity on X. Then Il is

compatible with C provided that for each U E Il there is an "associated "
v E Il such that for each C ~ C,

It is required at the same time that e be a topological convexity, that is:
the 6-polytopes are closed in the (uniform) topology of X.

If X is a topological space, then a topological convexity C- on X is
called uniformizable (metrizable) if there exists a (metric) uniformity for
X compatible with 6.
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For notational convenience, all additional structures on a set X

(topology, uniformity, convexity) will be included in the symbol X
whenever possible. If needed, " the" convexity of X will be denoted by
C(X). The collection of all nonempty compact convex sets in X will be
denoted by C*(X). Note that C*(X) is a subset of the hyperspace, H(X),
of X, which is the collection of all nonempty closed subsets of X

equipped with the usual Vietoris topology. 8*(X), equipped with the
relative topology, will be called the convex hyperspace of X.

In addition to a convex hull operator, a topological convexity on X
also gives rise to a convex closure operator h*: for A c X,

We note that a uniformizable convexity is closure-stable (that is, the
closure of a convex set is convex; see [ 10, 2.4]), whence h*(A) = Clh ( A )
in this case.

1.3. SUBBASE FOR A CONVEXITY: A convexity e on a set X is generated by
the family 5 c e (which is then called a subbase for e) if 6 is the coarsest
among all convexities including S. Every family 5 of subsets of X

generates a convexity on X : one first constructs the family 0D of all
intersections of subfamilies of 5, and the desired convexity is then
obtained by taking all unions of updirected subfamilies of 0D.
An essential observation in this process is that all C-polytopes (except,

maybe, the empty one) are obtained already afier the first step: every
nonempty polytope is the intersection of subbase sets (see [2,7]). Note
that a topological convexity is simply a convexity with a subbase of
closed sets.

Subbases are involved in constructing a suitable convexity on a convex
hyperspace:

1.4. INDUCED CONVEXITY ON A CONVEX HYPERSPACE: Let X be a

topological convex structure. If A1, ... , An are subsets of X, then we write

Note that the closed sets of the (Vietoris) topology of the hyperspace
H(X) are generated by the sets of type

The induced convexity on the convex hyperspace C*(X) is defined to be
the one generated by the sets of type
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Note that this is a topological convexity, since it has a subbase of closed
sets.

The fact that polytopes must be subbase intersections was used in
[ 11, 1.1] to obtain the following hull formula: if C1, ... , Cn ~ C*(X), then
h{C1, ... , Cn} equals the collection of all C ~ C*(X) with the following
properties:

REMARK: The consistent use of h (hull operator) in all circumstances
seems not to lead to ambiguity: the argument of h will make clear which
space is involved.

With most of the terminology available now, let us quote some results
for later use.

1.5. THEOREM [11, §1]: Let X be a uniformizable and S4 convex structure
such that the convex closure of the union of two compact convex sets is

compact. t Then the following are true:
(1) the convex structure C*( X ) is uniformizable, S4, and has compact

polytopes;
(2) if all convex sets in X are connected, then the same is true in C*(X).

1.6. FACTORIZATION THEOREM [6, 3.1] : Let X be a compact space equipped
with a uniform convexity. Let Y be a topological space, and let f : X - Y be
a map. Then there exists a compact space X, equipped with a uniform
convexity, together with a factorization

of f, such that the following are true:
(1) q is onto and C c X is convex iff q-1() c X is convex;
(2) X is S4 if X is;
(3) the weight of the space X is at most the weight of Y.

A map is a continuous function. A function g from a convex structure X
to a convex structure X’ is convexity preserving (CP) if the inverse images
of convex sets in X’ are convex in X. Note that there is no condition on
direct images, but an equivalent condition is as follows:

Note that the above q is a CP map. An additional fact, not needed below,

t In particular, polytopes are compact.
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is that a direct q-image of a convex set is also convex. The convex

structure X is called the quotient of X under q.
One other fact, which is not needed below, is that X is also subject to a

dimension restriction. This condition played a mayor role in [6] in

obtaining an equality of convex and topological dimension (see 1.8

below).

1.7. CoNVEX DIMENSION: The trace of a convex structure X on a subset Y
is obtained by taking on Y the convexity

Let X now be a topological convex structure. Its convex small inductive
dimension is defined to be the number cind (X) E {- 1, 0, 1,..., ~}
satisfying the following conditions:

(1) cind X = - 1 if f X = ~;
(2) cind X  n + 1 (where n  oo ) iff for each convex closed set C c X

and for each x ~ XB C there exist convex closed sets D, D’ in X
with

and cind (D ~ D’)  n
(the pair of sets D, D’ with properties (*) above is usually called a
screening of C and x). The set D n D’ is equipped with the trace

convexity. See [8] for motivation and for detailed results on cind.

1.8. EQUALITY THEOREM [6, 3.2]: Let X be a compact space equipped with
a uniform and S4 convexity with connected convex sets. Then

ind X = Ind X = dim X = cind X.

Let us note that a compact space X has only one uniformity. This
simplifies the problem in which circumstances a convexity on X is
uniformizable or metrizable: by [10, 3.3] the following are equivalent for
a topological convexity 8 (X):

(1) 8(X) is compatible with the unique uniformity on X;
(2) the convex closure operator h * : H(X) ~ C*(X) is continuous;
(3) C*(X) is closed in H(X) and for each C ~ C*(X) and each open

set O ~ C there is a D ~ C*(X) with

With the notion of rank available from the introduction, let us quote
the main theorem of [12]:
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1.9. THEOREM: Let X be a separable space equipped with a metrizable S4
convexity with connected convex sets and with compact polytopes. If X has
more than one point, then

Note that for a one-point space X, dim C*(X) = 0, whereas d(X) = 1.

2. Proof of the main theorem

We begin with a result on induced maps in convex hyperspaces:

2.1. THEOREM: Let X be a topological convex structure, and let X’ be a
completely uniformizable S4 convex structure with compact polytopes. If
f : X - X’ is a CP map, then the function

defined by

is well-defined, continuous, and CP.

PROOF: If C ~ X is compact, then f(C) is compact. By [10, 2.6] the
convex closure of a compact set is compact in a completely uniformizable
convexity with compact polytopes. Hence f * is well-defined. To see that
f * is continuous, it suffices to show that the convex closure operator of
X’ is continuous on compact sets. It is known [10, 2.4] that the hull

operator of X’ is continuous on finite sets. Let A c X’ be compact, and let
O c X’ be open.

Case 1. 0 meets h*(A). As X’ is closure-stable, we find that 0 meets
h ( A ), and hence there exist a1,..., an E a with h{a1,..., an} ~ O ~ 0. As h
is continuous on finite sets, there exist neighborhoods Ol of al such that
h{a’1, ... , a’n} meets O whenever a’i ~ Oi, i = 1, ... , n . Hence for each
A’ E O1, ... , On, X), h*(A) meets O.

Case 2. h*(A) c O. As h*(A) is compact and as X’BO is closed, there is
a uniform diagonal neighborhood Uo of X’ with U0[h*(A)] ~ O. Let U,
be a uniform diagonal neighborhood with Ul Ul c Uo, and let the
uniform diagonal neighborhood V be associated to UI. For



101

we find that

and that

Hence if A’ c int C, then h ( A’) c C and consequently

establishing continuity of h* on compact sets.
We finally show that f * is CP. It suffices to prove that for each finite

collection F ~ C*(X),

Let F = (CI, ... , Cn}, and let

Then

and it directly follows that

Next, let di ~f*(Ci) for i = 1,..., n, and suppose that

By [V4, 2.5] there exists a CP map g : X’- [0,1] J ([0,1] ] with "linear"
convexity) such that

Note that g-1(1) is a closed half-space of X’ meeting h*f(Ci). Hence
g-1(1) meets f( C; ), for otherwise there is a t  1 with
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and then

Fix c, E CI with gf(c,) = 1. Then

However, as C meets h{c1, ... , cn}, we obtain that gf(C) includes 1,
contradicting that

2.2. PROOF OF THE MAIN THEOREM: Let X be a compact space with a

uniform S4 convexity, the convex sets of which are connected. By [12, 2.1]
the "convex" dimension of C*(X) does not exceed the rank of X. As
noted in 1.5 above, 8*( X) carries a uniform S4 convexity with connected
convex sets, and C*(X) is compact, being a retract of H(X) under
convex closure. Hence by 1.8, the "convex" dimension of C*(X) is

simply dim 8*( X), showing that

In order to see that

we show that for all n &#x3E; 1,

Note that n = 1 is a trivial case, since X is connected and has more than
one point, whence dim X  1, and consequently dim C*(X)  1 since X is
a closed subspace of C*( X).

So assume n &#x3E; 1, and let

be a free set in X with exactly n points. For each k = 1,..., n we put

for convenience. Then there exist CP maps ([0,1] with "linear" convexity)

with fk(Fk) = {0} and fk(xk) = 1, k = 1,...n. This leads to a CP map

(the n-cube carries the " subcube" convexity).
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By 1.6, there is a factorization

of f, where q : X - k is a CP quotient, X is a uniform S4 convex space,
and the weight of the topological space X is at most the weight of [0, 1 n.
In particular, X is metrizable. Note that f is CP since for each convex set
C c [0,1]n.

which is convex in X. Let Îk be the kth component function of f-. Note
that

Hence,

whereas

It follows that q( F ) is a free collection in X with n points, that d()n,
and by 1.9 (the main theorem for the metric case), that dim C*()  n.
By Theorem 2.1, q induces a CP map

which is onto because q is onto. A CP map does not raise (convex)
dimension by [8, 4.8], from which it finally follows that

The above result enables us to derive a similar theorem, valid for
noncompact spaces as well:

2.3. PROOF OF THEOREM 0.2: Let X be equipped with a uniform 84
convexity having connected convex sets and compact polytopes. To see
that
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we may assume that d(X)  oo . Then the induced hyperspace convexity
is "nice enough" to allow application of most results of convex dimen-
sion theory, [12, 1.7]. By [8, 4.5], there is a polytope

in 8*(X) with

Note that C1,..., Cn are compact convex sets in X, and hence that

is compact convex too. Then C&#x3E; ~ C*(X) equals the convex hyperspace
of C, and it is also a convex subset of C-*(X), including the polytope
h{C1, ... , Cn}. Hence

C being compact, it follows from 1.8 and 0.1 that

where, obviously, d(C)  d(X). This establishes (1).
On the other hand, if n  d(X), then there is a free collection F in X

with exactly n points, whence by 0.1 and by [8, 2.5]

It appears from [9] that (convex) dimension is rather closely related to
certain "classical" invariants of convex structures. As a matter of ob-
served fact, convex dimension is usually much easier to compute than the
rather combinatorially behaved invariants. In this way, it is a consider-
able step forwards to possess information on convex dimension, like in
the case of convex hyperspaces. By way of example, let us derive some
"dependency" results for subcontinua of a tree, which seem difficult to
obtain "by hand". The first result, 2.4, is more or less auxilliary to 2.5.

2.4. THEOREM: Let T be a compact tree with n endpoints (2  n  (0), let
r &#x3E; 2n, and let C1, ... , C, be nonempty subcontinua. Then there is an

i ~ {1, ..., r} such that
(1) every connected set including all S, j =1= i also includes Ci;
(2) every connected set meeting all Cj, j ~ i also meets Cl.

Moreover, the lower bound for r is sharp.
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2.5. THEOREM: Let T be a compact tree with n endpoints (2  n  00), and
let r be such that C(r,[r/2]) &#x3E; 2n. If C1, ... , C, are nonempty subcontinua,
then there is a partition I U II of {1, ..., r} such that

(1) every connected set including all Ci, i E I, intersects every connected
set meeting all Cj, j E II;

(2) idem, with I and II interchanged.
Moreover, the lower bound for r is sharp.

[r/2] designates the lower integer approximation to rl2, and C(q, p)
denotes the number of combinations of p elements in a q-point set. Here
are some examples of lower bounds for r in 2.5:

It is somewhat surprising (especially in 2.5) that the number of endpoints
is the only information needed.

Let us first discuss some concepts needed for our proofs. A convex
structure is binary (or: has Helly number  2) if every finite collection of
pairwise intersecting convex sets has a common point.

The generating degree, gen (X), of a convex structure X is defined in
[11, 2.1] as follows. For n  oo, gen (X)  n iff there is a subbase for the
convexity C(X) which can be decomposed into (at most) n totally
ordered subfamilies. This invariant was introduced to obtain an upper
estimate for the rank d(X) of X: if X has more than one point, then
d(X)  gen (X), as was observed in [ 11, 2.2].

The Radon number, r(X), of a convex structure X can be defined as
follows: For n  oo , r ( X)  n iff for each finite set F ~ X with n + 1 or
more points there is a partition FI U F2 of F with h(F1)~h(F2) ~ ~ (the
set F is then called "dependent ", and FI, F2 is a Radon partition of F).
See [9,1.3].

The following auxilliary result almost directly leads to 2.4, and will be
used in the proof of 2.5 as well:

2.6. LEMMA: Let X be a uniformizable, S4, and binary convex structure such
that the convex closure of the union of two compact convex sets is compact
again. t Then

PROOF. Let d = d(X) and g = gen (X). We may assume that d  oc and

t In view of a result in [7, 2.9] on binary convexities, this condition is actually equivalent
with compactness of polytopes.
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g  oo. Let Dl, ... , Dd+g+ 1 be members of 8*(X) which form a free
collection. Then, for each i, there is a closed half-space Xl of 8*( X) with

By [ 12, 1.2] each Xl is of type

where H, is a closed half-space of X. Let us assume that (3) is in order for
i E I only, where I has p members ( p &#x3E; 0). For each i E I we have

Choose a point xi ~ Di B Hi. Then for i # j in I, we have xi ~ Hl,
xj ~ D c Hl, and hence that {xi | i ~ I) is a free collection in X. Conse-
quently, p  d, and there are at least g + 1 indices left, for which

For every two of such remaining indices i ~ j, we
have Hi ~ f since Hl meets D and D is disjoint with f . It was shown in
[ 11, 2.3] that for a binary 84 convexity the generating degree is "realized"
by the subbase of all (closed) half-spaces. Hence this subbase can be
decomposed into g chains, contradicting with the obtaining of at least
g + 1 mutually incomparable closed half-spaces of X. 0

PROOF OF 2.4 AND 2.5: The collection C(T) of all connected subsets of T
constitutes a uniform, binary and S4 convexity on T by [7, 2.10] and
[ 10, 3.9]. It was shown in [ 11, 3.1] that

whence by lemma 2.6, the rank of C*(T) is at most 2 n . By [ 11, 4.2], the
rank of an n-dimensional "sufficiently nice" convex structure (like C*(T))
is at least equal to twice its dimension. Hence,

Taking 2 n + 1 or more subcontinua of T, one of them must be in the hull
of the other ones, which is expressed more explicitly in (1) and (2) of 2.4
(the hull of a compact set in T is closed by [9, 2.14]).

It was shown in [9, 2.11 that the Radon number of an n-dimensional
uniformizable, S4, binary convexity with connected convex sets and with
compact polytopes must be equal to rn or rn + 1, where r ,, is the Radon
number of the n-cube, equipped with its "subcube" convexity. Also,
equality with rn + 1 can occur only for a restricted number of dimensions.
This result was slightly improved in [12, 3.3] with the aid of convex
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hyperspace techniques: if the rank of X (as above) is minimal (twice the
dimension n of X) then r(X) equals rn .

Note that 8*(T) is n-dimensional since n = d(T), and that the convex-
ity on C*(T) is also binary by [5, 5.4]. Hence by (5) and by the above
quoted result, the Radon number of 8*(T) equals rn. By a result of
Eckhoff, rn is the largest among all r with C( r, [r/2])  2 n ([1, Satz 3]).
Hence, taking r subcontinua C1,..., Cr of T with r not satisfying this
inequality, there must be a partition I U II of (1,... r} with

nonempty. Using the fact that the convex hull of a compact set in T is
closed, it is not difficult to see that the above property is equivalent to (1)
and (2) in 2.5. D

We note that binarity is involved in lemma 2.6 only to ensure that the
generating degree is "realized" by the subbase of all half-spaces. For
S3-convexities it is known, [ 11, 2.3], that gen is realized by a subbase
consisting of some (not all) half-spaces, but it is not known whether the
subbase of all half-spaces behaves the same way.

2.7. REMARK: Let X be a compact uniformizable convex structure. Then
the convex hyperspace C*(X) can be looked upon as a topological
semilattice, where the "infimum" of C, D E 0*(X) is taken as h*(C U D).
Certain results of Lawson, [3, 3.4] and [4, 2.2], assert that for a compact
chain-wise connected semilattice S, breadth equals the "cohomological"
dimension, cd S, or equals cd S + 1. This suggests a close relationship
between the rank of X and the breadth of C*(X) (which is chain-wise
connected iff all convex sets in X are connected). And indeed, it is easy to
show that both invariants are equal. With some more efforts, it can be
shown that if d(X) is strictly larger than the Helly number of X (which is
the case if X is as in 0.1 and has more than one point) then the breadth of
C*(X) equals cd C*(X), not cd C*(X) + 1. Recently, we have been able
to show that "cohomological" dimension equals convex dimension for
compact, uniformizable S4-convexities with connected convex sets. A

paper on this topic is in preparation.
Joining these efforts together leads to an independent proof of theo-

rem 0.1.
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