COMPOSITIO MATHEMATICA

RUISHI KUWABARA

Correction to: "On isospectral deformations of riemannian metrics. II"

Compositio Mathematica, tome 50, nº 1 (1983), p. 93-94

http://www.numdam.org/item?id=CM 1983 50 1 93 0>

© Foundation Compositio Mathematica, 1983, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http://http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Correction to: ON ISOSPECTRAL DEFORMATIONS OF RIEMANNIAN METRICS. II

Ruishi Kuwabara

The proof of Lemma 3.3: (1) given in the paper in Vol. 47 [p. 201] is incorrect. We here give a complete proof of the lemma.

Define a differential operator $\delta_g^k: S_{k+1} \to S_k$ by

$$\left(\delta_{g}^{k}a\right)^{\iota_{1}\ldots\iota_{k}}=-\left(k+1\right)\nabla_{\rho}a^{\rho\iota_{1}\ldots\iota_{k}},$$

 ∇ being the covariant differentiation with respect to g. Then, δ_g^k is the formally adjoint operator of $\hat{\nabla}_g^k$ with respect to the inner products in S_k 's naturally defined by g. Set

$$D_g^k = \frac{1}{k+1} \delta_g^k \, \hat{\nabla}_g^k.$$

Then D_g^k is a non-negative, self-adjoint, elliptic differential operator of order 2, and the equation $D_g^k a = 0$ is equivalent to $\hat{\nabla}_g^k a = 0$ (see [2]). Next, let us introduce various norms on the space of tensor fields on

Next, let us introduce various norms on the space of tensor fields on M. A (fixed) C^{∞} Riemannian metric g_0 naturally defines a norm, $|\cdot|$, on each fibre of the tensor bundle over M. Various global norms for a tensor field T are defined by

$$|T|_k = \max_{0 \le r \le k} \sup_{x \in M} \left\{ \left| \underbrace{\nabla \dots \nabla}_r T(x) \right| \right\},$$

$$||T||_k^2 = \sum_{r=0}^k \left(\int_M [\nabla \dots \nabla T]^2 dV_{g_0} \right),$$

for k = 0, 1, 2, ..., where ∇ is the covariant differentiation with respect to g_0 .

Using these notations, we have for every $a \in S_k$,

$$||D_{g}^{k}a - D_{g_{0}}^{k}a||_{0} \le C_{1}|g - g_{0}|_{1}||a||_{2} \quad \text{(when } |g - g_{0}|_{1} < 1\text{)},$$

 C_1 being a constant, because D_g^k is a second order differential operator

whose coefficients consist of g and its first derivatives. On the other hand, since $D_{g_0}^k$ is an elliptic operator of order 2, there is a constant C_2 such that

$$||a||_2 \le C_2 (||a||_0 + ||D_{\varepsilon_0}^k a||_0), \tag{2}$$

for every $a \in S_k$.

Now we prove that $\mathfrak{N}_k = \{g \in \mathfrak{R}; (D_g^k)^{-1}(0) = \{0\}\}$ is an open subset of \mathfrak{R} . Suppose g_0 belongs to \mathfrak{N}_k . Noting that D_g^k has a discrete spectrum consisting of non-negative real eigenvalues, we have

$$||D_{\varepsilon_0}^k a||_0 \geqslant \lambda ||a||_0 \quad (\lambda > 0), \tag{3}$$

for every $a(\neq 0) \in S_k$, where λ is the least eigenvalue. We show g_0 is an interior point of \mathfrak{N}_k . If the contrary holds, there are sequences $\{g_n\}_{n=1}^{\infty}$ in \mathfrak{R} and $\{a_n\}_{n=1}^{\infty}$ in S_k such that $D_{g_n}^k a_n = 0$, $\|a_n\|_0 = 1$, and $g_n \to g_0$ with respect to the C^{∞} topology (i.e. $|g_n - g_0|_k \to 0$ for every $k \ge 0$) as $n \to \infty$. Using (1) and (2), we have

$$\begin{split} \|D_{g_0}^k a_n\|_0 &= \|D_{g_0}^k a_n - D_{g_n}^k a_n\|_0 \leqslant C_1 |g_0 - g_n|_1 \|a_n\|_2 \\ &\leqslant C_1 C_2 |g_0 - g_n|_1 \Big(\|a_n\|_0 + \|D_{g_0}^k a_n\|_0 \Big) \\ &= C_1 C_2 |g_0 - g_n|_1 \Big(1 + \|D_{g_0}^k a_n\|_0 \Big). \end{split}$$

Hence, for sufficiently large n,

$$||D_{g_0}^k a_n||_0 \le \frac{C_1 C_2 |g_0 - g_n|_1}{1 - C_1 C_2 |g_0 - g_n|_1}.$$

Therefore, we get $||D_{g_0}^k a_n||_0 \to 0$ as $n \to \infty$. This contradicts (3).

References

- [1] R. KUWABARA: On isospectral deformations of Riemannian metrics. II. Comp. Math. 47 (1982) 195-205.
- [2] C. BARBANCE: Sur les tenseurs symétriques. C.R. Acad. Sc. Paris 276 (1973) 387-389.

(Oblatum 21-XII-1982)

Department of Mathematics College of General Education The University of Tokushima Minami-Josanjima-cho Tokushima 770, Japan