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For X a given Banach space Dvoretzky’s Theorem [ 1 ] implies that every
finite dimensional E c X contains a Hilbertian subspace F. In this paper
we are interested in spaces X for which the F’s can always be chosen to
be uniformly complemented in X, and especially in obtaining estimates
for dim F in terms of dim E. It is clearly necessary to suppose that X
doesn’t contain ~n1’s uniformly. For Banach lattices X Johnson and
Tzafriri [8] have shown that the last condition is also sufficient. The

novelty of the results presented here is the estimates for dim F in terms of
dim E, which are quite sharp. The main technique used in the proofs is
the version of Dvoretzky’s Theorem proven by Figiel, Lindenstrauss and
Milman in [2]; for properly chosen ellipsoids the Levy means involved
there can be estimated using the properties of p-summing operators
defined on the space X.

This paper was submitted in another place in 1978, and so has been
delayed in appearing. Since that time the results presented here have
been considerably strengthened: Figiel and Tomczak-Jaegermann [21] ]
extend these results to uniformly convex and k-convex spaces; Benyamini
and Gordon [20] consider random factorizations of maps more general
than the identity on ~n2: Pisier’s theorem [22] a space not containing £? ’s
must be k-convex shows all the results mentioned carry over to B-convex

spaces.
The notation and terminology used here is for the most part standard.

We only recall the definitions used in the statements of theorems.
A Banach lattice L is q-concave if there is a constant A &#x3E; 0 with

for all xl, x2, ... , xn E L. Similarly L is p-convex if there is a constant
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B &#x3E; 0 with

for all x l, x2, ... , xn E L. In each case we write Kq(L) and Kp(L) for the
best constants A and B appearing in the inequalities. The basic facts
about q-concave and p-convex lattices may be found in [9], [13] and [12].

For 2  s  oo and E a given space we take the s-cotype constant of E,
03B1S(E), to be the smallest a &#x3E; 0 such that

for any x1, x2 , ... , xn ~ E. Here rl , r2"’" rn,... are the Rademacher

functions on [0, 1]. It is obvious that 03B1s(~Ns) = 1, 2  s  00.

The Banach-Mazur distance between isomorphic spaces E and F is

Let X be a fixed space and 03BB  1. For E c X a finite dimensional

subspace we define c03BB(E) to be the maximum of the dimensions of those
F ~ E for which

(i) d ( F, ~dimF2)  2, and
(ii) there is a projection of X onto F of norm at most À.

In the terminology of Pelczynski and Rosenthal [16] X is called locally
03C0-Euclidean if there is a constant 03BB  1 and a function f on the natural
numbers such that c03BB(E)  n whenever dim E  f(n).

Finally for 1  p  00, p’ is the conjugate of p (1/p + 1/p’ = 1).

THEOREM 1: Let X be a space which is a subspace 01 quotient 01 a p-convex
and q-concave Banach lattice L, 1  p  2  q  ~. There is a 03BB  1 so

that, for E c X any n dimensional subspace and s E [2, q],

Before giving the proof we point out some instances of the theorem.
(a) The hypothesis of the theorem implies that X is cotype q [ 13], and

so for some constant a &#x3E; 0 and a = min(2/p’, 2/q ),

whenever X ~ E is finite dimensional. In particular X is locally qr-

Euclidean. This result is also stated in [8], though no estimate for cx(E) is
given.
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(b) The lattice L = Lp (03BC) is both p-convex and p-concave, 1  p  00,
and consequently (*) holds with a = min(2/p’, 2/p ). For 2  p  00 this
is well-known, and follows from the results of [2] and [14]. Taking E = ~np
and using the results of [2] shows that this lower bound for c03BB(E) is best
possible for L an L -space.

(c) In case 2  s  q and d(E, ~ns)  n1/s-1/p’

and hence ( * ) is true with a = 2/p’. For E a 2-isomorph of .es , 2  s 
min( p’, q), this gives a lower bound for cx(E) depending only on the
convexity of L. For Hilbertain subspaces of Lp(03BC)-spaces 1  p  2 this

lower estimate cannot be improved; by [2] ~np, 1  p  2, contains a
Hilbert subspace of dimension cl n, but no complemented Hilbert sub-
spaces of dimension gxeater than c2n2/p’. For L a p-convex lattice

(1  p  2) with some non-trivial concavity, every n dimensional Hilbert
subspace is c3n1/p-1/2-complemented [ 11 ].

Below X, L, p and q have the same meaning as in the statement of
Theorem 1. The proof is preceeded by three short lemmas, the first

mentioned by Pisier in [18].
The lattice structure enters into the proof only through Lemma 1.

LEMMA 1: If u: X ~ G is q’-integral then u’ is p’-summing and

PROOF: It is enough to show that for u: L - G q’-summing,

By Proposition 3.1 of [11] u’ maps the closed unit ball of G’ into an order
bounded set and

Since L’ is p’-concave with K’p(L’) = KP(L) [9], the same proposition
gives

LEMMA 2: If 2  s  oc, H is an n dimensional Hilbert space and u: H - G

any map, there is a subspace A c H with dim A  nl2 and
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PROOF: If the conclusion fails inductively choose m vectors x1, x2 , ... , x m
e H to satisfy

and

It is clearly possible to choose m = [n/2 + 1]  n/2 such vectors. But
since the xi 1 s are orthonormal

a contradiction.
For G a finite dimensional space and ~ ~2 a Hilbertian norm on G, G2

denotes G under ~ ~2.

LEMMA 3: Let E c X be any n dimensional subspace. There is a Hilbertian
norm Il 112 on E and an operator v : X ~ E2 such that, if u : E2 ~ X is the
formai inclusion, then vu = 1 E and 03C0q(u) = i’q(v) = n1/2.

PROOF: By Theorem 1.1 of [10] there is an isomorphism w: ~n2 ~ E so
that 03C0q(w) = 1 and i’q(w-1) = n. Define Illb on E by ~x~2 =
n-1/2~w-1(x)~. Clearly 03C0q(u) = i’q(u-1) = n1/2. For v take any map v :

X ~ E2 with viE = U-I and i’q(v) = i’q(u-1) (such an extension exists by
the defining factorization of q’-integral maps).

PROOF OF THEOREM 1: Given E c X of dimension n, choose ~ ~2, u and v
as in Lemma 3. We claim there is a constant a &#x3E; 0 (depending only on q
and L) and a subspace B ~ E with dim B  n/4 such that, if UI = u 1 B2
and VI is v followed by the orthogonal projection of E2 onto B2, then

and
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Trivially, 03C0(2,q)(u)  03C0q(u). For 2  s  q the proof of a result of

Maurey ([15], Proposition 74, p. 90) implies

where c(q) is Khintchin’s constant. By Lemma 2 there is an A c E with
dim A &#x3E; n/2 and

By Lemma 1

and thus, again by Lemma 2, there is a B c E with dim B &#x3E; (dim A)/2 
n/4 and

Properties (1), (2) and (3) follow immediately from the corresponding
properties of u and v (and Lemma 1).

The remainder of the proof now follows using the results and tech-
niques of [2]. Let S c B2 be the unit sphere Il 112 = 1 and dm be the

normalized, rotational invariant measure on S. Recall that the Levy mean
of a continuous real valued function f on S is the number Mf such that

Let M be the Levy mean of x ~ ~u1(x)~ = ~x~ on S and M# be the Levy
mean of x ~ ~03BD’1(x)~ on S (of course B’2 = B2 naturally). Equality (1)
implies that for x E S,

and consequently

We now claim that there is a constant b &#x3E; 0, depending only on p, q and
L, such that

To prove the first let a(q) be the constant satisfying
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a(q) is the q-summing norm of the identity on B2 and n/4  dim B, so
a(q)  C5n’ /2 for some constant c5 depending only on q (cf. [4]). By
Pietsch’s integral representation theorem [17] there is a probability mea-
sure jn on S with

Thus

the last by (2). The inequality M#  b follows similarly from (3).
By Theorem 2.6 of [2] (and the remarks following) there is an absolute

constant c &#x3E; 0 and an F ~ E with

~ ~2-equivalent to M ~ ~2 on F, (8)

the norm x ~~03BD’1(x)~2-equivalent to M# ~ ~2 on F, and (9)

dim F  cn min{~u1~-1M,~03BD1~-1M#}2. (10)

By (6) and (7) M and M# are at least b-1 so, using (4) and (5),

dim F  c6 min{03B1s(E)-2n2/s, n2/p’}.
Finally, let w: B2 ~ F2 be the orthogonal projection. Since ~03BD’1(x)| 
2b~x~2 for x E F, the projection wv j has norm at most 2b as an operator
from X into F2 . But ~y~2b~y~2 for y ~ F, so ~wu1~4b2 as an

operator from X into F. This concludes the proof. D

A review of the proof of Theorem 1 shows that, once the Hilbert norm
Il I 112 and the operators u, v have been chosen, the key inequalities are the
upper estimates for M and M# given in terms of 03C0q(u) and 03C0p’(v’). Such
estimates are available in several other instances.

Given 1  p  00 a space X contains ~np’s uniformly if there is a

sequence (En)n1 of finite dimensional subspaces of X with supnd(En,
~np)  00. If in addition there are projections un : X ~ En with sUPnllunl1 
00, then X contains uniformly complemented ~np’s.
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THEOREM 2: Let L be a Banach lattice not containing ~n~’s uniformly, and
let X c L. Then either

(a) X contains uniformly complemented ~n1 s, 

or

(b) X is locally 03C0-Euclidean.

In the second case there are positive constants À and a such that

for all finite dimensional E c X.

THEOREM 3: There is an absolute constant c &#x3E; 0 with the following property.
If E is an n dimensional space with a monotone symmetric basis, there is an
m dimensional F c E and a projection w: E - F with

and

Again the first part of Theorem 2 is stated without proof in [8]. The
conclusion of Theorem 3 is of interest only in case d(E, ~n2)-2n is

substantially larger than (log n)2; by John’s Theorem [7] d( E, ~2n)  nl/2
for every n dimensional space, and every m dimensional F c E is at least

M1/2-complemented (of [3]).

PROOF OF THEOREM 2: Assume that X’ doesn’t contain ~n~’s uniformly.
The arguments of Pisier in [ 18] show that there is a constant c &#x3E; 0 and
indices p and q, 1  p  2  q  oo, so that 03C0p’(v’)  ci’q(v) for every
q’-integral map on X. Once this is established as a substitute for Lemma
1, the proof can proceed exactly as before.

PROOF OF THEOREM 3: Let (ei)in be a monotone symmetric basis for E,
set

and write u : E2 ~ E, v: E ~ E2 for the formal identities. Every map g of



90

the form g( el ) = 03B5i e03C0(i), with |03B5i| = 1 for each i and qr a permutation ouf (1,
2, ... , n}, is an isometry of both E and E2 ; further the only maps E2 ~ E
which commute with all such g are scalar multiples of u. By an averaging
argument (cf. [5], Lemma 5.2) 03B1(u)03B1*(v)=n for every Banach ideal

norm a. Thus we may assume, normalizing Il 112 if necessary, that

Let a and b be the best constants satisfying

Another averaging argument shows

M and M# are defined as in the proof of Theorem 1. By that proof, for
any q  2,

where 03C0q(~2n) denotes the q-summing norm of the identity on ~n2. Using
the expression given in [4] for 03C0q(~n2) and Stirling’s formula there is an
absolute constant a &#x3E; 0 such that 03C0q(~n2)-1  a(q/n)1/2 for all q &#x3E; 2.

Any map w into an n dimensional space satisfies 03C0q(w)n1/qi~(w)
(cf. [11], Corollary 1.7). Consequently, combining inequalities yields

and similarly

the last inequality by [6], Lemma 3.3, since E has a monotone uncondi-
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tional basis. Now taking q = log n,

for some absolute constant c1. Trivially, M  a-1 and M#  b-1. Using
the method of Figuel-Lindenstrauss-Milman as in the proof of Theorem
1 produces an m dimensional F c E, which is 2-isomorphic to ~m2, c2 log
n complemented in E and with

There are a number of natural questions about complemented Hilbert
subspaces. Let X be a space with some Rademacher type. Is there a

constant 03BB  1, depending on X, with

for all n dimensional E c X? For X a p-convex and q-concave lattice it is
known [ 11 ] that d ( E, ~n2)  n1/p-q/q for E c X having dimension n. For
such lattices Theorem 1 gives an apparently stronger result, although in
this case it is likely that the correct distance estimate is

The lattice structure enters into the proofs of our results only through
the inequality

for operators on X. For X the Schatten p-trace class of operators on ~2,
Pisier [ 18] has shown that (#) fails for every non-trivial pair 1  r  2  s
 00. We know of no non-trivial lower estimates for cx(E) if E c Cp, 
1  p  2, although sharp upper estimates for d(E, ~n2) are available [ 19].
Finally, we know of no space X on which (#) is true which is not a
subspace of a quotient of a Banach lattice having some Rademacher type.
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