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Introduction

In 1926 Hecke [5] constructed a certain family of holomorphic 1-forms
on a modular curve which arise from grossencharacters of an imaginary
quadratic field K/Q . He then considered the periods of these 1-forms
and showed [6] that, via the Mellin transform, these periods can be
expressed as special values at CM-points of certain Eisenstein series of
weight 1. Thus, by the theory of complex multiplication, all such periods
are, up to a fixed transcendental factor, algebraic numbers lying in a
class field over K.

In the present paper we will apply a very general principle in the
theory of dual reductive pairs to obtain an extension of Hecke’s results to
arithmetic quotients of the complex n-ball. This principle is implicit in
Hecke’s original method and can be applied in many other cases.
We begin with a general picture.
Let W, ,&#x3E; be a vector space over a field k of characteristic 0, with a

non-degenerate alternating form; and let Sp( W ) be the symplectic group
of W,(,). Recall that a dual reductive pair (G, H) in Sp( W ) consists of a
pair of reductive subgroups G, H of Sp( W ) such that H is the centralizer
of G in Sp( W ) and G is the centralizer of H in Sp( W ).

DEFINITION: A see-saw dual reductive pair in Sp(W) is a pair of dual
reductive pairs (G, H), (G’, H’) in Sp( W ) such that G D H’ and G’ D H.
This terminology is suggested by the picture

Now suppose that k = Q and that the subgroups G, H, G’, and H’ are
Q-rational algebraic subgroups of Sp( W ), viewed as an algebraic group
over Q. In this situation the oscillator representation gives rise to a

* Partially supported by NSF Grants MCS-77-18723 A03 and MCS-78-02817 A01.
* * Sloan Fellow.
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correspondence between automorphic forms on the groups (G, H ) (resp.
( G’, H’)) in a dual reductive pair, or, more precisely, on certain coverings
of these groups ([4], [7], [9]). This correspondence can be described in
terms of integral kernels as follows:

Let Mp(W)(A) be the metaplectic group (two-fold cover of the adele
group Sp(W)(A)), and let (A), fi(A), 6"(A) and À’(A) be the inverse
images in Mp(W)(A) of the subgroups G(A), H(A), G’(A) and H’(A) of
Sp(W)(A). For any complete polarization (decomposition into maximal
isotropic subspaces)

let (R, L 2 (W" (A))) be the associated Schrôdinger model of the oscillator
representation of Mp(W)(A). The corresponding theta-distribution on
the Schwartz space £ (W"(A)) is given by

for f e 5 ( W’(A». Then for the dual reductive pair (G, H ) and for
1 E £ (W"(A») there is a theta-kernel

where (g, h ) E G(A) X H(A). Similarly for the dual reductive pair (G’,
H’) there is a theta-kernel

where (g’, h’) E (A) x ’(A). Note that these theta-kernels are just
restriction to (A) (A) (resp. ’(A) X Ê’(A» of the theta-function
0398(R(g)f) (or its conjugate) where g E p(W)(A). Now if 99 is a cusp
form on (A), we obtain an automorphic form  on Û (A)
by the " lifting" integral:

Similarly, if (p’ is a cusp form on ’(A), we obtain an automorphic form
f ) on ’(A) by the " lif ting" integral:
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Such lifting integrals have been considered by many people; the descrip-
tion here is based on [7].

The see-saw dual reductive pair {( G, H), (G’, H’)} gives rise to the
following fundamental adjointness formula:

where Res £(~’) (resp. Res (~)) denotes the restriction of (~’) (resp.
(~)) to (A) (resp. ’(A)). Explicitly:

While completely formal in nature, (*) seems to have a number of
important applications and actually gives rise to non-trivial, identities.

In this paper we will not work adelically, but rather will reformulate
( * ) in classical language. The particular see-saw pair of interest to us can
be constructed as follows:

Let K/Q be an imaginary quadratic field, let Q be the Galois automor-
phism, and let 8 E K x be such that 8 = - 03B403C3. We view K as a subfield of
C and assume that Im(03B4) &#x3E; 0. Let VJ,(,)J for j = 0, 1, be finite dimen-
sional K vector spaces with non-degenerate o-Hermitian forms. Let

and let

and

where RK/Q denotes restriction of scalars from to Q and Im03B4(03B1) =
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(203B4)-1(03B1 - 03B103C3). Then, composing the natural inclusions U(V0) X U(V,)
~ U(V) and U(V) ~ Sp( W ), we obtain a natural homomorphism

03C1: U(V0)  U(V1) ~ Sp(W)

where U(VJ) and Sp( W ) are the unitary and symplectic groups of these
spaces respectively. The image of p is a dual reductive pair in the sense of
Howe [9]. Next let

and

Suppose that U1 c W, is a maximal isotropic subspace with respect to
(’)1 such that U1 n 03B4U1 = (0). Then there are isomorphisms:

and

with

We again obtain a natural homomorphism

where O( Ul ) is the orthogonal group of U1,(,)1|U1. Again the image of p’
is a dual reductive pair. Finally we obtain the following commutative
diagram

where c and c’ are the natural inclusions. Thus we obtain a see-saw-dual
reductive pair {(Sp(W0), O(U1)), (U(V1), U(V0))} as defined above.
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Now suppose that the signature of the Hermitian spaces are

and

Then, extending scalars to R and choosing appropriate bases, we obtain
the commutative diagram:

or, more graphically:

As explained in Section 1 below, there is a corresponding diagram of
equivariant imbeddings of symmetric spaces:

where

and Dk is the Siegel space of genus k. Note that the embedding -’ will not
be holomorphic and that 03BA’(x) = (03C40, x) where 03C40 ~n is the isolated

fixed point of U(V0) ~ Sp( Wo ) = Sp(n, R).
We now describe, in classical language, the special case of ( * ) which

yields information about the arithmetic nature of the periods of a certain
class as holomorphic ( n, 0)-forms on D.

Suppose that f is a Siegel modular form on n(n+1) with respect to an
arithmetic subgroup Ù c Sp( W ), such that e*f determines a holomorphic
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( n , 0)-f orm

on D. Let

so that ~ determines a holomorphic ( n, 0)-form on the quotient 0393BD.
For each choice of Ul c W1 as above, let

and observe that K = 03BAU1 : B ~ D gives rise to a (possibly non-compact)
Lagrangian n-cycle

We then consider the period

which we assume to be finite. The "see-saw" pair structure yields the
following:

On the other hand, for arbitrary r Fz we define

and obtain the special case of the identity ( * ) :

which expresses the period as a special value of the function ~.
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Now it will turn out that, for a suitable choice of f - actually a
derivative of a reduced theta-function, see section 4 - the functions ~(03C4)
are holomorphic Siegel modular forms with Fourier coefficients in Kab,
the maximal abelian extension of K ! Therefore Shimura’s theorem about

special values of arithmetic Siegel modular functions at isolated fixed
points applies to the function p0(03C4)-1~(03C4) where p0(03C4) is any Siegel
modular form of the same weight as ~, with cyclotomic Fourier coeffi-
cients and such that p0(03C40) ~ 0. Thus we will find (Section 6, Theorem
6.4) that

that is, we obtain, via the "see-saw" pair, a rationality statement about
the periods 9(-q, UI, r ) of over a certain class of Lagrangian cycles. It
should be noted that, in this special case, the automorphic forms (P and T’
of the general discussion above are essentially trivial, at least at the
infinite place.
We now describe the contents of this paper in more detail. In Section

1 we give an intrinsic construction of the see-saw reductive pair described
above and of the corresponding equivariant embeddings of symmetric
spaces. In Section 2 we find explicit formulas for these embeddings and,
in Section 3, we determine the relations between the various automorphy
factors. In Section 4 we describe the pullbacks of certain derivatives of
reduced theta-functions and thus obtain a family of holomorphic (n,
0)-forms on D generalizing Hecke’s binary theta series of weight 2. Such
forms had previously been constructed by G. Anderson [1]. In Section 5
we use the results of [ 11 ] and [12] to prove that the periods of one of our
(n, 0)-forms is a special value at a CM-point of a holomorphic Siegel
modular form with Fourier coefficients in Kab. The main results here are
Theorem 5.4 and Corollary 5.6, which follow from the particular case of
( * ), given in Proposition 5.1. The key fact is that the function 0"( T; (P,

C1; r ) which occurs there is precisely the holomorphic Siegel modular for
considered in [ 12] and [ 13]. These Siegel modular forms are generaliza-
tions to SO(n, 1) of Hecke’s binary theta-functions associated to real
quadratic fields, and they are intimately connected with the results of
[10]. It should be noted that the constructions of Sections 4 and 5 depend
on the choice of an identification of the symmetric space for Sp( W ) with
the Siegel space of genus n ( n + 1) - in short, on the choice of polariza-
tion - and that this, in turn, depends on the choice of Lagrangian cycle.
In section 6 we show that the Kab-span of the holomorphic (n, 0)-forms
constructed in section 4 is actually independent of this choice, Corollary
6.3. This allows us to compare the periods of a fixed form over various
Lagrangian cycles and gives our main rationality result, Theorem 6.4.
Moreover, it follows that there is a natural Kab-vector space 6D(Kab) of
holomorphic ( n, 0)-forms associated to the dual pair (U(V0), U(V1)), and
independent of other choices. In Section 7 we compute the Fourier-Jacobi
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expansion of a form 11 E D(Ka b), and show that such an 11 is a cusp form,
Corollary 7.5. This implies, in particular, that the period of q of any
Lagrangian cycle, compact or not, is finite. We also show, Theorem 7.6,
that, up to a uniform transcendental factor all forms ~ ~ D(Kab) are
arithmetic in the sense of Shimura. Implicit in the proof of this result is
another use of the see-saw pair principle. Finally, in Section 8, we
observe that if 71 ~ D(Kab) ~ KabC is r-invariant for some F c SU(V1),
then it extends to a holomorphic ( n, 0)-form on a smooth compactifica-
tion 0393BD of 0393BD. We then shown, Theorem 8.1, that for any Lagrangian
cycle B c D associated to a choice of U0, U1 etc. as above, there exists a
r c SU(V1) and an q E D(C) such that

In particular every such B eventually becomes non-trivial in the homol-
ogy of 0393BD for sufficiently small r. This is analogous to a result of
Wallach [18].

In the case n = 1 and for hl,(,) 1 isotropic, the ~’s described above
coincide with Hecke’s family of holomorphic 1-forms. If we identify D
with the upper half-plane and take U1 so that 03BA(B) = iR +, then the
corresponding function e is a holomorphic Eisenstein series of weight 1.

Thus the see-saw pair gives, via (0.9), a structural explanation of the
otherwise mysterious connection between the periods of binary theta-
series of weight 2 and special values of Eisenstein series of weight 1,
exploited by Hecke. In particular, we obtain (0.9) without an intervention
of the Mellin transform. Moreover, if we choose U1 so that 03BA(B) is a

hyperbolic arc associated to a real quadratic field F/Q, then the corre-
sponding function e is a holomorphic theta-function of weight 1 for an
indefinite binary quadratic form associated to F. Such functions were
first introduced by Hecke [5], but he did not notice their connection with
periods.

Because we do not rely on the Mellin transform we obtain a result
about the periods of the analogues of Hecke’s binary theta-series of
weight 2 when n = 1 and V1,(,)1 is anisotropic. In this case SU(V1) is
isomorphic to the group of elements of norm 1 in a division but

indefinite quaternion algebra over Q, and the periods over a hyperbolic
arc associated to an embedded real quadratic field F will again be special
values of theta-functions of weight 1 associated to F. We hope to return
to this example elsewhere.

The method of this paper can be generalized in several ways. For
example, let K be any CM-field, IK: 01 = 2m, let f c K be the maximal
real subfield of K, and let a be the Galois automorphism of Kif. Let
V,(,) be a o-Hermitian space over K such that
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where V03BB,(,)03BB is the 03BBth completion of V,(,) for 1  03BB  m. Then there is a

family of holomorphic (nr, 0)-forms on the quotient 0393BDr, where
l’c SU(V,(,)) is a suitable arithmetic subgroup, whose periods over a
certain types of Lagrangian nr-cycle are expressible, via the see-saw pair
construction, as special values of Hilbert-Siegel modular forms of weight
1 2(n+1) for f. Note that this family of examples includes compact
quotients 0393BD for arbitrary n.

Finally, in his thesis G. Anderson [1] J constructed differential forms
yielding non-vanishing cohomology for a large class of compact quotients
of bounded symmetric domains. It should be possible to apply the

see-saw pair construction to obtain information about the arithmetic
nature of the periods of these forms.

1 would like to thank the Institute for Advanced Study for providing a
stimulating and congenial research environment during the academic
year 1980/81. 

§ 1. Symplectic embeddings: see-saw pairs

In this section we will give an intrinsic construction of a certain type of
see-saw pair following Howe [8] and Satake [13].

1.1. Let KIQ be an imaginary quadratic field. Let a be the Galois
automorphism of KIQ, and choose 8 E K  such that 8 a = - 8. We view
K as a subfield of C and assume Im(03B4) &#x3E; 0.

Let VJ, (,)J, j = 0, 1, be finite dimensional K-vector spaces with

non-degenerate Q-Hermitian forms, so that ( av, a’v’)j = 03B103C3(03BD, v’),a’ for
a, 03B1’ ~ K, 03BD, 03BD’ ~ Jj. Let

and let

and

Then if we let G = U(V1,(,)1) and H = U(V0,(,)0), we have a natural
homomorphism of algebraic groups over Q :
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Also let

and let

For a Hermitian space V,(,) as above, let 03A9(V)={U~W| U is
maximal isotropic subspace of W for ,&#x3E;}, and let

LEMMA 1.1: Let U E Q( V). Then the following are equivalent:
(i) U ~ 03A9+(V),
(ii) (,)lu is non-degenerate, symmetric and Q-valued,
(iii) the pair of subspaces U, 8 U form a complete polarization of W,(,).

PROOF : Immediate 0

Now suppose that VI E 03A9+(V1,). Then we have isomorphisms:

and

Let

We then obtain a natural commutative diagram of homomorphisms of
algebraic groups over Q :

The pairs p : H X G ~ Sp( W ) and p’ : G’ X H’ - Sp( W ) are both dual
reductive pairs in the sense of Howe ([4], [9]), and so we have constructed
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a see-saw pair {(G, H), (G’, H’)} as defined in the introduction.
1.2. We now want to describe the embeddings of symmetric spaces

associated to a see-saw pair (1.4).
Assume that

and

so that

Let

and let

where q = poq 1 + p1q0. Then there is a natural embedding

which is equivariant with respect to the homomorphism

Next, viewing W(C) as the complexification of W(R), we define a
Hermitian form F on W(C) by

where w - w denotes the complex conjugation on W(C) and we have
extended (,) to a C-bilinear form on W(C). The form F then has

where 2m = dimRW(R) = 2( po + q0)(p1 + ql). Let
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so that D* is an intrinsic realization of the symmetric space attached to
G*(R) [13].

Let à be the endomorphism of W determined by multiplication by 8
on V, and let W(C) ± be the ± 03B4-eigenspaces of à in W(C). Define
isomorphisms:

Then

and, if we view ~± as giving a C-isomorphism (resp. anti-isomorphism) of
V(R) with W(C) ±, we have, for v, v’ e V(R):

and

Moreover,

for all v and v’ in V(R). Since ~-(03BD) = ~+ (03BD) we also have:

Thus, if ~ ~ D and ~~ is the orthogonal complement of ~ in V(R), we
may define an embedding;

Finally, we define
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This embedding is obviously equivariant with respect to (1.0).
Now if Ul E 03A9+(V1) as above, we have

Let

so that B is a realization of the symmetric space associated to H’(R).
There is a natural embedding

and so we obtain an embedding

equivariant with respect to the homomorphism

If we repeat the construction of D* and (1.8) with Vo in place of V we
obtain

and an embedding

and hence an embedding

equivariant with respect to ’ X 1: H(R) H’(R) ~ G’(R) H’(R). Note
that, if ( po, q0) = (n, 0), then Do reduces to a point and 03B50(D0) is an

isolated fixed point of the maximal compact subgroup i’( H(R )) in G’(R).
Finally, via (1.3) we have
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and

so that we obtain an embedding

which is equivariant with respect to p’ : G’(R) X H’(R) ~ Sp(W(R)).
Thus we have constructed a natural commutative diagram

of embeddings given by (1.9), (1.11), (1.13), and (1.14), and this diagram
is equivariant with respect to the see-saw pair (1.4).

§2. Explicit formulas

In this section we will give more explicit expressions for the embeddings
of (1.15) in the special case of interest to us. Specifically we assume that

and

with p &#x3E; q &#x3E; 0. Later we will take p = n and q = 1. As noted in § 1, in this
case Do reduces to a point and the embedding

is holomorphic.
First recall that for any complete polarization

of the real symplectic space W(R), (,) we obtain an unbounded model
for D* as follows. Choose a basis w’1, ... , wm for W’ and let wl’, ... , wm be
the dual basis for W" so that
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Then for the basis w’,..., 1 w"m, w’1, ... , wm for W(R) we have

and, if ~ ~ D* is spanned by the columns of the matrix

then T = w2w 11 and we obtain an isomorphism

We now let VI E 03A9+(V1) be as in §1 and choose U0 ~ 03A9+(V0). Then
U = Uo ~ oUI E 03A9+(V) and, via Lemma 1.1, we obtain complete polariza-
tions

and

where à and 03940 are as in §1.
Choose Q-bases {fi} for Uo and (e ) for UI and let

and

be the corresponding matrices for (’)0 and (,)1. Then, with respect to the
bases 03940f1, ... , 03940fn, f i , ... , fn f or Wo and 

fl for W we have the iso-

morphisms 
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where m = n ( p + q ). Also the forms ,&#x3E;0 and ,&#x3E; are given by

and

respectively, where Q = Q0 ~ Q1. Define

and

Then if £ G Dô is spanned by the columns of a G M2n,n(C) we write

and let

This gives an isomorphism

Similarly, if ~ ~ D * is spanned by the columns of w E M2m, m(C), we let

and we obtain an isomorphism:
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Note that we also obtain isomorphisms

and

and the extension of these

and

Next choose T0 ~ GL+n(R) and TI E GL+p+q (R) such that

and

where r = p - q. We then have isomorphisms

and
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If we let

we obtain an isomorphism

where

Note that the positive p-plane ~~ is spanned by the columns of T, P’+( X)
where

Similarly, via (1.1) we have

and

If we let

then we have an isomorphism
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where

Again the orthogonal complement ~~ is spanned by the columns of
Tl P +( z ) where

Using the isomorphisms (2.8), (2.9), (2.14), and (2.19) we obtain a
diagram of embeddings

from (1.15).

PROPOSITION 2.1. Fix a choice of data 8= (Uo, To, Ul, T1) with Uo E
03A9+(V0), VI E 03A9+(V1) and To (resp. T1) satisfying (2.12) (resp. (2.13)), as
above. Then the embeddings of (2.22) are given as follows:

(i) If X = (xo, x1) E 9, then

(ii) If X E 8, then

(iii) If z E D, then

where
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and

with

and P±(z) given by (2.20) or (2.21).
(iv) If 03C4 ~ Dn and X ~ B,

where

and

with

and P’±(X) given by (2.15) or (2.16).

PROOF: To prove (i) observe that for X E B the corresponding ~ ~ B is
the span of the columns of T1P’_(X) and hence 03BA(~) is the C-span of the
same columns. Hence the corresponding point of D is (-03B4-1x0, 03B4-1x1)
as claimed.

With respect to the basis for Wo chosen above we have

and so

is given by
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Therefore, since Do is a point,

and

03B50(D0) = span of the columns of To ( To ) .

Hence, according to (2.8),

and so 03B50(D0) = -03B4-1Q-10 as claimed.
To prove (iii), observe that, with respect to the basis chosen above for

W,

and so, again, ~+: V(R) ~ W(C)+ is given by:

Since the q-plane te Dl corresponding to z ~ D is spanned by the
columns of T1P_(z) andf’ is spanned by the columns of T1P+(z), we
find that

03B5(~) = span of the columns of

Then
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Thus the point of Dm corresponding to £( z) is given by

where

and

This proves (iii).
Finally, to obtain (iv), we observe that the point of Dô corresponding

to 03C4 ~ Dn under (2.8) is

T
span AD 1 n ,

and that the orthogonal complement to this in (W0(C), Fo ) is

Then, by (1.14),

where
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and

This completes the proof. D

More explicit formulas may be obtained as follows: Let

and

Since

we have

and

Also

and

Moreover

PROPOSITION 2.2: With the notation of Proposition 2.1,
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where

with

and

Thus

where

Note that R1 is a majorant Of

PROOF: To prove (i) observe that

and

Thus

and (i) follows.
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Similarly, by (iv) of Proposition 2.1.,

Since

we have

and (ii) follows.

3. Automorphy factors

In this section we determine the relations among automorphy factors
which arise from (1.4) and (1.15).

First consider D, which is an unbounded realization of the symmetric
domain associated to U( I ). For g E U(I) and z G D, let

and write

where p.(g, z) ~ GLq(C), and v ( g, z) e GLp(C). Explicitly, if

then

and
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We note that, by [17, (1.19) and (1.20)],

and the Jacobian of the biholomorphic transformation g: D - D is given
by

Recall that if h E H(R) and g E G(R), then

and

Then for g E G(R) and z E D we write

and

Similarly, if h’ E H’(R), then fi’= TI-Ih’TI E O(I) and we write for

X ~ B and P’(X) = [P’_(X), P’(X)], as before,

For

we let

be the usual automorphy factor. If g’ E G’(R) and g E Sp(W(R)), then

and
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and we write

and

PROPOSITION 3.1: Fix a choice of data (3= (Uo, To, UI, Tl ) as in §2. Then
(i) For (h, g) E H(R) X G(R) and z E D,

where w, 1(z) is as in (iii) of Proposition 2.1.
(ii) For ( g’, h’) E G’(R) X H’(R) and for ( T, X) ~ Dn X B, we have

where 03C9’1(X) is given by (2.34).

PROOF. To prove (i) we compute
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which gives the expression claimed in (i).
To prove (ii) we compute, similarly,

This gives (ii). ~

COROLLARY 3.2: With the notation as above,

and
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PROOF. These are immediate consequences of Proposition 3.1 and (3.5).
We also observe that, by (2.30),

where c : H’(R) - G(R) is the natural inclusion. 0

It will be useful later to know the following:

PROPOSITION 3.3 : For z c- D and for 03C91(z) given in (ii) of Proposition 2.1,

where A = A(z) is given by (2.25).

PROOF : We have

with

Let

Then

On the other hand

where A and B are given by (2.25) and (2.26). Thus

using (2.29). Hence
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where the sign is determined by evaluating both sides at z = (-03B4-1 · 1q,
0). Then we obtain the required expression for det 03C91(z) by observing
that

Note that, since 03C91(z) is invertible we must have

§4. Pullbacks and derivatives of theta-functions

We now specialize to the main case of interest for us, and so assume

and

In this section we construct certain holomorphic ( n, 0)-forms on D which
will be invariant under arithmetic subgroups of G1(Q) where G1(Q) = (g
E G(Q) det g = 1}. Such forms were previously constructed by G.
Anderson [1] in a much more general setting. We will then describe the
restriction of these forms to B.

4.1. We fix a choice of data 2= (Uo, To, Ul, Tl ) as in §2 and §3 and
hence we obtain isomorphisms

and, via (2.5),

Note that if A 0 B is an endomorphism of U0(Q) ~ U1(Q), then

is the corresponding endomorphism of Mn+1, n(Q).
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Next we define a certain linear n-th order differential operator which
will play a crucial role. For convenience write M = Mn+1, n(C). Then for
v, W E M let

where w = (Wl,..., w n ) and v = (03BD1, ... , vn), vi, wJ E Cn+ 1. The following
lemma is then easily checked.

LEMMA 4.1: For f E C ’ (M) and for A, C E Mn(C) and B, D E Mn+1(C),
let 

Assume that Dv = 0. Then

Now for a smooth function

we define, for v E M and z E D,

where we identify M ~ Cm via (4.2) and where 1(z) = t03C91(z)-1 with
03C91(z) given by Proposition 2.1. Next let

where

and

The reason for the normalizing factor c«2) will emerge later. Note that
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since

Lemma 4.1 implies that

For any smooth function W: and for g E Sp(m, R) let

where we choose a continuous branch of det J( g, T )1/2 on Dm. Also for a
smooth function 03C8 : D - C and for g E U(I)(R), we let

PROPOSITION 4.2: For g ~ G(R) and for 03A6(~, C) defined by (4.6),

where g = T-11gT1 and (g) = 039B03C1(g)039B-1 as in §2, and where the sign

depends on the choice of branches of the square roots.

PROOF : First let

so that

Then
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Then applying ~(w) to both sides and invoking Lemma 4.1 we have

But now since

and

we obtain, via (3.5),

as claimed. D

We now apply the above construction to reduced theta functions. For
03C4 ~ Dm, v E cm, r, SE Qm, and for any lattice L c Qm, let

be the classical theta function and let

be the corresponding reduced theta function [16]. There then exists an
M E Z &#x3E; 0 such that for all y E Sp(m, Z) with y --- 12m(M),
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where 03BB(03B3) is a fourth root of unity depending only on y and on the
choice of branch of det J( y, 03C4)1/2.

COROLLARY 4.3: If cp is given by (4.13) then 03A6(~, C) is a holomorphic
function on D. Moreover, if

where

is a character of finite order of F*. If

then

defines a fI-invariant holomorphic (n, 0)-form on D.

PROOF: The only point to be checked is the holomorphy of 03A6(~, e), but
it easily checked that, for w E M and for cp given by (4.13)

so that holomorphy follows from (4.9). 0

4.2. We next want to consider the analogous pullbacks with respect to
03B5’.

For 03C4 ~ Dn, XE 18 and v E M and for an arbitrary smooth function

and let
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where

Again the reason for the normalizing factors will become clear later.

PROPOSITION 4.4. If h E H’(R), with det h = 1, and g’ E G’(R), then for a
suitable choice of det J(g’,03C4)1/2,

PROOF : Let

so that

Then

where
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Here we note that

and

so that the only ambiguity in the choice of roots may be absorbed by a
suitable choice for det J( g’, T)I/2. Now if we apply ~(w) to the identity
above and use Lemma 4.1, we obtain the desired result. Note that we use
the fact that

as well as (3.8) and (3.5). 0

COROLLARY 4.5: If T is the reduced theta-function given by (4.13), and if

then Vg cz 0393’*,

4.3. We now want to compare the pullbacks of 03A6(~, C) and 03A6’(~, C)
to B via K and K’. The relation built into our see-saw pair and choice of
normalizations is given by:

PROPOSITION 4.6: 

PROOF. Let

so that

We want to compare (4.9) to its analogue for 03A6(~, C):
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From the construction of the see-saw pair we have

Also, we find that

and

Therefore, putting 03BA(X) for z in (4.9) we obtain

Since

and

we obtain the claimed identity. 0

§5. The f undamental identity

In this section we will show that the period of the holomorphic
( n, 0)-form constructed in §4, over the Lagrangian cycle determined by
K : B ~ D can be expressed as a special value of a certain holomorphic
Siegel modular form associated with the embedding 03B5’.

As in §4 we fix a choice of data C = (Uo, To, Ul, T1). Then for any
reduced theta function 9) given by (4.13) we have functions 03A6(~, C) and
03A6’(~, 1 ) given by (4.9) and (4.23) respectively. Also, the holomorphic
( n, 0)-form 03A6(~, C)(z)dz on D is invariant with respect to the subgroup
Fi c C(Q) defined in Corollary 4.3.

Let r c FI be a torsion free subgroup of finite index and let

where we view H’(Q) as a subgroup of G(Q). Also let
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where H’(R)0 is the connected component of the identity in H’( ). Then
the embedding

induces an embedding

of the orientable n-manifold E’B B into the complex manifold 0393BD. We
want to consider the period:

We will show in §7, Corollary 7.5, that 03A6(~, 1 ) is actually a cusp form
on D ; and it follows easily that 9(T, 6, r ) is always finite. Of course, if
r’ c r of finite index, then

We also consider the integral

where, since there is no dependence on ho here, C1 denotes the partial
choice of data (UI, T1).

Our see-saw pair (1.15), or more precisely (2.22) gives:

PROPOSITION 5.1 : 

PROOF: This follows immediately from Proposition 4.6, and the fact that
03BA*(dz) = -03B4-ndX. 0

REMARK: For our special, case, Proposition 5.1 is the fundamental

adjointness formula (*) of the introduction.
We will now show that the function P’(03C4; ~, C1; f) is, in fact, a

holomorphic Siegel modular form of weight -t(n + 1). First we find an
explicit formula for the integrand.

PROPOSITION 5.2: Let ((,)) be the inner product on U1(Q) ~ Qn+1 1 corre-
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sponding to Q-11, and for XE 18 let «,» x be the majorant of ((,)) on
U1(R) ~ Rn+1 corresponding to R1(X) given by (ii) of Proposition 2.2.

Finally, for T ~ Dn let

Then, if ~ is given by (4.13),

where

and ’(X) = tP’(X)-1 for P(X) given by (2.23). Here if y = (y1,...yn)
with y1 ~ Qn+1, then

PROOF: We begin with (4.23). Since

it is sufficient to compute ~(w) applied termwise to 0(v, e’( T, X)). Now

Also

with 03C901(X) given by (4.21), so that

as claimed. Finally, by (ii) of Proposition 2.2,
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and we obtain the claimed expression for 03A6’(~, 6). 0

We now recall the results of [ 11 ] and [ 12]. Let

be one component of the hyperboloid of two sheets in U1(R). As in [ 11 ]
we may identify the tangent space T-f(B) tofi at ~ with ~~. Then we may
define an n-form Q on B by

where w=(w1,...,n) is an n-tuple in T~()~~~. Here ((,))03C4,~ is as in
Proposition 5.2 but with «,))-f, the majorant of ((,)) associated to ~, in
place of ((,))X.

Fix an orientation of B. It was then shown in [11] and [12] that

is a holomorphic Siegel modular form of weight 1 2( n + 1). Explicitly,

THEOREM 5.3 : The integral (5.11) of the n-form S2 given by (5.10) is

where 03B5(y) = ± 1 and 03B5*(y) ~ Q are defined in [12].

Note that, when n = 1, this result coincides with Hecke’s construction of
theta functions of weight 1 for real quadratic fields or of Eisenstein series
of weight 1 if ((,)) is an anisotropic (resp. isotropic) over Q. Here for
.Y E Mn+1, n(Q), «y, y)) ~ Mn(Q) as in Proposition 5.2. Also, in the first
part of the sum, y is reduced mod E+ as defined in [12].
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where

with 2n/2I(03C4) given by Theorem 5.3. Note that by [12], the Fourier

coefficients of e are cyclotomic numbers with bounded denominators.

PROOF. We have a parameterization

Note that this determines one of the two sheets and an orientation of B.
We now need:

LEMMA 5.5: 

where w# is as above.

PROOF : First we observe that

We then compute

and

On the other hand, we compute w# . By (iv) of Proposition 2.1,
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and

so that

Using this we obtain

Since fIl = Q1T1 we obtain the claimed identity. 0

By this lemma and Proposition 5.2 we conclude that, if 03A9 is the n-form

on É defined by (5.10), then

By Theorem 5.3 and the fact that E+ is torsion free

with e as in the Theorem. Since

we obtain the desired result. 0

Using Proposition 5.1 we obtain the following fundamental identity
which gives an "explicit" formula for the period P(~, 1 ; r ) :

COROLLARY 5.6:

where
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§6. Rationality of periods

In this section we will first show that the K ab-vector space spanned by
the holomorphic (n, 0)-forms constructed in Section 4 does not depend
on the choice of data 1. We will then shown that the ratio of the periods
of an (n, 0)-form in this space, over the cycles arising from various
Ul E 9’(V), all lie in the field Kab.
We must first determine how our constructions depend on the choice

of data C = (Uo, To, U1 , T1). Suppose that C = (U*0 , To*, Ui, Ti) is

another choice of data. Then there exist ao E GLn ( K ) and 03B11 ~ GLn+1(K)
such that the diagrams

and

commute, where io(8), i1(C) (resp. i0(C*), i1(C*)) are the isomorphisms
determined by our choices of data. We let

and

so that, as in (2.13)’ and (2.18), ao E U( n ) and âl E U( I ). Also we have
commutative diagrams:
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and

We let

and

The following lemma is then immediate from the definitions:

LEMMA 6.1: For âo, al’ à. and à as above, the following diagrams
compute:

where i = i(C), i* = i(C*), il = i1(C) and if = 1i(C*) are given by (2.9)
and (2.19) respectively, and -E and -* are given by Proposition 2.1.

where i0(C) and i0(C*) are given by (2.8)

PROPOSITION 6.2. Let 2 and C* be two choices of data as above, and let
di E U(I) and à E Sp(m, Q) be given by (6.4) and (6.8). Then with the
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notation of (4.10) and (4.11),

with

where the sign is determined by the choice of branches.

PROOF: This is essentially the same as that of Proposition 4.2 so we omit
it. 0

Proposition 6.2 has several consequences. First let J(Kab) be the Kab
vector space generated by the functions T (v, T, r, s) for r, s ~ Qm.
Observe that, if g E Sp(m, Q) and T E GJ(Kab), then cp | g ~ J(Kab). For
a choice of data 1 and for ~ ~ J(Kab) we have the holomorphic (n,
0)-form on D:

where i(C): D ~ D is given by (2.19). Let D(Kab, C) be the Kab-vector
space generated by the ~(~; C-)’s for cp ~ J(Kab).

COROLLARY 6.3: The space GD( Kab, e) is independent of the choice of e. In
particular, if 99 E 5-(K b)@

where à E Sp(m, Q) is determined by (6.8) and where c(2, 2*) is as in
Proposition 6.2. Note that c( 2, 2*) lies in a quadratic extension of K.

PROOF : Suppose that 11 = ~(~, C*) E 6D(Kab, 2*) with cp E J(Kab). Then
by Proposition 6.2 and diagram (i) of Lemma 6.1 we have

Now 11( cP 1 a; 8) E D(Kab, 8) since ~ |  ~ J(Kab). D

By Corollary 6.3 we have an intrinsic Kab vector space D(Kab) of
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holomorphic (n, 0)-forms on D determined only by the pair (V0, VI).
Note that the space D(Kab) is actually invariant under the action of
G(Q). For any torsion free subgroup r c G1(Q) and commensurable
with the subgroup rl of Corollary 4.3, let

If ~ ~ D(Kab)0393 and U1 ~ 03A9+(V1), we may define the period

where E+ = F ~ H’(R)0.
We can now state our main rationality result:

THEOREM 6.4: Let f c G1(Q) be commensurable with the subgroup Il of
Corollary 4.3 and let 11 E D(Kab)0393. Let UI, Ui E 0’(VI) and assume that
P(~, U*1, 0393) ~ 0. Then

PROOF: Choose data 6= (Uo, To, UI, Tl ) and 6* = (Uo, To, Ui, T*1) and
write

with ~ ~ J(Kab). Then by Corollary 5.6.

On the other hand, by Corollary 6.3, we may write

so that

Thus
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with 03C40 = -03B4-1Q-10.
Now, as in Shimura [15], let

Mk(Kab) = {f|f is a Siegel modular form of weight

k on Dn with Fourier coefficients in Kab}
and let

By [15, p. 266, (10)],

where R is the field of arithmetic automorphic functions in the sense of
canonical models [14].
We observe that, by the same argument as in Shimura [16, Prop. 1.5]

lies in (to (Kab). In fact, if gp E CS (Kab), then by [ 11, Prop. 1.1], for all y in
some congruence subgroup of Sp(n, Z), we have:

with a certain root of unity 03C8(03B3). But then if (p and ~* are in J(Kab),

where 03B3 ~ ~(03B3) is a character of finite order of some congruence

subgroup of Sp(n, Z). If n &#x3E; 1, then the congruence subgroup property
for Sp(n, Z) implies that the kernel of X is again a congruence subgroup.
Thus such products lie in Mn+1(Kab) since the ~’s here have Fourier
coefficients in Kab. If n = 1, then the functions i1( T; (p, 0,; r) are Kab
linear combinations of Hecke’s binary theta-functions attached to real
quadratic fields [11], and his Eisenstein series of weight 1, and hence lie
in M1(Kab). Thus we may write

which proves our claim.
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Now the point To =  is an isolated fixed point in the
sense of [14] associated to the data ( Mn ( K ), K, y H Qû where

c’ is the natural extension of the corresponding homomorphism in (1.4).
Hence by [ 14, (2.5.4) of the Main Theorem],

f(03C40) ~ Kab

as claimed.

7. The Fourier Jacobi Expansion; Arithmeticity

In this section we assume that the Hermitian space V1,(,)1 is isotropic,
and we determine the Fourier-Jacobi expansion of the function 03A6(~, C).
We then show that, up to a constant independent of (p, the coefficients in
this expansion are arithmetic theta-functions as defined by Shimura [16]
and hence that 03A6(~, 6) is an arithmetic automorphic form in the sense of
[ 17].

Since V1,(,)1 is isotropic we may choose a Witt decomposition

so that dim , V,’ = dim KV"1 = 1, dim , VIO = n - 1 and (,)1|V’1 = 0,(,)1|V"1 = 0
and (V10)~ = hl + V"1. Next choose U1 ~ 0+(VI) so that there is a Witt
decomposition

which gives (7.1) when tensored with K. Choose a 0-basins eo,..., en for
Ul with U’1 = Qe0, U"1 =Qen and U10 = span{e1, ... , en-1}, so that, for
this basis,

and we may assume that

with tT’1R1T’1 = 1 n - l’ Finally, complete the choice of data 1 by taking any
Uo E 9’(V.) with Q-basis f1,...,fn and To as before.

In order to obtain the Fourier-Jacobi expansion of the form 
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we consider the complete polarization of W defined by

with

and

Thus W" has Q-basis :

and W’ has Q-basis:

With respect to the basis f1 ~ en"", 0394(fn ~ eo ) for W we find that

with

Then the procedure of Section 2, (2.9), yields an isomorphism

The proof of the following result is then analogous to that of Proposition
2.2.
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PROPOSITION 7.1 : Under the identifications (7.10) and (2.19) determined by
e,

is given by

with

In particular

with

where

and
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Finally,

We next want to compare this formula with that given in Proposition
2.2. Let

with r = n (n - 1) and let

Also let

LEMMA 7.2: Let - and -* be the embeddings of II) into given by
Proposition 2.2 and Proposition 7.1 respectively. Let

Then the following diagram commutes:

PROOF: Immediate from the definitions. D

Now for a function T: Cm  Dm ~ C define
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PROPOSITION 7.3: Let 03B2 be as in Lemma 7.2. Then

where the sign depends on the choice of square roots.

PROOF: This is analogous to the proof of Proposition 6.2 and Proposition
4.2 so we omit it. D

Thus to obtain qualitative information about the Fourier-Jacobi ex-
pansion of the function 03A6(~, C) we need only compute the Fourier-Jacobi
expansion of the function 03A6*(~, 1 ) where T is an elementary reduced
theta-function given by (4.13); since, for an arbitrary (p ~ J(Kab), cpl,8 is
a Kab-rational linear.combination of such functions. In fact it will be
sufficient to consider the case where L = Z ’.

For the reduced theta-function given by (4.13) with r, s ~ Mn+1,n(Q),
and L = Zm, write 

Let

For such a 99, the Fourier-Jacobi expansion of 03A6*(~, C) is given by:

PROPOSITION 7.4: For (p given by (4.6), and z = ( zo, z1) E 0),

where

with p = ro - 8-Ir2’ and
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with 11 = So + 03B4s2.

PROOF: We begin with (7.14) which, by the same argument as in the

proof of Proposition 5.2, gives

with

Write

Now

so that

where a = Yo - 03B4-1y2. Also

By a straightforward calculation starting from the formula for 03B5*0(z)
given in Proposition 7.1, we find that
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Then a suitable arrangement of terms in (7.15) gives the desired formula
for 03A6*(~, C). Note that if q = so + SS2, then

REMARK: If we let

and

and view

then

Since the constant term g0(z1) ~ 0 we have the following:

COROLLARY 7.5: For all ~ ~ J(Kab) and for any C, 03A6(~, CS) is a cusp

form.
We now recall Shimura’s definition [17] of arithmetic automorphic

forms of D, specialized to our case.
The unipotent radical of the parabolic subgroup of G(Q) determined

by the Witt decomposition (7.1) is

Let r c G1(Q) be an arithmetic subgroup commensurable with rl of

Corollary 4.3, and assume that
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for lattices C c Kn-1 and J’ ~ Q. Let J be the dual lattice of J’. If f ( z ) is
an automorphic form of weight n + 1 on D with respect to r, i.e. f ) y = f
for all y e r where f ) y is defined by (4.11 ), let

be the Fourier-Jacobi expansion of f. Also, for x E K n -’ let

be the Fourier-Jacobi expansion of f y(x, 0). Then f is arithmetic if for
all x ~ Kn-1 and for all t E J,

We may now state the main result of this section.

THEOREM 7.6: For T ~ Dn-1, let 8( T) = 0(0, T; 0, 0) be the theta function
defined by (4.5) in the case m = n - 1. Then for any cp ~ J(Kab) the

function

is arithmetic, i. e.

in the notation of [ 17, §2, p. 580] with p = 03B8(03B4R-11)n+2. Here R is given by
(7.3).

PROOF: By Proposition 4.2 and writing y = y(x, 0) for x E Kn-I, we have

Thus it is sufficient to prove that for all r, s e Mn+1,n(Q) and for all t
and a as in Proposition 7.4,

But now
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We may also write

where

and

Thus, up to the factor 03B4n det R-1/21, gt,03B1(0) is the value at the point
of a K-linear combination of theta functions with spherical

harmonic :

associated to the positive definite quadratic form Qû 1. These functions
have weight 1 2n + 1 with respect to a certain congruence subgroup of
Sp( n - 1, Z) and have Fourier coefficients in Qab - see, for example, [2].

Therefore we find that

and the theorem is proved.

8. A non-vanishing result

In this section we will prove the non-vanishing of certain of the periods
P(~, Ul, r). We suppose that V0,(,)0, V1,(,)1 are given and we fix a choice
of data e = (Uo, To, UI, TI).

THEOREM 8.1: 0 abC. Then for any U, E Q+(VI)
there exist r c G1(Q), commensurable with 03931 of Corollary 4.3, and 11 E
D(C)0393 such that
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REMARK: Let 0393BD be a smooth compactification of 0393BD as constructed
in [3, Chapt. 4], and let K : ru B B ~ 0393 B D be the Lagrangian cycle
corresponding to UI. Let F be the closure of the image of 0393U1 B B
in 0393 B D and let [U1]0393 ~ Z) be the corresponding homology
class. Also observe that by Proposition 7.4 and the criterion of [3, Chapt.
4] and 11 E D(C) extends to a holomorphic (n, 0)-form on 0393B D. Thus
Theorem 8.1 says that for any U, there exists a r such that [U1]0393 ~ 0 and
in particular [U1]0393 defines a non-zero linear functional on the space

This non-vanishing result is analogous to the

result of Wallach [18].
Before proving Theorem 8.1 we must introduce certain spaces of

functions. Since we have fixed 1 we obtain isomorphisms

Fix a lattice L c U1(Q) such that the dual lattice L* with respect to the
form ((,)) on Ul, defined in Proposition 5.2, contains L; L* ~ L. Also let
E(L) = {h~SO(U1)|hL = L and h acts trivially in L*/L} and fix a

torsion free congruence subgroup E c E ( L ) such that

This can be done by [10] Proposition 6.1. For each M E Z &#x3E; 0 let

For convenience let L* = (L*)n and L = L", viewed as lattices in W(Q)
via (8.1). Then for r, se M-’L*IML- and 03C4 ~ Dn, let ~(03C4, r, s, M) be

given by Theorem 5.3 with ML in place of L and E ( M ) in place of E+ in
the summation. Let

D’(M) = C-linear span of the functions ~(03C4, r, s, M)

Note that if M M’, then we have the "distribution relation":

and so there is a natural inclusion
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Define

The following is then easily checked:

LEMMA 8.2: The space GD’ does not depend on the choice of L or E, and is
stable under the action of Sp( n, Q) given by

Next view L as a lattice in Mn+ 1 n(Q) and for M E 1. &#x3E; 0, T cz
03BD ~ Cm and r, s ~ M-1*/M let T (v, T, r, s, M) be given by (4.13)
with ML in place of L. Let

and define, again for the natural inclusions,

Again this space is independent of the choice of L and stable under the
action of Sp(m, Q) defined by (4.10).

Finally let D(C) = D(Kab)~ Kab C with D(Kab) defined in Section 6.
Since we have fixed e, we may identify D(C) with the space of 03A6(~,
C)dz’s for cp E ’5, and so we have a surjective linear map

which is p-equivariant by Proposition 4.2. For fixed M there is a

surjective linear map

which is well defined by Theorem 5.3.
Since by (8.1) the diagram
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commutes, we may define a surjective linear map

which is p’-equivariant by Proposition 4.4.
The fundamental identity, Corollary 5.6, now says that for any r c

G1(Q) as in Section 5 and for any (p E J03C1(0393),

where Er = {03B3 ~ r ~ H’(Q)| det y = 1), ro = - 03B4-1Q-10 and

PROOF oF THEOREM 8.1: By Theorem A of the appendix we may choose
à E GD’ with e ~ 0. Since the Sp( n, Q) orbit of -03B4-1Q-10 ~ Dn is dense in
Dn and since D’ is stable under Sp( n, Q) we may assume that ~(03C40) ~ 0.
Choose T OE 5 such that I(~) = ~. Choose a subgroup r c G1(Q) as in
Section 5 and such that T E ’5’ p(r) and Er = r n Hl (Q) c E where E is as
in (8.2) above. Then for q = ~(~; 6),

as claimed.
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Appendix

We want to prove

THEoREM A.1: With the notation of Section 8:

The proof will be based on the following proposition which complements Lemma 11.4
of [ 10] : Let f be a totally real field with f : Q = r and let 19 be the ring of integers of f. Let
V,(,) be a f-vector space with a nondegenerate symmetric bilinear form and assume that
V,(,) is indefinite at at least one infinite place of f. Let L ~ V be an U-lattice such that the
dual lattice

contains L. Let G = SO( V,(,)) viewed as an algebraic group over f and let

G(L) = {g ~ G(t) gL = L and g acts trivially in L*/L}.

Let 0393 ~ G(L) be a (torsion free) congruence subgroup. Finally, for any integral 19-ideal a,
let

be the reduction map.
Let m = dimfV, and for any 03B2 = t03B2 E GLm-1(t), let

PROPOSITION A.2. Assume that there exists a compact open subgroup S c G(Df), the finite
adèles of G, such that

and
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with Sv compact open in G(f,,). Then there exists an integral O-ideal a such that the induced
map

on r -orbits is injective.

PROOF: It is sufficient to prove that if Xl, X2 E L*03B2 are such that r. Xl rl r. X2 = cp, then
there exists an ideal a such that

Suppose that no such a exists. Then by the first part of the proof of Lemma 11.4 of [10]
there exists an 11 E G ( f ) such that ~X1 = X2. Let 2 = {v finite place of f | ~ e Sv}. Then as in
the proof of Lemma 11.4 of [10] there exists an element IL E S such that Vv e 1,

But since q and 03BC03BD are unique, we must have q = 03BC03BD ~ Sv for 03BD ~ 03A3. Thus E = ç and
71 E G(f) ~ G~S = r which contradicts our assumption about Xl and X2, and the lemma is
proved. D

COROLLARY A.3. For any X E il there exists an integral 6 ideal a such that

Now by specializing to the case f = 0, and the 0-space Ul,«,», with lattice L as in
Section 8, we can give:

PROOF OF THEOREM A.1: Take X E * with (X, X) = fi &#x3E; 0. Also by Corollary A.3 choose
M E Z &#x3E; 0 so that

where E is the congruence subgroup chosen in Section 8. Note that we may assume the E is
defined by a compact open subgroup as in Proposition A.2. Then consider the coefficient
a(03B2) of e(1 2tr(03C403B2)) in the Fourier expansion of the function

Then

since for y E E, 03B5(03B3X) = 03B5(X). Thus, in particular, 03B8 ~ 0 and the theorem is proved.
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