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0. Introduction

Let G be a real connected semisimple Lie group with finite center and
G = KAN its Iwasawa decomposition. Let a be the Lie algebra of A.
Then the "Iwasawa projection" H : G ~ a is defined by

It is well-known that this projection plays an important role in the
harmonic analysis on G. For instance the matrix coefficients of the prin-
cipal series of representations of G (the elementary spherical functions
being a special case) may be expressed as integrals of the form

Here a E A, g is an analytic function on K expressed in terms of matrix
coefficients of representations of K, and 03BB, the eigenvalue parameter,
belongs to IF, the complex dual of a. The asymptotics of the matrix
coefficients as the group variable a tends to infinity have been studied
for a long time, starting with the pioneering work of Harish-Chandra
[28], [29]. He made a careful study of the system of differential

equations satisfied by them. However, matrix coefficients also have the

* Work partially supported by NSF Grant MCS 79-03184 while the author was a He-
drick Assistant Professor in the University of California at Los Angeles during 1977-1979.
** Work partially supported by NSF Grant MCS 79-03184.
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integral representation (0.2) which appears more suitable for studying
their asymptotics when 03BB goes to infinity. A major aim of this paper is to
do this.

Keeping Re À = q fixed and absorbing the factor e,,(H(ak» in the

amplitude g, we see that (0.2) becomes

Here Im 03BB = 03BE E a* and H = H03BE is the corresponding element of a de-
fined by (.,.&#x3E; is the Killing form of g):

If we replace H by iH in (0.3) and let i ~ + oo, then the principle of
stationary phase tells us that the main contributions to the asymptotic
expansion of (0.3) (in r) come from the critical points of the "phase
function" Fa,H on K defined by

Geometrically this function can be interpreted as testing the Iwasawa
projection restricted to the right K-orbit of a in the symmetric space
KBG, by a linear form 03BE on a.
The study of the critical points of the functions Fa,H, which we carry

out in sections 5 and 6, reveals that the critical set of Fa, H is equal to the
union of the smooth manifolds K.WKH, where w runs through the Weyl
group m of (G, A). Here Ka, resp. KH is the centralizer of a, resp. H in K.
(Because m is defined as the normalizer of a in K modulo the centralizer
M of a in K, the notation wKH makes sense, as always KH ~ M (H E a).)

It is a very remarkable feature of these critical manifolds that they
only depend on the sets of roots vanishing on w-1 log a, resp. on H. So
there are only finitely many possibilities, and in particular the critical
sets do not change at all if the parameters a, H are varied in an equisin-
gular way. Specifically, for regular ( = generic) a, H, the function Fa, H is a
Morse function on K/M whose critical points are always the Weyl
group points.

Secondly, even for singular a, H, the Hessians of Fa,H at the critical
points turn out to be nondegenerate transversally to the critical mani-
folds, that is the Fa, H have critical point sets which are clean in the sense
of Bott.

The third important property of the Fa,H is that, apart from their
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trivial left Ka-invariance, they are also right KH-invariant if H E Cl(a+),
the closure of the positive Weyl chamber. This right KH-invariance
property is somewhat surprising, and in general not true for arbitrary
H~a. These properties come up in our systematic study of the Fa,H
which is decisive in the investigation of (0.3) when 11H11 ~ oo.

It turns out that much light can be shed on the behaviour of the
functions Fa,H, in particular their right KH-invariance, if one compares
them with their "infinitesimal" counterparts fX,H defined by

(This is also the phase function in the integral formula for spherical
functions on Cartan motion groups, see Gindikin [25].) Here X, H~a,
and we always compare fX,H with Fa,H when a = exp X. It is already
clear from (0.6) that the fX,H have much simpler structure than the Fa,H.
Geometrically, the functions fX,H can be viewed as testing the or-

thogonal projection of the Ad K-orbit of H (in g) onto a by linear forms
on a. Note that actually Ad K(H) is contained in the orthogonal comple-
ment s of f in g.
The functions fX,H possess the same qualitative features as the Fa,H,

that is they have the same critical set KxmKH, which moreover is clean.
But in addition (and in contrast with the Fa,H) they are obviously left
Ka- and right KH-invariant. Furthermore, when fX,H is regarded as a
function on the flag manifold K/KH, there is a natural K-invariant

Riemannian metric 03B2H on K/KH such that the gradient flow of fX,H is
equal to the action of the 1-parameter group t ~ exp tX on K/KH. Here
we identify K/KH with the homogeneous G-space G/G(H), G(H) being a
suitable parabolic subgroup of G. Moreover, this flow turns out to be
linear (!) in the natural affine coordinates on the Bruhat cells, the cells
themselves appearing as the stable manifolds at the Weyl group points.
Many of these properties of the fX,H have been obtained before by

Bott [9] in the case of complex G (in fact for K modulo the centralizer
of a torus for any compact K, but this is the same as the case of complex
G, see Remark 2.2), and furthermore Hermann [35] and Takeuchi and
Kobayashi [59] for general real G. Bott and Takeuchi-Kobayashi
studied these functions in order to obtain information about the to-

pology of the flag manifolds using Morse theory. More recently, the
rigidity of the critical points has been used by Heckman [32] to give a
simple geometric proof of a theorem of Kostant [42]. This asserts that
both the image of k H H(exp X . k) and of k ~ Ea(Ad k-1(X)), with Ea the
orthogonal projection s ~ a, are equal to the convex hull of the Weyl
group orbit of X in a.



312

As a preparation for our study of the functions Fa,H, and also because
we think these properties deserve wider attention, we give a self-

contained review of the basic properties of the functions fX,H in sections
1 and 3. A short survey of their applications to the topology of the
(complex and real) flag manifolds, both in terms of Morse theory and of
the Schubert calculus, is presented in section 4. In section 2 we collect
some basic facts about centralizers and parabolic subgroups which are
used throughout the paper.
Now let us return to the oscillatory integrals (0.3) with H replaced by

03C4H, 03C4 ~ + 00. The cleanness of the critical sets of the Fa,H allows us to
obtain a full asymptotic expansion (with a, H kept fixed) by a direct
application of the method of stationary phase. The result is stated in
section 9. Treating a, H as parameters in the phase function, one ob-
serves a "caustic" behaviour of the asymptotic expansion if a, H become
singular, that is log a, resp. H enter root hyperplanes. As a consequence
there is a nontrivial problem of obtaining sharp estimates when i ~
+ oo, which are uniform in the parameter H~a (not to speak of a).
Using the rigidity of the critical sets and the right invariance properties
of the F,,,Hl we are able to obtain such uniform estimates when a is kept
in a compact subset of A.
The upper bounds are in terms of simple functions of product type (cf.

Theorem 11.1), suggested by the radial asymptotic expansions obtained
in section 9. This situation is very different from what happens if the
phase function belongs to a generic family of functions depending on
parameters. In that case one gets uniform asymptotic expansions in
terms of generalized Airy functions; these themselves have quite com-
plicated behaviour, cf. Duistermaat [19, section 4].
For elementary spherical functions on complex groups this behaviour

can be read off directly from the explicit formulae for them given in
Harish-Chandra [28] and for the special case of SL(n, C) by Gelfand
and Naimark [24, §9]. For general real G no such explicit formulae are
known.

The proof, involving partitions of the closures of the Weyl chambers
in the H-space a into suitable sectors, occupies section 11. The main

feature that makes it work is that at a common critical point the phase
functions can be brought into a "trigonal form"; this allows us to use the
classical Morse lemma repeatedly. It would be interesting to make the
phase functions Fa,H equivalent, by a smooth coordinate transformation
depending smoothly on the parameters a, H, to phase functions for
which the product structure of the asymptotics of the oscillatory in-
tegrals could be read off more directly. However, we could not even
make Fa,H and fX,H equivalent to each other in this sense, despite the
fact that their qualitative behaviour is very much the same.
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In a subsequent article we hope to extend the uniform estimates in H
to the case that also a is allowed to run to infinity, and to apply them to
obtain sharper bounds for the remainder in the asymptotics for the
spectra of compact locally symmetric spaces in DKV [20].

It may be remarked that for elementary spherical functions and for
regular a, the asymptotic expansions as the eigenvalue parameter runs
to infinity, can also be obtained by a careful analysis of the asymptotics
of Harish-Chandra as a runs to infinity. For instance, one can use the
improvements of Gangolli [23]. However, the method of stationary
phase is more direct and is applicable to more general integrals, when
the amplitude g is arbitrary and a is allowed to be singular. It may also
be observed that our estimates are uniform in the representation, that is,
the constant factor depends only on a norm on the space of amplitudes
g.
We now come to the last topic of this article. In the study of spectra

of compact locally symmetric spaces via the Selberg trace formulae (cf.
DKV [20]) one actually needs estimates for oscillatory integrals of the
type

Here Cy is the conjugacy class of a semisimple element y of G, dC03B3(x) is
an invariant measure on cy and g is a smooth function with compact
support in G. In section 8 we study the corresponding phase function

FH, y on Cy, defined by

Again it turns out remarkably that FH, y has a clean critical point set;
and it is rigid in its dependence on H because it is equal to Cy n GH, GH
= the centralizer of H in G. The corresponding asymptotics of (0.7) if H
is replaced by 7:H and 7: - + oo, is described in section 10. In the same
section we also apply this asymptotic expansion in order to obtain a
detailed analysis of the singularities of the distributions Ty which appear
in DKV [20]. Finally the rigidity of the critical sets allows for sharp
upper bounds which are uniform in H (only for fixed y however); these
are proved in section 12. The method of proof here in fact leads to a full
asymptotic expansion of (0.7) which is uniform in Nea, and applies
equally to the integrals (0.3) if a is restricted to an equisingular set.

It is somewhat surprising that phase functions and oscillatory integrals
associated to the Iwasawa projection have not been studied systemat-
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ically before. To our knowledge the only exception to this is the work of
Cohn [14], who used this point of view in his study of the asymptotics of
Harish-Chandra’s C-functions. These C-functions appear in the leading
terms of the asymptotic expansions of the matrix coefficients as a - oo .
They may be expressed as integrals similar to (0.2) but taken over N
= ON, 0 being the Cartan involution of G. We compare our results with
Cohn’s in section 7.

NOTATION: Generally our notation is standard and is the one used in
our paper DKV [20].
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1. The functions fX,H

Consider the adjoint action of K on s, the orthogonal complement of
f in g with respect to the Killing form. For H~s the mapping k H Hk
= Ad k(H) defines a diffeomorphism from the "flag manifold" K/KH
onto the Ad K-orbit through H. (For example, if G = SL(3, R), N ~ 0, H
singular, then K/KH is the projective plane and k H Hk is the Veronese
mapping, embedding the projective plane into a 5-dimensional

Euclidean space.) Testing this map by linear forms on 5 amounts to
looking at the smooth functions

on K, here X E S.

LEMMA 1.1: k is a critical point for fX,H if and only if [X, Hk] = 0.
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For any Y~,

This being equal to zero for all Ye f means that

If X is a regular element ouf 5 then its centralizer in 5 is a maximal
abelian subalgebra a of 5. Because fX,H obviously has critical points on
the compact manifold K, it follows that each Ad K-orbit in s intersects
a. In turn this implies the conjugacy under K of all maximal abelian
subalgebras of 6. This proof of the conjugacy is essentially the one by
Hunt [37] for complex groups, generalized to real G by Helgason [33,
Ch.V. Lemma 6.3].

In view of the conjugacy result it is sufficient to consider functions

fx, H only for X, H E a, as we shall do from now on.

PROPOSITION 1.2: If X, H E a then the critical set of fX,H is equal to

Here w is the Weyl group, the normalizer of a in K modulo the centralizer
M of a in K. So the notation wKH makes sense because KH::J M.
Moreover,

Let [X, Hk] = 0, that is Xk 1 ~ 9H. Go is a connected reductive Lie
group with maximal compact subgroup Ko and A as the vector sub-
group in its Iwasawa decomposition. Applying the conjugacy theorem
to Xk-1 we get 1 c- Ko such that (Xk-1)l = Xlk -1 ea. According to a well-
known lemma of Harish-Chandra [31] there is then an element w~m
such that (Xlk-1)w = X, or xwlk-1 ~ KX if xw~K represents w. This

shows that

Because obviously fX,H is left Kx and right KH-invariant and the Weyl
group elements are stationary points, we have also

combining we get (1.3).
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For the second statement, taking X regular we get

Now, if MwKH n KH =1= 0 then w E mH. This implies that w is generated
by reflections corresponding to roots vanishing on H. But such reflec-
tions have representatives (modulo M) in KH. So KH c MKH. Finally
KX = Ko M follows from Kx = MK0X by applying the map x ~ x-1.

KX,H, being the union of finitely many orbits of the left-right action of
the compact Lie group Kx x KH, is a union of finitely many smooth
compact connected components. In general they may have different di-
mensions. The situation is clarified further in the following

PROPOSITION 1.3: We have the disjoint union

where the union is over a complete set of double coset representatives. If
7rK/M denotes the projection: K ~ K/M one also has the disjoint union

and all components of the Kx x KH-orbit KxwKH have the same dimen-
sion equal to dim M plus

PROOF: KxwKH = w1Kw1(w-1ww2)Kw2Hw-12, which allows a re-

duction to the case that X and H are contained in the closure of

the positive Weyl chamber. If KXwKH n KXw’KH ~ 0 then

G(X)wG(H) n G(X)w’G(H) ~ 0 where G(X), resp. G(H) are the corre-
sponding parabolic subgroups of G as defined in section 2. But then it
follows from the theory of Bruhat decompositions (cf. Borel-Tits [7,
5.20]) that w’ EWxWWH’
The next statement follows from the observation that KxwKH and

K0XxwK0H have the same image under nK/M in view of (1.4). Since the
KXwKH are right M-invariant their disjointness in K implies the dis-
jointness of their images in K/M.

Because KxwKH = wKX’KH with X’ = w-1X, the left hand side in

(1.10) is equal to the dimension of (X’ + H)~m, the orthogonal
complement of m in X’ + tH. Now the map Y- Y + 03B8Y is a linear iso-
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morphism of n with 1 0 m; and if E is any subset of a, YE n centralizes E
if and only if Y + 0Y centralizes E. From this one finds that I + 03B8 is an
isomorphism between nX’ + ttH and (f,, + tH) e m, proving (1.10).

Next we compute the Hessian of fX,H at its stationary points.

PROPOSITION 1.4: Let k = uxwv with u~KX, xw a representative of
WEW and v E KH. Then, for each Y~:

Here Fa denotes the orthogonal projection: t ~  n (ga + g-03B1) and the

inner product in f is equal to minus the Killing form.

PROOF: fX,H(uxwvexptY) = fX,H(xwexptYv) = fw-1X,H(exp t Yv) re-

duces the computation to the case that k = 1. Now Ad(exp t Y)
= exp(t ad Y), so the Taylor expansion of the exponential function yields

Writing Y = 03A303B1~0394+ Y03B1 + 0 § modulo m, with Y03B1~g03B1 (hence 03B8Y03B1~g-03B1), the
right hand side is equal to

Here it has been used twice that g03B1, g03B2&#x3E; = 0 unless f3 = -a, and that

COROLLARY 1.5: At each critical point, the Hessian of fX, H is nondegen-
erate transversally to the critical manifold. 1 n other words, fX,H has clean
critical point set in the sense of Bott [10].

REMARK 1.6: The dependence of the critical set of fX,H on the para-
meters X, H has a highly nongeneric rigidity. Because of (1.4), Kx only
depends on K0X, that is on fx, which in turn is determined by the set of
roots vanishing on X. Because KH behaves similarly, there is only a
finite number of possibilities for the critical set KXmKH. Now for a gen-
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eric family 03B5~f(03B5,x) of functions of x, one has for each e isolated critical
points x, depending smoothly on e if B varies in the complement of the
so-called "catastrophe set" of Thom. When e approaches the

catastrophe set, some of the critical points coalesce in a root type
manner, that is they come together with a velocity which runs to infinity
as e reaches the catastrophe set. In contrast, regarding the fX,H as func-
tions on K/M, we have for regular X, H nondegenerate critical points
which are equal to the elements of the Weyl group m. In particular they
don’t move at all as the parameters vary. Only, if the X, H enter root
hyperplanes (their union being the catastrophe set in this case), the crit-
ical set becomes a smooth manifold connecting some of the previous
critical points. Because fX,H is transversally nondegenerate, all points of
these critical manifolds are indistinguishable from the qualitative point
of view; so there is no special role left for the original critical points. If
X, H move within these hyperplanes, the critical manifold again remains
fixed, until the intersection of more hyperplanes is reached; at that

moment the critical manifold changes abruptly into a higher dimen-
sional manifold connecting more of the original critical points.

REMARK 1.7: The rigidity of the critical sets in their dependence on
X, H, together with the fact (read off from (1.11)) that fX, H has only one
local maximal (resp. minimal) value, equal to X, wH&#x3E; for some w e m,
have been used by Heckman [32] in his proof of the convexity theorem
of Kostant [42], see also Berezin and Gel’fand [2]. This theorem states
that the image of the very "roundish" object Ad K(H) under the or-
thogonal projection Ea:s - a is equal to the convex hull of the finitely
many points

For instance, the equilateral triangle in the plane appears this way in the
film of Banchoff [1] about the linear projections of the Veronese

surface.

REMARK 1.8: As another application of (1.2), the image of the tan-
gent map at k of the mapping IF: k 1---+ Ea(Hk) is equal to the set

{Ea([Y, Hk]) 1 y E fl. Using root space decompositions, one verifies easily
that this space is equal to the span of the Ha, a running over the positive
roots such that the (ga ? g-03B1)~s component of Hk is not equal to zero.
That is, also the image spaces of the tangent maps of IF have only
finitely many positions. As a consequence the set of singular values of IF
is piecewise linear, each piece being parallel to a span of some Ha’s.
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REMARK 1.9: The results of this section could be extended to the case

that H E a,, the complexification of a. Note that if H, H’ E a then k is a
critical point for fX,H+iH’ if and only if it is critical for both fX,H and
fx, H. simultaneously. For further information about simultaneous crit-
ical points, see Lemma 11.3.

REMARK 1.10: The flag manifold K/KH is actually a homogeneous
space for the big group G rather than K. That is K/KH  G/G(H) for a
so-called parabolic subgroup G(H) of G, which will be introduced in the
next section.

2. Parabolic subgroups and flag manifolds

In this section we give a brief review of some facts concerning parabo-
lic subgroups of semisimple groups and the associated flag manifolds.
One purpose is to explain the connection with the "flag manifolds"
K/KH of section 1, another is to establish notation. For more detailed
treatments we refer to Borel [6, Ch. IV], Borel-Tits [7, §§4, 5] and
Varadarajan [65, II. 6].
Let G be a connected linear algebraic group over C. A parabolic

subgroup of G can be defined as a closed subgroup P such that G/P is a
projective variety; this space is called the corresponding flag manifold.
An equivalent characterization is that P is a closed subgroup which
contains a Borel (= maximal connected solvable) subgroup B of G.
Basic facts are that all Borel subgroups of G are conjugate to each other
and that all parabolic subgroups of G are connected (see, for instance,
(11.1) resp. (11.15) in [6]).

Because the connected solvable radical is contained in any Borel sub-

group, it is always divided away when passing to G/P. Hence it is

sufficient to assume that G is semisimple when studying flag manifolds.
Let c be a Cartan algebra in g and let g = c (B 03A303B1~0394 9« be the corre-

sponding root space decomposition. As usual, if 4+ is a choice of

positive roots, we write n = LcxeLt + g03B1. Then b = c Q n is a solvable Lie
algebra.
More generally, let S be the set of simple roots in A +. For a subset

of S, possibly empty, we write 4(W) for the set of roots in LI that are

integral linear combinations of elements of e only; and we put A’(0)
= d + n 0394(03A6). We then define
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Obviously, p, is a Lie algebra, containing b. Conversely, any Lie algebra
in g containing b is of the form :p, for some 0 c S. A glance at the
reductive Lie algebra

in p03A6 shows that p03A6 is solvable only if 03A6 = 0; that is, b is a maximal
solvable Lie algebra (Borel algebra) in g. Using this one obtains that B,
the normalizer of b in G, is a Borel subgroup. More generally, the Lie
algebra p03A6 is equal to its own normalizer in g; so the normalizer P03A6 of
p03A6 in G is a closed subgroup of G with p,, as its Lie algebra. If now P is
a parabolic subgroup of G containing B, then p = Lie (P) is of the form
p03A6, for some 0 c S; and it follows that P = P,.

In other words, we get a bijective correspondence W - Po between the
subsets of S and the parabolic subgroups of G containing B. The P, are
called the "standard" parabolic subgroups with respect to the choice of c
and d + .
Now let us turn to the case in which we actually are interested,

namely that G is a connected real semisimple Lie group with finite

center. A subalgebra p of g = Lie (G) will be called parabolic if its com-
plexification pc is parabolic in g,, that is, if it contains a Borel subal-

gebra of g,. A parabolic subgroup P of G is defined as the normalizer in
G of a parabolic subalgebra p of g; and G/P is called the corresponding
flag manifold. In contrast to the complex case, P need not be connected.
The connection with the algebraic theory can be made by taking G

= Aut (gc)0, which is a connected complex linear algebraic group, de-
fined over R. The adjoint representation is a homomorphism with a
finite kernel from G onto Ad(G) = G(R)°, the connected component of
the subgroup of R-points. The parabolic subgroups P of G then are the
inverse images under Ad of the parabolic subgroups P, of G that are
defined over R. Because Ker Ad c P, the natural map G/P ~ G/P, is a
diffeomorphism from G/P to a component of the real locus of the com-
plex algebraic flag manifold G/Pc.
We now proceed to a classification of the real parabolic subgroups.

Let G = KAN be an Iwasawa decomposition; note that A is a maximal
R-split torus in G. As usual we write a = Lie (A), A, the set of roots of
(g, a) and 0394+, the positive system defining n = Lie (N). Also M, resp. m
is the centralizer of a in K, resp. in f. Then p = m ~ a ~ n is a parabolic
subalgebra with normalizer P = MAN.
More generally, let S be the set of simple roots in A +. For any subset

03A6 c S we write 4(W) (resp. A ’(0» for the set of roots which are integral
(resp. nonnegative integral) linear combinations of the roots in 0. We
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then define

Obviously P0 is a Lie algebra containing p, hence parabolic; and its
normalizer P03A6 in G is called the corresponding "standard" parabolic
subgroup. Using Borel-Tits [7, Proposition 5.14] with K = C and k
= R, one proves that any parabolic subalgebra of g, resp. subgroup of
G, is conjugate to a standard one, and that the minimal ones are all
conjugate to p = m 0 a Q n, resp. P = MAN. Note that the conjuga-
tion can be performed by elements of K, because G = K - P.
Now let H E Cl(a +) be such that 0 is precisely the subset of S vanish-

ing at H. It follows that 4(W) is the set of roots vanishing at H, while
0394+B0394(03A6) is the set of roots a with a(H) &#x3E; 0. In this case we define

In order to get further information about the standard parabolic sub-
groups G(H), we define

Note that for any H~a, not necessarily in Cl(a+), we can still define
g(H), G(H), G. and n(H) by (2.3), (2.4). If we choose a chamber whose
closure contains H, G(H) will be a parabolic subgroup, standard with
respect to the Iwasawa decomposition defined by this chamber; 0 will
then be the subset of simple roots (with respect to this chamber) that
vanish at H.

We begin by observing that N(H) is the connected unipotent radical of
G(H) and that we have the semi-direct product

This can be proved by passing, via the adjoint representation, to the
corresponding decomposition for G(ad H). Secondly,
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Indeed, let Ad(kan)(H) = H for k E K, a E A, n E N. Since Ad(an)(H) ~ H
mod n and Ad k-1(H)~s, while s n n = (0), we see that necessarily
Ad(an)(H) = H, Ad k-1(H) = H; that is, n E NH and k E KH.

Finally,

This follows from (2.5) and (2.6) if we use

This in turn follows from Lemma 2.3 below, observing that n

= nH ~ n(H) if H E Cl(a+). Lemma 2.3 is well-known, we have inserted it
in this section for future reference.

The decompositions (2.6), (2.7) can be regarded as obtained by re-
stricting the Iwasawa decomposition of G to GH, resp. G(H). Notice that
(2.6) is true without assuming that H has any special position with re-
spect to the Weyl chamber a+ in terms of which N is defined.
We now come to the relation with the flag manifolds KIKH of section

1.

PROPOSITION 2.1: The natural map i : K/KH ~ G/G(H) is a diffeomor-
phism.

By conjugation with a Weyl group element we can arrange that
H~Cl(a+). Combining (2.7) with the Iwasawa decomposition G
= KAN, we get that i is a bijection. Moreover, i is of constant rank

because it is K-equivariant.

Note that the adjoint representation induces a diffeomorphism of
G/G(H) with Ad G/Ad G(H) (Ker Ad is divided away); it is a component
of the real locus of a complex algebraic flag manifold, which moreover is
defined over R. So the complex flag manifold can be considered as a
complexification of the real flag manifold K/KH.

REMARK 2.2: If G itself is complex then a = cR for the Cartan algebra
c = a Q ia. Here ia = t is the Lie algebra of a maximal torus T ( = M) in
K. Therefore, in this case the real flag manifolds are identified with the
complex flag manifolds of the algebraic theory. Also, since for a suitable
choice of H, KH = KiH = the centralizer in K of an arbitrary torus in K,
and because any compact semisimple Lie group K arises as the maximal
compact subgroup of a complex semisimple Lie group, the complex al-
gebraic flag manifolds are identified with the K/Z where K is a compact
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connected Lie group and Z is the centralizer of a torus in K. This identi-

fication is basic in the construction of Borel-Weil [54] of irreducible
representations of K.

LEMMA 2.3: Let n1,...,nm be subalgebras of n such that
(a) n is the direct sum of the nj (as a vector space), and
(b) each ni is the direct sum of a collection of the ga.
Let Ni = exp ni. Then the map (nl, ..., nm) H n1·n, is an analytic dif
feomorphism of Nl x ... x Nm with N.

For a proof, see for instance Séminaire Chevalley [53, Exp. 13,
Théorème 1]. A similar statement is of course true for N = ON.

3. The A-action on the flag manifolds

Although we now have two additional models for the flag manifolds
K/KH (the Ad K-orbit in s and G/G(H)), we continue to write it as K/KH
and denote its elements by k = kKH (k e K). The diffeomorphism

i : K/KH ~ G/G(H) (3.1)

of Proposition 2.1 conjugates the left action of G on G/G(H) to an action
of G on K/KH. For convenience of notation we assume throughout this
section that H~Cl(a+).
Then G(H) ~ AN and the action of x~G on K  G/AN, resp. on

K/KH  G/G(H) can be written as

Here 03BA is the projection G ~ K defined by

Note that the G-action on K/KH is covered by the G-action on K via
the natural projection K ~ K/KH.
For each X~ g, the one-parameter group exp tX, t e R, gives rise to a

flow on K, resp. K/KH; the corresponding velocity field will be denoted
by vx. Transporting elements of TkK, resp. Tk(K/KH) to f, resp. fItH,
using left multiplication by k-1, we get
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Here El is the projection g ~  along a + n.

If x(t) is a smooth curve in G with x(o) = 1, X(O) = X, then

differentiating

with respect to t at t = 0, we find

We shall now prove that the vector field v, on K/KH is the gradient of
the function fX,H with respect to a suitable K-invariant metric 03B2H on
K/KH, following essentially Takeuchi and Kobayashi [59]. The

mapping

defines a linear isomorphism ~ms e a; it can be extended to a
linear mapping t -+ 5 by defining it equal to zero on m. We define the
form bH on f x f by

LEMMA 3.2: (i) bH is a symmetric positive semi-definite bilinear form on
l x , with radical equal to tH. Hence it determines an inner product 5H on
tlth-

(ii) If Fa are the orthogonal projections t ~ la = (ga + g-03B1) n , we have,
for all Z, Z’~

where the inner product on f is equal to minus the Killing form.

Since (ii) implies (i), we shall prove (ii). For any root a, YE ga and
U E g, we obtain

similarly H, [03B8Y, U]&#x3E; = -03B1(H)03B8Y, U&#x3E;. Writing
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with Ya, Yâ e ga, we find

Therefore

using that (9a,9p) = 0 unless f3 = - a. Because Y03B1 + 03B8Y03B1 = Fa(Z),
Y’03B1 + 03B8Y03B1’ = Fa(Z’), the formula follows.

PROPOSITION 3.3: (i) DH extends to a K-invariant Riemannian metric 03B2H
on K/KH.

(ii) For every X E a, vx is equal to the gradient of fX,H = fx, H considered
as a function on K/KH. That is,

For (i) we have to show that EH is Ad KH-invariant. Now, if k e KHI
Ad k normalizes n (H) ; so it commutes with 03B6. Hence

For (ii) we start with the observation that

because K acts transitively on K/KH. So, using the left K-invariance of
03B2H and (1.2), (3.4), we have to prove that for all k~K and Z~,
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The formula (3.9) now follows immediately from the definition (3.6) of
bH.

REMARK 3.4: If G is complex, as in Remark 2.2, we can define the real-
valued linear form 03BE on f by

Then K/KH can be identified with the co-adjoint orbit {03BEk|k~K} of 03BE in
f*, on which Kirillov [38] introduced the K-invariant sympletic form Q,
given by

On the other hand, the pull-back of the complex structure on

G/G(-H) to K/KH under the diffeomorphism K/KH ~ G/G(-H) is the
K-invariant complex structure J on K/KH occurring in the Borel-

Weil theorem. The pair (J, 03A9) makes K/KH into a Kâhler manifold. It is
easily verified that the corresponding Riemannian structure

coincides with the metric 03B2H introduced in Proposition 3.3.
In case of a real group G, the restriction to G/G(-H) of the above

metric on Gc/Gc( - H) is equal to 203B2H, thus identifying 03B2H with the
metric described in Hermann [35].

COROLLARY 3.5: The zeroset of vx in K is equal to the critical set

KXmKH = K0XmKH of fX,H. It is stable under 0398a because Ba commutes
with the vx-flow.

We now use the action of the unipotent subgroups N(-wH), w~m, to
obtain a covering of the flag manifold with coordinate systems in which
the vectorfields vx, X E a, are linear (!).

PROPOSITION 3.6: (i) Given w E m, the mapping

defines an analytic diffeomorphism from n (- wH) onto an open subset Qw, H
of G/G(H) containing wG(H).

(ii) For x~ GwH, the map Yw, H intertwines the left translation by x on
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G/G(H) with the linear mapping

(iii) If X E 9wH’ the infinitesimal action of X on G/G(H) (corresponding
to the vectorfield vx via the diffeomorphism K/KH -+ G/G(H)) gets pulled
back by 03B3w,H to the linear vectorfield

Here, as usual, the tangent space ofn(-wH) at any of its points is identified
with n(-wH).

(i) It is sufficient to consider the case of w = 1, since exp YwG(H)
= w·exp Yw-1·G(H) and Yw-1~n(-H) ~ Y~n(-wH). 03B31,H is an immer-

sion because exp|n(-H) is an immersion and n(-H)~g(H) = (0) because
9 = n(-H) Q gH 0 n(H), g(H) = gH Q n(H). Moreover, the image (21,H is

open in G/G(H) because dim n(-H) = dim G/G(H).
What is left is to prove the injectivity of 03B31,H. So suppose 03B31,H(Y1)

= 03B31,H(Y2) for Y1, Y2 ~n(-H); that is exp(-Y1)·exp Y2~G(H). Because
N(-H) = expn(-H) is a subgroup, we can find Y~n(-H) such that exp Y
= exp( - Yi) ’ exp Y2 . Since G(H) and N(-H) are normalized by A we have
exp Ya~G(H)~N(-H) for all a~A. Since the Ya, a~A, corne arbitrarily
close to 0, we obtain Ye~g(H)~n(-H) = (0) for suitable a E A, showing
that Y = 0.

(ii) follows from

because w-1x-1w~GH if x-1 (and therefore x) belongs to wGHw-1
= GwH. The assertion (iii) follows from (ii) by differentiation.

COROLLARY 3.7: Let X~a, H~Cl(a+). (i) IX, H has isolated critical

points on KIKH G/G(H) if and only if

(ii) I n this case, the set of critical points of fX,H, which coincides with
the zeroset of vx, is equal to mKH ~ W/WH’ For each w~m the flow ~t
(t ~R) of vx on K/KH is hyperbolic at wKH. The stable, resp. unstable
manifold Sw - S+w,X,H, resp. S-w = S-w,X,H defined by
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is given by

(iii) Finally, if -X~a+ then the stable (resp. unstable) manifolds of Vx
on G/G(H) coincide with the N- (resp. 0N-) orbits on G/G(H).

From Proposition 1.3 we see that JX,H has isolated critical point set
(equal to wKH) if and only if (tx)W- c= tH for every w E m. The descrip-
tion of the stable and unstable manifolds follows from (iii) in Proposit-
ion 3.6; indeed, the ad X-flow on n(-wH) is contracting, resp. expanding
on n(-wH) n n(-X), resp. n(-wH) n n(X).

Finally, from the equality

we get, in view of Lemma 2.3

Since the second factor leaves wG(H) stable, (iii) follows from (ii),
because N(-X) = N and N(X) = ON if - X E a + .

COROLLARY 3.8: Under the assumption (3.10) G/G(H) is equal to the
disjoint union of the stable manifolds Sw , w E WIWH as described in (3.12).
Consequently G/G(H) is covered by the open subsets Qw, H(W E m/mH) de-
fined in Proposition 3.6.(i). Also, K/KH ~ G/G(H) is the disjoint union of
the N-orbits through the points of WIWH-

The last assertion is of course the Bruhat decomposition. The proof
given here is self-contained. The idea of proving the Bruhat decom-
position using the A-action can be found in Séminaire Chevalley [53] in
the algebraic setting and Hermann [35] in the analytic setting.
Combining (3.8), (3.7) and Proposition 3.6.(iii) it is not hard to give an

alternative proof of the formula (1.11) for the Hessian of fX,H. Also, since
a linear vector field defined by a semisimple linear transformation obvi-
ously has a clean zeroset (that is the zeroset is a smooth manifold and
the derivative of the vectorfield transversally to the manifold is nonsin-
gular), Corollary 1.5 can be seen as a direct consequence of (3.8) and
Proposition 3.6.(iii). Finally, it is an easy exercise to compute the zeroset
of vx directly from Lemma 3.1, leading to a proof of Proposition 1.2 via
(3.8).
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fx,n is a Morse function on KIK., if and only if (3.10) holds. Thinking
of fX,H as a linear form on the Ad K-orbit through H in s, it is inter-

esting to compare this with the construction of Morse functions on
arbitrary manifolds as in Guillemin and Pollack [26, p. 43].

In general the stable manifolds of the gradient flow of a Morse func’
tion f yield a cell decomposition of the space, as has been observed by
Thom [60]. Also it is easy to see that the union of the stable manifolds
of the critical points x such that f(x) ~ c is closed; so, if S is a stable
manifold, Cl(S)BS is union of (finitely many) stable manifolds of lower f-
level and of lower dimension.

We conclude this section by some remarks on the action of an arbi-
trary element x of G on the various flag manifolds. The Jordan decom-
position of x gives x = xs· x. with x., semisimple, x. unipotent and xs, xu
commuting. Because the actions of xs and x. then commute as well, it
suffices for many questions to study the actions of xs and x. separately.
The description of the action of x. on the flag manifolds is a nontrivial
problem. For instance, if G is complex, B a Borel subgroup of G, then
the set of fixpoints for the action of x. on G/B can be identified with the
variety 1 of Borel groups containing x.. 1 is connected (cf. Springer [55,
Proposition 1.5]). If, in addition, G is simple and x. is a so-called sub-
regular element, then Steinberg and Tits (cf. Steinberg [56, 111.3.10.

Proposition 2]) showed that 1 is the union of finitely many projective
lines, intersecting according to the Dynkin diagram of the group G. In
particular, 2: need not be smooth. Regarding x,,, one can by conjugation
bring it into a standard position h such that h = k exp X, X~ a, k E Kx
(cf. DKV [20, Section 4.1]). Because k E Kx, the action of k commutes
with the vx-flow on the flag manifold; this again allows one to study the
action of k and the vx-flow separately. Now the action of an elliptic
element k is quite well-understood. For instance, for studying the

iterates, one writes k = k0 · l where ko, l~KX, ko and 1 commute, ko is of
finite order, and 1 lies in a torus T in Kx such that the powers of 1 are
dense in T. Finally, the basic properties of the vx-flow have been discus-
sed in detail in this section.

4. The topology of the real flag manifolds

In general, knowledge of a Morse function and its corresponding
stable manifolds leads to information about the algebraic topology of
the space, especially if the Morse function and the metric are brought in
a suitable position, cf. Milnor [46], [47]. The point is that for the flag
manifolds K/KH the Morse functions IX,H and the stable manifolds en-
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countered in section 3 are in the nicest possible position for this pur-
pose. Although it is not needed for the rest of this paper, we shall give a
short survey in this section of the topological properties of the real flag
manifolds which follow. Most of the results are essentially known, in
pàrticular for the complex flag manifolds. However, in the real case
some of the arguments seem to need a little additional clarification. For
this reason we give the proof of Lemma 4.2 and Proposition 4.4, and we
also include an explicit description of the desingularization of the real
Schubert varieties, preceding Proposition 4.5.

In this section H E a will be arbitrary; by conjugation with a Weyl
group element we can arrange that H E Cl(a ’).

If IX, H is a Morse function on K/KH, which is the case for generic X,
then its number of critical points is equal to |m/mH|, see Corollary 3.7(ii).
In Proposition 4.4 below it will be shown that |m/mH| is also equal to
the sum of the Betti numbers of the homology modulo 2 of K/KH. In
view of the Morse inequality that the number of critical points of any
Morse function is ~ the sum of the Betti numbers of the homology with
coefficients in any field, this shows that fX,H has the minimum number
of critical points. Viewing fX,H as testing the mapping k ~ Ad k(H) by
linear forms as in the beginning of section 1, this means that in the

terminology of Kuiper [43] we have proved

PROPOSITION 4.1: The embedding k ~ Ad k(H) of the flag manifold
K/KH into s is tight.

The embedding is even taut, as the image is contained in the sphere of
radius 11H11 in s. Taut means that the distance function to a generic point
has the minimal number of critical points. Also stereographic projection
leads to a tight embedding in a hyperplane in 5. See Cecil and Ryan
[12], which contains also further interesting references.

Proposition 4.1 is due to Takeuchi-Kobayashi [59]; their proof is
based on Takeuchi [58]. Unfortunately in the latter paper an essential
part seems to be played by the statement that the closures of the stable
manifolds admit topological desingularizations by projective spaces. For
the open cell, this would imply a topological desingularization of the
flag manifold by a projective space, giving that the Betti numbers of the
flag manifold are ~ 1 in all dimensions. This is not true already for the
space of flags in R3. If one replaces, however, the desingularizations by
projective spaces by the desingularizations 03C0w: 0393w ~ Cl(Sw) described
after Proposition 4.4 below, then the proof in [58], [59] is correct.
The first ingredient in our proof is
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LEMMA 4.2: Let -X~a+. Each stable manifold of vx intersects each
unstable manifold transversally. That is, at each intersection point the sum
of the tangent spaces to S+w and Sw. (w, w’ E W/WH) is equal to the tangent
space of the whole space.

Because MA normalizes N, resp. ON, its action on G/G(H) permutes N-,
resp. 03B8N-orbits. Since there are only finitely many such orbits, the con-
nected component M°A of MA leaves all these orbits invariant. (In fact,
the action of MA stabilizes the N-, resp. 03B8N-orbits.) It follows that the
image of the infinitesimal action of m + a is contained in the image of
the infinitesimal action of n, resp. of ott. So the image of the infinitesimal
action of g = m + a + n + ott is equal to the image of the infinitesimal
action of n + ott. The former is equal to the tangent space of G/G(H)
(because G acts transitively) and the latter equals the sum of the tangent
spaces of the unstable and stable manifold through the point in

question.

In order to interpret the stable, resp. unstable manifolds as geometric
cycles defining homology classes, we have to pass to their closures.
These are called Schubert varieties because they coincide with the "geo-
metrical systems" of Schubert [51, Ch. 1, §3] in many classical examples.

LEMMA 4.3: Let -X~a+. If G is a complex (resp. real) group then the
closure CI(SW) of each Bruhat cell Sw (w E nu/mH) is a complex (resp. real)
algebraic variety in G/G(H).

Because -X~a+, we may regard Sw as an N-orbit. Now N is al-

gebraically closed and Sw is its image under an algebraic morphism; so
Sw is constructible and hence its closure with respect to the ordinary
topology coincides with the Zariski closure in the complex case (cf.
Mumford [48]). For the real case a proof can be given by passing to the
complexifications of the groups and spaces involved (see Section 2) and
using the combinatorial description of the inclusion relation

both in the real and complex case. See Borel-Tits [8, §3].

It is known that, for any finite collection Yl, ..., VN of compact real
algebraic subsets of a compact algebraic set Yo, there exists a trian-
gulation of Vo inducing subtriangulations on all of the Vi. This is true
even with "algebraic" replaced by "semi-analytic", see Lojasiewicz [45],
cf. also Van der Waerden [66], [67] for the algebraic case. In the real,
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resp. complex case the triangulation is real-, resp. complex-analytic in
the interiors of the simplices, consisting in fact of regular branches of
algebraic functions. This may be applied to Yo = K/K(H), V1 = Cl(Sw),
V2 = Cl(Sw)BSw·

If G is complex then the complex manifold Sw is orientable; so the
simplices of dimension q = dimR Sw in Cl(Sw) can be made into a q-
chain c having its boundary in Cl(Sw)BSw. Since dimc Y2 ::; dimC V1 - 1
we have dimR V2  dimR Yl - 2, implying that c is a cycle, which will be
denoted simply by Cl(Sw). In the real case, according to Sullivan [57],
the sum of the q-dimensional simplices at least forms a cycle mod 2. We
are now in a position to state (still taking -X~a+)

PROPOSITION 4.4: If G is complex then the homology H*(G/G(H), Z) is a
free Z-module with the homology classes [Cl(Sw)], w~m/mH coming from
the stable manifolds Sw, as a basis. Moreover the homology classes

[Cl(Sw)], w~m/mH, defined by the unstable manifolds Sw, form the

Poincaré dual basis. Under the assumption that G is real, the same as-
sertions hold with Z replaced by Z/2Z.

If Sw. and Sw have complementary dimension then Lemma 4.2 shows
that S’w, n Sw consists of isolated points. This set being A-invariant, its
elements are fixed points for the A-action. Consequently they are of the
form w"G(H) for w" e nu; and this can only occur if W’ = w" = W. Because
Cl(Sw)BSw, resp. Cl(S’w’)BS’w’, consists of finitely many lower-dimensional
stable, resp. unstable manifolds, another application of Lemma 4.2

shows that Cl(Sw’)~Cl(Sw) = Sw’ ~ Sw. Applying the classical inter-

section theory of Lefschetz [44] we have now

and this proves the assertions of the proposition.

It is interesting to compare this proof with the Morse theoretic proof
of Poincaré duality for general compact manifolds in Milnor [47]; appa-
rently here the Morse function and corresponding stable and unstable
manifolds are already in the required nice position.
An alternative way to show that the Schubert varieties define cycles is

to use a desingularization n,,: 0393w ~ Cl(SW) which generalizes a con-
struction of Bott-Samelson [11], Hansen [27] and Demazure [16] to
the case of G/G(H) for real semisimple G. We shall only give the defini-
tion and basic properties, leaving the proofs as an exercise for the

reader.

Assume that H~Cl(a+) and -X~a+. Given WEW, let wi be the
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unique element in wmH of shortest length 1. By downward induction, set

Wi - 1 = Wi 0 sai = SK. 0 Wi with ai simple and 03B2i = - wioci E L1 +. Writing

one has 0394+(wi-1) = s03B2i(0394+(wi)B{03B2i, 203B2i}), cf. Borel-Tits [8,(3.9)]. So in
view of (3.12) the Swi have decreasing dimension with decreasing i; and
the process ends when wo = 1 and Swo is a point. Now let

Then p, resp. pi is equal to g(Y) for any YE a+, resp. YE Cl(a ’) such that
03B1i is the only simple root vanishing on Y Therefore the normalizer
P = MAN (resp. Pi) of p (resp. pi) in G is a parabolic subgroup of
G. Clearly Pi ::J P ~ pSlZi, therefore Pî i :D PWi u Pwi-1. This allows us to
define a free action of Pw1 x ... x Pwi on Pi x ... x Pwii by

We set

for the corresponding orbit space. The action is chosen in such a way
that the mapping

from Pl 1 x ... x Pwi into G/G(H) induces a smooth mapping
03C0wi:0393wi ~ G/G(H). Also, forgetting the last factor we obtain a smooth
fibration

where every fiber Pwii/Pwi is a sphere of dimension equal to dim(gai +
+ 92aJ, exhibiting the 0393wi as iterated sphere bundles.

PROPOSITION 4.5: 03C0wi(Twi) = cI(SwJ and nw, is a diffeomorphism from
an open dense subset 0393’wi of 0393wi onto Swi.

In fact, one can take 0393’wi equal to the image of the mapping
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from n(-wH) n n to Pi  ... x pwi, followed by the projection to rw,.
Note that combined with 03C0wi one gets the diffeomorphism ywt, H in (3.12).
The proofs of the various statements are by induction on i. The desin-

gularization 03C0w: 0393w ~ Cl(Sw) is obtained by taking i = 1.

r w being a compact manifold, we can fix its orientation cycle (if Tw is
not orientable then take its Z/2Z-orientation), whose image under 03C0w

gives a cycle in G/G(H). Replacing the intersection theory of trian-
gulated cycles by the differential topological intersection theory of

"cycles defined by mappings" (cf. Schwartz [52]) the statements of

Proposition 4.4 will hold again. While not using the algebraicity of the
Schubert varieties, this approach in fact leads to somewhat more refined
results. For instance, if

then r w is simply connected and hence orientable, for every w E w. So if
(4.9) holds, then Proposition 4.4 is valid with coefficients in Z.
What is more important, in the complex case Bott-Samelson [11]

(and Demazure [16] in a more general algebraic setting) determine the
ring structure of the cohomology of the desingularizations Tw, by in-
duction on the number of fibrations and in terms of the root structure.

This leads to a description of the ring structure of the cohomology of
the complex flag manifolds in terms of the Schubert varieties and the
root structure. In the real case obstructions to this program are: (i) the
possible failure of Z-orientability and (ii) the varying dimensions of the
fibers in the iterated fibrations for the Tw. Historically, Bott and Samel-
son worked entirely in the framework of K/(centralizer of a torus) and
their cycles were only later identified with the complex Schubert

varieties by Hansen [27].
Van der Waerden [66] interpreted the "problem of characteristics" of

Schubert [51, Ch. 6] as "find a basis for the homology (of cycles defined
by complex algebraic varieties)", see also Kleiman [39]. For the com-
plex Grassmannians it had been solved by Schubert himself. For arbi-
trary complex G the first formulation of Proposition 4.4 (without
Poincaré duality) is due to Borel [5], who also determined the coho-
mology ring structure of G/B for G complex and B a Borel subgroup of
G [4]. Of course, the ring structure, expressing the intersections of all
the cycles, is the ultimate goal of Schubert’s calculus. Further references
for the relation between the ring structure and the Schubert varieties are
Kostant [40], [41] and Bernstein, Gel’fand and Gel’fand [3].
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The inclusion relations (4.1) between Schubert varieties imply

because the functions fX, H are decreasing along the flow of -grad fX,H.
That is, wH - w’H is a positive linear combination of simple root vec-
tors, or w’H ~ wH in the notation of Varadarajan [64, p. 376]. One
might conjecture that conversely (4.10) implies (4.1): in general, however,
this is not true, see Deodhar [17].
As observed by Ehresmann [21], any q-chain is homotopic to one

which is contained in the Schubert varieties of dimension ~ q. Applying
this for q = 1, we get that the homotopy group 1Cl(K/KH) is generated
by the one-dimensional Schubert varieties; these form an explicitly given
bouquet of circles intersecting each other in general position at the
unique 0-dimensional cell. This implies that K/KH is simply connected if
and only if (4.9) holds, the "only if" part following by looking at

H,(KIKH, Z/2Z). The assumption that K/KH is simply connected in turn
implies that KH is connected, in view of the covering K/K0H ~ K/KH
with fiber KH/KCj¡. It follows then that G(H) and GH are connected as
well. Also, the homotopies leading to the relations between the gen-
erators of 03C01(K/KH), being 2-chains, can be taken inside the union of
the 2-dimensional Schubert varieties. Examples of computations of the
03C01 along these line are given in [21]; for instance, the ni of the space of
flags in R3 is isomorphic to the noncommutative group of the quater-
nions ± 1, ± i, ±j, ±k.

It is somewhat confusing that the flag manifolds K/KH ~ G/G(H) are
known in the literature under various names. In the complex case Tits
[62] called them -spaces. Over more general fields the name R-spaces
has been used [61], from R = racine = root, because they are classified
by subsystems of roots. Also the name D-space, from D = drapeau
= flag, occurs in the literature [63].

The Iwasawa decomposition G = KAN leads to a smooth projection
H : G ~ a defined by

x E K exp H(x)N (x E G). (5.1)

The corresponding projection from the symmetric space KBG onto a
along the right N-orbits is called the horospherical projection. For any
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H E a we define the function FH on G by

Moreover, for x E G, we define the function Fx,H on K by

The functions FH, resp. Fx,H, can be viewed as testing the Iwasawa pro-
jection, resp. the horospherical projection restricted to the right K-
orbits in KBG, by linear forms. As in Remark 1.9, the results can easily
be extended to the case of complex H by passing to the real and imagi-
nary parts.
One has the obvious invariances

Indeed, the effect of right multiplication by a follows, using that A
normalizes N. The invariance under the right M-action is because M
normalizes N, centralizes A, and is contained in K. It follows that Fx,H is
left Kx- and right M-invariant, but in contrast with the functions fx,H it
is, in general, not right KH-invariant; see Proposition 5.6 below though.
We begin with an explicit formula for the derivatives of the Iwasawa

projection. We let the elements of the real universal enveloping algebra
U(g) act as left invariant differential operators on G as follows. If

b = X1X2 ... Xr (Xi E g) then

for any smooth function f on G, which might be vector-valued.
The Iwasawa decomposition g = f Q a Q n gives rise to a direct sum

decomposition

It makes sense therefore to speak of the projection EQ : U(g) ~ U(a)
along U(g) + U(g)tt; note that its restriction to g is equal to the pro-
jection g ~ a along t ~ n. It is clear that
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Here deg denotes the degree and for any Lie algebra 1, U(I)+ is the ideal
I U(I) = U(I)I of "elements without constant term". Finally, since a is

abelian, U(a) is canonically isomorphic to the symmetric algebra over a,
so we can speak of the homogeneous components vm of order m of
v E U(a).

LEMMA5.1 : Let y~G, b E U(g) + . Then

where t(y) = a(y)n(y) is the "triangular part" of y and the suffix 1 means

the homogeneous component of degree 1.

If z E G, then H(yz) = H(t(y)z) = H(zt(y)t(y)) = H(z’(Yl) + H( y). Further-
more it is clear that H(1;b) = 0, if b~U(g)+U(g)n; so H(1;b)
= H(1;Ea(b))=(Ea(b))1, because H(exp Y1·...·exp Yr)=Y1 +...+ Yr if

YEa.

COROLLARY 5.2: For any y E G, YE g,

For the proof we note that E03B1(Yt(y)), H&#x3E; = Yt(y), H&#x3E;, since a is or-
thogonal to ~n with respect to (., .), while Ht(y)-1 - Hn(y)-1a(y)-1
= Hn(y)-1.

We refer to Lemma 6.1 for formulae giving the second derivatives
of FH.

LEMMA 5.3: k~K is a critical point for Fx,H if and only if xk~KANH.

Write n = n(xk). Then from (5.9) we see that k is a critical point for

Fx,H if and only if Hn-l is orthogonal to f, i.e. Hn-1 ES. Because n~N,
Hn-1 ~ H + n; and so, as H~s, we see that Hn-1 ~s if and only if Hn-1
- H E 5 n n. But 5 n n = (0), as follows either by inspecting the root
space decomposition or by observing that elements of 5 are semisimple,
while those of n are nilpotent. So Hn-1 ~s ~ n~NH.

where 1(u) is left translation by U E K, it is enough to study the Fa, H with
aEA. 
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PROPOSITION 5.4 : If X, H E a then the critical set of FexpX,H is equal to
the critical set

of fx,H as described in Proposition 1.3.

In view of (2.6) and the relations GH = KHAKH = KHexpsH we con-
clude that

Now exp X k~K expsH ~ exp Xk-1 ~K expsH ~ Xk- 1~sH, since

Xk 1 ES and (u, Y) H u exp Y is a diffeomorphism of K  s with G. But

[Xk 1, H] = 0 just means that k is a critical point of fX,H, see Lemma
1.1.

This proposition enables Heckman [32] to prove the theorem of

Kostant [42] that also the horospherical image of the K-orbit through
exp X is equal to the convex hull of the wX, w e m. He uses a homotopy
argument starting from the convexity theorem mentioned in Remark
1.7. In [32, Ch. 2] he obtains also a generalization of the convexity
theorem to projections of the A-orbits in the flag manifolds.
From Lemma 5.3 and (5.11) we see that the critical set of Fa,H is equal

to the intersection of K and a-1KAKH. It can be shown that this inter-
section is clean; that is, the intersection is a smooth manifold (as we
already known from the description of KX,H following Proposition 1.2)
and the tangent space of the intersection is equal to the intersection of
the tangent spaces of K and a -1 KAKH, at each intersection point.

Recall the action of x~ G on K defined by

see (3.2). Using the action of A on K, we obtain a close relationship
between the functions Fa, H and the functions fX,H.

PROPOSITION 5.5 : If a E A and X, H E a are arbitrary, then
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Using that a exp tX k = ak · exp tXk-1, we get in view of Corollary 5.2

Now ak = K(ak)t(ak) leads to kt(ak)-1 = a-103BA(ak); hence we continue
the sequence of identities by

proving (5.13). Replacing a by a exp sX in (5.13) and integrating over s
from 0 to 1 yields (5.14), whereas (5.15) is a special case of (5.14).

Although fX,H is right KH-invariant in a trivial way, Fa,H is not right
KH-invariant, in general. The following proposition shows that the

question is quite subtle.

PROPOSITION 5.6: Fix H~a. The following statements are then

equivalent: .

(a) Fa,H is right KH-invariant for each a E A,
(b) FH is right KH-invariant,
(c) If 03B1~0394+, 03B1(H) = 0 and oc = 13 + y for 03B2, 03B3~0394+, then 03B2(H) = 0 = y(H),
(d) There exists H’~Cl(a+) such that KH = KH,,
(e) 0398a(kKH) = Oa(k)KH for each k~K, a~A.
1 n particular, FH is right KH-invariant if H~Cl(a+).

(c) ~ (d): Writing 0394+0 = {03B1 e 0394+ 1 rx(H) = 0) , we say a e So if a e 0394+0 and
oc cannot be written as 13 + y with 13, y E At. Clearly each element of 0394+0
can be written as a linear combination of elements of So with non-
negative integral coefficients. Now (c) implies that So c S, the set of
simple roots in A +. Let H’ e Cl(a+) be such that So is precisely the set of
simple roots vanishing at H’. Then 0394+0 = {03B1~0394+|03B1(H’) = 0} as well, or
K0H = KH0H’, or KH = KH, using (1.4).

(d) ~ (e): If H’~Cl(a+) then the A-flow on K is intertwined with the
A-flow on K/KH’ (defined in (3.2)) by the projection K ~ K/KH’. This
implies (e) with H replaced by H’, but KH = KH, for some H’~Cl(a+).

(e) ~ (a): Apply (5.15) and the right KH-invariance of fX,H.
(a) ~ (b): Obvious from G = KAK.
(b) ~ (c): In view of (5.9), condition (b) implies
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We set n -1 = exp Z, Zen; then the second order term in the Taylor
expansion of (5.16) with respect to Z gives

Now suppose 03B1~0394+, a(H) = 0, a = 03B2 + 03B3 for 03B2, 03B3~0394+. Choose Y03B1 E 9a,
ZpE9p, Z03B3~g03B3 such that 03B8Y03B1,[Z03B2, Z03B3]&#x3E; ~ 0 With Y = Y03B1 + 03B8Y03B1,
Z = Zo + Zy, the left hand side of (5.17) becomes

The Y03B1-term drops out because g03B1, g03B2+03B3&#x3E; = 0 since a + 03B2 + 03B3 ~ 0.
Using that 03B2(H) - y(H) = 203B2(H), we find 03B2(H) = 0.
We call H aligned (with a+) if one of these equivalent conditions is

satisfied. Note that each H~ a is aligned if and only if g is a direct sum
of real-rank 1 algebras.

PROPOSITION 5.7: Let H~Cl(a+). Then

Moreover, if Gi.,(H) denotes the closed subgroup of those g E G such that
FH is invariant under right translation by g, then

I n particular, ,

First consider g E G(H). Using (2.7), we can write g = kan with k E KH,
a E A, n~N. (5.18) is now obtained by successive applications of (5.4).
This shows also that

Because FH is right N-invariant, it is enough to show that any

g~Ginv(H)~KA lies in KHexp(a~H~). We now differentiate the re-
lation FH(x) = FH(xg) = FH(gxg-1) with respect to x at x = 1. In view of
(5.9) we get, for any YE g,
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here n(g) = 1 because g E KA. As YE g was arbitrary, this gives H = H9
= H03BA(g). So g E KHA. But then (5.18) shows that g~KH·exp(a~H~), as
we wanted. For the last statement, notice that on taking the tangent
spaces at 1,

REMARK: The relation (5.18) for H E Cl(a+) can also be proved using
the finite-dimensional representation theory of G. Here is a sketch of the
argument.
We may clearly take g E GH and even g~NHMANH by the density of

the big cell in GH, and finally g~NH. If we prove that FH is invariant
under g E NH, it follows that ONH c Ginv(H); and this implies (5.18). We
now use the notations of section 2 and denote by S the set of simple
roots of (gc, hc), So the subset of those roots vanishing at H, b being the
Cartan subalgebra hm Q a. If 039B is a dominant integral linear form on 4,,
and nA is the corresponding irreducible finite-dimensional represen-
tation, then one has Harish-Chandra’s well-known formula (cf. [28,
Lemma 2])

Here 1039B is a unit vector of highest weight 039B and the norm is the Hilbert

space norm relative to which 03C0039B(u) is unitary for u in the compact sub-
group of G, with Lie algebra f + is. (We assume G c G,, as we may, for
this argument.) If, for some rx E S, (rx, A) = 0, then 03C0039B(X-03B1)1039B = 0; this
implies 03C0039B(n)1039B = 1039B for nE NA, So x ~ 039B(H(x)) is right N039B-invariant for
each dominant integral A. The proof is completed by observing that
each subset So of S occurs as {03B1~S|039B, 03B1&#x3E; = 01 for some dominant in-
tegral A.

If H E Cl(a+), then, in view of Proposition 5.6, we can work in K/KH
and the 1-parameter family 03A6s = 0398expsX, s e R, is equal to the vx-flow. As
another application of Proposition 5.5 we have:

COROLLARY 5.8: Let H~Cl(a+). Then vx is also the gradient of FexpX,H
(regarded as a function on K/KH), but now with respect to the Riemannian
metric BX,H on K/KH defined by
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In particular, f k is not a critical point for FexpX,H then

FexpX,H(k; vX(k)) &#x3E; 0.

Differentiating (5.15) and using (3.8) we get

Now use that vx is 0,-invariant to conclude (5.20).

In particular, FexpX,H has a clean critical point set in the sense of Bott
(compare Corollary 1.5), because vx has a clean zeroset. In the general
case, with N~Cl(a+), the function FexpX,H on K still has clean critical
point set, see Corollary 6.4. This can also be proved using Lemma 5.9,
because "clean critical set" means clean intersection of the derivative

with the zero section.

We conclude this section with another remarkable relation between

the Fa,H and the fX,H.

LEMMA 5.9: Let X, H E a, write a = exp X. Then

Indeed, using that t(ak) = 03BA(ak)-1ak = 0,,(k)-’ak, we obtain from
(5.9)

since (ad X)2n ~  ~ s, for every integer n ~ 0. On the other hand, (1.2)
implies that

Noting that ad X/sinh ad X is a linear isomorphism: t -+ f, Lemma 5.9
yields an automorphism of the tangent bundle of K, which maps dfX,H
to dFa, H, these one-forms being regarded as functions on TK. The auto-
morphism depends smoothly on X, does not depend on H and covers
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the transformation ea in K, that is, it maps the fiber over k to the fiber
over 0398a(k). Note that it is not equal to the tangent map T0398a: TK - TK.
As an application one gets that the image of the tangent map at ko of

k ~ H(ak) is equal to the image of the tangent map at ko of the map
k 1---+ Xk - 1 followed by orthogonal projection: s ~ a. As observed in

Remark 1.8, such an image is equal to a linear span of Ha, a running
through some subset of 0394+. So again the set of singular values of
k H H(ak) is piecewise linear, each piece being parallel to the linear span
of some Ha’s.
The similarities between FexpX,H and fX,H strongly suggest the

existence of a diffeomorphism 03C8X,H of K onto itself such that FexpX,H
= fX,H  03C8X,H. For fixed X, H this can be proved using the homotopy of
Heckman [32] between fX,H and FexpX,H, combined with the cleanness
of the critical set of FexpX,H, cf. Corollary 6.4. If one can find t/lX,H de-
pending smoothly on H, then replacing H by tH, dividing the functions
by t and then putting t = 0 gives Fexp X, H = fX,H03C8X,0. In other words,
one would find 03C8X,H = 03C8X that does not depend on H. The existence of
4fx depending also smoothly on X would simplify several proofs. For
instance, in Section 11 we then would not need a separate argument for
the case that FexpX,H is not right KH-invariant, because by a substitution
of variables we could replace FexpX,H by fX,H. Also if we would have a
4fx with control on its derivatives as ~X~ ~ oo, then the results in

Section 11 could be given with uniform control over the estimates for
~X~ ~ oo.
Although we tried, we could not find an explicit diffeomorphism 03C8X

such that FexpX,H = fx,Ho 03C8X. Heckman’s description of the orthogonal
and Iwasawa projections of the A-orbits in K/KH onto a suggests a
diffeomorphism gix of the form k H 0398a(k), where a = a(X, k) E A is al-
lowed to depend on X E a and k E K. This choice fails already in the case
of SL(3, R). Comparison of the Hessians at 1 of FexpX,H (Proposition 6.2
and 6.5) with the Hessian of fX,H (Proposition 1.4) shows that a(X, k)
does not depend in a C2 fashion on k.

6. Hessians of the F.,,

We begin by investigating second order derivatives of FH using
Lemma 5.1. Write Eb Ea, En for the projections g ~ , a, n according to
the Iwasawa decomposition g = f Q a E9 n.
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where the bilinear form

Here Ra is the projection g ~ ga corresponding to the direct sum decom-
position g = m Q a O LaeA ga’

Modulo fU(g) + U(g)tt and second order terms in U(a),

while

The equality of BH(Y, Z) with the last term in the top row in (6.2)
follows now as f + n 1 a and [Ea(Y), E(Z)], H) = - E(Z),
[Ea(Y), H]&#x3E; = 0. The equalities in the middle row follow by similar

reasoning. The last identity follows because BH(Y,Z) = [H, En(Y)], Z&#x3E;,
and

Although we could work on K/M with the functions Fa,H, we prefer
to work on K for simplicity of notation. This enables us, for instance, to
identify the tangent space TkK to K at k E K with the Lie algebra f using
left translation over k-1. In this fashion the derivative at k of a smooth

map 0398: K- K is identified with a linear map (k): ~ f.

PROPOSITION 6.2: Let a = exp X, X E a. Then, for an y H E a, k E K,
Y, Z c- t

I n particular, if k is a critical point for Fa,H then La,H,k is symmetric with
respect to the inner product (= -.,. &#x3E;) on f.
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According
where

using that t(ak)-l = k-la-1K(ak). Furthermore the equality x(ak exp sZ)
t(ak exp sZ) - ak exp sZ = x(ak)t(ak) exp sZ = K(ak) exp SZI(,k)t(ak), im-
plies 03BA(ak)-103BA(ak exp sZ) = K(exp szt(ak»). Differentiating this with re-
spect to s at s = 0, we find Ôa(k)(Z) = Er(zt(ak»). The proof is completed
by observing that -1 2(Ad a - Ad a-1) = Ad a-1 - 1 2(Ad a + Ad a-1)
maps s into f while 2 (Ad a + Ad a-1) maps s into 5 = ~.

LEMMA 6.3: For any a E A, H E a, u E Ka, w E w, the diffeomorphism Oa
leaves uwKH invariant. I n particular, writing a = exp X, X E a, the critical
set KX,H = KxwKH of Fa,H is invariant under the flow 0398exptkX, t~R; so ’9a
also leaves the components of KX,H invariant. (Cf. Corollary 3.5.)

If v E KH, av E GH; and so, by (2.6), Oa(V) = K(av) E KH. Secondly, if

u~KX, w~m, then auxwv = uaxwv = uxwaw-lv; and since aw-’ leaves KH
invariant as well, the lemma follows.

COROLLARY 6.4: For each a E A, H E a, the Hessian of Fa, H at the crit-
ical points is transversally nondegenerate to the critical set of Fa,H.

For k~KX,H (a = exp X, X E a), write

for the tangent space Tk(KX,H) pulled back to f by translation over k-1.
We have to prove that ker La,H,k = TX,H,k. Now we have the equality
La,H,k = La’,H,v, if a’ = aw 1 and k = uxwv with u E Ka, w E m, and v E KH,
because Fa,H(uxwv) = Fa’,H(v). On the other hand:

Therefore we have reduced the proof to the case that k E KH. But then
0398a(k)~KH (Lemma 6.3), so Ad 0,,(k) and ad H commute. Now

Ker(sinh (ad X)) ~s= 5x; and hence:

A root space calculation shows
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We get

But the latter space is equal to TX,H,k because KX, H is 0,,-invariant.

PROPOSITION 6.5: For an y X, H E a, WEW,

where Fa is the orthogonal projection:

Because 0398a(xwexptY) = xw0398a’(exptY) for a’ = aw-1, we have Oa(xw)
= Ôa.(1). From the proof of Proposition 6.2 we obtain

It maps Y03B1 + 03B8Y03B1 to exp(-03B1(X’))(Y03B1 + 03B8Y03B1) if Y03B1~g03B1. So a(xw) acts on
fa as scalar multiplication by e-03B1(X’), and it leaves m pointwise fixed.
Next, 0398a(xw) = xw and Ad x-1w  sinh(ad X) 0 Ad xw = sinh(ad X’).
Furthermore, sinh ad X’  ad H acts on fa as scalar multiplication by
sinh a(X’) - a(H) and it annihilates m. The formula (6.7) is proved.

Proposition 6.5 could also have been obtained from (1.11) using
(5.15). Using the left Ka(= Kx)- and right M-invariance, Proposition 6.5
also gives the Hessian of FexpX,H at KXmM. If FexpX,H is right KH-inva-
riant (see Proposition 5.6) we get the Hessian at all critical points.
However, even if FexpX,H is not right KH-invariant, we can still conclude:

COROLLARY 6.6: Let X, H E a, WEW. Then at all points of KxwKH, the
value of FexpX,H and the signature, resp. rank of its Hessian stay constant
and are, respectively, equal to

where

At the points xw this follows from Proposition 6.5 since dim

fa = dim ga. Since the critical set is smooth and the Hessians transvers-
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ally nonsingular, the value, signature and rank are locally constant on
the critical set; hence we get the result on K0XwK0H. As this set and
KXwKH have the same image in K/M (see (1.4)), we are through.

For k~KX,H, the endomorphism LX, H, k off is semisimple because it is
symmetric with respect to the usual inner product on f. Since its kernel
is equal to TX, H,k, it induces an automorphism of /TX,H,k (resp. T~X,H,k)
which we denote by L~X,H,k. Furthermore, a(k) induces a linear isomor-
phism of /TX,H,k with /TX,H,0398a(k) which we denote by (Ô,,(k»’. The de-
terminants of these isomorphisms, calculated with respect to ortho-
normal bases for T~X,H,k and Tf,H,8a(k), are easily seen to be invariant, up
to a change of sign, when these bases are changed.

PROPOSITION 6.7: Let X, H E a, a = exp X, k~KXwKH. Then, with

notation as in (6.10),

Moreover

Finally, if Fa, H is right KH-invariant ( for instance if H E Cl(a +)), then

We begin with (6.12). As in the proof of Corollary 6.4, write k = uxwv
with U E Kx, W E ID, V E KH, so that a(k) = a’(v), La, H, k = La’,H,v, TX, H, k
= TX’,H,v, with a’ = aW- B X’ = w-1X. This reduces the proof of (6.12) to
the case that k E KH and w = 1. Furthermore, Ad Oa(k) commutes with
ad H. So writing y = a(1)-1  Ad 0398a(k)  a(k),

Now y maps TX,H,k into TX,H,1 and - Ad k-l maps TX,H,1 into TX,H,k, cf.
(6.5). Because -Ad k-1 is an isometry, it maps T~X,H,1 into T~X,H,k; and
we get

if we write yl for the isomorphism induced by y from t/Tl,l,k onto
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Similarly

Using the computations in the proof of Proposition 6.5, we see that

whereas (6.7) implies

Combining all these we obtain (6.12).
It remains to compute Idet ëa(k).L1 = Idet a’(v)~|. As H(auxwv) =

= H(a’v) we may assume w = e, k E KH in proving (6.11). By Lemma 6.3
the restriction e§ of Oa to KH is a diffeomorphism of KH. Clearly

where b(k) is the determinant of the isomorphism Tx , H, k .2" + TX,H,0398a(k) cal-
culated by using orthonormal bases in these spaces. Now, 0398a(uv) =
= u0398’a(v) if u~KX, v E KH; and so Ôa(k) is given by

This implies that |03B4(k)| = 1 det ’a(k)|, giving

On the other hand, 1 det éa(k)1 has a well-known expression for all k E K.
In fact, the integral formula

(cf. Varadarajan [65, Corollary II . 6.27]) shows at once that

If we replace G by G, and observe that G, = K,ANH is an Iwasawa
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decomposition of GH, we obtain also:

Substituting (6.15) and (6.16) in (6.14) gives (6.11).
Suppose finally that H E Cl(a + ). Then (6.13) can be proved from (6.12)

and the formula

which follows directly from (6.7).

7. Calculations on N

For WEW, let yw be the map N = 0N - K/M given by

LEMMA 7.1: (i) yw is an analytic diffeomorphism from N onto an open
subset S2w of K/M containing w.

(ii) yw intertwines the conjugation with aw-1 on N with the action of a
on K/M defined by 0398a.

(iii) For all a E A, n EN,

This lemma is known, see Harish-Chandra [28, pp. 284-289, and
Lemma 44 and its corollaries]. The statements (i), (ii) correspond to
Proposition 3.6(i), (ii) if we take H E a + there. Indeed, then yw is equal to
the composition of conjugation by xw, log:~n, 03B3w,H: fi ~ G/P and
finally the inverse of K/M ~ G/P, if P = MAN.

Restricting our attention to y = y 1, we get from (7.2):

if we define

From Sections 5, 6 it is clear that for arbitrary H E a the function 03C8a,H
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has y -l(KawKH) as critical set; this set is clean in the sense of Bott. The
map 03C4:(n,m)~03BA(n)m from N x M into K has differential given by

identifying tangent spaces with Lie algebras via left translation. Using
this, the Hessians of 03C8a,H at the critical points can be computed explicit-
ly from the formulae in Section 6.
When H~Cl(a+), the results are somewhat neater.

PROPOSITION 7.2: Fix a E A and let H E a be aligned, that is

{03B1 ~0394+|03B1(H) = 01 = {03B1 ~0394+|03B1(H’) = 01 for some H’ E Cl(a+). Then 03C8a,H
is right ÑH-invariant and its critical set is NaÑH. Moreover

K(ÑaNH) c KOKO. The Hessian :¥en Of 03C8a,H at fiEÑa is given by, for
Y, Y’ E fi, 

Consider the commutative diagram

Here the "left vertical arrow is the inverse of the diffeomorphism
(exp tt 0 nH) x NH ~ lV of Lemma 2.3, followed by projection to the first
factor and by log. Because ttH = ttH- and KH = KH’, the lower horizon-
tal arrow is 03B31,H’ of Proposition 3.6(i) followed by the inverse of the
diffeomorphism K/KH’ ~ G/G(H’). The natural projection in the right
vertical arrow then corresponds to the projection G/P ~ G/G(H’).
The right lVH-invariance of Fa,H03B3 then follows immediately from the

right KH-invariance of Fa,H. Furthermore, if a = exp X, the critical set of
Fa, H, considered as function on K/KH, is equal to the zeroset of the
vector field vx (Corollary 3.5) which under the lower horizontal arrow is
pulled back to Ker ad X n (ft 0 ftH) = ttx G ttH in view of Proposition
3.6(iii). So the critical set of 03C8a,H is equal to exp(ttx e fiH)ÑH. Now
NH = exp(iix n nH) exp(ttH 0 ttx) and exp(ttx e ttH) exp(fix n ttH) = Nx.
So the critical set is also left lVx-invariant and therefore equal to

ÑXÑH = NalVx.
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It is clear that k(NaNH) is contained in the connected component of
KawKH through 1, hence 03BA(NaNH) ce K0aK0H. The straightforward cal-
culation of the Hessian is omitted.

COROLLARY 7.3: For n~Na, Hn is diagonal with respect to the or-

thogonal decomposition fi = fia O O fil where n03BB for any 03BB~R is the

eigenspace of ad(log a) in fi for the eigenvalue À. The quadratic form of en
is zero on fia, and for any À :0 0 its restriction to n03BB is the quadratic form

For 03BB ~ 0, nA ~ n03BB = 9A where 9A (resp. nj is the eigenspace of

ad(log a) in g (resp. n) for the eigenvalue 03BB. So nA Q n03BB is stable under Ga,
in particular under t(fi). This gives Hn(Y, Y’) = 0 if Y~n03BB, Y’~n03BB, if À, À’
are distinct and nonzero.

An interesting feature of the 03C8a,H is that, by letting a E A go to infinity
in various modes, one can generate new phase functions from the 03C8a,H.
For instance, taking a = exp tX, X E a +, we get

where t/lH is equal to the restriction of FH to N,

The function tfrH is the phase in the integral defining Harish-Chandra’s
c-function. Most of the calculations concerning the critical points and
Hessians of the tfrH were carried out by Cohn [14, see §19]. The follow-
ing proposition gives the complete description of facts concerning tfr H’
Again the case of complex H is dealt with by passing to the real and
imaginary parts of the functions. See Remark 1.9.

PROPOSITION 7.4: Let H E a. Then the critical set of 4(H is equal to NH
and is clean. For the Hessian of tfr H at the critical points we have the
formula

Hessn(Y, r) 03B1(H)(03B8R03B1(Yt(n)) - R-03B1(Yt(n)), R-03B1(Y’t(n))), (7.10)

valid for fi E NH, Y, r En. Moreover, the index of the Hessian at any point
of IVH is equal to
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In view of Lemma 5.1, n is a critical point for 03C8H if and only if

Hn(n)-1 ~(n)~ = a+n (orthogonal complement with respect to the

Killing form). As Hn(n)-1 ~ H+n, this is equivalent to n(fi) E N H’ Clearly
n(n)~NH if n~NH; conversely, suppose n(fi)ENH. Then Hn = H03BA(n) ES,
while Hn~H+n. Hence Hn - H~s~n = (0). The formula for the

Hessian follows from Lemma 6.1. To check that it is clean, write n03BB
(resp. g03BB, nj for the eigenspace of ad H in fi (resp. g, n) for the eigenvalue
03BB~R. Arguing as in the proof of Corollary 7.3 we find that Hessn is
diagonal with respect to the decomposition fi = ttH 0 03A303BB~0 n03BB. Thus for
cleanness we need only to prove that if 03BB ~ 0, Y E ùÂ, Hessn(Y, Z) = 0 for
all Z E n03BB, then Y = 0. Since t(fi) E GH, it stabilizes 9;. = nÂ Q iiÂ; and one
checks that Hessn(Y, 2) = 03BB((03B8 - I)(Yt(n)), LZt(n)), where L is the projec-
tion n03BB (B fi;. - fi;. along nA. As Ad t(n) leaves nz invariant, it is clear

that L 0 Ad t(ii) restricted to n03BB is invertible. Hence Hessn(Y, Z) = 0
for all Z~n03BB, implies (03B8 - I)(Yt(n)) = 0, or Yt(n)~. But then Yn
= (Yt(n))03BA(n) ~ n fi = (0), hence Y = 0. Finally, for the index it is enough
to calculate it at 1 since, due to the connectedness and cleanness of IVH,
it stays constant on NH. As

the index at 1 is as stated.

8. The function FH on a conjugacy class in G

For any y E G we write

for the G-conjugacy class of y. We recall that Cy is a regular analytic
submanifold of G (constructible in the algebraic case), which is closed if
and only if y is a semisimple element. For any y E G we put

where, as usual, FH(x) = H(x), H&#x3E; for x E G, H E a.
The action of G on itself by inner automorphisms gives rise to a homo-

morphism of g into the Lie algebra of analytic vector fields on G.
Using the identification of tangent vectors to G with elements of g by
left translations, we have



353

Writing

for any X E g and any smooth function g on G, we have i(X)g = Xg
- gX. So if X, X’ E g then 03C4(X)03C4(X’)g = XX’g - XgX’ - X’gX + gX’X
from which we get, for all x~ G,

Finally, we remark that if x~ G, the vectors X - X x 1 = Xx(X E g) con-
stitute the tangent space at x to the conjugacy class Cx; in fact, the
linear transformation X H X - X x -1 is the differential at e of the map

y ~ y-1xy of G onto Cx.
Let y E G be fixed. We shall now determine the set of critical points of

F H,’Y* If x, y E G, we often write yx for xyx-l. For H E a let GH denote as
usual the centralizer of H in G.

LEMMA 8.1: Let Nea, x E G. Then

If x~GH = KHANH (see (2.6)), n(x) E NH c GH so that xn(x)~GH.
Conversely, suppose x~G but Xn(x)E GH. Then n(x)xn(x)-1 =
n(x)K(x)a(x) E GH, ~ n(x)K(x) E GH = NHAKH, showing n(x)~NH,
x(x) E KH; thus x E GH.

PROPOSITION 8.2: Let CH, y be the set of critical points of FH,03B3. Then

Our proposition is now immediate from the previous lemma.

PROPOSITION 8.3: CH, y is a regular analytic submanifold of G and the
intersection of Cy and GH is clean everywhere on CH,y’ Moreover, CH, y is
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the union of finitely many GH-conjugacy classes. If y is a semisimple ele-
ment of G, CH, y, as well as the GH-conjugacy classes into which it splits,
are all closed; and all the GH-conjugacy classes in CH, y have the same
dimension.

In view of the well-known results of Richardson [49] only the last
statement needs a proof. For this, recall that if G, is the complexification
of G, and Gc,H is the centralizer of H in G,, any semisimple G,-conjugacy
class C meets Ge,H in a single G,,H-conjugacy class. Hence the stabilizers
in Ge,H of the points of Ge,H n C all have the same complex dimension.
But then the stabilizers in GH of the points of Cy n GH all have the same
real dimension, when y E G is semisimple.

We shall now proceed to determine the Hessian form of FH,03B3 at the
points of CH,03B3. We fix y E G, H~ a, and let xeCH,03B3=GH~C03B3. The
Hessian form Hessx(FH, y) can be pulled back to a symmetric bilinear
form on g x g through the map 1- Ad(x-1) of g onto Tx(Cy). Let Qx,H, y
denote this form:

Clearly, Qx,H,03B3 is the Hessian form at 1 of the function

We can then define the endomorphism Lx,H,03B3 of g by

PROPOSITION 8.4: We have

where S2x is the endomorphism of g defined by

For brevity write Q = Qx,H,03B3, H = Hessx(FH,03B3), and let X, X’~g. The
vector fields 03C4(X), 03C4(X’) are tangent to Cy everywhere and define the
tangent vectors Xx, Xx at x. Hence
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by (8.4). This last expression can be evaluated using Lemma 6.1. We
obtain

if we remember that x (and hence K(x) as well as t(x)) centralizes H (cf.
formula (2.6)).

From this expression for the Hessian we can prove that the set of
critical points of FH, y is clean.

PROPOSITION 8.5: The Hessian of HH,y is transversally nonsingular at
all points of its critical manifold.

For any x~CH,03B3 we must prove that the radical of Hessx(FH, y) is

Tx(CH,03B3). By Proposition 8.3, Tx(CH,03B3) = Tx(Cy) n Tx(GH). So we are re-
duced to proving the following:

If Lx,H,03B3(X) = 0, we have Qx(Xx) E 9H. Since Ad(t(x)) stabilizes n and
Ad(K(x)) stabilizes f, it is clear from the expression for Qx that S2x(Xx)
=R,+R2 where R1 = (En(Xt(x)x))t(x)-1 e n and R2 = (Et(Xt(x)x))03BA(x)~ 1.

Since Qx(Xx) E 9H, we conclude from the uniqueness of Iwasawa decom-
positions that R1~nH, R2 EIH’ As t(x) and K(x) respectively lie in ANH
and KH, we find

which implies that Xt(x)x~gH. Thus Xx~gH, proving (8.7).

Our aim now is to determine the signature and transversal determi-
nant of the Hessian forms Qx,H,03B3.

LEMMA 8.6: Let x E GH be semisimple. Then, writing 1 for orthocomple-
mentation with respect to the Killing form, we have

(gx + gH)~ ~ (gx + gH) = (0).

Since H is a semisimple element of g, g = gH ~ g~H. As x~GH, Ad(x)
respects this splitting. So, writing (gH)x = gx n g~H, we have gx + gH = gH
+ (g~H)x. Further, the semisimplicity of Ad(x) allows us to conclude that



356

g~H = (9nL 0 q where q = (I- Ad(x))(g~H). A simple calculation shows
that this decomposition is an orthogonal one. So q = (gx + gH)~.

We shall from now on suppose that y is semisimple. Let x~CH,03B3 =
= GH n Cy and put

COROLLARY 8.7: Lx,H,y leaves q(x) invariant and induces an automorph-
ism of it.

The argument of the previous lemma actually shows that 9x + 9H =
= (I - Ad(x-1))-1Tx(CH,03B3) and hence gx + gH = Ker(Lx,H,03B3). As Lx,H,03B3 is
symmetric with respect to .,.&#x3E;, the corollary follows from the above
lemma.

PROPOSITION 8.8: Let y E G be semisimple, x~CH,03B3. Then

where the suf.fixes denote endomorphisms induced on the corresponding
vector spaces.

Write L = Lx, H, y, t = Ad(t(x)), k = Ad(K(x)), q = q(x), R = t-l Ent
+ kEt. Then L = ad H o R o (I - Ad(x -’». As L, ad H and 7 - Ad(x-1)
leave q invariant and all are automorphisms of q, R leaves q invariant
and we have

So we need to establish that det(Rq) = :t det« t)gh ("B n)-1.
We begin by observing that gH is stable under E and En and that

E + En = I, the identity on gH. So R leaves gH invariant and

So, if Z E (g~H)x, R(Z) - Z mod(q). So, with respect to the decomposition
9-’ = (g~H)x ~ q, R9h has the matrix
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which shows that det(RI) = det(R). Hence we come down to checking
that

But g~H = (n n g~H ~ (f n g~H), and with respect to this decomposition,
(t -1 En + kE) has the matrix

whose determinant is det(t-1)n~g~H. det(k)~g~H = + det(t-1)n~g~H. Hence

As Ad(t(x)) is unimodular on g as well as 9H, det(t)gH = 1. So we are
done.

COROLLARY 8.9: Assume in addition that H E Cl(a+). Then q(x) n tt is

stable under Ad(x-l) (as well as ad H), and

We have a standard parabolic subalgebra g(H) associated with H
whose nilradical is n+ = 03A303B1(H)&#x3E;0 g03B1. Let n - = 03A303B1(H)&#x3E;0g-03B1. Then n± are
stable under G,, hence under Ad(x-1); and their direct sum is g~H.
Clearly n± = (n±)x ~ (I-Ad(x-1))(n±). Write q = q(x). Then we see
that q=(ann)Q(qntt) where qnn=qnn+, qnfi=qnn_, and
q~n± = (I-Ad(x-1))(n±). Now .,.&#x3E; is nondegenerate on q x q by
Lemma 8.6, and it is easily seen that Ad(x) (resp. -adH) is the trans-
pose of Ad(x - ’) (resp. ad H) with respect to .,. &#x3E;; moreover, q n n + and
q n n_ are in duality with respect to .,.&#x3E;. Hence

On the other hand, as K(x) and t(x) are in GH, Ad(K(x)) = k and Ad(t(x))
= t leave n± invariant, so that

The corollary follows from these formulae.
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PROPOSITION 8.10: Let y E G be semisimple. Then
(i) The signature of Qx,H,03B3 is constant when x varies in any GH-con-

jugacy class of CH,y’ It is moreover 0 on all of CH, y if H E Cl(a+).
(ii) The critical value of FH, y is constant on each GH-conjugacy class in

CH,03B3.

Both the critical value and the signature are constant on each GH-
conjugacy class in CH,03B3. But GH = MG’ and FH, y is invariant under the
inner automorphisms induced by M. It therefore remains only to verify
that Sgn(Qx,H,y) = 0 for all x~CH,03B3 when H~Cl(a+). In this case,

suppose X E q n n. Then Xx = X - xx- is also in q n n so that XX(X) ~n.
This gives En(Xt(x)x) = Xx(x) and E(Xt(x)x) = 0 from which we get

since n, n) = 0. So Qx,H,03B3 is zero on q n n whose dimension is 2 dim(q).
It follows at once that Qx,H,03B3 has signature 0.

REMARK: The form Qx,H,03B3 is the pullback of Hessx(FH,03B3) via 1-
- Ad(x-1). Hence the absolute value of det(Hessx(FH,03B3))q(x) calculated
with respect to pseudo-orthogonal bases of q(x) (bases (Xi) with

Xi, Xj&#x3E; = ± bij) is given by

We note that Ad n(x) is unimodular on any subspace it stabilizes, so that
we get

Although q(x) depends on x, the argument (via GJ used in the proof of
Proposition 8.3 shows that the first term on the right side of (8.10) does
not depend on x E CH, Y.
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9. Asymptotic expansions for matrix coefficients

The results obtained in the sections 5 and 6 allow us to obtain the

asymptotics, as i ~ + oo, of the integrals

where a E A, H~a are fixed and g E Coo(K).
The asymptotic expansion can be given a distributional formulation.

To explain this, let 03BC0, 03BC1,... ~R such that I1n -+ - oo, let en E R and let

03A8n = Pn,a,H be distributions on K. Then we shall write

if for each integer N ~ 0 there exists a continuous seminorm vN on
C°°(K) such that

for all g~C~(K). It is clear that if such an asymptotic expansion exists,
the cn and are uniquely determined. If the 0 in (9.3) is uniform with
respect to the parameters a, H (ranging over some domain), then we say
that the expansion is uniform in these parameters.
The asymptotic expansion of Ia,H,03C4 ars ! -+ +00 is obtained by a

straightforward application of the method of stationary phase (see Hôr-
mander [36, p. 144], Chazarain [13], Colin de Verdière [15]). In order
to formulate it we need some notation. For fixed a E A, H E a, and any
weïo, we put (cf. (6.9) and (6.10))

Here, as usual n(a) = dim ga for any root a of (g, a). Finally, dk is the
normalized Haar measure on K, that is ~Kdk = 1; and d0k is the
Euclidean measure induced by the bi-invariant Riemannian metric on K
which on f is equal to minus the Killing form.
As a consequence of Proposition 5.4, Corollary 6.4, Corollary 6.6,

Proposition 6.7 and Proposition 5.6 we then have:
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THEOREM 9.1: Fix a E A, H E a. The function k ~ exp i03C4H(ak), H), re-
garded as a distribution Ia,H,03C4 on K, has an asymptotic expansion of the
form

as i - + oo. Here cw,l = cw,l,a,H is a distribution of order ~ 21 with sup-
port contained in KawKH. To be more precise: cw,l = Qv where Q is a

linear differential operator with smooth coefficients in K of order ~ 21, and
v is a smooth density on KawKH. The top order coefficient cw, o is the

measure given by the formula, valid for all g E C~(K), and with volo(K)
= JK do k,

Let Aa (resp. aH) be the vector subgroup (resp. linear subspace) of A (resp.
a) of elements centralizing Ka (resp. KH), and A’a (resp. aH) the open subset
of Aa (resp. aH) of elements with centralizer exactly Ka (resp. KH). Then
the Cw, l, a’, H’ depend smoothly on (a’, H’) E A’a x aH; and the expansion is

locally uniform in A’a x aH. Moreover, with l(·) denoting left translation in
COO(K), 

and the cw,l,a,H are invariant under left translations by elements of Ka.
Finally, if H E Cl(a+), or more generally, if H is aligned with a +, then the
Cw,l,a,H are also invariant under right translations by elements of KH; and
the top order coefficient cw,0,a,H is given by

EXAMPLE: For the elementary spherical function ~i03C403BE+03BB, 03BE~JR = a*,
03BB~J = a*C, the theorem can be applied with H = H03BE, g(k) = exp(À -
- p)(H(ak)).
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Here, as usual,

The formùla for the top order term becomes particularly simple if a and
ç are regular; in this case

modulo lower order terms in i. This formula has a formal resemblance

with the famous asymptotics of Harish-Chandra for ~i03BE(a) as a - 00 in
A +. Careful analysis of the latter asymptotics, for instance in the formu-
lation of Gangolli [23], also leads to an asymptotic expansion for

~i03C403BE(a), as 03C4~~ and a~A+ keeps away from the walls of the Weyl
chamber. However, Theorem 9.1 is more general; it applies also to sin-
gular a and can be applied directly to spherical functions related to K-
representations as in (11.5). Also, it is our opinion that even in the case
of ~i03C403BE(a), a E A +, the proof using the method of stationary phase is more
elementary.

In the above theorem, as long as (a’, H’) varies around (a, H) in such a
way that Ka’ = Ka and KH, = KH, the asymptotic expansion varies

smoothly. For small but arbitrary variations of (a’, H’) on the other
hand, it is natural to expect that at least the absolute value of Ia’, H’,03C4(g)
is dominated by the growth order at (a, H).

In fact, let ko E Ka, H. We can then select coordinates

x1,...,xq, y1,..., ys around ko such that xi(ko) = yj(ko) = 0 and Ka, H is
locally given by yi = ... = ys = 0. The phase function Fa’,H’ becomes a
function of x 1, ... , xq, y1,..., ys; hence, as a function of y1,..., ys, it has y1
= 

... = ys = 0 as a nondegenerate critical point when xi = ... = xq = 0,
a’ = a, H’ = H. So, treating x1,...,xq, a’, H’ as parameters, using the
Morse lemma with parameters and applying the method of stationary
phase to the integral over y 1, ... , ys, we get the following

PROPOSITION 9.2: Fix a E A, H E a. Then we can find a neighborhood 0
of (a, H) in A x a, and a continuous seminorm v on C°°(K) such that for all
(a’, H’) E 0, g E COO(K), and i ~ 1,
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As H’ varies around H, then the iH’, i ~ 1 fill up a conical neighbor-
hood of H minus some compact subset. We then obtain the following
corollary.

COROLLARY 9.3: Fix a E A, H E a. Then we can find a neighborhood w
of a in A, a conical neighborhood r of H in a, and a continuous seminorm
v on Coo(K) such that for all a’ E cv, H’~0393, g E C°°(K)

These estimates are sharp as long as a’, H’ are restricted to the

"equisingular set" A’a x aH mentioned in Theorem 9.1, but give the
wrong (too high) growth order along other rays for which Ka’mKH’ is
smaller.

In the terminology of high-frequency optics, the set of parameters e
where the growth order of the oscillatory integral ~ei03C4f(03B5, x)g(x)dx is

larger (less negative) than at the generic neighboring point, is called the
caustic set, see for instance [19, 1.6]. In our case 6 = (a, H) or, if a is
fixed, e = H, and the caustic set is a union of hyperplanes. When
approaching the caustic set, the growth order in i remains constant
(equal to -1 2 dim N), but at least one of the top order coefficients goes to
infinity, cf. (9.6). When reaching the caustic set the growth order in i
changes discontinuously to a less negative number, with new leading
coefficients. This behaviour is repeated when entering the intersection of
more root hyperplanes. In Section 11 we shall derive upper bounds

which are uniform in all H E a, with a in a compact subset of A. These
uniform bounds have a rather simple form but at the same time are
sharp in the sense that at least for equisingular a they follow the ab-
solute value near the caustics accurately modulo constant factors.
The situation at the caustics in our case is in striking contrast with

what happens for generic families f(6, . ); for instance, for low dimensions
of the parameter space, the caustics are the elementary catastrophes of
Thom and the asymptotics is locally uniform in terms of new classes of
special functions of Airy type. Also the behaviour of the critical set

KXmKH (a = exp X) of the phase function Fa,H in its dependence on the
parameters a, H is highly nongeneric, as has already been observed in
section 1.
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10. Testing the distributions Ty (y semisimple)

Fix a semisimple element y E G. The results of section 8 enable us to
obtain the asymptotics of the integral

as i ~ + oo, dC,, being an invariant measure on C,, We shall normalize
it as follows. Let .,.&#x3E; be the left invariant pseudo-Riemannian metric
on G such that it coincides with the Killing form .,.&#x3E; at 1. On any

semisimple conjugacy class C this induces a nondegenerate pseudo-
Riemannian metric .,. )c. The measure dey is the measure defined by
.,.&#x3E;C03B3. Since .,.&#x3E;G is invariant under inner automorphisms of G,
.,.&#x3E;C03B3, and hence dC,,, are G-invariant. For any H~a, we see from
Lemma 8.6 that the manifold CH, 03B3 = GH ~ C03B3 inherits a pseudo-
Riemannian metric from .,.&#x3E;G; the corresponding GH-invariant
measure on CH, y is denoted by dCH, 03B3. With notation as in section 8 we
then have the following theorem.

THEOREM 10.1: Let H E a, and let xj (1 ~ j ~ m = m(H, y)) be a complete
set of representatives for the GH-conjugacy classes in CH, 03B3. Then we have
the asymptotic expansion, as r ~ + oo, of distributions

Here the cj, l, H are distributions on the manifold Cy, of order ~ 21, with
support contained in CH,03B3,j = the GH-conjugacy class of xj; d = dH, y is the
common value of dim(q(x)) as x varies in CH, y; and the top term cj,0,H is
given for all g E C~c(G) by

where 03C3j = Sgn(Qxj,H,03B3) and BH, y is the common value of
(203C0)d/2|det(ad H(I- Ad(x-1))-1)q(x)|-1 2 for x in CH, y (cf. last remark in
section 8). The distributions CJ,I,H depend smoothly on H, and the error
estimates are locally uniform in H, as long as H varies in such a way as to
keep GH , fixed. With H’ varying in some full neighborhood of H in a we
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have a uniform estimate of the form

for all i ~ 0, v being a continuous seminorm on C~c(G). Finally, if
H E Cl(a+), the signature Uj = 0 for all j = 1,..., m.

The m-invariant distribution Ty on A is defined by the formula

where d-l is the inverse of the Abel transform on G, A: C~c(G//K) 
C~c(A)m, and dx is the standard measure on G/Gy (cf. DKV, Section 4).
We can rewrite this as

where c(G, y) is a constant &#x3E; 0 independent of f. One also knows that
if b &#x3E; 0, U = {a~A| ~log a~ ~ b}, and V = K UK, then one has

supp(A-1f) c V for all f~C~c(A)m with supp( f ) c U. Fix U, Y as above
and let 03C8 E C~c(G//K) be such that 03C8 = 1 on E Then, using the theorems
of Helgason (*), Gangolli and Harish-Chandra, we find,

where f(03BB) = JAfeiÃ.da; this is true even for not necessarily m-invariant f
in C~c(U). To test the singularities of 7§, we replace f by fei03C403BE, with
ç ~JR and let i - + oo. We get

* As is also clear from Gangolli [23], this Paley-Wiener theorem originates from
Helgason’s article in Math. Ann. 165 (1966) 297-308.
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We rewrite this as

The integrals appearing in the right side of (10.6) with respect to

dCy(x) can be simplified. We have, for all 03BD~J, g~C~c(G),

where 9(x) = ~Kg(kxk-1)dk. In fact,

Hence

Theorem 10.1 can now be applied to develop the asymptotic expansion
of the right side of (10.8). With notations as before we have the following
theorem.

THEOREM 10.2: We have the asymptotic expansion, as i ~ + oo, of
distributions
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Here the Cl,l,ç,A are distributions on C03B3, of order ~ 21, supported by CH,l’,j,
given for g~C~c(G) by

In particular, they depend smoothly on ç, A as long as 03BE varies in JR
without changing GH03BE, the error estimates and coefficients being locally
uniform in 03BE and of polynomial growth at most in A. Finally, there is a
neighborhood 0 of 03BE in e7R, an integer R ~ 0 and a continuous seminorm v
on C~c(G), such that for all 03BE’~0398, 03BB~JR, g~C~c(G), 03C4 ~ 0,

COROLLARY 10.3: 

where

The above results may be used to obtain an asymptotic expansion of

T03B3, fei03C403BE&#x3E; when i ~ + oo. Since Ty is w-invariant we may suppose that
03BE~Cl(J+R). Theorem 10.2 gives the asymptotics of the inner integrals in
(10.6), and so it remains to develop the asymptotics of fl(1(ij + 03BB)). Let us
fix 03BE0 E Cl(F+R), let L1 + + be the set of positive short roots (DKV, Section
3.8), and let

If L is the subspace of JR of all 03BE with 03B1, 03BE&#x3E; = 0 V a E 0394++0 and L’ is the
subset of L where (a, 03BE&#x3E; ~ 0 for 03B1~0394++0, L’is an open neighborhood of
Ço in L. By an equisingular neighborhood of Ço in Cl(F+R) we mean a
neighborhood of Ço in L’ n Cl(F+R). We fix such a compact neighbor-
hood 0. For 03BE E 0, G03BE = G03BE0, if we write for convenience G, = GH03BE.
We begin by noting that the product structure of fi (cf. DKV, Section

3.8) gives
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where, for z~(-1)1 2R and Izl - + oo we have the asymptotic expansion

In particular, for all ,

Here 03B203BE is the counterpart of 13 for the group G03BE. We shall now obtain,
for the product in the right side of (10.15) an asymptotic expansion
when r ~ + oo with coefficients and error terms that are of polynomial
growth in 03BB and uniform in 03BE when 03BE varies in 0. We shall do this
however only for r &#x3E; 0, 03BE~0398 and 03BB~JR. varying in such a way that

where

The restricted regime (10.16) is perfectly adequate for our purposes as
we shall see presently.
Now, if Z~C and izl  1, we have, for any integer N ~ 1,

Assuming (10.16), the coefficient of 03C4-(n+1) is majorized by
(203B4)-(n+1)~03B1~n~03BB~n while the error term, which is the last one appearing
on the right side of (10.18), is majorized by 03B4-1(203B4)-N~03B1~N~03BB~N03C4-(N+1).
Further |03B1, 03C403BE + 03BB&#x3E;|2k = 03B1, 03C403BE + 03BB&#x3E;2k since everything is real. Hence,
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raising (10.18) to the 2k-th power, we get the asymptotic expansion

where the coefficients h’k,n and the error terms are of polynomial growth
in À, uniformly for 03BE e (9, everything being valid under the assumption of
(10.16). Moreover, (10.16) also gives

Hence

where the coefficients hn and the error terms are of polynomial growth
in À, uniformly for 03BE E O. This leads to the asymptotic expansion

Here

moreover, the coefficients hn and the error terms are of polynomial
growth in 03BB, uniformly for ç E e, everything being valid under (10.16).
To obtain the asymptotic expansion for T03B3, fei03C403BE&#x3E;, let 03A9(03BE, 03C4) be the

subset of 9’ R described by (10.16); its complement in 9’ R can be written
as a disjoint union of measurable sets 03A903B1(03BE, 03C4), 03A9’03B1(03BE, 03C4) (03B1~0394++0) where
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Hence there is a constant a &#x3E; 0 such that

It is immediate from (10.23) that if 0 is a continuous function of 03BB which
is 0(~03BB~-m) as ~03BB~ ~ ~ for each m ~ 1, then, as i - + oo,

for each m ~ 1, uniformly for 03BE E 0. We now substitute for the inner
integral in (10.6) from Theorem 10.2, split the integral with respect to À
as a sum of integrals over 03A9(03BE,03C4) and JRB03C9(03BE,03C4), and use the expansion
(10.21) for 03B2(i(03C403BE + À)) on 03A9(03BE, 03C4). We then obtain the following theorem.
Notation is as in Theorem 10.1.

THEOREM 10.4: Let 03BE E Cl(g-;). Write n + = 03A303B1,03BE&#x3E;&#x3E;0 g03B1, n+,1 =
= n+ n 9Xl’ Then, we have the following asymptotic expansion for
T03B3, fei03C403BE&#x3E; as i ~ + oo ( f E C~c(U)).

Here bi are constants &#x3E; 0 depending on G, y, xj, and on 03BE only through
G4; TG03BExj are distributions on A which are the counterparts in G03BE of the
1;,; 03B803BEj,n are distributions on A; and the error terms are majorized by semi-
norms in f locally uniformly in 03BE as long as 03BE varies in an equisingular
manner.

To get the exponent of i in the above formula we note that this

exponent is

dim(tt) - dim(n4) - -Ldim(q(x»

for any x E C4, , say x = x 1; it then simplifies to dim(n The leading
term appearing as the coefficient of ei03C403BE(H(xj)) comes out as

with
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On the other hand, applying (10.6) and (10.8) to the group G, with 1 = 0
we get,

Hence, we get the desired expression for the leading term with

REMARKS: Theorem 10.4 can be regarded as a testing of the singular-
ities of 7y. It is interesting to compare this with the description of the Ty
in DKV, Section 4.5. Since there is only a finite number of possibilities
for the G, as 03BE varies in a*, only finitely many conjugates h = xj of y
have to be considered. Each of them can be put in a 0-stable Cartan

subgroup L of G such that IR c a. Writing *1 for the orthogonal comple-
ment of IR in a, the formula (4.27) in DKV expresses that Ty is equal to a
sum of transversal derivatives of some distributions in the affine sub-

space *+ loghR averaged with respect to w. From Theorem 10.4 we
now read off that T03B3, fei03C403BE&#x3E; is not rapidly decreasing as 7: - oo (local-
ly uniformly in 03BE), only if H03BE e Ker(Ad h - I) n a for some of the h. In
the terminology of Hôrmander [36, 2.5] the wave front set of Ty there-
fore is contained in the union of the finitely many affine subspaces of
a x a which are equal to the Cartesian product of *1 + log hR with
Ker(Ad h - I) n a. Here we use the identification of a* with a via the
Killing form.
Now always Ker(Ad h - I) n a = Ker(Ad hl - I) n a =) IR - If equality

holds, then the distributions on *1 + log hR (of which transversal deriv-
atives were taken) actually are smooth densities on *1 + log hR. Because
Ker(Ad h-I) n a = IR if h is regular, we thus find back Theorem 4.12 of
DKV, but the result of Theorem 10.4 here is sharper; it establishes also
non-smoothness and quite detailed further information about the distri-
butions in *1 + log hR if Ker(Ad h - I) n a  ’R. Note that if Ker(Ad h -
- I) n a = IR, then the number of transversal derivatives apparently is
equal to dim(n n 9IR)’ Also the polynomial dependence on H, of the
coefficients in (10.25) (viz. det(ad H03BE)n+,1) reflects the differentiations ap-
pearing in the description of the Ty in DKV (4.27).
We leave the further explicating as an exercise. This will lead to a

quite detailed description of the singularities of the T,, in awaiting of the



371

full explicit formula for the Fourier transform of the Ty, which we think
in principle is obtainable. Cf. Sally and Warner [50], Herb [34].

11. Uniform estimâtes for matrix coefficients with
A ~JI, ~03BB~ ~ oo, and a bounded

As observed at the end of section 9, it is not possible to get sharp
estimates for the integral

uniform for H E a, a bounded, by simply rewriting it as

letting i ~ oo and treating H as a parameter on the unit sphere in a. The
problem is caused by the singular asymptotic behaviour for 03C4 ~ ~ of

(11.2) if  is in a root hyperplane; with increasing order of asymptotics
if more roots vanish at H. This originates from the sudden change in
dimension of the critical set of Fa, H as il enters these (intersections of)
root hyperplanes. On the other hand the geometric simplicity of the
caustic set and the remarkable rigidity of the critical sets encourage one
to hope for uniform upper bounds for (11.1) in terms of much simpler
functions than the Airy-type of functions; these would be needed in the
generic case (cf. Duistermaat [19]). Making essential use of suitable
right invariance properties of the Fa,H in order to get the estimates lo-
cally uniform in a, we can prove:

THEOREM 11.1: Fix a compact subset co of A. For any WEW, let

Then we can find a Cm-norm v on Cm(K), m = 1 2dim N, such that for all
a~03C9, g~Cm(K) and all H E a,

If dim N is odd, then g E Cm if and only if g E C[m] and the derivatives
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of g of order ~ [m] are Hôlder continuous of order 2. Cm-norms are
then defined in the obvious manner.

In view of the asymptotic expansions along rays which were obtained
in section 9, the estimate (11.4) is sharp modulo constant factors if we let
a vary in an equisingular compact subset of A. However, in this case an
even more refined asymptotic expansion holds which is uniform in

H~a, as will be shown in section 12.
Let E be a finite-dimensional vector space and let R = (R1, R2) be a

double representation of K on E. For any 03BB E F, the complex dual of a,
and any endomorphism T of E, the (R, T)-spherical function with eigen-
value parameter 03BB is defined as the matrix-valued function 03A6 = 03A6R,03BB T on
G given by (cf. Harish-Chandra [30])

Because 03A6(k1xk2) = Rl(kl) 0 03A6(x)  R2(k2) for all kl, k2 E K, x~G, 03A6 i
determined by its values on A in view of the Cartan decompositi01
G = KAK.

COROLLARY 11.2: For any compact subset OJ of A there is a constan
C &#x3E; 0 such that for all a E co, A = iç + r¡ E 57 with ç, il E $’ R, we have

which follows immediately from the determination of the critical set of

Fa,H~ in Proposition 5.4, and observe that derivatives of order ~ m

applied to g lead to polynomial factors in il of order ~ m. So we obtain
(11.6) as a consequence of (11.4).

The exponential factor max exp il(log a"’’) in (11.6) is sharp. This can
w’Em
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be seen by applying the method of steepest descent (cf. Erdélyi [22]) to
the points where k ~ ~(H(ak)) takes its maximum value. The same

method should also lead to improvements in the polynomial factor
(1 + 11r¡IDm. However, an extension of Theorem 11.1 to the case of com-
plex H would lead to additional complications in its already long proof,
so we settle for (11.4), (11.6).
The proof of Theorem 11.1 simplifies considerably if we restrict H

even somewhat more, namely to the closure of the positive Weyl cham-
ber in a. Indeed, for those H the function Fa,H is always right KH-inva-
riant (see Proposition 5.6). For this reason we shall first give the proof
for H E Cl(a+); we indicate the modifications needed in the case of gen-
eral H E a at the end of this section.

It may be noted that for the elementary spherical functions OA (when
R, = R2 = 1 and T = I), Corollary 11.2 can be obtained already from
the version of Theorem 11.1 for H~Cl(a+), because ~03BB = for any
w E rv, and each H E a is in the w-image of Cl(a+) for some w c- m.

Since the proof of Theorem 11.1 in the case of H E Cl(a +) depends
strongly on the right KH-invariance of the Fa,H, we start with a lemma
concerning the subgroups KH when H is varying over certain subsets
of a.

and the intersection is clean. If B c C with C the closure of a Weyl cham-
ber, and H’ = EH c- B H, then GB = GH’, KB = KH’.

Combining Proposition 1.2 and Lemma 1.1 we see that

k~KXmKH ~ Xk-1 ~gH. So k belongs to the right hand side of (11.9) if
and only if Xk-1 ~gB. Replacing now GH by G, in the proof of Proposi-
tion 1.2 (first part), we get the equivalence of this with k~KXmKB.
For the cleanness, let k = uxwv with u~KX, WEW, v E KB. Setting

Y = w-1X and using that KYKB is the Ky x KB-orbit through 1, we
have to prove that the KyKH (H~B) meet cleanly at 1, that is, n (ty

HeB

+ H) = fy + 1 B. But n (gy + 9H) = 9Y + 9B using root space decompo-
HeB
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sitions; and the desired relation is obtained on intersection with f,
noting that all subspaces in sight are stable under the Cartan involution
0.

For the last assertion we may take B c Cl(a+) because all Weyl
chambers are conjugate to each other. Note that for any B, GB c GH-.
Moreover, for 03B1~0394+, 03B1(H’) = 0 ~ 03B1(H) = 0 for all H E B, so that

gB = gH’. But then GH. = GO,M = GOM c GB.

The proof of Theorem 11.1 starts with a series of reductions. The first
one is that, using a partition of unity for g, it is sufficient to prove
Theorem 11.1 in a local form, that is to prove

PROPOSITION 11.4: Fix ao E A, ko E K. Then there exist neighborhoods
Ao of ao in A, resp. V of ko in K and a Cm-norm v on C’(K), such that for
all a~A0, g E Cmc(V), H E Cl(a+) the estimate (11.4) holds.

The next reduction consists in showing that instead of considering
arbitrary H~Cl(a+), we may restrict ourselves to H in certain conical
subsets C(n, li, y) of Cl(a+), defined as follows.

Let S be the set of simple roots in L1 +. Because S is a basis of a*, its
number of elements is equal to r = dim a = real rank G. Let II be the set
of all ordered partitions 03C0=(S1,...,Ss) of S into disjoint nonempty
subsets Sj. Let y, y be positive real numbers, 03BC ~ 1. Then we say
H E C(n, li, y) if and only if

In the applications y will usually be large. This means that the coor-
dinates a(H) of H E C(n, J-t, y) with respect to the dual basis Sv can be
grouped in such a way that the coordinates in the same group are of
comparable size, while the coordinates in a given group are much larger
than the coordinates in the next group.
The next combinatorial lemma shows that, if, for every nE il and

03BC ~ 1, we can prove Proposition 11.4 with H~Cl(a+) replaced by
H~C(03C0,03BC,03B3), for some y no matter how large, then Proposition 11.4

itself is true.

LEMMA 11.5: Suppose for each nE II and J-t ~ 1 we are given a number
y(n, 03BC) &#x3E; 0. Then there is a mapping 03C0 ~ 03BC(03C0) with 03BC(03C0) ~ 1 such that
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For any j~{0,...,r- 1} let 03A0j be the subset of II consisting of all
partitions of S into r - j subsets. We set po = 1, 03B3-1 = 1 and define by
induction over j the numbers 03BCj+1 and yj by 

Note that yj and iij are ~ 1 and that

Hence it suffices to prove that

In fact we shall prove by induction on j = 0,..., r - 1 that

where

This would prove what we want since C, - 1 = Cl(a+).
(11.16) is trivial for j = 0. Let HE Cj’ Then H E C(n, cc, yj) for some

03C0~ 03A0j; write n = (S1,...,Sr-j). If we can subdivide Si into disjoint non-
void subsets A, B such that 03B1~A, 03B2~B ~ 03B1(H) ~ 03B3j-103B2(H), then

H~Cj-1. Therefore, by induction hypothesis, H is contained in the left
hand side of (11.16), even with j replaced by j -1. So we may assume
that no such subdivision exists. Then, given any i, start with an arbitrary
03B11~Si. There is an 03B12~Si different from a 1 such that 03B12(H)  03B3j-103B11(H).
Continuing by induction, we find 03B1l~Si different from 03B11,...,03B1l-1 such
that 03B1l(H)  yj - 1 oc.(H) for some m  1. Consequently, again by induc-
tion, 03B1l(H) ~ (03B3j-1)l-103B11(H). It follows that 03B1(H)~(03B3j-1)ri-103B11(H), if

a E Si and ri denotes the number of elements of Si. Since 03C0 is a partition
into r - j subsets Si, ri ~ j + 1; so from the definition of 03BCj we see that
H E C(03C0, 03BCj, yj).
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In general the 03B2V are distinct from the Hp. Note also that

In order to describe the next localization in the variable H, we define,
for a given ordered partition 03C0 = (S1,..., S8)’ the "Sj-component" of
HEa as

and for i = (03C41,..., 03C4s)~Rs the "inflated vector" -r - H~ a by

For ,u ~ 1 consider the parallelepiped

Of course P(03BC) c a + and a(H) ~ 03BC03B2(H) for all H~P(03BC) and 03B1, 03B2~S. For
any 03B3 ~ 1 define

The P(n, y, y) are comparable to the C(n, ju, y), in fact

Indeed, let H e C(03C0, 03BC, y). If a(H) = 0 for some a e Si then we read off from
(11.10) that 03B2(H) = 0 for all 03B2~Sj~... u SS. So if p is the smallest j for
which this occurs, we have a(H) &#x3E; 0 for oc e S1 u ... u 5’p-1 and 03B2(H) = 0

for fi e Sp u ... u SS. For 1 ~ j ~ p - 1, define rj = max 03B1(H); then
03B1~Sj

Ti ~ 03B2(N) ~ 03C4j for all fi c- Sj. Therefore

If we take -ri = 0 for p ~ i ~ s and observe that 03C4j ~ YTk for j  k, it is
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immediate that H = r H’ and H E P(n, Il, y). The second inclusion is even
easier.

The advantage of the P(n, Il, y) is that they are defined in terms of the
compact subsets P(03BC) of a+, rather than of Cl(a+). This reduces the
proof of Proposition 11.4 to proving Proposition 11.6 below.

Fix ao E A, k0~ K, let n = (S1,..., 5’J be an ordered partition of S, and
let HO E a +. Let t be the largest j such that ko is a critical point for Fa0,03B1v
for all a E S 1 u ... u Sj; we write t = 0 if ko is noncritical for Fa0,03B1v for all
oc c- S.

Let B = {03B1v|03B1~S1 ~...~ St}. Then, from (11.9) we conclude that

kOEKaowKB; in the sequel let w~m be such that koEKaowKB’ Define

where

and

PROPOSITION 11.6: There exist neighborhoods Ao of ao in A, resp. V of
ko in K, resp. 3 of HO in a+, and furthermore a C03BC-norm v on Ce(K)
(03BC = 1 203A3tj=1 n1t,j) and a constant 03B3 ~ 1 such that for all a E Ao, g E C4(V),
H ~039E and 03C41, ..., L s satisfying 03C41 ~ YL 2 ~ ... ~ 03B3s-103C4s ~ 0, we have

It is clear that the right hand side of (11.28) is dominated by the
right hand side of (11.4) with H replaced by D=l1:jHj’ Then also
03BC = 1 203A3sj=1 n03C0,j ~ m.
For any H~a+, with Hj defined as in (11.20), Fa,Hj is right Kj-

invariant if we define

Moreover, K = Ko =3 K 1 ~ ... ~ Kt = KI, z) ... ~ Ks = M; so F,,,,Hj is

in fact right Kl-invariant for j ~ 1. This is the first basic ingredient of the
proof of Proposition 11.6; the second is given in the following two
lemmas.
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LEMMA 11.7: For 1  j ~ t, the Hessian at ko of the restriction of Fa0,H0j
to k0Kj-1 has rank n03C0,j.

Since Fao, HQ is left Kao- and right KB-invariant and KB c Kj-1, we
may assume that ko = w. In view of Proposition 6.5 Q, the Hessian at w,
is diagonal with respect to the decomposition f = 03A3~03B1~0394+ fa G m. Because

the rank of Q|j-1 is equal to the sum of the n(03B2) where 03B2(H0j) ~ 0,
03B2~0394+(aw-10) and f3(rxV) = 0 for all 03B1~S1 ~...~ Sj-1. Writing such 03B2 as
03B2 = ¿YES ky y with ky E N u {0}, the last condition amounts to ky = 0 for
all 03B3~S1 ~...~ Sj-1, whereas 03B2(H0j) ~ 0 means that k03B3 ~ 0 for some
03B3~Sj. But this means that 03B2~0394+(aw-10)~[0394+03C0,jB0394+03C0,j+1]; so we get the
number n03C0,j in (11.25).

LEMMA 11.8: Let E be the subset of S such that ko is a critical point for
Fa0, 03B1v if 03B1~E and not critical if ac-SBE. Then there exists Z E 1 such that

(a) ZElE, the centralizer of the 03B1v, a E E;
(b) Fao,av(ko; Z) &#x3E; 0 for a E SBE.

We take Z = vXo(ko) = Ef(XOo ), see (3.4). Because ko E KaowKE for
some WEW, Xô° = Yv-10 for suitable v E KE; here Yo = w-1X0~a C 9E’
Hence Xô° 1 E gE. Because the restriction of E to gE is equal to the
corresponding projection for gE, the conclusion ZElE follows. (b) is an
immediate consequence of Corollary 5.8.

Let Xj be a local analytic section through ko for the bundle

k0Kj-1 ~ k0Kj-1/Kj (1 ~ j ~ s). By making Xj sufhciently small, the
map

is an analytic diffeomorphism of Xj x ... x XS with an open neighbor-
hood of k0M in k0Kj-1/M. Let £ = fj,03B8 be the pull-back of Fa,Hj to
X1 x ... x XS under (,; here 03B8~U stands for the parameters a, Hj in
suitable coordinates, so that (a0, H0j) corresponds to the origin 0. Using
also local coordinates in the Xj such that koM corresponds to 0, and
writing ôj = n03C0,j, we have abstracted to the following situation.

jj,8 (1 ~ j ~ s) is a system of smooth functions on X =

= X1 x ... x Xs, depending smoothly on parameters 0e U,
such that:
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(i) For each 0 E U, fj,03B8 depends on x1,...,xj only;
(ii) ~j:xj~fj,0(0,...,0,xj) has xj=0 as critical point with 

(1.32)rank equal to 03B4j, if 1 ~ j ~ t; 
( )

(iii) If t  s then ~t+1 is noncritical at xt+1 = 0.

Indeed, (i) is immediate from the definition of the’ j in (11.31) and the
right Kl-invariance of Fa,Hj if l~j.
For (ii), we note that taking x1 = ... = xj-1 = 0 is equivalent to re-

striction to k0Kj-1; so that the statement in question asserts that Fao, H0j,
restricted to k0Kj-1, has ko as a critical point of rank ôj = n03C0,j. This is
just Lemma 11.7.
To check (iii) we have to prove that the restriction of Fa0,H0t+1 to ko Kt

is noncritical at ko. Let E, Z be as in Lemma 11.8. Then

S 1 u ... u S, c E, hence Z E lE c fl, On the other hand the definition of t
implies that a E SBE for some 03B1~St+1. Since H0t+1 is a linear combina-
tion of the oc’, 03B1~St+1, with strictly positive coefficients, while Fa0,03B1v(k0;
Z) = 0 for 03B1~St+1~E, the conclusion from Lemma 11.8(b) is that

Fa0,H0t+1 (k; Z) &#x3E; 0.

Proposition 11.6 now follows immediately from

PROPOSITION 11.9: Let the fj,o be a "trigonalized" system as in (11.32).
Then there exist neighborhoods Uo of 0 in U, resp. V of 0 in X, and
furthermore, for each L ~ 0, a CIl-norm v on c (with 03BC = 1 203A3tj=103B4j
+ L) and a constant 03B3 ~ 1, such that for all 03B8~ Uo, g~C03BCc(V) and

03C41,...,03C4s e R satisfying 03C41 YT2 ... ~ 03B3s-103C4s ~ 0, we have the estimate

Here again, if J1 is not an integer then g E CJL means that g E C[03BC] and
the derivatives of order ~ [03BC] are Hôlder continuous of order J1- [03BC].
We first prove Proposition 11.9 for s = 1; it then follows from the next

two lemmas. They express the method of stationary phase in a form
which is suitable for our purposes.

LEMMA 11.10: Let fo be a smooth real-valued function on an open neigh-
borhood U of 0 in Rn. If df0(0) ~ 0, then there exist a compact neighbor-
hood Uo of 0 in U and a neighborhood J of fo in C1(U0), such that we
have the following. For all real N ~ 0 the mapping f, g H 1 f,g, defined by
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is a C’ mapping from (J~ CN+1(U0)) x CNc(U0) to the space fN of
functions I : R ~ C such that

LEMMA 11.11: Let f be as in the previous lemma but assume df0(0) = 0
and the Hessian Q of fo at 0 has rank d. Then there exist a compact
neighborhood Uo of 0 in U and a neighborhood IF of fo in C3(UO)’ such
that for all 0 ~ N ~ 1 2d the mapping f, g H If,g is a continuous mapping
from (J n CN+3(U0)) X CNc(U0) to fN’

If df0(0) ~ 0 then, if fo(O) = c, the implicit function theorem ensures
the existence of a local CN+1 change of coordinates, depending CN+1 on
f, such that f(x) = c + Xl on the new coordinates. Observe that this
exists for f in a Cl-neighborhood in CN+1 of fo. The new amplitude
depends CN on x, resp. f, g. Note that the Jacobian involves one loss of

derivative. Because e"rx = (i03C4)-1 d dx eirx we get, iterating

Because the factor ei03C4c in front of the integral does not depend on f, g,
differentiations with respect to f, g do not increase the growth order in i.
This proves Lemma 11.10 in the case that N is an integer. For Hôlder
estimates, derivatives have to be replaced by differences. The typical
estimate to be used is the following.

where

denotes the Hôlder norm of g of order a, 0 ~ a  1. Taking u = 03C003C4-1
gives an estimate by ~g~H03B103C4-03B1.

If dfo(O) = 0, we start writing Rn = Y x Z with Z = Ker Q. Then, per-
forming the integration over Y and treating the Z-components as para-
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meters, we have reduced the problem to the case when Q is nondegen-
erate. Indeed, the continuity of (11.34) then implies local uniformity of
the estimates with respect to z~Z. So integration over z afterwards will
not destroy the conclusion.
Now the proof of the Morse lemma in Hôrmander [36, Lemma 3.2.3]

based as it can be on the implicit function theorem in Banach spaces (cf.
Dieudonné [18]) leads to the following. There exists a CN+1 change of
coordinates depending in a eN+1 fashion on f~CN+3, such that on the
new coordinates

Then the new amplitude is C’. Now write

We then have reduced the proof to the case d = 1, observing that, if

g~C03B1+03B2, then x1 ~ g(x1,.) is a ca mapping from R to the space of CO
functions of (x2, ..., xd).

Let g E C§(R), 0 ~ a  1, 03C4 ~ 1. Then

with M &#x3E; n. The first integral is obviously 0(03C4-1 2), the second one is

estimated as in (11.36) with u = 03C003C4-1. Using that (y + u)1 2 - y1 2 ~ 1 2y-1 2u,
g((y+u)1 2)-g(y1 2) = 0((y-1 2u)03B1), the second integral cornes out to be

0(03C4-03B1) + 0(03C41 2). More precisely, there is a Ca-norm Va such that

REMARK: The power - a in (11.39) is sharp in view of the example
g(x) = e-03C4x2h(x), h~C~c(R), because the va of this g is of order La as

1: ~ co. Also note that differentiating (11.38) with respect to f leads to
additional powers of i; this is the reason for stating only the continuity
of the map (11.34) in Lemma 11.11. Finally, the critical value of f is an
invariant under coordinate changes in the domain of f.
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We start the proof of Proposition 11.9 for general s, t with a reduction
to the case t = s. Writing

we get

with

In (11.41,42), the 03B8,03C4t+2/03C4t+1,...,03C4s/03C4t+1, and x are treated as para-
meters. Note that the 03C4t+2/03C4t+1,..., 03C4s/03C4t+1 are kept between 0 and 1/y;
so the localization near 0 corresponds to the choice of sufficiently large
y in Proposition 11.9. Lemma 11.10 now implies that any C03BC-norm of Vt
(03BC ~ 0) can be estimated by (1 + 03C4t+1)-L times a C’-norm of g (L ~ 0),
thus reducing the proof of Proposition 11.9 to the case t = s.

Assuming t = s, the proof now will be given by induction on s.

Applying the Morse lemma with parameters to the function

x treating 0,x as parameters, we can write, with q., a

standard quadratic form in bs variables,
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Here ~03B8() is the critical value of xs ~ fs,03B8(, xs), which depends smoothly
on the parameters 0, x. Also he depends in a bounded linear way on g,
with respect to any C03BC-norm. We now have

with

Treating 03C4s/03C4s-1 as another parameter, which remains between 0 and

1/y, the system of phase functions j, 1~j~s-1 again is a trigonalized
system as in (11.32). Note that s-1,0,0() = fs-1,0(). The localization of
03C4s/03C4s-1 near 0 corresponds to the choice of sufficiently large y in Propo-
sition 11.9. This result now follows by applying Lemma 11.11 to (11.49)
and then applying the induction hypothesis to the integral on the right
hand side of (11.46).

Modification of the proof for general H E a
Now let C be the closure of any Weyl chamber, and let P(C) be the

corresponding choice of positive roots, that is

Replacing S by the set S(C) of simple roots in P(C), the reduction of
Theorem 11.1 with H E C to Proposition 11.6 with a + replaced by C’nt,
is done as above in the text running from Proposition 11.4 to Proposi-
tion 11.6.

However, our proof that the Fa,Hj can be viewed as a trigonalized
system of functions as in (11.32) with ôj = n03C0,j depends in an essential
way on their right KHj-invariance, but this is no longer available now.
Nevertheless we can still make the Fa,Hj into a trigonalized system as in
(11.32) with ôj = n03C0,j, by using suitable local coordinates.
The idea is to use the relation between Fa,H and fX, H (with a = exp X)

expressed in Lemma 5.9. For each Z~ let Yx, z be the vectorfield on K
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such that Yx,z(k), pulled back to f by left multiplication by k-1, is given
by

The point is that since fx,H is right KH-invariant, the function Fa, H will
be invariant under the flow 0’, z, t~R, of YX,Z if Z~H. Indeed, we read
off from Lemma 5.9 that

Defining Kj as in (11.29), let tj be their respective Lie algebras and let
Z(j)1,..., Z(j)nj be a basis of j-1 ~ j, j = 1,..., s + 1. Together they form a
basis of f, and because Z - Yx,z(k) is a linear isomorphism 1 -+ , the
YX,Z(j)m(k0), m = 1,..., nj, j = 1,..., s + 1 form a basis of 1 as well. As a
consequence, the map (x defined by

defines a diffeomorphism from an open neighborhood of 0 in Rn,
n = dim f, to an open neighborhood of ko in K. Using (11.52), Fa,Hj is
03A6tX,Z(l)m-invariant for all j  1, m = 1,..., nl. So, writing x, = (t(l)1,..., t(l)nl),
the functions fj,03B8 defined by (1 ~ j ~ s)

form a trigonalized system as in (11.32)(i). Here again 03B8 = (a, H) in

suitable local coordinates, while xs+1 actually is a dummy variable
because of right M-invariance.
To check (11.32)(iii) we recall Proposition 3.3 which states that the gra-

dient of fX,H, with respect to a suitable Riemannian metric on K/KH, is
equal to the vector field vx. Now, in section 3 we assumed that

H~Cl(a+). But if H is in the closure of another Weyl chamber then
everything in section 3 remains true if all parabolic subgroups as well as
the Iwasawa decomposition used in section 3 are chosen to be the

standard ones with respect to this Weyl chamber. This shows that
Lemma 11.8 remains true if we replace S by the set of simple roots with
respect to any Weyl chamber, and replace Fao, a" by fX0,03B1v. Because of the
invariance of the critical sets under eao we may also replace ko by
0398a0(k0), and get Z E lt such that
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for Y = YX0,z(k0). Writing Z = 03A3ciZ(t+1)i mod t+1 we get that differen-
tiating Fao,Hf + with respect to Y at ko gives the same result as applying
the differential operator 03A3ci~/~(t+1)i to ~t+1 at the origin.
What is left is the computation of the ranks b j in (11.32). As before,

kOEKaowKg for some WEW. Using the left Kao-invariance of Fao,H7
and the formula Fa,H(xwk) = Faw-1,H(k), we may assume that actually
k0~K0B, replacing ao by aÕ - 1. 

Corresponding to the Kj we have Gi = G(S1~...~Sj)V. Keeping in mind
that Ko c G0j-1, we transfer now everything to the connected reductive
group G0j-1. Because Gj-1 is an intersection of centralizers of elements
of a, (2.6) shows that the Iwasawa projection of G?- 1, is equal to the
Iwasawa projection of G restricted to G0j-1.

So the functions Fa, H on K0j-1 defined starting from Gjo- 1 are equal to
the restrictions to K0j-1 of the previously defined functions Fa,H on K.
Also the A-action on K0j-1 defined in terms of G0j-1 is equal to the
restriction to K?- 1 of the previously defined A-action a H ea on K; this
is the same as saying that ea leaves K0j-1 invariant, see Lemma 6.3. So
for Z~j-1 the vector field Yw-1X,Z can be viewed as a vector field on
K0j-1. At each point k~K0j-1 they span the tangent space to K0j-1, and
the problem is therefore to compute the rank of the Hessian of Faw-10,H0j
(with G now replaced by G0j- 1) at the critical point ko c- K0B.
Now, according to Corollary 6.6 with G replaced by Gjo- 1, this rank is

constant along K0Hj and since Ko c K0Hj it is therefore sufficient to com-
pute the rank at the identity element. There the computation of Lemma
11.7 shows that it is equal to n03C0,j. Because restriction to K0j-1 means
putting x 1 = 0,...,xj-1 = 0, ôj = n03C0,j and the proof of Theorem 11.1 is

complete.

12. Uniform expansions for orbital integrals and for matrix coefficients
with equisingular a

Now we turn to uniform estimates for the orbital integrals

of section 10. Let y be a semisimple element of G in standard position,
cf. DKV, Lemma 4.1, that is
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There are always elements of this form in a semisimple conjugacy class;
although such elements are not unique, their components in A are
unique up to conjugacy by an element of m (cf. DKV, Lemma 4.2).
Hence the assumption (12.2) on y means no loss of generality. As in
section 11 we put, for any w E nu,

It is our purpose to prove uniform estimates of the following form.

THEOREM 12.1: Let y E G be a semisimple element satisfying (12.2). Then
we can find a continuous norm v on C~c(G) of order  dim N, such that for
all g E C~c(G), H E a,

It follows from the remarks just made that the sum at the right side of
(12.4) does not depend on the choice of y as long as y satisfies (12.2).
Clearly the assertion is equivalent to the one for g E CdimNc(Z), Z a com-
pact subset of G, the norm on Ca’mN(Z) being allowed to depend on Z.
Not having the K,-invariances available, the proof of Section 11 will

not be applicable. On the other hand, lacking an additional parameter
like a in the Fa,H, which we wanted to vary arbitrarily in compact sub-
sets, we will be able to obtain a more refined result that can be interpre-
ted as a full asymptotic expansion for ~|H~ - oo, H~a. Since the final
statement needs more explanations, it will be given at the end of the
proof, in Proposition 12.2. Also the exponents in (12.4) are not always
optimal, but the "true" ones are more complicated to describe.
The natural additional parameter here is y, but varying y in the neigh-

borhood of a singular semisimple element of G will lead to conjugacy
classes with jumping dimensions, a rather awkward situation when
studying the dependence on the parameters of integrals over such fami-
lies of manifolds. Nevertheless, the method of proof in this section will
lead to analogous uniform asymptotic expansions for the integrals
Ia,H(g) of section 11, when a is restricted to equisingular subsets of A.

Like in section 11, we start by restricting H to the closure C of some
Weyl chamber; reducing to the study of integrals of the form
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Here we have used an ordered partition 03C0=(S1,...,Ss) of the set of
simple roots S(C) corresponding to the Weyl chamber Cinl. Moreover, in
terms of the Si we have defined

H may be restricted to a sufhciently small neighborhood of a given
H° E Cin’, and the ’t 1, ..., ’t s E R are restricted by

for sufficiently large ~ ~ 1. Finally g has support close to some fixed
Xo E C.. This reduction is made in the same way as the reduction from
Theorem 11.1 to Proposition 11.6, with Cl(a+) replaced by C.

Let us explain the idea of the proof with the FHj,03B3 replaced by a
general family of smooth functions .pj,6 ( j = 1,..., s) on an n-dimensional
smooth manifold X, also depending smoothly on the parameters 0 in
some parameter manifold 0. That is, we study the integral

with g E C~c(X) of sufficiently small support, dx being a fixed positive
smooth density on X.
We split the integration variable x in local coordinates into two

groups, y1, x1, of variables. Next we write the integral (12.8) as the re-
peated integral

Here 1 = (03C42/03C41,...,03C4s/03C41) are treated as new parameters; and

is treated as a function of y1, with parameters 1, 03B8, x1. Observe that in
contrast with the proof in section 11 we start by treating the largest (03C41)
of the frequency variables 03C41,..., LS’
Now assume that y1 ~ 03C81,1,03B8(y1,x1) has a nondegenerate critical

point at yi = c1,03B8(x1), which then depends smoothly on 1,03B8,x1. Write
dl for the dimension of the Y,-space. An application of the method of
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stationary phase allows us to rewrite the inner integral in (12.9) as,

suppressing the 1, 9 dependence for a moment in the notation,

where the remainder term R can be estimated by

for g E C’(U), U compact c X and v is a suitable norm on C~c(U). Here
we have introduced for convenience of notation a function 1 such that

l E C~([0, oo)), l(03C4) &#x3E; 0 for all 03C4 ~ 0, l(03C4) = 03C4 for i ~ 1. (12.13)

Now we can hope to continue the procedure with T2 as a frequency
variable, if x1 ~ 03C81,03B8(c(x1),x1) is constant. Then, indeed, in each term in
(12.11), the 03C41-dependence can be exhibited as a factor of the form

On substitution in (12.9) these expressions then appear in front of the
integrals over Xl’ so that for the remaining integrands the frequency
variable T2 becomes the largest. Here x° is just any of the points
(c1,03B8(x1),x1) along which 03C81,03B8 was assumed to be constant.
The following set-up will assure the continuation of the procedure

described above. Let X1,...,Xs be COO closed submanifolds of X such
that

all Xj being provided with positive smooth densities dxj. The Xj need
not be connected; but for each j, all connected components of Xj have
the same dimension. We assume now that for each j = 1,..., s and each
03B8~0398:

Here, for any smooth manifold Z, we write l(Z) for its tangent
bundle. Further, if Y is any smooth submanifold of Z, Ty(Z) is the re-
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striction of T(Z) to Y, that is, the vector bundle over Y whose fibres are
the tangent spaces of Z at the points of Y

Write

for the fiber dimension of Bj. For 1  t  s, x° E Xt, we introduce (by
induction on t) a smooth diffeomorphism ( from a neighborhood of 0 in
Rd1 x ... x Rdt x Rnt = Rn, nt = dim Xt, to a neighborhood in X of x°
with the following properties. 03B6(0) = x0, 03B6 maps y1 = 0, ..., yj = 0 into
Xj, and finally the tangent map of ( at u = (0,..., 0, yj+1,..., yt, xt) maps
the yj-space yi = ... = yj-1 = 0, yj+1 = ... = Yt = 0, xt = 0 to the fiber of

Bj at 03B6(u). Pull-back by ( leads to a system of functions 03C8j,03B8 for which
(12.16) gets translated into (1 ~ j ~ t, 0 E 0):

Applying this for t = 1, we read off from (12.18)(ii) that

y1 ~ 03C8k,03B8(y1, x1) has a critical point at y 1 = 0 for all k &#x3E; 1, whereas from

(12.18)(i) we then see that the function yi ~ 03C81,1,03B8(y1, x1) of (12.10) has a
unique and nondegenerate critical point at y1 = 0 if il is sufficiently
small, i.e. if q is sufficiently large in (12.7). From (12.18)(i), however, we
also see that x1 ~ 03C81,03B8(0, x1) is constant.
So applying the method of stationary phase to (12.9) we end up with

terms equal to exp(i03C4103C81,03B8(0))l(03C41) -tdl 1-m times an integral of the form

Here X. is obtained by applying a linear partial differential operator
with respect to the y1-variables, of order 2m, to g and then restricting to
y1 = 0. The coefficients of the differential operator depend smoothly on
x1, 03B8 and 1.

Repeating the procedure to the newly appearing integrals, and apply-
ing partial integrations as in the proof of Lemma 11.10 at noncritical
points, we obtain the proposition below. In it, the parameters i(i) are



390

defined by

with the convention

PROPOSITION 12.2: Let 03C8j,03B8 be a family of functions on X as above, in
particular satisfying (12.15) and (12.16). Let U, resp. eo be a compact
subset of X, resp. 0, let 1 ~ q ~ s and let M1,..., Mq be integers ~ 1. For
each sequence m = (m1,..., mq) of integers, 0 ~ mj  Mj, there exists a
linear differential operator Qm = Q(q)m,03B8,(03C4) in X of order ~ 2 IJ = 1 mj and
with smooth coefficients depending also smoothly on the parameters 0 and
f such that the following holds. There is a continuous seminorm v on

C,’(U) such that for all g E C~c(U), 0 E 00, 03C41 ~ ~03C42 ~ ... ~ ~s-103C4s ~ 0
with il ~ 1 suffzcientl y large,

where xo is any point on Xq and

In the proof it is used repeatedly that 1(’Cj)-l can be estimated by
1(,rq) - ’ if j ~ q. For instance, if XO E XjBXj+ 1, 1 ~ j ~ q - 1, then the
partial integrations in the integral over yj+1 will lead to a contribution
of g with support in a neighborhood of xl which can be absorbed in the
remainder term R. Applying a partition of unity to g this leads to con-
tributions coming only from x0~Xq. Note that the functions t/!j,8
(1 ~ j ~ q) are constant on X..
We present the intermediate result (12.21), (12.22) for all 1 ~ q ~ s

because knowledge of the behaviour of the integral in its dependence on
more 03C4j-variables (larger q) in (12.21) is paid for by means of a worse
estimate for the remainder term in (12.22). Indeed, l(03C4q)-M is less small as
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q increases. Of course, if q = s then the oscillatory factor in the integrals
over Xq in the right hand side of (12.21) is absent. This also happens if
we restrict ourselves to families of 03C41,...,03C4s for which 03C4q+1,...,03C4s con-

verge to a finite limit, whereas 03C41,...,03C4q are allowed to run to infinity.
Applying Proposition 12.2 with q = s and using the proof of Lemma

11.11 to determine the sharp order of the norm, we get

COROLLARY 12.3: Let assumptions be as in Proposition 12.2. There

exist a number il ~ 1 and a Cil norm v on C03BCc(U) such that for all

we have

Here we ma y take and use Hôlder norms if Il is not an

integer.

After these heuristic arguments, we now verify that the functions

FHj|C03B3 satisfy the assumptions (12.16) for a suitable sequence of submani-
folds X :D X1 :D ... :D Xs.

PROPOSITION 12.4: Let y E G be semisimple, H E a and let qH, y be the

orthogonal complement of T(CH,03B3) in TCH,03B3(C03B3). Then qH, y is a smooth GH-
stable subbundle of TCH,y(Cy) and its fiber at XE CH, y is equal to the or-
thogonal complement q(x) = (gx + gH)~ of gx + 9H in g. Here we have used
the identification of tangent spaces with linear subspaces of g via left mult-
iplication by x-1. Moreover,

Recall that CH, y, the critical set of FHl cy, is equal to Cy n GH and that
this intersection is clean (Proposition 8.2 and 8.3). Let x E CH, y; then

while

Now 1-Ad x-1 stabilizes both 9H and g~H and consequently its range
is the direct sum of the ranges of its restrictions to thèse subspaces.
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Hence

Further, by Lemma 8.6, g is the direct sum of gx + gH and q(x) = (gx +
+ gH)1; moreover both are stable under I - Ad x-1, which is even in-
vertible on q(x). Hence (I - Ad x-1)(g) is the direct sum of Tx(CH, y) and
q(x), proving (12.24). On the other hand Tx(CH,03B3) c g. and q(x) c gH,
therefore we get that q(x) is the orthogonal complement of Tx(CH,03B3) in
TX(C,). Finally, if g E GH, it is clear that q(gxg-1) = Ad(g)(q(x)), so qH, y is
GH-stable.

Although CH, y is in general not connected, its connected components
have all the same dimension (Proposition 8.3) and therefore also qH,03B3
has constant fiber dimension.

LEMMA 12.5: Let y E G be semisimple and H E a. Then, for all x E CH, y,
H’Ea,

that

Indeed, since x~GH, n(x)-1~GH, see (2.6); and so (H’)n(x)-1~gH. But
then, as q(x) c g~H, we have according to (5.9), for Z E q(x),

Now let n = (S1,..., Ss) be an ordered partition of S(C). We define, for

It is clear that for any H E Cin, we have, with
, and using Lemma 11.3,

With these notations, we have
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LEMMA 12.6: Let H~ C’-t, 03C0 = (S1,..., Ss) an ordered partition of S(C).
Then, for 1 ~ j ~ s, FHj,03B3|Cj-1,03B3 has Cj,03B3 as a clean set of critical points.

The stationary set of FHj,03B3 is Cy n GHj which contains Cj,03B3. Converse-
ly, let x~Cj-1,03B3 be a stationary point for the restriction of FHj,03B3 to
Cj-1,03B3. This means that the derivatives at x of FHj,03B3 along the directions
in Tx(Cj-1,03B3) vanish. On the other hand, Lemma 12.5 shows that the
derivatives of F Hj, Y at x along the directions in Tx(Cy) orthogonal to
Tx(Cj-1,03B3) also vanish. Hence x is a stationary point of FHj,,; that is,
x c- GHj n Cj-1,03B3 = Cj,03B3. For the cleanness we must verify the following
assertion (cf. (8.6)): if Z E 9x + gj-1 and ~Lx,Hj,03B3(Z), Z’) = 0 for all Z’ E gx
+ gj-1, then Z - zx-l E 9j’ Since x~Gj-1, we can conclude from the
formula for Lx,Hj,03B3 given in Proposition 8.4 that Lx,Hj,03B3 stabilizes

gx + 9j-l’ Hence Lx,Hj,03B3(Z) = 0. Proposition 8.5 now implies that

The Lemmas 12.6 and 12.5 together imply that, with X = Cy, Xj =
= Cj,03B3, 0 = H and 03C8j,03B8 = FHj,03B3, the conditions (12.15) and (12.16) are
fulfilled. Hence

THEOREM 12.7: The conclusions of Proposition 12.2 and Corollary 12.3
are valid, with X = Cy, 03C8j,03B8 = FHj,03B3, e = Cint.

In order to show that this implies Theorem 12.1, we have to investi-
gate the numbers

These are differences of the dimensions of successive elements of the flag
of linear subspaces

where x is an arbitrary element of G, n Cy and t is the largest number j
such that G, n C03B3 ~ Ø.

Since the choice of x is at our disposal, we may assume that x =
= u exp Y where u E K n Gt, YE a and r = Y; moreover, with such an x,
gx = gu ~ gY ~ gy-
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where gj is defined in (12.29). On the other hand, T (Gi n Cy) =
= (I - Ad x-1)(gj) = gj n gl in view of (12.27). Since YE a c gj and Yx
= Y, ad Y stabilizes gj n gx, so that

But gi c gx and so we have

In other words, the flag (12.32) is the direct sum of the two flags
(gj n g~Y)1 ~ j ~ t and n gy n g~x)1 ~j~t. Consequently, if we define

then

The inequalities (12.35) mean that we can replace d j by dj in the estimate
(12.23). Let us now write 0394(Y) for the set of roots 03B1~0394 for which

03B1(Y) ~ 0; let Ps+ 1 = Ø, and for 1 ~j~s let Pj be the set of roots in P(C)
(cf. (11.50)) which are linear combinations of Sj~...~Ss. As in the
proof of Lemma 11.7,

As a consequence,

We now observe that x and y are conjugate in G. This implies that Y
and log yR are conjugate under G, hence under m. But then, using also
that P(C) is equal to the conjugate of 0394+ under some element of m,
4(n n P(C) = 0394+w(03B3R) for some w~m; so certainly

Therefore, Theorem 12.1 is proved.
We conclude this section by remarking that Proposition 12.2 can also

be applied with t/!j,O replaced by the functions Fa,Hj on K (cf. (11.20)).
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Then we should take a, H as parameters, with H in an open Weyl cham-
ber Cin’ and a restricted to a compact equisingular subset co of A (that is
Ka = Ka, if a, a’~03C9). The filtration (12.15) has to be replaced by the

Because Ka,j may have different components which even can have dif-
ferent dimensions, a localization by means of a partition of unity is

essential. However, for each w E m the components of

all have the same dimension. Moreover Fa,Hi is constant on it and equal
to wHi, log a&#x3E; for i ~ j. It is by now a straightforward application of
the properties of the critical points of the Fa,H to verify (12.16)(i) locally.
If Fa,Hj would be replaced by fx,Hj (X~a, a = exp X), then we could
take for the complementary bundles in (12.16)(ii) the orthogonal
complements. So, for the F.,Hj, we take the images of these orthogonal
complements under the automorphism of T(K) described infra Lemma
5.9; and again (12.16)(ii) will hold.

It is equal to the number n,,,j in (11.25). With these notations, we have

THEOREM 12.8: Let C be an open Weyl chamber and let n = (S1,..., S,)
be an ordered partition of the set S(C) of simple roots corresponding to C.
For 1 ~ q ~ s, w E ri and for each sequence m = (m1, ..., mq) of integers
~ 0 there exist linear differential operators Qw,m = Q(q)w,m,a,H,(03C4) in K of
order  2 03A3qj=1 mj and with smooth coefficients depending smoothly on the
parameters a, H, i, such that

In this expansion we restrict a to a compact equisingular subset of A,
H = 03A3sj=1 03C4jHj with H in a compact subset of C and 03C41 ~ 03B303C42 ~
... ~ 03B3s-103C4s ~ 0 with 03B3 ~ 1 suffzcientl y large. Furthermore g E C’(K) and
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we have written

The expansion is uniform in the sense that, for any N ~ 0, the remainder
term, if we replace the right hand side of (12.42) by a sufficiently large
finite sum over m, can be estimated by v(g)l(03C4q)-N. Here v is a continuous
seminorm on C°°(K) independent of a, H, i.

The radial asymptotic expansions of Theorem 9.1 are retrieved if we
substitute rj = cori, for fixed !j (1 ~ j ~ s), and let 03C9 ~ + ~. For q = s
and !j &#x3E; 0 for all 1 ~ j ~ s this leads to the radial asymptotic expan-
sions for regular H, whereas the cases of singular H are obtained by
taking q  s and iq + 1 = ... = is = 0, making H" = 0 in (12.42).
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Added in proof

It was brought to our attention that the method of stationary phase was applied to the
integral form of the Weyl character formula by Semenov-Tjan-Sanskii in Zap. Naucn.
Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 37 (1973) 53-65. English transl.: J.

Soviet Math. 8 (1977) 208-218.


