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Introduction

It is important in singularity theory to know when two mappings
f, g : N ~ P are equivalent. We say f and g are equivalent if there are
diffeomorphisms h and k such that f = k  g  h and we say f and g are
right-equivalent if f = g  h (unless we say otherwise, all maps and map-
germs will be assumed C°°). One wants to have canonical forms for
various kinds of singular behavior, both local and global. For example,
suppose one wants to show that any pair of singular points of a certain
kind can be removed by homotopy. First one constructs a polynomial
canonical form having such a pair of singular points for which one can
give the homotopy explicitly. Then, for some Co map f having such a
pair of singular points, one finds a connected, open neighborhood of the
singular points on which f is equivalent to the canonical form. The
homotopy of f is then induced from that of the canonical form. This
procedure is discussed in more detail in [24].
For stable germs, we have long had Mather’s theorem: f and g are

equivalent if, and only if, their algebras Q( f ) and Q(g) are isomorphic.
What can be said for mappings? One approach would be to try to patch
together the highly nonunique local equivalences supplied by Mather’s
Theorem - that seems hard. This problem was apparently first dealt
with in Wilson’s Thesis (see [23]) in the case of stable mappings between
surfaces. The approach there was as follows: first, we assume there is a
diffeomorphism k which maps the singular values of g onto those of f;

* This material is based upon work supported by the National Science Foundation under
Grant Nos. MCS80-05361 and MCS81-00779.
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second, we prove that f and k 0 g are locally right equivalent; third, we
note that these local right equivalences are essentially unique, and hence
can easily be pieced together to get a global right equivalence.
Mather pointed out that an analytic stable map with dim N  dim P

is a normalization of its image and hence that two such maps with the
same image are right equivalent by the Uniqueness of Normalization
Theorem. Mather conjectured that there should be a Co theory of nor-
malization as well. We will develop such a theory in Section 1. The

arguments in Section 1 were known to us in 1975. However, these argu-
ments required a generalization of Glaeser’s Theorem (IX.1.1 of [21]).
This generalization was finally established by Merrien in [17], then fur-
ther generalized by Bierstone and Milman (see [1]). We wish to thank
them for liberating us from this problem at last.

Actually, this approach works for dim N ~ dim P as well. Let S(f)
denote the singular set of f We will call f(S(f)) the discriminant of f
(see for example [20] for the motivation behind this terminology). If f is
a stable germ, its restriction to S( f ) is a normalization of its discrimi-
nant. So if two stable germs have the same discriminant, their restric-
tions to their singular sets are right equivalent. An additional argument
is then needed to show that the stable germs themselves are right
equivalent. Gaffney supplied this additional argument in the case dim N
= dim P in his Thesis ([12]). After generalizations by Wirthmüller ([25])
and Pham ([19]), a rather complete result on local right equivalence was
finally obtained in [9]. This result is stated in Section 2, along with
results describing the set of right equivalences between two fixed map-
germs.

In Section 3, we present global equivalence theorems for the case
dim N ~ dim P. One consequence of these global equivalence theorems
is that stable maps in these dimensions are C°° right equivalent if, and
only if, they are topologically right equivalent.
We have given a survey of the results of this paper and of [9] and

[10] in [13].

1. Uniqueness of C~ normalizations

The purpose of this section is to discuss the notion of a COO normali-

zation and to prove a uniqueness of normalization theorem. Our Coo
normalizations will be COO map-germs which are equivalent to analytic
normalizations. (We still lack a good notion of COO normalization for the
entire COO category.) Our main result is Theorem 1.11, which says that if
two COO normalizations have the same image, then they are right equiva-
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lent. This is a corollary of Proposition 1.10, which says that a map-germ
g with normal domain can be factored through any simple map-germ f
having the same image (i.e. there exists a COO h such that g = f o h).
The proof of Proposition 1.10 has two parts. Without loss of gener-

ality f can be assumed analytic with image variety E First we show
that, given any analytic universal denominator d for V and any C~
function-germ a defined on the domain of f, there is a COO b such that
a = (b  f)/(d  f); b/d has properties which make it what we call a

weakly COO function-germ. We then prove that (b/d)  g defines a C~
function-germ a defined on the domain of g. The transformation a - a is
h* for some Co map-germ h, and g = f  h as desired. For these proofs,
we must pass from the realm of the complex analytic, to the real analy-
tic, to the formal, and finally to the C"0. We begin with definitions,
notation, and a review of more or less well-known relationships between
these categories.

Let O p denote the ring of convergent power series in p variables over
k = R or C; if we want to specify that these are centered at y E kP, we
write Op,y or just Oy. We will identify Oy with the space of germs
of analytic functions at y. If V is the germ of an analytic variety at y,
I( V) denotes the ideal of analytic germs which vanish on V, and
O(V) = OYII(V). Q(O(Y)) denotes the ring of fractions (O(V) - {zero
divisors})-1O(V) and O"’(V) is the integral closure of O(V) in Q(O(V)).
Elements of Ow(V) are called weakly analytic function-germs on JI:

Suppose the irreducible components of V are V1,...,Vr; Q(0(Y)) and
O"’(V) are direct sums of the corresponding rings for the Vi’s, but O(V),
in general, is not. If Ow(V) = O(V), V is said to be normal.

Let Si be the germ of an analytic variety at xi in kni, for i = 1,..., r, let
Si be any representative of Si, and let S be the germ at {x1,..., xr} of
u Si in the disjoint union of the k"i’s. Each of O(S), Ow(S) and Q(O(S))
can be defined as before, and each is the direct sum of the corresponding
rings for the Si’s. Consequently, S is normal if, and only if, each Si is.

Consider an analytic map-germ g:S ~ V. g is finite if O(S) is a finite
g*O(V) module; this is equivalent to each gi:Si ~ V being finite. If

k = C, then the image of a finite g is a variety-germ by the Proper
Mapping Theorem. g is bimeromorphic if g* : Q(O(V)) ~ Q(O(S)) is an iso-
morphism ; this is equivalent to V being the union of variety-germs
V1,...,Vr with g(Si) ~ Vi and g 1 Si: Si - g bimeromorphic, for all i; if k
= C, this is equivalent to the existence of nowhere dense subvarieties of
S and V off of which g is bianalytic. g is simple if it is both finite and
bimeromorphic. A simple g is a normalization if S is normal.

If, for each i, Si is irreducible and g(S,) is not contained in any proper
subvariety of any irreducible component of v then g pulls back non



294

zero divisors to non zero divisors, hence g*O"’(V) c 0’(S); if S is also
normal, then g*O"’(V) c O(S). If g is simple, then O(S) c g*OW(Y), since
Ow(V) contains all finite extensions of O(V) in Q(O(V)). Thus, if g is a
normalization, then g* : Ow(V) ~ O(S) is an isomorphism.
For the relationship between real and complex analytic spaces and

maps, see [18]. Let Vc denote the complexification of a real variety-
germ V, and let gC:SC ~ Vc be the complexification of g:S ~ V.
V1,...,Vr are the irreducible components of V if, and only if,
(V1)C,..., (Vr)C are the irreducible components of Vc. S is normal if, and
only if, Sc is normal. g is finite (respectively, simple; respectively, a nor-
malization) if, and only if, gc is.
D(V) denotes the ideal in O(V) of universal denominators, i.e. those d in

O(V) such that dOw(V) c O(V). For any complex variety-germ V, there is
a d which is a universal denominator and a non zero divisor at each
z E V (since d and V are germs, this statement means that for any repre-
sentatives d1 of d and V’ of V, the germ of d’ at z is a universal denomi-
nator and non zero divisor of V’ for all z sufhciently near y). For a real
variety-germ V, D(VC) = D(V)O(VC).
For our passage to the COO category, we will need some semi-local

properties. Over C, if S is normal at x, then it is normal at each point
near x; if g : S ~ V is finite (respectively, bimeromorphic), then it is so at
9 - ’(z) for all z E V also. Now let’s consider the real analytic case. The
maximal part of V is V m - {z E V : dim Vz = dim Vy} (recall that we mean:
take a representative yl of V, form (V1)m, and then take its germ at y).
For S the germ of a variety at {x1,..., xr}, Sm again denotes the set of
points at which the dimension of S is maximal. If V1 is a representative
of V and z lies in (V1)m, then (V1z)# denotes the variety-germ spanned by
the germ of (V1)m at z. Note that (V1z)# is the union of all irreducible

components of V1z of dimension equal to dim Vy. We speak of a property
as holding at V#z for all z if it holds for representatives for all z

sufficiently near y. There is d E D(V) such that dz is a universal denomi-
nator and a non zero divisor for V#z for all z in Vm. If g : S ~ V is simple,
then g(Sm) = ym and gz: S#g-1 (z) - Vz# is simple for all z in V m. If S is

normal, then Sc is normal and, in particular, irreducible at each point,
so S* = Sz is normal for all z in Sm.
The following examples should help explain our use of Sm, Ym and

V#.

EXAMPLE 1. l.a: Consider the map f(w, x, y, z) = (w, x, y, (3w(x’ + y2)
z - z3)/2). Its singular set S is given by z2 = W(X2 + y2) and V
= fc(Sc) n R is given by z2 = w3(x2 + y2)3. Note that Sm - S n {w &#x3E; 01,
Vm = Vn {w ~ 01, and f(Sm) = Vm. f|S:S ~ V is a normalization over
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each point in Vm. Every d~D(V) vanishes identically on V - Vm and
d o f vanishes identically on S - Sm. Because of this, our later proofs will
fail for f off of points of Sm and Vm.

EXAMPLE 1.1.b: Consider the stable map f(u, v, w, x) = (u, v, w, x3
+ ux = y, vx + WX2 = z), which is a normalization of its image variety
K Its restriction from the ux-plane to the uy-plane is the cusp map

(u, x) ~ (u,x3 + ux). Suppose Q is a point in the real uy-plane satisfying
4u’ &#x3E; -27y2. Q has one real and two imaginary preimages under f,
labeled Pl, P2 and P3 respectively. f is an immersion at each Pi, so
g = f(C4, Pi) are complex 4-manifold-germs in general position at Q.
Complex conjugation takes P2 to P3, takes V2 onto V3 and leaves
Y2 n V3 invariant. Thus V2~R5 = V3 n R5 = ( V2 n V3)~ R5 is a 3-

manifold-germ transverse to the 4-manifold-germ Vl ~R5. YQ is the

union of these two manifold-germs and VQ is Vl n R5. The germ of f at
Pl = f-1(Q) n R4 is a normalization of vt, but not of YQ.
Next we consider the passage from the analytic to the formal

category. Let Fp denote the formal power series ring in p variables, with
the same conventions as for Op.

Fp is the completion of Op with respect to the M-adic topology, where
M is the unique maximal ideal in 0,. For the definition of the com-
pletion A A of a topological ring A, see Chapter VIII of [26]. Let V be an
analytic variety-germ at y~Rp. By Theorem 6 of Chapter VIII of [26],
O(V)039B equals Fy/I(V)Fy, which we label F(V). Let F"’(V) be the integral
closure of F(V) in Q(F(V» = (F(V) - {zéro divisorsl)-’F(V). Since Fw(V)
is a finite F(V) module, it is complete by Theorem 15 of Chapter VIII of
[26], and hence it contains 0’(V)’. Let f:S ~ V be a normalization of V
(they exist by [18]). Applying QoyFy to the isomorphism
g* : Ow(V) ~ O(S) gives an isomorphism g* : Ow(V)039B ~ F(S) (see 1.8.2 of
[21]). This g* extends to g* : Fw(V) ~ FW(S). By III.4.5 of [21], Fw(S)
= F(S). But g* is monic since g(S) is not contained in any proper sub-
variety of E Thus F"’(Y) = OW(V)A and g is a formal normalization. A
formal denominator is a d~F(V) such that dF"’(V) = F(V). By 1.4.8 of
[21], D(V)F(V) is the ideal of formal denominators.

Suppose X is a set-germ at y in RP. Following Malgrange ([16]), we
define J(X) to be the set of Taylor series at y of COO functions whose
restrictions to X have a zero of infinite order at y. Tya will denote the
Taylor series at y of a C°° function or germ a. K(X) denotes the set of
COO germs which vanish on X.

PROPOSITION 1.2: If V is an analytic variety-germ at y, then TyK(Vm)
= J(Vm) = J(Vy#) = I(V#y)Fy.
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PROOF: Theorem VI.3.5 of [16] states that J(V#y) = I(V#y)Fy. Since
I(V#y)Fy c TyK(Vm) c J( Ym), it is enough to prove that I(V#y)Fy = J( Ym).

Let V1,...,Vr be the irreducible components of V#y. These all have
the same dimension at y. In the proof of his Theorem VI.3.5, Mal-
grange shows that I(Y#y)Fy = I(Vl) Fy n ... n I(Vr)Fy. Note that J(ym)
= J(Vm1) n ... n J(Vmr): in fact, if ai has a zero of infinite order on vm, for
each i, and Ty03B11 =... = Tyocr, then 7§(ai - ai) = 0 for all i and hence 03B11
has a zero of inifinite order on ym at y. Thus it is sufncient to prove the

proposition in the case r = 1. So we write V instead of V#y.
Malgrange’s proof now carries over almost without change. One only

needs to represent V as a branched covering 03C0 over Rl, 1 = dim Y, such
that the following holds: there is an analytic function A on R’ such that
d = 039403C0|V is a nonzero universal denominator for V and 03C0(Vm - {d
= 01) contains a connected component of R’ - {0394 = 01. This can be
done, as is seen by Proposition 111.5 of [18] (we use that Y - Ym has
dimensions less than l, hence is contained in the complex singular set,
hence is in {d = 01). D

COROLLARY 1.3: Suppose Y and W are variety-germs. Suppose k is a
diffeomorphism-germ such that k(W’) = ym. Then k induces an isomorph-
ism 7§k from F(W#z) onto F(V#k(z)) for all ZE Wm. Hence Tzk maps
D(W#z)F(W#z) onto D(V#k(z))F(V#k(z)) for all z c- Wm.

Suppose X (respectively, Y) is the germ of a set at x E Rn (respectively,
at y E RP). We say f : X ~ Y is a COO map-germ if it is the germ at x of the
restriction to X of some COO map F : Rn ~ RP. A map-germ h : X1 ~ X2 is
called a COO diffeomorphism-germ if it is COO and has a COO inverse. We
say that !ï: Xi -+ Yi, i = 1, 2, are COO equivalent if there are C’

diffeomorphism-germs h:X1 ~ X2 and k: Yl ~ Y2 such that k 0 fi
= f2 0 h. Note that we do not require that the ambient spaces of X, and
X2 (or of Y and Y2 ) have the same dimension. A COO map-germ

f:X ~ Y is C °° simple (respectively, a C °° normalization) if it is C~

equivalent to g : Sm ~ Ym, where g : S ~ V is an analytic simple map-
germ (respectively, an analytic normalization).

Let Ep denote the space of germs of COO functions at 0 in RP, with Ey
its translate to y~Rp. For any set germ X at y, E(X) denotes Ey/K(X). If
V is a variety-germ, Ew(Vm) is defined to be {a/b:a E E( Ym), b E O( Y), and
Tz(a/b) E Fw(V#z) for all z E Vm}: elements of Ew(ym) are called weakly C’
function-germs on Vm.

PROPOSITION 1.4: If V is normal, then Ew(ym) = E(Vm).

PROOF: Choose some a/b E Ew(ym). At each z in Vm, Yz = V#z is for-
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mally normal, hence 7§b divides 7§a in F(V). Pick a representative V1 of
Y, a neighborhood U of y and al E E(U), bl E O(U) such that the germ at
y of all (V1)m is a and of bll Y is b. Then, shrinking U if necessary, Tza1 is
in (bl + K((V1)m))Fz for all z in U. By Whitney’s Spectral Theorem, ai
lies in the closure of b1E(U) + K((V1)m). A special case of Theorem 6.8 of
[2] is that, for any Nash subanalytic set X c U, the ideal generated in
E(X) by a1,..., as in O(U) is closed. By the definition of the quotient
topology, this means that {a1,...,as}E(U) + K(X) is closed in E(U).
Since (V1)m is semianalytic and hence Nash subanalytic, a’ is in b1E(U)
+ K((V1)m). Since b 1 = 0 is nowhere dense in (V1)m, a/b gives a well-
defined element of E(ym). 0

COROLLARY 1.5: Suppose g:S ~ V is analytic, S normal, g(Sm) c vm
and, at each x c- Sm, g(Sx) = g(S#x) is not contained in any proper sub-
variety of any irreducible component of V#g(x). Then g*Ew(Vm) c E(Sm).

PROOF: At each point x e Sm, g pulls back non zero divisors of V#g(x) to
non zero divisors of Sx, so g*Ew(Vm) is contained in E"’(Sm). Since S is
normal, the conclusion follows from Proposition 1.4. D

PROPOSITION 1.6: Let g:S ~ V be an analytic normalization. Then

g* : Ew(Vm) ~ E(Sm) is an isomorphism. 

PROOF: By Corollary 1.5, g*Ew(Vm) c E(Sm). Since g is finite, the Mal-
grange Preparation Theorem implies that E(Sm) is generated over

9*E(V’) by O(S). But O(S) = g*Ow(V) c g* Ew(Vm). Thus g* is surjective.
Since g(Sm) = ym, g* is injective. 0

Let V be a variety-germ. The ideal of C°° denominators for vm is

D~(Vm)={d~e(Vm):dEw(Vm) c E(Vm)}. Let D~(Vm)~ denote

{d~E(Vm): for all z~Vm, Tzd E D(V#z)F(V#z)}.

PROPOSITION 1.7: D’(Vm) = Doo(ym)"’.

PROOF: Let g : S ~ V be a normalization. By Proposition 1.6, d is in
D°°(Vm) if, and only if, d is a relative denominator for g, i.e.

d o gE(Sm) c g*E(ym). Let (g*E(Vm))~ = {03B1~E(Sm):~z~ ym, ~03B2~Fz such
that, Vx c- Sm with g(x) = z, 7§a = 03B2 Txg}. Note that

D~(Vm)~ = {d~E(Vm):dgE(Sm) ~ (g*E(Vm))~}.

By Theorem 3.2 of [1], for any semiproper analytic g from a subana-
lytic set S to a Nash subanalytic set X, (g*E(X))~ = g*E(X). Some
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representative of our g satisfies these hypotheses, so (g*E(Vm))~
9*E(V’). Thus D~(Vm)~ = D°°(Ym). ~

COROLLARY 1.8: Suppose Y and W are analytic variety-germs. If k is a
COO diffeomorphism-germ of Wm onto ym, then k*Doo(ym) = DOO(Wm).

PROOF: This follows immediately from Corollary 1.3 and Proposition
1.7. 0

PROPOSITION 1.9: Suppose V is an analytic variety-germ and f
: X ~ ym is a Coo simple map-germ. Then f *E’(V’) :D E(X).

PROOF: There is an analytic simple map-germ g : S - W and COO dif-
feomorphism-germs k : Wm ~ ym and h : Sm ~ X such that f  h = k o g.
Let d E O(V) be an analytic denominator and non zero divisor of V#z for
all z in ym. Since d is in D’O(Vm), d k is in D~(Wm) by Corollary 1.8.

Since g is simple, g*(Fw(W#z)) :D FIS" 1 (z») for each z in Wm. Thus,
d 0 k 0 gE(Sm) - (g*E(Wm))~, which equals g*E(Wm) by Theorem 3.2 of
[1]. Pick any a in E(X). There exists b E E(Vm) such that (d o k o g)(a o h)
= b o k o g. At each z in W m, Tz(b o k/d o k) lies in Fw(Wz#). Thus b/d lies in
Ew(ym) and (b/d) o f = a. 0

PROPOSITION 1.10 : Suppose f is a Coo simple map-germ and g is a C’
map-germ which is equivalent to an analytic map-germ G : S - JI: Suppose
S is normal, G(S’) c ym and, at each x in Sm, G(Sx) = G(S#x) is not con-
tained in any proper subvariety of any irreducible component of V#G(x). If
f and g have the same image, then there is a COO map-germ h such that
fh = g.

PROOF: There are diffeomorphisms k and r such that ka g = Ga r. Let
F = k ° f Let xi be one of the coordinate functions on the ambient space
of the domain X of F. By Proposition 1.9, there is an ai in Ew(Vm) such
that oc, 0 F = xi|X. By Corollary 1.5, Hi = ai 0 G is in E(S’). Let H be the
map-germ whose component functions are the H,’s. Then Fa H = G. Let
h = Hr. Then f o h = g. ~

Our main result follows immediately.

THEOREM 1.11 : Suppose f and g are COO normalizations having the
same image. 7hen f and g are right equivalent.

If the ambient spaces of the domains of f and g are of the same
dimension, then we can strengthen Theorem 1.11 in a way which is

needed in Section 2.
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THEOREM 1.12: Suppose, for i = 1 and 2, that Xi is a set-germ at xi
in Rn and fi:Xi ~ Y is a Coo normalization. Then there exists a

diffeomorphism-germ h:(Rn, x1) ~ (R", x2) such that h(X1) = X2 and
fi = f2o(hIXl).

PROOF: By Theorem 1.11, there are Coo map-germs H : X1 ~ X2 and

K : X2 ~ X1 such that f2 ° H = fl and f1  K = f2. We want to show
that H is the restriction to Xl of a diffeomorphism-germ h. The argu-
ment comes from Mather III, which also contains the proof of the fol-
lowing Lemma.

LEMMA 1.13: Let A and B be n x n matrices with entries in En. Then
there exists an n x n matrix C with entries in En such that C(I - AB) + B
is invertible.

Let A be DK(x2), B be DH(xl), C be as in Lemma 1.13 and h be C(Id
- K  H) + H. Since Dh(xi) is invertible, h is a diffeomorphism-germ.
Clearly h | X1 = H. 0

2. Existence and uniqueness of local right equivalences

Let f : (Rn, 0) ~ (Rp, 0) be a Coo map-germ. Let S(f) denote the critical
set of f, that is, the set of points at which df has rank less than p. Let
J( f ) denote the ideal generated by p x p minors of the Jacobian matrix
of f in the ring of COO germs, and let I(S(f)) denote the ideal of all Coo
germs vanishing on S( f ). We say f is a critical normalization if J(f)
= I(S(f)) and f|S(f):S(f)~f(S(f)) is a C °° normalization.

Critical normalizations are studied in [9]. In particular, it is shown

there that if f is equivalent to an analytic germ g whose complexifica-
tion gc is one-to-one on S(gc) off a codimension one subvariety of S(gc)
and j1gC is transverse to the first-order Thom-Boardman singularities
off a codimension two subvariety of S(gc), then f is a critical normali-
zation. Thus critical normalizations are common. The collection of crit-

ical normalizations includes all stable germs and all those Thom-
Mather topologically stable germs (germs which are multitransverse to
Mather’s canonical stratification) which are equivalent to analytic
germs. Furthermore, finitely A-dètermined germs (see [22], especially
Section 2) are critical normalizations as long as p &#x3E; 2 and the critical set

is not an isolated point.
The quadratic differential d2f(0) of f is a quadratic form from the

kernel to the cokernel of df(O) (see [4]). Suppose f has rank p - 1 at 0.
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We choose an orientation of cok df(0), which is one-dimensional. Then

d2f(0) has a well-defined index (the dimension of the space spanned by
those eigenvectors corresponding to negative eigenvalues). The follow-
ing theorem is proven in [9] using Theorem 1.12 of this paper.

THEOREM 2.1: Suppose f and g are critical normalizations with f(S(f))
= g(S(g)). I f either f or g has rank unequal to p - 1 at 0, then f and g are
right equivalent. Suppose f and g have rank p - 1 at 0. Then df(0) and
dg(O) have the same image and d2f(0) and d2g(0) have the same rank. We
give cok df(0) and cok dg(O) the same orientation. 1 f d2f(0) and d2g(0) have
the same index, then f and g are right equivalent.

Define IsoR(f) (respectively IsoR0(f)) to be the set of diffeomorphism-
germs (respectively homeomorphism-germs) r such that f 0 r = f. We say
f is a critical simplification if J(f) = I(S(f)) and f is one-to-one on an
open, dense subset of S(f) (in particular, critical normalizations are crit-
ical simplifications). It is obvious that IsoR( f ) and ’SOR’(f) are trivial if
n  p (since S(f) is the entire domain). We will prove that these are
almost trivial if n = p. However, if n &#x3E; p, these groups are infinite di-

mensional. The following theorem is proved in [10].

THEOREM 2.2 : Suppose f:(Rn, 0) ~ (RP, 0) is a critical simplification.
IsoR(f) contains a maximal compact subgroup G f; all compact subgroups
of IsoR(f) are conjugate by an element in IsoR(f) to a subgroup of G f. If
the rank of df(O) is  p - 1, then G f = {id}. If the rank of df(O) is p - 1,
then Gf ~ O(i) x O(r - i), where i is the index and r is the rank of d2f(0).

Furthermore, the quotient IsoR(f)/Gf is contractible in the sense of
Janich (see [15] and [10]).
For the rest of this section we will restrict our attention to the case

n = p.

PROPOSITION 2.3: Suppose f : (Rn, 0) ~ (R", 0) is a critical simplification.
Then ISOR’(f) has at most two elements; if it has two elements, then the
complement of S(f) has exactly two connected components, which are per-
muted by the nontrivial element Of’SOR"(f).

PROOF: By assumption, grad(det(df)) is nonzero and f is one-to-one
on open, dense subsets of the germ S(f). Since det(df) must therefore
take on both positive and negative values, the complement X of S(f) has
at least two connected components.

Fix h~IsoR0(f). Since f 1 S(f) is generically one-to-one, h fixes S(f).
Furthermore, if h fixes a regular point of f, then it fixes an open neigh-
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borhood of that point, and hence fixes the entire connected component
of X of that point. Now the fold points of f are dense in S(f), and it is
easy to see that, at a fold point, h either fixes a neighborhood of that
point or permutes the two neighboring components of X. Thus, if h

preserves all components of X, then h is the identity on a neighborhood
of the fold set of f, hence is the identity on each component of X, and
hence is the identity.

Suppose h is not the identity. Then there exist distinct components C
and h(C) of X. Let Y be the union of the closures of all other compo-
nents of X, let Z be the union of the closures of C and h(C), and lent V
= Y n Z. Then YBV and Z) V are open and closed in the complement of
K However, any fold points in Z must have C and h(C) as neighboring
components of X, so must lie in the interior of Z. Thus V contains no
fold points, and hence is of codimension 2. Consequently, the comple-
ment of V is connected. Thus YB V is empty. So C and h(C) are the only
components of X.

Suppose h and k are two nontrivial elements of IsoR0(f). Then h-1k
preserves the two components of X and hence is the identity. D

Since IsoR(f) is contained in IsoR0(f), it is in particular compact,
hence equals its maximal compact subgroup. Thus from Theorem 2.2 we
deduce:

COROLLARY 2.4: Suppose f : (R", 0) ~ (Rn, 0) is a critical simplification.
If f is a fold, then IsoR(f) has two elements; otherwise, IsoR( f ) is trivial.

One must note that a rank n - 1 germ from (R", 0) to (IRn,O) with
nonzero quadratic differential must be a fold.

Putting Corollary 2.4 together with Theorem 2.1, we get:

COROLLARY 2.5: Suppose f, g : (R", 0) - (Rn, 0) are critical normaliza-
tions and f(S(f)) = g(S(g)). If f is a fold, we also assume f and g have the
same image. Then f and g are right equivalent. The right equivalence is
unique unless f and g are folds, in which case there are two right
equivalences.

Suppose f : (R", 0) - (Rn, 0) is a critical simplification. If IsoR0(f) has
two elements, but f is not a fold germ, then we say f is a pseudofold.

Notice that if the cusp locus of f contains the origin in its closure,
then f is not a pseudofold at the origin (for h~IsoR0(f) must be the
identity in a neighborhood of the cusp set, and hence must preserve
components of the complement of S(f)). This shows that the Thom-
Mather topologically stable maps have no pseudofolds.
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EXAMPLE 2.6: The maps ft(x, y) = (x, y2t + xy), t &#x3E; 1, have pseudofold
points at the origin. These maps are one-to-one on their singular sets
and two-to-one over non-critical values. They send a disk about the
origin to the exterior of a higher order cusp.

EXAMPLE 2.7: Consider the germ f at 0 of the map

This germ is stable in a deleted neighborhood of the origin. It has been
shown in [8] that such a germ is finitely Ck-A-determined for all k,
0 ~ k  oo. There are arbitrarily high order perturbations of f which
are finitely C°°-A-determined, since being finitely C°°-A-determined is a
general property among the K-simple map-germs (see [6]). Thus, there
is a finitely C°°-A-determined g (which is therefore a critical simplifica-
tion, and even a critical normalization if n &#x3E; 2) which is C’ equivalent to
f. The C’ isotropy group of g must have order 2 since the COO isotropy
group of f is of order 2. Thus such a g is a pseudofold.

PROPOSITION 2.8: Suppose f, g : (R", 0) - (Rn, 0) are critical normaliza-
tions, but not pseudofolds. If f = g 0 h, where h is a homeomorphism-germ,
then h is a C°° diffeomorphism-germ.

PROOF: Since f and g are critical normalizations, they are not local
homeomorphisms at any singular point. Thus h(S(f)) = S(g). Conse-
quently, f(S(f)) = g(S(g)); also f and g have the same image. By
Theorem 2.1, there is a COO diffeomorphism-germ r such that f or = g.
Thus r  h is in IsoR°( f ) = IsoR(f). Thus h is a C~ diffeomorphism-germ.

ri

3. Global right equivalence

In this section, we give extensions of the local right equivalence re-
sults of Sections 1 and 2 to the global case. We consider COO maps
f:Nn ~ Pp.
The case n  p is easily dealt with. In this case f is called a C°°

normalization (of f(N)) if, for each y E f(N), S = f-1(y) is finite and the
germ fs : NS ~ f(N)y is a Coo normalization, as defined for germs in
Section 1. A priori, f(N)y need not equal fs(Ns); however, if it does not,
fs can’t be a COO normalization of f(N)y. Thus, a useful reformulation of
our definition is: for each y~f(N), S = f-1(y) is finite, the germ
fs : NS ~ fs(Ns) is a C "0 normalization, and f : N ~ f(N) is proper (which
is weaker than requiring that f:N ~ P be proper).
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THEOREM 3.1: Suppose fi: Nn -+ PP, n  p, are COO normalizations of
fl(Nl) = f2(N2O Then fl and f2 are right equivalent. (In particular, Nl
and N2 are diffeomorphic.)

PROOF: By Theorem 1.11, there exists for each yc-fl(Nl) a dif-

feomorphism-germ hy : (Nl, f-11(y)) ~ (N2, f2 1(y)) such that f2 0 hy = fl.
Since these diffeomorphism-germs are unique, they must be compatible.
Hence they piece together to give h : Ni - N2 such that f2  h = fi . 0

The case n = p is more complicated. The principal reason is that right
equivalences between two fold germs, or between two covering space
map-germs (at a finite set), are not unique, and hence do not necessarily
piece together to form a global equivalence.
For the moment, we consider the case of general n and p. While the

definitions and results of Section 2 were stated for germs at 0 in

Euclidean space, they extend immediately to include germs at a finite set
in a manifold. A COO map f:N ~ P is called a critical normalization if,
for each y ~f(S(f)), S = f-1(y) n S(f) is finite, the germ fs : Ns - Py is a
critical normalization, and f|S(f):S(f) ~ f(S(f)) is proper. When n  p,
the critical set S( f ) = N, so the notions of critical normalization and C~
normalization coincide.

All stable mappings are critical normalizations, as are those mappings
of finite A-codimension in dimensions p &#x3E; 2 which have no isolated crit-

ical points (we claim that a finite A-codimension map f must satisfy:
f|S(f):S(f) ~ f(S(f)) is proper).
From now on, we will restrict our attention to the case n = p.

Suppose f and g are two critical normalizations with f(S(f)) = g(S(g)).
The same argument as for Theorem 3.1 implies that f|S(f) and g 1 S(g)
are right equivalent, that is there is a diffeomorphism r from a neighbor-
hood of S(f) to a neighborhood of S(g) such that r(S(f)) = S(g) and,
letting h = r|S(f), f|S(f) = g  h.

Let F(f) denote the set of fold points of f and let C(f) be S(f)BF(f).
We can apply Corollary 2.5 to show that r can be chosen in a neighbor-
hood of C(f) so that f = g  r on this neighborhood.

Let V be a connected component of S(f) containing at least one point
of C(j), and let V1 = h(V). Let W = f(V) = g(Vl). Choose some x in
F(f) n V. There is a continuous curve T c Y connecting x to some point
y in C(f) m E with r n C(f) = {y}. Since f = g 0 r in a neighborhood of
y, there is a fold point z in r at which f = g 0 r; thus f near z and g near
h(z) fold in the same direction (that is, there are neighborhoods Ul of z
and U2 of h(z) such that f(U1) and g( U2 ) lie on the same side of

f(U1 n S(f)) = g( U2 n S(g))). Since folding in the same direction and fold-
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ing in the opposite direction are both open properties, it follows that f
and g must fold in the same direction at x, as well.
Now let V be a component of S(f) consisting entirely of fold points,

and let yl = h(V). We say f and g satisfy the fold condition if they fold
in the same direction at one, and hence every, pair of corresponding
points on V and vl, for each such K Assume that f and g satisfy the
fold condition. Then, at each x in F(f), there are exactly two

diffeomorphism-germs Rx such that fx = gh(x) ° Rx (where fx denotes the
germ of f at x). It is not necessarily possible to piece together the Rx’s to
get a right equivalence defined in a neighborhood of S( f ).

EXAMPLE 3.2: Let M be the annulus [0,1] x ( -1,1 ) with (0, y) and
(1, y) identified, for all y E (-1, 1). Let N be the Mbbius strip [0, 1] x
( -1,1) with (0, y) and (1, - y) identified, for all y~(-1,1). Let f : M - M
and g : N ~ M be the maps induced by (x, y) ~ (x, y2). Both f and g are
COO stable mappings, hence critical normalizations. They have the same
image of their critical sets and they satisfy the fold condition, but they
are not right-equivalent in any neighborhood of their critical sets.

In order to get f and g right equivalent in a neighborhood of their
fold sets, we need that their fold sets have equivalent normal bundles.
There is a simple cohomological condition for this. Let w1(f) denote the
first Stiefel-Whitney class of the normal bundle to F( f ) in Nl . We say
that f and g have the same normal structure at folds if wl(f) = h*w,(g),
where h is the diffeomorphism from S( f ) to S(g) such that f|S(f) = g  h.

Let us now assume that wl(f) = h*wl(g). Let r be a simple closed
curve in F( f ), and let i be the inclusion map of r into F( f ). Then the
restriction to r of the normal bundle to F( f ) is orientable, and so trivial,
if, and only if, i*w1(f) = 0. (See for example [14] for a detailed dis-
cussion of the properties of Stiefel-Whitney classes.) Thus the restriction
to r of the normal bundle to F( f ) is trivial if, and only if, the restriction
to h(r) of the normal bundle to F(g) is trivial. Pick a point x~ T and

sections ol and v, into the normal bundles along T and h(T), respective-
ly, which are nonvanishing at each point and continuous except possi-
bly at x and h(x). The map u1(y) ~ u2(h(y)) determines one of the two
diffeomorphism-germs Ry with the property fy = gh(y) 0 Ry, for each y E T.
Furthermore, the Ry’s agree all along r, except possibly at y = x. The
left and right hand limits of u1(y) at x will lie on the same side of the fold
set if, and only if, the normal bundle is trivial along r if, and only if, the
left and right hand limits of v2(y) at h(x) lie on the same side of the fold
set. Thus the Ry’s agree at x, as well. Using this, we see that f and g are
right equivalent in a neighborhood of the fold set, and at each con-
nected component of the fold set there are exactly two germs of right
equivalences.
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Let F be a connected component of F( f ), and let C be a connected
component of c(f) such that C touches the closure of F. The unique right
equivalence between f and g defined in a neighborhood of C is com-
patible with one of the two right equivalences defined in a neighborh-
ood of F. We say that C determines this right equivalence at F. Another
component of C(f) might determine the other right equivalence at F, in
which case f and g are not right equivalent in any neighborhood of
their critical sets.

EXAMPLE 3.3: The function a(x) = (3x5 - lOx3 + 15x, X4 - 2x’ + 1)
is an immersion except at x = ± 1. The image curve has simple cusps at
( ± 8, 0) (see the illustration below). The vector b(x) = (15(x2 - 1), 4x) is a
non-zero tangent vector to this image curve at a(x). Let f(x, y) = a(x)
+ yb(x). This f is a stable map with critical set the x-axis and cusps at
x = + 1. Since f has only fold singularities along A = {0 ~ x ~ 1 2, y
= 0}, there is an orientation-reversing diffeomorphism h defined on a
neighborhood U of the positive x-axis such that f  h = f on some open
neighborhood of A. Let g be defined to be f 0 h on U and f on some
sufficiently small neighborhood of the negative x-axis. This is well-

defined since f = f 0 h on the intersection of the two neighborhoods. g
is a stable map with critical set S = S(f) and g|S = f|S. But f-1f(S)
- S has one connected component on each side of S, whereas g -1 g(S)
- S has both its components on the same side of S. Though the germs
of f and g are right equivalent at each point of the x-axis, f and g are
not right equivalent an any neighborhood of the x-axis. The right
equivalence at one cusp is orientation preserving while that at the other
cusp is orientation reversing. These cusps therefore determine different
right equivalences at ( -1,1) x {0}.

We have proved the following.

THEOREM 3.4: Suppose f, g : Nn -+ P" are critical normalizations with

f(S(f)) = g(S(g)). Suppose f and g satisfy the fold condition and have the
same normal structure at folds. Finally, suppose that for each component F
of the fold set of f, the components of C(f) touching the closure of F all
determine the same right equivalence at F. Then f and g are right equiva-
lent in a neighborhood of their critical sets.
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The next question is: if f and g are right equivalent in neighborhoods
of their critical sets, then can the right equivalences be extended glob-
ally ? Let U be the domain of the given right equivalence r, and let Ml be
a closed submanifold-with-boundary of Ni such that Ml c Nl - S(f)
and Ml u U = Ni (and so DM, c U). Assume r(~M1) is the boundary of
a closed submanifold M2 c N2 - S(g). Then the restrictions of f to the
boundary and to the interior of Ml are immersions, as are the corre-
sponding restrictions of g. The question of global right equivalence of f
and g reduces to the question: can the right equivalence rlaMl between
f|~M1 and g|~M2 be extended to a right equivalence between f|M1 and
g|M2? The following example shows that this is not always possible,
even if Ml and M2 are diffeomorphic.

EXAMPLE 3.5: (Also see [23] and [3] for this example.) There are two
non right equivalent immersions i and j of the disk D into the plane as
in the illustration below (one should superimpose the two pictures, that
is, i and j have the same image).

Let 03C0N be the projection of the northern hemisphere HN onto D and
let rcs be the projection of the southern hemisphere Hs onto D. We
define f by f|HN = i03C0N, f|(HS = i03C0S, g|HN = i°03C0N, g|HS=j03C0S.
Then S( f ) = S(g) = the equator, f(S(f)) = g(S(g)), and f and g have only
fold singularities. It is easy to verify that f and g satisfy the fold con-
dition, and since the normal bundle to the equator is trivial, f and g
have the same normal structure at folds. Thus there is a right equiva-
lence between f and g which is defined in some neighborhood of S(f).
Choosing this equivalence so that it preserves hemispheres, we see that
it extends over the northern hemisphere. The problem of extending it
over the southern hemisphere is precisely the problem of finding a right
equivalence between i and j.
Thus one wants to classify up to right equivalence immersions of a

manifold with boundary (into another manifold of the same dimension)
which extend a given immersion of the boundary. This has been done
for immersions of D2 into R2 by Blank in [3], and for more general 2-
manifolds by several people (see [11]). While the problem in higher di-
mensions is probably very hard, it can be solved for some special cases.
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An alternate approach to the problem of extending local right
equivalences to global ones was developed by Wilson in [23] for stable
maps between 2-manifolds. In this alternate approach, one stratifies the
target using f(S(f)), and one pulls back this stratification by f and g.
Then f and g restricted to source strata are covering spaces over target
strata. One refines the target stratification so that all the strata are

simply connected, inducing refinements of the source stratifications.

Now the restrictions of f and g are diffeomorphisms between strata.
This reduces the problem of finding a homeomorphism h such that f
= g 0 h to that of finding a map of stratifications H such that H is one-
to-one, H(st S) = st(H(S)) (where st S is the set of strata whose closure
contains S) and f(S) = g(H(S)) for all strata S. The problem then is to
show that if f = gh, h must be a diffeomorphism. The next theorem
shows that this is often true.

THEOREM 3.6: Suppose f and g are critical normalizations without

pseudofold points. If f = g 0 h for some homeomorphism h, then h must be
a COO diffeomorphism.

This is an immediate consequence of Proposition 2.8.
Note that Thom-Mather topologically stable mappings have cusp set

dense in the set of non-fold singular points, and hence have no pseudo-
fold points.

In a related question. Damon in [5] has given an example of topo-
logically stable maps which are topologically right-left equivalent but
not COO right-left equivalent. In Damon’s example, f(S(f)) and g(S(g)) are
not COO diffeomorphic. Theorem 3.1 and 3.6 show that, for n  p, C’
right-C~ left equivalence implies COO right-left equivalence.
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