COMPOSITIO MATHEMATICA

CHRISTINE RIEDTMANN Representation-finite selfinjective algebras of class D_n

Compositio Mathematica, tome 49, nº 2 (1983), p. 231-282 <http://www.numdam.org/item?id=CM 1983 49 2 231 0>

© Foundation Compositio Mathematica, 1983, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Compositio Mathematica 49 (1983) 231–282 © 1983 Martinus Nijhoff Publishers, The Hague. Printed in The Netherlands

REPRESENTATION-FINITE SELFINJECTIVE ALGEBRAS OF CLASS D_n

Christine Riedtmann

1. Introduction

In this paper, we complete the classification of finite-dimensional, selfinjective, representation-finite algebras over an algebraically closed field k. If such an algebra Λ is connected, we can associate with it a Dynkingraph $\Lambda = A_n$, D_n , E_6 , E_7 , or E_8 , the tree class of Λ ([5], 2). The classification has been carried out in [5] for algebras of tree class A_n and in [2] for algebras of tree class E_6 , E_7 , and E_8 as well as for a class of algebras of tree class D_n . We gave an explicit description of the Auslander-Reiten quivers for algebras of tree class D_n in [6]. Here we will determine how many non-isomorphic basic algebras of tree class D_n give rise to a given Auslander-Reiten quiver. Throughout the article, we assume the field kto be algebraically closed.

Let Δ be one of the Dynkin-graphs A_n , D_n , E_6 , E_7 , or E_8 , and let $\mathbb{Z}\Delta$ be the corresponding translation-quiver. We associate with a subset \mathscr{C} of vertices of $\mathbb{Z}\Delta$ a translation-quiver $(\mathbb{Z}\Delta)_{\mathscr{C}}$ in the following way. The underlying quiver of $(\mathbb{Z}\Delta)_{\mathscr{C}}$ is obtained by adding to $\mathbb{Z}\Delta$ a vertex c^* and the two arrows $c \to c^*$ and $c^* \to \tau^{-1}c$ for every c in \mathscr{C} . We take the translation of $(\mathbb{Z}\Delta)_{\mathscr{C}}$ to be the translation of $\mathbb{Z}\Delta$ on the common vertices and to be undefined on the vertices c^* . A set \mathscr{C} is called a *configuration* of $(\mathbb{Z}\Delta)_{\mathscr{C}}$ is a representable translation-quiver [2]; i.e., if $(\mathbb{Z}\Delta)_{\mathscr{C}}$ satisfies the conditions listed in [1], 2.8. If Δ ranges over all Dynkin-graphs, \mathscr{C} over all configurations of $\mathbb{Z}\Delta$, and Π over all non-trivial admissible automorphism groups of $(\mathbb{Z}\Delta)_{\mathscr{C}}$, the residue quivers $(\mathbb{Z}\Delta)_{\mathscr{C}}/\Pi$ provide a complete list of Auslander-Reiten quivers of finite-dimensional, basic, connected k-algebras which are representation-finite and selfinjective, but not equal to k ([2], 1.3). Two translation-quivers $(\mathbb{Z}\Delta)_{\mathscr{C}}/\Pi$ and $(\mathbb{Z}\Delta')_{\mathscr{C}'}/\Pi'$ are isomorphic if and only if there is an isomorphism $f:\mathbb{Z}\Delta\to\mathbb{Z}\Delta'$ such that $\mathscr{C}'=f\mathscr{C}$ and $\Pi'=f\Pi f^{-1}$. In particular, Δ' equals Δ .

In case $\Delta = A_n$, E_6 , E_7 , or E_8 , any two basic algebras with a given Auslander-Reiten quiver $(\mathbb{Z}\Delta)_{\mathscr{C}}/\Pi$ are isomorphic. Our main result is the following:

THEOREM: Let \mathscr{C} be a configuration of $\mathbb{Z}D_n$, and let $\Pi \neq \{1\}$ be an admissible automorphism group of $(\mathbb{Z}D_n)_{\mathscr{C}}$.

(a) In case char k = 2 and n = 3m for some integer m, and if in addition \mathscr{C} is $\tau^{(2m-1)\mathbb{Z}}$ -stable and $\Pi = \tau^{(2m-1)\mathbb{Z}}$, there are exactly two isomorphism classes of basic k-algebras with Auslander-Reiten quiver $(\mathbb{Z}D_n)_{\mathscr{C}}/\Pi$.

(b) In all other cases, any two basic k-algebras with Auslander-Reiten quiver $(\mathbb{Z}D_n)_{\mathscr{C}}/\Pi$ are isomorphic.

By $\tau^{(2m-1)\mathbb{Z}}$ we denote the infinite cyclic group generated by τ^{2m-1} . Notice that an algebra with Auslander-Reiten quiver $(\mathbb{Z}\Delta)_{\mathscr{C}}/\Pi$ is necessarily connected, selfinjective, and representation-finite.

Let Λ be a basic k-algebra with Auslander-Reiten quiver Γ_{Λ} , and let ind Λ be the full subcategory of the category mod Λ of finitely generated Λ -modules whose objects are specific representatives of the isomorphism classes of indecomposable modules. Then Λ is called *standard* if ind Λ is isomorphic to the mesh-category $k(\Gamma_{\Lambda})$ ([1], 5.1). Part (a) of our theorem provides a large family of non-standard algebras. In fact, we obtain one for each isomorphism class of $\tau^{(2m-1)\mathbb{Z}}$ -stable configurations of $\mathbb{Z}D_{3m}$, or equivalently for each configuration of $\mathbb{Z}A_{m-1}$ ([6], 6). For all such non-standard algebras Λ , we will describe ind Λ by its quiver and relations.

Let us explain for which cases the theorem was proved in [2]. An admissible automorphism group of $(\mathbb{Z}D_n)_{\mathscr{C}}$ is given by an admissible automorphism group of $\mathbb{Z}D_n$ stabilizing \mathscr{C} . The admissible automorphism groups Π of $\mathbb{Z}D_n$ were described in [4], 4.2: if Π is non-trivial, it is generated by $\tau^r \psi$ for some $r \ge 1$, where ψ is an automorphism of $\mathbb{Z}D_n$ with a fixed point. In [2], 1, we gave a proof for part (b) of the theorem in case Π is generated by $\tau^r \psi$ with $r \ge 2n-3$. We now describe the configurations \mathscr{C} of $\mathbb{Z}D_n$ which admit an automorphism $\tau^r \psi$ with $1 \le r < 2n-3$. Representatives of the two isomorphism classes of configurations of $\mathbb{Z}D_4$ are displayed in [2], 7.6, and they clearly do not admit such an automorphism. Let ϕ be the automorphism of $\mathbb{Z}D_n$ which exchanges (p, n - 1) and (p, n) for each p and fixes all other vertices, where we use the coordinates introduced in [5], 1.3 for the vertices of $\mathbb{Z}D_n$. The set of vertices (p, q) with $q \ge n - 1$ of a ϕ -stable configuration \mathscr{C} consists of the $\tau^{(2n-3)\mathbb{Z}}$ -orbits of (i, n - 1) and (i, n) for some integer i ([2], 1.6 or [6], 4), and thus 2n - 3 divides r for any automorphism $\tau^r \psi$ stabilizing \mathscr{C} . Let \mathscr{C} be a ϕ -unstable configuration of $\mathbb{Z}D_n$ for $n \ge 5$, and assume $\tau^r \psi$ stabilizes \mathscr{C} , where $1 \le r < 2n - 3$. The set of vertices (p, q) in \mathscr{C} with $q \ge n - 1$ consists of three $\tau^{(2n-3)\mathbb{Z}}$ -orbits ([2], 1.6 or [6], 4). Therefore, 2n - 3 and hence n must be divisible by 3, say n = 3m, and either r = 2m - 1 or r = 2(2m - 1). Since τ^{2n-3} stabilizes \mathscr{C}, ψ^3 does as well, and thus ψ is the identity. To summarize, we have to prove the theorem for basic algebras Λ with Auslander-Reiten quiver $\Gamma_{\Lambda} = (\mathbb{Z}D_{3m})_{\mathscr{C}}/\Pi$, where \mathscr{C} is a $\tau^{(2m-1)\mathbb{Z}}$ -stable configuration of $\mathbb{Z}D_{3m}$ and either $\Pi = \tau^{(2m-1)\mathbb{Z}}$ or $\Pi = \tau^{2(2m-1)\mathbb{Z}}$.

Let Λ be such an algebra, and let $\pi: (\mathbb{Z}D_{3m})_{\mathscr{C}} \to \Gamma_{\Lambda}$ be the canonical map. In case $\Pi = \tau^{2(2m-1)\mathbb{Z}}$, we prove the theorem by constructing a Π invariant well-behaved functor $F:k((\mathbb{Z}D_{3m})_{\mathscr{C}}) \to \operatorname{ind} \Lambda$; i.e., a k-linear functor F with $Fx = \pi x$ for every vertex x of $(\mathbb{Z}D_{3m})_{\mathscr{C}}$, such that $F\bar{\alpha}:\pi x \to \pi y$ is an irreducible morphism in $\operatorname{ind} \Lambda$ for the canonical image $\bar{\alpha}$ in $k((\mathbb{Z}D_{3m})_{\mathscr{C}})$ of every arrow $\alpha: x \to y$ in $(\mathbb{Z}D_{3m})_{\mathscr{C}}$, and such that $F(\bar{g\alpha}) = F\bar{\alpha}$ for each g in Π ([5], 2.5). Such a functor F induces a wellbehaved functor

 $H: k(\Gamma_A) \to \operatorname{ind} A$,

which is an isomorphism ([5], 2.5). The construction of F goes along the lines of the corresponding construction in the case A_n ([5], 4). In particular, we need some information about morphisms in $k((\mathbb{Z}D_{3m})_{\mathscr{C}})$, which we collect in chapter 2. In fact, we provide a k-basis for $k((\mathbb{Z}D_n)_{\mathscr{C}})(x, y)$ for any two vertices x and y, where \mathscr{C} is a ϕ -unstable configuration of $\mathbb{Z}D_n$, for $n \geq 5$.

In the remaining case $\Pi = \tau^{(2m-1)\mathbb{Z}}$, we define an ideal J in the pathcategory $k\Delta$, where $\Delta = (\mathbb{Z}D_{3m})_{\mathscr{C}}/\tau^{(2m-1)\mathbb{Z}}$, and we show that ind Λ is isomorphic either to the mesh-category $k(\Delta)$ or to $k\Delta/J$, for every algebra Λ with Auslander-Reiten quiver Λ . In case char $k \neq 2$, we construct an isomorphism to $k(\Delta)$, which completes the proof of part (b) of the theorem. As for part (a), it suffices to show that $k\Delta/J$ is isomorphic to ind Λ' for some Λ' and that $k\Delta/J$ and $k(\Delta)$ are not isomorphic if char k = 2. It is possible to check the second fact directly by showing that some huge system of linear equations has no solution. However, we will take a different approach, describing Λ' and the standard algebra Λ with Auslander–Reiten quiver Δ by quivers and relations (see also [7]) and proving that Λ and Λ' are not isomorphic. Moreover, we will show that ind Λ' has only even-fold coverings. More precisely, the map $(\mathbb{Z}D_{3m})_{\mathscr{C}}/\tau^{2(2m-1)\mathbb{Z}} \to \Delta$, which is a covering of translation-quivers for all s, gives rise to a covering functor $k((\mathbb{Z}D_{3m})_{\mathscr{C}})/\tau^{s(2m-1)\mathbb{Z}} \to \operatorname{ind} \Lambda'$ if and only if s is even.

I wish to thank Brandeis University and the University of Washington for their hospitality and the Schweizerischer Nationalfonds for its support.

2. Morphisms in $k((\mathbb{Z}D_n)_{\mathscr{C}})$

Let \mathscr{C} be a ϕ -unstable configuration of $\mathbb{Z}D_n$, for $n \ge 5$. By Γ we denote the translation-quiver $(\mathbb{Z}D_n)_{\mathscr{C}}$. Our aim is to construct a k-basis for $k(\Gamma)(x, y)$ for any two objects x and y of the mesh-category $k(\Gamma)$.

2.1 A vertex (p,q) of $\mathbb{Z}D_n$ or $(p,q)^*$ of Γ with $(p,q) \in \mathscr{C}$ is called *low* if $q \leq n-2$ and *high* otherwise. For any two vertices x and y of $\mathbb{Z}D_n$, we let $\delta(x, y)$ be the maximal number of high projective vertices on any path in Γ from x or $\phi(x)$ to y or $\phi(y)$. Notice that $\delta(x, z) = \delta(x, y) + \delta(y, z)$, provided there are any paths in Γ from x to y and from y to z, and also that $\delta((p,q), (p',q')) = \delta((p,n-1), (p'+\min(q',n-1)+1-n,n-1))$. Define a high vertex (p,q) of $\mathbb{Z}D_n$ to be \mathscr{C} -congruent if the high vertex (i,j) in \mathscr{C} with minimal $i \geq p$ satisfies $i+j \equiv p+q$ modulo 2, and call $(p,q) \mathscr{C}$ -incongruent otherwise.

Let h_p , h'_p , and l_p be the three paths from (p, n-2) to (p+1, n-2) in $\mathbb{Z}D_n$, where h_p and h'_p contain the \mathscr{C} -congruent and \mathscr{C} -incongruent high vertex with first coordinate p, respectively, and l_p goes through (p+1, n-3), for any integer p. We call h_p and h'_p the \mathscr{C} -congruent and \mathscr{C} -incongruent crenel path starting at (p, n-2). Define a path w in Γ to be stable if all vertices in w lie in $\mathbb{Z}D_n$. Call w low if it is stable and contains no crenel path, and \mathscr{C} -congruent if it is stable and contains no \mathscr{C} -incongruent crenel path. Notice that a low path may start or stop in a high vertex and a \mathscr{C} -congruent path in a high \mathscr{C} -incongruent vertex. We say that a path f is free (with respect to \mathscr{C}) if f is low and if no low vertex (p,q) of f satisfies 2p + q = 2i + j + 1 and q < j for any low projective vertex $(i, j)^*$ of Γ . Note that $2p + \min(q, n-1)$ is constant on "vertical lines" of $\mathbb{Z}D_n$. Fig. 1 shows a low path which is not free.

Fig. 1

DEFINITION: A path $w: x \to y$ in Γ is *C*-forbidden if w is *C*-congruent and satisfies at least one of the following conditions:

(i) w contains a free subpath $f: x' \to y'$, where x' and y' are high, one \mathscr{C} -congruent and one \mathscr{C} -incongruent, and $\delta(x', y') = 0$.

(ii) w contains a proper free subpath $f: x' \to y'$, where $x' \neq y'$ are high \mathscr{C} -congruent and $\delta(x', y') = 0$.

(iii) w is free, x and y are \mathscr{C} -incongruent, and $\delta(x, y) = 1$.

(iv) w contains a proper free subpath $f: x' \to y'$, where x' and y' are high, one \mathscr{C} -congruent and one \mathscr{C} -incongruent, and $\delta(x', y') = 1$.

(v) w contains a subpath $h_{p'}fh_p$, where f is free and

$$\delta((p, n-2), (p'+1, n-2)) = 1.$$

A subpath v of w is a proper subpath of $v \neq w$.

We call w C-admissible if it is C-congruent and not C-forbidden. Clearly, any subpath of a C-admissible path is again C-admissible.

LEMMA: (a) If $w_2h_pw_1: x \to y$ is C-admissible, then $w_2l_pw_1$ is, too. (b) If fh_pw is C-admissible for some free path $f:(p+1, n-2) \to y$, then αfl_pw is C-admissible for any arrow $\alpha: y \to z$ for which αfl_pw is C-congruent.

PROOF: (a) Let (p, q) be the high \mathscr{C} -congruent vertex of $\mathbb{Z}D_n$ with first coordinate p. Inspection of the five possible cases shows that, if $w_2 l_p w_1$ is \mathscr{C} -forbidden, then either the subpath from x to (p, q) or the one from (p, q) to y of $w_2 h_p w_1$ is \mathscr{C} -forbidden as well.

(b) Assume $v = \alpha f l_p w$ is \mathscr{C} -forbidden. Since $f l_p w$ is \mathscr{C} -admissible, any \mathscr{C} -forbidden subpath of v contains $\alpha f l_p$, and hence we may assume all proper subpaths of v to be \mathscr{C} -admissible. Again we look at all possibilities separately, and it turns out that, whenever v is \mathscr{C} -forbidden, $h_p w$ is \mathscr{C} -forbidden, too. We treat the first case as an example; i.e., we let $v = \alpha f l_p f' : x \to z$, where f' is free, x and z are high, one \mathscr{C} -congruent and one \mathscr{C} -incongruent, and $\delta(x, z) = 0$. Then $h_p f'$ is \mathscr{C} -forbidden of type (ii) if x is \mathscr{C} -congruent.

2.2 DEFINITION: Two paths w and w' are \mathscr{C} -neighbors if $w = w_2 v w_1$ and $w' = w_2 v' w_1$, where the set $\{v, v'\}$ consists either of the two paths $\beta \alpha$ and $\delta \gamma$ from (p, q) to (p + 1, q) for some $(p, q) \notin \mathscr{C}$ with 1 < q < n - 2 or of the two paths $h_{p+1}l_p$ and $l_{p+1}h_p$ for some integer p for which $(p, n-1) \notin \mathscr{C}$ and $(p, n) \notin \mathscr{C}$ (see Fig. 2). Call w and w' \mathscr{C} -homotopic if they are linked by a sequence $w = w_0, w_1, \ldots, w_r = w'$ of successive \mathscr{C} -neighbors.

Christine Riedtmann

[6]

Note that a \mathscr{C} -neighbor of a \mathscr{C} -admissible path is \mathscr{C} -admissible. We call a \mathscr{C} -admissible path w \mathscr{C} -marginal if w is \mathscr{C} -homotopic to some w' containing $(p, 1) \rightarrow (p, 2) \rightarrow (p + 1, 1)$ for a p such that $(p, 1) \notin \mathscr{C}$. Call w \mathscr{C} -essential if it is \mathscr{C} -admissible, but not \mathscr{C} -marginal. Compare [5], 4.2.

We say that the low projective vertex $(i, j)^*$ lies between the low paths w and w' from x to y if w contains a vertex (p, q) and w' a vertex (p', q') with 2p + q = 2i + j + 1 = 2p' + q' and either q < j < q' or q' < j < q (compare [5], 5.5).

LEMMA: (a) Two low paths w and w' are C-homotopic if and only if no low projective vertex lies between w and w'.

(b) A low path w is C-homotopic to some free path if and only if w is free.

PROOF: For (a), we refer to [5], 5.5, and (b) follows from (a) and the definition of free paths.

2.3 With any arrow α of Γ , we associate its sign $s(\alpha)$: we set $s(\alpha) = 1$, unless α is a stable arrow of the form $(p, q) \rightarrow (p, q + 1)$ with q < n - 2, in which case we set $s(\alpha) = (-1)^{n-q}$. For a path $w = \alpha_r \dots \alpha_1$, we let s(w) $= s(\alpha_r) \dots s(\alpha_1)$. We obtain a functor from the path category of Γ onto the mesh-category $k(\Gamma)$ by sending any path w to $\tilde{w} = s(w)\bar{w}$, where \bar{w} denotes the canonical image of w in $k(\Gamma)$. Its kernel I_s is the ideal generated by the elements

 $\theta_z = \sum s(\alpha(\sigma\alpha))\alpha(\sigma\alpha),$

where z is a stable vertex of Γ , the sum is taken over all arrows $\alpha: z' \to z$, and $\sigma \alpha$ is the arrow $\tau z \to z'$. We call I_s the ideal of *modified meshrelations*.

LEMMA: If $f:(p, n-2) \rightarrow (p', n-2)$ is free, then f - w lies in I_s , where $w = l_{p'-1} \dots l_p$.

PROOF: Since f is free, w must be free, too, and hence w and f are \mathscr{C} -homotopic by Lemma 2.2. Clearly, differences of low \mathscr{C} -neighbors, and hence of low \mathscr{C} -homotopic paths, lie in I_s .

2.4 PROPOSITION: For any two stable vertices x and y of Γ , we have

 $k(\Gamma)(x, y) = \bigoplus k\tilde{w},$

where w runs through a set of representatives of the C-homotopy classes of C-essential paths from x to y.

REMARK: This proposition yields a basis for $k(\Gamma)(x, y)$ in case x or y or both are projective, too. In fact, if e.g. $y = (p, q)^*$ for some $(p, q) \in \mathscr{C}$ and i is the arrow $(p, q) \rightarrow (p, q)^*$, composition with \tilde{i} induces a bijection

$$k(\Gamma)(x, (p, q)) \rightarrow k(\Gamma)(x, (p, q)^*)$$

for any $x \neq (p, q)^*$ ([1], 2.6).

PROOF: Let W be the vector space freely generated by all paths from x to y in Γ . Let $C \subset S \subset W$ be the subspaces spanned by the \mathscr{C} -congruent and the stable paths, respectively, and let A_i be the subspace spanned by the \mathscr{C} -congruent paths $\alpha_r \dots \alpha_1$ for which $\alpha_i \dots \alpha_1$ is \mathscr{C} -admissible. If r is the common length of all paths in W, we have

$$C = A_1 \supset A_2 \supset \ldots \supset A_r = A,$$

where A is spanned by the C-admissible paths. We will define a string of projections

$$W \xrightarrow{\pi_0} S \xrightarrow{\pi_1} C = A_1 \xrightarrow{\pi_2} A_2 \xrightarrow{\pi_2} \dots \xrightarrow{\pi_r} A_r$$

such that the kernel of each π_i lies in $I_s(x, y)$. In addition, we will show that the image of $I_s(x, y)$ under $\pi = \pi_r \dots \pi_0$ is the subspace of A spanned by the \mathscr{C} -marginal paths and the differences of \mathscr{C} -neighbors. This will imply our proposition.

In order to define $\pi_0: W \to S$, we notice that any path w in W can be written as

$$w = w_m \kappa_m \iota_m w_{m-1} \dots w_1 \kappa_1 \iota_1 w_0,$$

where w_i is stable and ι_i and κ_i are arrows with projective head and tail,

237

respectively, for any *i*. We set

$$\pi_0 w = (-1)^m w_m (\sum s(\alpha_m(\sigma \alpha_m)) \alpha_m(\sigma \alpha_m)) w_{m-1} \dots w_1 (\sum s(\alpha_1(\sigma \alpha_1)) \alpha_1(\sigma \alpha_1)) w_0,$$

where for each *i* the α_i range over all stable arrows whose head is the head of κ_i . By induction on *m*, the vector $w - \pi_0 w$ lies in I_s , and the kernel of π_0 is spanned by such vectors.

Let w be a stable path and write

$$w = w_m h'_{p_m} w_{m-1} \dots w_1 h'_{p_0} w_0,$$

where w_i is \mathscr{C} -congruent for any *i*. Setting

$$\pi_1 w = w_m (l_{p_m} - h_{p_m}) w_{m-1} \dots w_1 (l_{p_1} - h_{p_1}) w_0,$$

we obtain a vector in C. By definition, $s(h_p) = s(h'_p) = -s(l_p) = 1$ for any p, so that $h_p + h'_p - l_p$ lies in I_s , provided that $(p, n-2) \notin \mathscr{C}$. But we know from [6], 6 that the second coordinate of any low point of a ϕ -unstable configuration \mathscr{C} is strictly less than n-2. As before, we conclude that the kernel of π_1 lies in I_s .

Let us define $\pi_i: A_{i-1} \to A_i$, for i = 2, ..., r. Let $w = \alpha_r ... \alpha_1$ be a path in A_{i-1} . If $w \in A_i$, we set $\pi_i w = w$. Otherwise, the path $v = \alpha_i ... \alpha_1: x \to z$ is \mathscr{C} -forbidden, whereas $\alpha_{i-1} ... \alpha_1$ is not. Thus v contains a unique \mathscr{C} forbidden subpath of minimal length, which includes α_i . In each of the possible cases listed in 2.1, we define a linear combination ψv of \mathscr{C} admissible paths from x to z, and we show that $v - \psi v$ lies in I_s . We set $\pi_i w = \alpha_r ... \alpha_{i+1}(\psi v)$.

(i) Assume v contains a free subpath $f: x' \to z$, where x' = (p, q) and z = (p', q') are high, one \mathscr{C} -congruent and one \mathscr{C} -incongruent, with $\delta(x', z) = 0$. Set $\psi v = 0$. In order to see that v lies in I_s , it suffices by Lemma 2.3 to show that $\beta l_{p'-1} \dots l_{p+1} \alpha$ does, where $\alpha: (p,q) \to (p+1, n-2)$ and $\beta: (p', n-2) \to (p',q')$ are arrows. Assume first p' = p + 1. The condition $\delta((p,q), (p+1,q')) = 0$ implies that neither (p, n-1) nor (p, n) belongs to \mathscr{C} . Since one of the vertices (p, q), (p+1, q') is \mathscr{C} -congruent and one \mathscr{C} -incongruent, we see that $p + q \neq p + 1 + q'$ modulo 2, so that q' = q. Clearly, the path $\beta \alpha: (p, q) \to (p+1, n-2) \to (p+1, q)$ lies in I_s . In case p' = p + t + 1 for some t > 0, we write

$$\beta l_{p+t} \dots l_{p+1} \alpha = \beta (l_{p+t} - h_{p+t} - h'_{p+t}) l_{p+t-1} \dots l_{p+1} \alpha + + \beta h_{p+t} l_{p+t-1} \dots l_{p+1} \alpha + \beta h'_{p+t} l_{p+t-1} \dots l_{p+1} \alpha.$$

The first summand lies in I_s by definition, the second and third by induction on t.

(ii) If v contains a proper free subpath from x' to y', where $x' \neq y'$ are high \mathscr{C} -congruent and $\delta(x', y') = 0$, two cases are possible (see Fig. 3). In case x = x', y' = (p, q), z = (p + 1, n - 2), and $v = h_p f$ for some free path f, we set $\psi v = l_p f$, which is \mathscr{C} -admissible. By (i), the path $h'_p f$ lies in I_s , so that

$$v - \psi v = (h_p + h'_p - l_p)f - h'_p f$$

does as well. In the second case, we have z = y' = (p', q'), x' = (p, q), and $v = \beta f h_p v_1$ for some free path $f: (p+1, n-2) \rightarrow (p', n-2)$. We set $\psi v = \beta f l_p v_1$, which is \mathscr{C} -admissible by Lemma 2.1(b). As in the first case, $v - \psi v$ lies in I_s .

Fig. 3

(iii) In case v is free, x and z are high \mathscr{C} -incongruent and $\delta(x, z) = 1$, we must have v = w, and we set $\pi_r w = 0$. In order to see that w lies in I_s , it suffices to prove that $u = \beta l_{p'-1} \dots l_{p+1} \alpha : (p,q) \to (p',q')$ does, provided that (p,q) and (p',q') are high \mathscr{C} -incongruent and there is exactly one high point $(i,j) \in \mathscr{C}$ with $p \le i < p'$. In case p = i = p' - 1, we have (p,q) $= (i,q) \notin \mathscr{C}$ and q' = q, since the high point (i',j') in \mathscr{C} with minimal $i' \ge p' = i + 1$ satisfies $p' + q' \neq i' + j' \neq i + j \neq i + q$ modulo 2. Indeed, consecutive high points (i,j) and (i',j') of a ϕ -unstable configuration \mathscr{C} satisfy $i + j \neq i' + j'$ modulo 2 ([6], 4). Clearly $\beta \alpha : (p,q) \to (p+1, n-2) \to (p+1,q)$ lies in I_s . Let p' = p + t + 1 for some t > 0, and assume i + 1 < p'. Then

$$u = \beta (l_{p+t} - h_{p+t} - h'_{p+t}) l_{p+t-1} \dots l_{p+1} \alpha + \beta h_{p+t} l_{p+t-1} \dots l_{p+1} \alpha + \beta h'_{p+t} l_{p+t-1} \dots l_{p+1} \alpha$$

lies in I_s , by induction on t and since βh_{p+t} does by (i). In case p' = i + 1, we obtain

$$u = \beta l_{p+t} \dots l_{p+2} (l_{p+1} - h_{p+1} - h'_{p+1}) \alpha + \beta l_{p+t} \dots l_{p+2} h_{p+1} \alpha + \beta l_{p+t} \dots l_{p+2} h'_{p+1} \alpha$$

(iv) Assume v contains a proper free subpath from x' to y', where x' and y' are high, one \mathscr{C} -congruent and one \mathscr{C} -incongruent, and $\delta(x', y')$

= 1. In case x = x' is \mathscr{C} -incongruent, y' = (p, q), z = (p + 1, n - 2), and $v = h_p f$ for some free path f, we set $\psi v = l_p f$, and in case z = y' = (p', q') is \mathscr{C} -incongruent, x' = (p, q), and $v = w = \beta f h_p v_1$ for some free path $f: (p + 1, n - 2) \rightarrow (p', n - 2)$, we set $\psi v = \beta f l_p v_1$ (Fig. 3). In both cases, ψv is \mathscr{C} -admissible by Lemma 2.1, and using (iii) it is easy to check that $v - \psi v$ lies in I_s .

(v) In case $v = h_{p'}fh_{p}v_{1}$, where f is free and $\delta((p, n-2), (p'+1, n-2)) = 1$, we set $\psi v = h_{p'}fl_{p}v_{1} + l_{p'}fh_{p}v_{1} - l_{p'}fl_{p}v_{1}$. The first one of these paths is \mathscr{C} -admissible by Lemma 2.1(b), the second one because $fh_{p}v_{1}$ is, and the third one by Lemma 2.1(a). Moreover, we have

$$v - \psi v = h'_{p'} f h'_p v_1,$$

which belongs to I_s by (iii).

It remains to be seen that $\pi I_s(x, y)$ is the subspace of A spanned by the \mathscr{C} -marginal paths and the differences of \mathscr{C} -neighbors. Clearly, \mathscr{C} -marginal paths as well as differences of \mathscr{C} -neighbors lie in I_s , since

$$l_{p+1}h_p - h_{p+1}l_p = h_{p+1}(h_p + h'_p - l_p) - h_{p+1}h'_p - (h_{p+1} + h'_{p+1} - l_{p+1})h_p + h'_{p+1}h_p$$

does, whenever $(p, n-1) \notin \mathscr{C}$ and $(p, n) \notin \mathscr{C}$.

As $I_s(x, y)$ is spanned by the vectors

$$\mu = w_2 \sum s(\alpha(\sigma\alpha))\alpha(\sigma\alpha)w_1,$$

where w_1 and w_2 are paths from x to τz and from z to y for some stable z, respectively, and where the sum is taken over all arrows α with head z, it suffices to write $\pi\mu$ as a linear combination of \mathscr{C} -marginal paths and differences of \mathscr{C} -neighbors. We may assume that τz does not lie in \mathscr{C} , since otherwise $\pi_0\mu = 0$, and that μ lies in S. Similarly, we have $\pi_1\mu = 0$ if the second coordinate of z is n-2. The proof in case z is high is straightforward, the main problems being the large number of possible cases and the bookkeeping. In most cases, $\pi\mu$ turns out to be zero. As an example, we treat one of the harder cases, and we skip the rest.

Assume $z = (p + 1, q) \neq y$ is high \mathscr{C} -incongruent and $\tau z = (p, q) \neq x$ is \mathscr{C} -congruent. Then μ has the form

$$\mu = v_2(\sigma^{-1}\alpha)\alpha(\sigma\alpha)(\sigma^2\alpha)v_1 = v_2h'_{p+1}h_pv_1,$$

and we may assume that

$$\pi_1 \mu = v_2 (l_{p+1} - h_{p+1}) h_p v_1.$$

Let *i* be the length of v_1 . Then $\pi_{i+1}...\pi_1\mu$ is either zero or a linear combination of vectors of the form

$$v = v_2(l_{p+1} - h_{p+1})h_p v_3.$$

Let us assume that $v_3 = fh_{p'}v_4$, where $f:(p'+1, n-2) \rightarrow (p, n-2)$ is free and $\delta((p', n-2), (p+1, n-2)) = 1$; i.e., we suppose h_pv_3 to be \mathscr{C} -forbidden of type v). We obtain

$$\begin{split} v &= v_2(l_{p+1} - h_{p+1})h_pfh_{p'}v_4, \\ v_1 &= \pi_{i+2}v = v_2(l_{p+1} - h_{p+1})(h_pfl_{p'} + l_pfh_{p'} - l_pfl_{p'})v_4. \end{split}$$

By our assumptions, neither (p, n-1) nor (p, n) lies in \mathscr{C} , so that $\delta((p, n-1), (p+1, n-1)) = 0$ and $\delta((p', n-1), (p+1, n-1)) = 1$. Hence $v_2 h_{p+1} h_p f l_{p'} v_4$ is the only path occurring in v_1 which does not lie in A_{i+3} . We obtain

$$\begin{aligned} v_2 &= \pi_{i+3} v_1 = v_2 (l_{p+1} h_p - h_{p+1} l_p) f l_{p'} v_4 \\ &+ v_2 (l_{p+1} - h_{p+1}) l_p f (h_{p'} - l_{p'}) v_4, \end{aligned}$$

$$\rho &= \pi_{i+4} v_2 = v_2 (l_{p+1} h_p - h_{p+1} l_p) f l_{p'} v_4. \end{aligned}$$

Suppose $\rho = v_2(l_{p+1}h_p - h_{p+1}l_p)v_5$ belongs to A_j , but not to A_{j+1} for some j with $i + 4 \le j < r$, and let $v_2 = v_7v_6$, where the length of v_6 is j - i - 3. In case v_6 itself is \mathscr{C} -forbidden, we clearly have

$$\pi_{j+1}\rho = v_7 v_6' (l_{p+1} h_p - h_{p+1} l_p) v_5$$
 or $\pi_{j+1}\rho = 0$.

Otherwise,

$$v_6 l_{p+1} h_p$$
 and $v_6 h_{p+1} l_p$

are \mathscr{C} -forbidden of the same type, since $\delta((p, n-1), (p+1, n-1)) = 0$. Unless they are \mathscr{C} -forbidden of type (v), we have $\pi_{j+1}\rho = 0$, since π_{j+1} either annihilates both summands separately, or

$$\pi_{j+1}(v_7v_6l_{p+1}h_pv_5) = v_7v_6l_{p+1}l_pv_5 = \pi_{j+1}(v_7v_6h_{p+1}l_pv_5).$$

In the remaining case, there is a free path $f:(p+2, n-2) \rightarrow (p', n-2)$, where $\delta((p+1, n-2), (p'+1, n-2)) = 1$, such that $v_6 = h_{p'}f$. Then

$$\pi_{j+1}\rho = v_7(h_{p'}fl_{p+1}l_p + l_{p'}fl_{p+1}h_p - l_{p'}fl_{p+1}l_p - h_{p'}fl_{p+1}l_p - l_{p'}fh_{p+1}l_p + l_{p'}fl_{p+1}l_p)v_5 = v_7l_{p'}f(l_{p+1}h_p - h_{p+1}l_p)v_5,$$

[11]

so that by induction we may assume ρ lies in A, and hence it is the difference of two \mathscr{C} -neighbors.

Finally, if $\tau z = (p, q)$ does not lie in \mathscr{C} and $q \le n-3$, $\pi \mu$ is a linear combination of vectors of the form

 $v_2 \sum s(\alpha(\sigma\alpha))\alpha(\sigma\alpha)v_1,$

each of which is either the difference of two C-neighbors or C-marginal.

2.5 In the remainder of this chapter, we derive the auxiliary results needed in the proof of the theorem. From now on, we assume that \mathscr{C} contains the vertex (0, n-1). This condition can always be fulfilled by replacing \mathscr{C} by an isomorphic configuration. We recall the following description of \mathscr{C} from [6], 6. The set of high vertices of \mathscr{C} consists of the $\tau^{(2n-3)\mathbb{Z}}$ -orbits of

$$(0, n-1), \phi^{n_1+n_3}(n_1+n_3+1, n-1), \text{ and } \phi^{n-1+n_1}(n-1+n_1, n-1)$$

for some natural numbers (including zero) n_1 , n_2 , and n_3 with $n_1 + n_2 + n_3 = n - 3$. There are configurations \mathcal{D}_1 , \mathcal{D}_2 , and \mathcal{D}_3 of $\mathbb{Z}A_{n_1}$, $\mathbb{Z}A_{n_2}$, and $\mathbb{Z}A_{n_3}$, respectively, such that the set of low vertices of \mathscr{C} is the disjoint union of the sets

$$\tau^{1-n}\psi_{n_1}\mathscr{D}_1, \ \tau^{-(n+n_1+n_3)}\psi_{n_2}\mathscr{D}_2, \text{ and } \ \tau^{-(2n-2+n_1)}\psi_{n_3}\mathscr{D}_3.$$

For any natural number $m \le n-2$, the injection

 $\psi_m : (\mathbb{Z}A_m)_0 \to (\mathbb{Z}D_n)_0$

from the vertex set of $\mathbb{Z}A_m$ to the vertex set of $\mathbb{Z}D_n$ is defined by

$$\psi_{m}(p,q) = \begin{cases} (p,q) & \text{if } 0 \le p < p+q \le m \\ (p+q+n-2-m,m+1-q) & \text{if } p < m < p+q \end{cases}$$

and by requiring that $\psi_m \tau^m = \tau^{2n-3} \psi_m$, where τ denotes the translation of $\mathbb{Z}A_m$ on the left-hand side and $\mathbb{Z}D_n$ on the right-hand side. Notice that, for any m < n-2, ψ_m factors through ψ_{m+1} . In fact, we have ψ_m $= \psi_{m+1} \omega_m$, where the injection

 $\omega_m : (\mathbb{Z}A_m)_0 \to (\mathbb{Z}A_{m+1})_0$

is given by

$$\omega_m(p,q) = \begin{cases} (p,q) & \text{if } 0 \le p < p+q \le m \\ (p,q+1) & \text{if } p < m < p+q \end{cases}$$

and by the rule $\omega_m \tau^m = \tau^{m+1} \omega_m$ (see Fig. 4).

LEMMA: A set \mathscr{D} in $(\mathbb{Z}A_m)_0$ is a configuration of $\mathbb{Z}A_m$ if and only if

 $\mathscr{D}^{+} = \omega_{m} \mathscr{D} \cup \tau^{(m+1)\mathbb{Z}}(m,1)$

is a configuration of $\mathbb{Z}A_{m+1}$.

PROOF: We use the characterization of configurations of $\mathbb{Z}A_m$ and $\mathbb{Z}A_{m+1}$ in terms of rectangles ([5], 2.6). By $R_s(x)$ we denote the rectangle of $\mathbb{Z}A_s$ starting at x, for s = m, m+1. The following facts are easy to verify, and they clearly imply the lemma:

$$\omega_m^{-1} R_{m+1}(\omega_m(p,q)) = R_m(p,q) \text{ for any } (p,q) \text{ in } (\mathbb{Z}A_m)_0,$$

$$\omega_m^{-1} R_{m+1}(t(m+1)-1,q) = R_m(tm,q-1) \text{ for } q \ge 2 \text{ and } t \in \mathbb{Z},$$

$$R_{m+1}(\omega_m(p,q)) \cap \tau^{(m+1)\mathbb{Z}}(m,1) = \emptyset \text{ for any } (p,q) \text{ in } (\mathbb{Z}A_m)_0.$$

2.6 Set

$$\begin{split} \chi_1 &= \tau^{1-n} \psi_{n_1+1} : (\mathbb{Z}A_{n_1+1})_0 \to (\mathbb{Z}D_n)_0, \\ \chi_2 &= \tau^{-(n+n_1+n_3)} \psi_{n_2+1} : (\mathbb{Z}A_{n_2+1})_0 \to (\mathbb{Z}D_n)_0, \\ \chi_3 &= \tau^{-(2n-2+n_1)} \psi_{n_3+1} : (\mathbb{Z}A_{n_3+1}) \to (\mathbb{Z}D_n)_0. \end{split}$$

Fig. 5 shows the images of χ_1 , χ_2 , and χ_3 . In chapter 5, we will show that χ_k can be extended to a k-linear functor

$$\chi_k: k((\mathbb{Z}A_{n_k+1})_{\mathscr{D}_{\nu}^+}) \to k((\mathbb{Z}D_n)_{\mathscr{C}})$$

for k = 1, 2, and 3. This will enable us to describe the full subcategory of projective objects in $k((\mathbb{Z}D_n)_{\mathscr{G}})$ in terms of the full subcategories of projectives in $k((\mathbb{Z}A_{n_k+1})_{\mathscr{G}_k})$.

LEMMA: Any \mathscr{C} -essential path in $\Gamma = (\mathbb{Z}D_n)_{\mathscr{C}}$ from (n-1,1) to $(n+n_1-q,q)$ and from (n-1,q') to $(n+n_1-1,1)$ is free.

REMARK: The same statement holds for \mathscr{C} -essential paths in Γ from $(n_1 + n_3 + n, 1)$ to (2n - 2 - q, q), from $(n_1 + n_3 + n, q')$ to (2n - 3, 1), from $(2n - 2 + n_1, 1)$ to $(2n - 1 + n_1 + n_3 - q, q)$, and from $(2n - 2 + n_1, q')$ to $(2n - 2 + n_1 + n_3, 1)$.

PROOF: Clearly, χ_1 extends to an isomorphism from the full subquiver Δ of $(\mathbb{Z}A_{n_1+1})_{\mathscr{D}_1^+}$ given by the vertices x for which there are paths $(0, 1) \to x \to (n_1, 1)$ in $(\mathbb{Z}A_{n_1+1})_{\mathscr{D}_1^+}$ to the full subquiver Δ' of $(\mathbb{Z}D_n)_{\mathscr{C}}$ given by the vertices x' for which there are paths $(n-1, 1) \to x' \to (n-1+n_1, 1)$ in $(\mathbb{Z}D_n)_{\mathscr{C}}$. The stable vertices of Δ and Δ' are the (p, q) and $\chi_1(p, q)$ with $0 \le p , respectively. Notice that <math>\chi_1$ induces a bijection between \mathscr{D}_1^+ -homotopy classes of stable paths from x to y in Δ and \mathscr{C} -homotopy classes of stable paths from $\chi_1 x$ to $\chi_1 y$ in Δ' , under which \mathscr{D}_1^+ -essential paths correspond to \mathscr{C} -essential paths ([5], 4.2).

Since (-1, 1) lies in \mathscr{D}_1^+ by construction, any \mathscr{D}_1^+ -essential path $\tau^{-1}(-1, 1) = (0, 1) \rightarrow (n_1 + 1 - q, q)$ is \mathscr{D}_1^+ -homotopic to a subpath of the " α -path" $(0, 1) \rightarrow (0, n_1 + 1) \rightarrow (n_1, 1)$ (see [5], 5). Thus any \mathscr{C} -essential path $w: (n - 1, 1) \rightarrow (n + n_1 - q, q)$ is \mathscr{C} -homotopic to $(n - 1, 1) \rightarrow (n - 1, n_1 + 1) \rightarrow (n + n_1 - q, q)$, which is free, since all low vertices of \mathscr{C} lie in the image of χ_1, χ_2 , or χ_3 . Since \mathscr{C} -neighbors of free paths are free, w is free as well. The proof in the other case is analogous.

2.7 Let \mathscr{C} be a configuration of $\mathbb{Z}D_n$ as in 2.5, and assume n = 3m, $n_1 = n_2 = n_3 = m - 1$ (see Fig. 6). We will need the following proposition only in case \mathscr{C} is $\tau^{(2m-1)\mathbb{Z}}$ -stable. However, this assumption does not simplify the proof. Set $\Gamma = (\mathbb{Z}D_n)_{\mathscr{C}}$.

1 Ig. 0

PROPOSITION: (a) If $2 \le q \le n-2$, any C-essential path in Γ from (0,q) to (2m,q) or (4m-1,q) starting with the arrow $(0,q) \rightarrow (1,q-1)$ is C-homotopic to a path starting with $(0,q) \rightarrow (1,q-1) \rightarrow (1,q)$.

(b) If $q \ge n-1$, there is no \mathscr{C} -essential path from (0,q) to (4m-1,q).

(c) Any C-admissible path from (0, n) to (2m, n) is C-homotopic to $\beta l_{2m-1} \ldots l_1 \alpha$, where α and β are the arrows $\alpha: (0, n) \rightarrow (1, n-2)$ and $\beta: (2m, n-2) \rightarrow (2m, n)$.

(d) Any C-admissible path from (0, n-1) to (2m, n-1) is C-homotopic to either $\delta l_{2m-1} \dots l_1 \gamma$ or $\delta l_{2m-1} \dots l_2 h_1 \gamma$, where γ and δ are the arrows $\gamma: (0, n-1) \rightarrow (1, n-2)$ and $\delta: (2m, n-2) \rightarrow (2m, n-1)$.

PROOF: Notice that by 2.5 the set of high points of \mathscr{C} is the $\tau^{(2m-1)\mathbb{Z}}$ -orbit of (0, n-1).

(a) Assume our assertion is wrong for some \mathscr{C} -essential path w: (0, q) \rightarrow (x, q) starting with (0, q) \rightarrow (1, q - 1), where x = 2m or x = 4m- 1. Then there is a low point $(i, j) \in \mathscr{C}$ with i + j = q and $2 \le j \le q$, such that w contains the only path w_1 from (0, q) to (i + 1, j - 1) (see Fig. 7).

Fig. 7

Indeed, if such an $(i,j) \in \mathscr{C}$ does not exist, the subpath $(1,q-1) \rightarrow (x',y) \rightarrow (x',y+1)$ is \mathscr{C} -homotopic to $(1,q-1) \rightarrow (1,q) \rightarrow (x',y+1)$, and we are done (2.2). Notice that any low path from (i+1,j-1) to (x,q) is \mathscr{C} -homotopic to a path containing $(x-1,1) \rightarrow (x-1,2) \rightarrow (x,1)$, which is \mathscr{C} -marginal, since neither (2m-1,1) nor (4m-2,1) lie in \mathscr{C} . Therefore, w has the form $w = w_3 h_p w_2 w_1$, where w_2 is low, but w_3 need not be. Clearly, we have $p \ge i + 1$. If x = 2m, there is no path in Γ from (p + 1, n - 2) to (x, q) = (2m, q): since the second coordinate j of $(i, j) \in \mathscr{C}$ is less than m, we have $p + n - 1 \ge i + n = q - j + n > q + 2m$. This proves (a) in case x = 2m.

If (x, q) = (4m - 1, q), we distinguish three cases, depending on the position of (i, j) (compare Fig. 6).

(i) $1 \le i < i + j \le m - 1$: We must have $p \le m - 1$, since otherwise w_2 contains $(m - 1, 1) \rightarrow (m - 1, 2) \rightarrow (m, 1)$, up to \mathscr{C} -homotopy. A similar argument, using $(4m - 2, 1) \notin \mathscr{C}$, shows that w_3 cannot be low. Hence $w_3 = w_5 h_{p'} w_4$ for some low path $w_4: (p + 1, n - 2) \rightarrow (p', n - 2)$, which must not be free, since $0 \le \delta((p + 1, n - 2), (p', n - 2)) \le 1$. This implies that $3m \le p'$. But there is no path in Γ from (p' + 1, n - 2) to (4m - 1, q), since $q = i + j \le m - 1$ forces $p' + n - 1 \ge 6m - 1 > 4m - 1 + q$.

(ii) $m \le i < i+j \le 2m-1$: That w_2 is \mathscr{C} -essential implies $p \le 2m-1$. Then any low path $(p+1, n-2) \rightarrow (p', n-2)$ is free, provided that $p' \le 4m-1$, and therefore w_3 must be low and free. Up to \mathscr{C} -homotopy, we may choose $w_3 = w_4 l_{2m-1} l_{2m-2} \dots l_{p+1}$, where w_4 is a free path from (2m, n-2) to (4m-1, q). Here we use that 4m-1+q = 4m-1+i++j > 5m-1. Then w_3h_p is \mathscr{C} -homotopic to $w_4h_{2m-1}l_{2m-2} \dots l_{p+1}l_p$. Hence we can choose p = 2m-1, and we can choose w_1 to contain (2m-1, 1), up to \mathscr{C} -homotopy. By Lemma 2.6, w_1 is \mathscr{C} -homotopic to the path $(0, q) \rightarrow (m, q-m) \rightarrow (m, m) \rightarrow (2m-1, 1)$, which contradicts our assumption.

(iii) $2m \le i < i + j \le 3m - 2$: We must have $p \le 3m - 2$, since otherwise w_1 is \mathscr{C} -marginal. Then w_3 is free, and we may assume $w_3 = w_4 l_{3m-1} \dots l_{p+1}$, since 4m - 1 + q > 6m - 1. As before, $w_3 h_p$ is \mathscr{C} -homotopic to $w_4 h_{3m-1} l_{3m-2} \dots l_p$, which is a contradiction.

(b) Assume there is a \mathscr{C} -essential path $w:(0,q) \to (4m-1,q)$ for $q \ge n - 1$. If q = n, both (0, n) and (4m-1, n) are \mathscr{C} -incongruent. For any high \mathscr{C} -congruent vertex (p,q') with $1 \le p \le 4m-2$, either $\delta((0,q), (p,q')) = 1$ or $\delta((p,q'), (4m-1,q)) = 1$, so that w must be low, which is impossible. In case q = n - 1, w has the form $w_2h_pw_1$, where $p \le 3m-2$ and w_1 is low, and thus free.

(i) $p \le 2m - 1$: We may assume p = 1. Then w_2 cannot be low; i.e., $w_2 = w_4 h_{p'} w_3$ for some p' with $2m \le p' \le 4m - 2$ and some low path w_3 , which must not be free. Thus w_3 contains a vertex (3m - 1, y) with $y \le m - 1$. Since w_4 is free, we can choose p' = 4m - 2, and we may assume that w_3 contains (4m - 2, 1). By Lemma 2.6, w_3 is free, which is a contradiction.

(ii) $2m \le p$: Since w_2 is free, we can "push the crenel to the right" and violate the condition $p \le 3m - 2$.

247

(c) and (d) follow from the definition and Lemma 2.3, since in these cases all low paths are free.

3. Proof of part (b) of the theorem

Let Λ be a basic algebra with Auslander-Reiten quiver $\Gamma_A = (\mathbb{Z}D_n)_{\mathscr{C}}/\tau^{r\mathbb{Z}}$, where n = 3m for some m > 1, \mathscr{C} is stable under $\tau^{(2m-1)\mathbb{Z}}$, and r = 2m - 1 or r = 2(2m - 1). We choose \mathscr{C} to contain (0, n - 1), and we let $\pi: \Gamma \to \Gamma_A$ be the canonical map. As explained in the introduction, we have to construct a $\tau^{r\mathbb{Z}}$ -invariant well-behaved functor $k(\Gamma) \to \operatorname{ind} \Lambda$, provided that either char $k \neq 2$ or $r \neq 2m - 1$. It suffices to find a k-linear functor

 $F: k\Gamma \to \operatorname{ind} \Lambda$

from the path-category $k\Gamma$ of Γ to ind Λ such that $Fx = \pi x$ for all vertices $x, F\alpha \in \text{Hom}_{\Lambda}(\pi x, \pi y)$ is irreducible for all arrows $\alpha : x \to y$, $F(\tau^{r}\alpha) = F\alpha$, and $F\theta_{z} = 0$ for all stable vertices z, where

 $\theta_z = \sum s(\alpha(\sigma\alpha))\alpha(\sigma\alpha)$

is the modified mesh-relation arising from the mesh of Γ which stops at z. Then sending \tilde{w} to Fw, for any path w in Γ , yields our desired $\tau^{r\mathbb{Z}}$ -invariant well-behaved functor.

3.1 In a first step, we construct the irreducible $F\alpha$ so that $F(\tau^r\alpha) = F\alpha$ and so that $F\theta_z = 0$ for all z which do not belong to $\tau^{r\mathbb{Z}}(1, n-1)$ or $\tau^{r\mathbb{Z}}(1, n)$. We make no assumption on char k or r yet. Start from any wellbehaved functor $F_0: k(\Gamma) \to ind \Lambda$. Such a functor exists, since $\pi: \Gamma \to \Gamma_\Lambda$ is the universal covering, and F_0 is a covering functor; i.e., for any two vertices x and y of Γ , F_0 induces isomorphisms

$$\bigoplus_{\pi z = \pi y} k(\Gamma)(x, z) \to \operatorname{Hom}_{\Lambda}(\pi x, \pi y),$$
$$\bigoplus_{\pi z = \pi x} k(\Gamma)(z, y) \to \operatorname{Hom}_{\Lambda}(\pi x, \pi y)$$

(see [4], 2 and [1], 3.1). Set $F\alpha = F_0\tilde{\alpha}$ for any arrow $\alpha: x \to y$ of Γ for which the stable vertices in $\{x, y\}$ lie in the set $\{(p, q): 1 - r \le p \le 0\}$, and set $F(\tau^r \gamma_q) = F\gamma_q$, for q = 2, ..., n, $F\beta_2 = F_0\tilde{\beta}_2$ (see Fig. 8).

By induction on q, we define $F\beta_q$ in such a way that

 $F\beta_q F\alpha_q - F\gamma_{q-1}F\beta_{q-1} = 0$

for q = 3, ..., n-2. The construction is analogous to the one used in [5], 1.6 and 4; it is based on Proposition 2.7(a). As an example, we show how to find $F\beta_{n-1}$ and $F\beta_n$ so that

$$F\beta_{n-1}F\alpha_{n-1} + F\beta_nF\alpha_n - F\gamma_{n-2}F\beta_{n-2} = 0.$$

Choose an Auslander-Reiten sequence

$$\pi(0, n-2) \xrightarrow{[F\alpha_{n-1}F\alpha_{n}F\beta_{n-2}]^{\mathsf{T}}} \pi(0, n-1) \oplus \pi(0, n) \oplus \pi(1, n-3)$$
$$\xrightarrow{[\underline{\beta} \ \underline{\beta'} \ \underline{2}]} \pi(1, n-2)$$

in mod Λ . There exists a $\lambda \in k$ such that

$$\mu = \lambda \gamma - F \gamma_{n-2} \in \mathscr{R}^2(\pi(1, n-3), \pi(1, n-2)),$$

where \mathcal{R} denotes the radical of ind Λ . Since F_0 is a covering functor, we can write

$$\mu F\beta_{n-2}=\sum \lambda_w F_0 \tilde{w},$$

where λ_w is a scalar and the w's are \mathscr{C} -essential paths in Γ from (0, n-2) to (sr + 1, n-2) with $s \ge 1$. Notice that (sr + 1, n-2) must be either (2m, n-2) or (4m-1, n-2), since the length of any \mathscr{C} -essential path in Γ is at most 2(2n-3) ([2], 1.2). Suppose one of the paths w has the form

 $w'\beta_{n-2}$. By Proposition 2.7(a), we may assume $w = v\gamma_{n-2}\beta_{n-2} = vl_0$. Since $\tilde{l}_0 = \tilde{h}_0 + \tilde{h}'_0$, we see that we can write

$$\mu F \beta_{n-2} = \mu_1 F_0 \tilde{\alpha}_{n-1} + \mu_2 F_0 \tilde{\alpha}_n = \mu_1 F \alpha_{n-1} + \mu_2 F \alpha_n$$

for some $\mu_1 \in \mathscr{R}^2(\pi(0, n-1), \pi(1, n-2))$ and $\mu_2 \in \mathscr{R}^2(\pi(0, n), \pi(1, n-2))$. We set

$$F\beta_{n-1} = -\lambda \underline{\beta} - \mu_1$$
 and $F\beta_n = -\lambda \underline{\beta'} - \mu_2$,

which are irreducible. By construction,

$$F\theta_{(1,n-2)} = F\beta_{n-1}F\alpha_{n-1} + F\beta_nF\alpha_n - F\gamma_{n-2}F\beta_{n-2} = 0.$$

Finally, we find a irreducible morphism $F\kappa \in \text{Hom}_{\Lambda}(\pi(0, n-1)^*, \pi(1, n-1))$ such that

$$F\kappa F\iota + F\gamma_{n-1}F\beta_{n-1} \in \mathscr{R}^{2r+2}(\pi(0, n-1), \pi(1, n-1)),$$

and we extend F first to all arrows of Γ by periodicity, requiring that $F(\tau^r \alpha) = F\alpha$, and then to a k-linear functor $F: k\Gamma \to ind \Lambda$.

3.2 Let r = 2(2m - 1). Write

$$F\gamma_{n-1}F\beta_{n-1} + F\kappa F\iota = \sum \lambda_w F_0 \tilde{w},$$

$$F\gamma_n F\beta_n = \sum \mu_v F_0 \tilde{v},$$

where $\lambda_w, \mu_v \in k$, the $w: (0, n-1) \to (2(2m-1)s+1, n-1)$ are \mathscr{C} -essential with $s \ge 1$, and the $v: (0, n) \to (2(2m-1)t+1, n)$ are \mathscr{C} -essential with $t \ge 0$. There are no such paths for $t = 0, t \ge 2$, or $s \ge 2$, since the length of a \mathscr{C} -essential path is at most 2(2n-3). By Proposition 2.7(b), there is none for s = 1, t = 1 either, so that $F\theta_{(1,n-1)} = F\theta_{(1,n)} = 0$. This completes the proof of the theorem in case r = 2(2m-1).

3.3 From now on, we let r = 2m - 1. By Proposition 2.7(b), (c), (d), we obtain

$$\begin{split} F\gamma_{n-1}F\beta_{n-1} + F\kappa F\iota &= \lambda'F_0(\tilde{\gamma}'_{n-1}\tilde{l}_{2m-1}\dots\tilde{l}_1\tilde{\beta}_{n-1}) \\ &+ \mu'F_0(\tilde{\gamma}'_{n-1}\tilde{l}_{2m-1}\dots\tilde{l}_2\tilde{h}_1\tilde{\beta}_{n-1}) \\ F\gamma_nF\beta_n &= \nu'F_0(\tilde{\gamma}'_n\tilde{l}_{2m-1}\dots\tilde{l}_1\tilde{\beta}_n), \end{split}$$

249

[19]

where λ', μ', ν' are scalars and $\gamma'_{n-1} = \tau^{-(2m-1)}\gamma_{n-1}, \gamma'_n = \tau^{-(2m-1)}\gamma_n$. Since for any arrow α , $F\alpha$ and $F_0\tilde{\alpha}$ differ only by a non-zero scalar modulo \mathscr{R}^2 , and since

$$\mathscr{R}^{8m-2}(\pi(0,n-1),\pi(1,n-1))=0=\mathscr{R}^{8m-2}(\pi(0,n),\pi(1,n)),$$

we obtain

$$(*) \begin{cases} F\gamma_{n-1}F\beta_{n-1} + F\kappa F\iota = \lambda F(\gamma'_{n-1}l_{2m-1}\dots l_1\beta_{n-1}) \\ + \mu F(\gamma'_{n-1}l_{2m-1}\dots l_2h_1\beta_{n-1}) \\ F\gamma_n F\beta_n = \nu F(\gamma'_n l_{2m-1}\dots l_1\beta_n) \end{cases}$$

for some $\lambda, \mu, \nu \in k$.

Let J be the ideal in $k\Gamma_A$ generated by the images $\pi\theta_z$ under $\pi: k\Gamma \to k\Gamma_A$ of all modified mesh-relations with $z \notin \tau^{(2m-1)\mathbb{Z}}(1, n-1)$ along with

$$\pi(\gamma_{n-1}\beta_{n-1})+\pi(\kappa\iota)-\pi(\gamma'_{n-1}l_{2m-1}\ldots l_1\beta_{n-1}).$$

Notice that the associated graded category ([1], 5.1) of $k\Gamma_A/J$ is the mesh-category $k(\Gamma_A)$. In particular, we have

$$\dim_k k\Gamma_A/J(\pi x, \pi y) = \dim_k k(\Gamma_A)(\pi x, \pi y)$$
$$= \sum_{\pi z = \pi y} \dim_k k(\Gamma)(x, z) = \dim_k \operatorname{Hom}_A(\pi x, \pi y),$$

for any x and y in Γ .

PROPOSITION: The category ind Λ is isomorphic to either $k(\Gamma_{\Lambda})$ or $k\Gamma_{\Lambda}/J$.

PROOF: It is enough to show that we can choose $\mu = \nu = 0$ and either $\lambda = 0$ or $\lambda = 1$ in (*). Indeed, then the full k-linear functor $k\Gamma_A \rightarrow \text{ind } A$

Fig. 9

induced by F factors through either $k(\Gamma_A)$ or $k\Gamma_A/J$. By the dimension formulas above, we obtain an isomorphism from $k(\Gamma_A)$ or $k\Gamma_A/J$ to ind Λ .

Let us get rid of μ and ν . For any q with $2m + 1 \le q \le n - 2$, we let $v_q: (0,q) \rightarrow (2m,q-1)$ be the path composed from the only path $(0,q) \rightarrow (0,n-2)$, the path $l_{q-m} \dots l_0: (0,n-2) \rightarrow (q-m+1,n-2)$, and the only path $(q-m+1,n-2) \rightarrow (2m,q-1)$ (see Fig. 9).

Set $v = l_{2m-1} \dots l_1 : (1, n-2) \rightarrow (2m, n-2)$, and define

$$F'\beta_q = \begin{cases} F\beta_q - vFv_q & \text{if } 2m+1 \le q \le n-2, \\ F\beta_q & \text{if } 2 \le q \le 2m, \end{cases}$$
$$F'\beta_{n-1} = F\beta_{n-1} - vF(v\beta_{n-1}),$$
$$F'\beta_n = F\beta_n - vF(v\beta_n),$$
$$F'\kappa = F\kappa + \mu F(\gamma'_{n-1}l_{2m-1}\dots l_2(\sigma^{-1}\gamma_{n-1})\kappa),$$

(see Fig. 8).

In order to check that

$$F'\beta_{q+1}F\alpha_{q+1} - F\gamma_qF'\beta_q = 0$$

for q = 2, ..., n - 3, we have to show that

$$F(v_{q+1}\alpha_{q+1}) = F(\tau^{-(2m-1)}\gamma_{q}v_{q}), \text{ for } q = 2m+1, \dots, n-3,$$

and that

$$F(v_{2m+1}\alpha_{2m+1}) = 0.$$

Since $F\theta_z = 0$ for all low vertices z, the value of F is constant on \mathscr{C} -homotopy classes of low paths. Clearly, $v_{q+1}\alpha_{q+1}$ and $\tau^{-(2m-1)}\gamma_q v_q$ are \mathscr{C} -homotopic, for q = 2m + 1, ..., n-3 (see Fig. 9), and $v_{2m+1}\alpha_{2m+1}$ is \mathscr{C} -homotopic to $(0, 2m) \rightarrow (2m - 1, 1) \rightarrow (2m - 1, 2) \rightarrow (2m, 1) \rightarrow (2m, 2m)$, which is \mathscr{C} -marginal (Fig. 6). A direct computation yields:

$$F'\beta_{n-1}F\alpha_{n-1} + F'\beta_nF\alpha_n - F\gamma_{n-2}F'\beta_{n-2} = 0,$$

$$F\gamma_nF'\beta_n = 0,$$

$$F\gamma_{n-1}F'\beta_{n-1} + F'\kappa F\iota = (\lambda - \nu)F(\gamma'_{n-1}\nu\beta_{n-1}),$$

where for the last equation we use $\mathscr{R}^{8m-2}(\pi(0, n-1), \pi(1, n-1)) = 0$ again.

[21]

It follows that we may assume $\mu = v = 0$ in (*). If $\lambda = 0$, we are done. Otherwise, choose $\lambda' \in k$ with $\lambda'^{2(2m-1)} = \lambda$ and replace $F\alpha$ by $F'\alpha = \lambda'F\alpha$ for all arrows α . Then we still have $F'\theta_z = 0$ for all $z \notin \tau^{(2m-1)\mathbb{Z}}(1, n-1)$. However,

$$F'\gamma_{n-1}F'\beta_{n-1}+F'\kappa F'\iota=F'(\gamma'_{n-1}\nu\beta_{n-1}).$$

To summarize, we find a $\tau^{(2m-1)\mathbb{Z}}$ -invariant k-linear functor $F: k\Gamma \to \operatorname{ind} \Lambda$ such that $Fx = \pi x$ for all x, $F\alpha$ is irreducible for all α , $F\theta_z = 0$ for all $z \notin \tau^{(2m-1)\mathbb{Z}}(1, n-1)$, and either $F\theta_{(1,n-1)} = 0$ or $F\theta_{(1,n-1)} = F(\gamma'_{n-1}v\beta_{n-1})$. This finishes the proof of our proposition.

3.4 Assume that char $k \neq 2$. Suppose F does not induce a well-behaved $\tau^{(2m-1)\mathbb{Z}}$ -invariant functor $k(\Gamma) \rightarrow \operatorname{ind} \Lambda$; i.e., $F\theta_{(1,n-1)} = F(\gamma'_{n-1}v\beta_{n-1})$. Notice that F vanishes on all vectors in the ideal I_s of modified meshrelations which are linear combinations of stable paths. Our next step is to construct a $\tau^{(2m-1)\mathbb{Z}}$ -invariant k-linear functor $F_1: k\Gamma \rightarrow \operatorname{ind} \Lambda$ such that $F_1x = \pi x$ for all $x, F_1\alpha - F\alpha \in \mathcal{R}^{4m-1}$ for all α , and

 $F_1\theta_z \in \mathscr{R}^{8m-2}(\pi\tau z,\pi z)$

for all stable vertices z. In the following sections, we will modify F_1 further in order to obtain a $\tau^{(2m-1)\mathbb{Z}}$ -invariant well-behaved functor.

We name the arrows in the meshes of Γ stopping at (i + 1, n - 2), for $i \in \mathbb{Z}$, or (i + 1, n - 1), for i = s(2m - 1) and $s \in \mathbb{Z}$, as follows:

Set $v_i = l_{i+2m-2}...l_i$ and $w_i = l_{i+2m-2}...l_{i+1}h_i$ for each $i \in \mathbb{Z}$. For $1 \le i \le 2m-1$, we define:

$$F_1 \delta_i = \begin{cases} F \delta_i - \frac{1}{2} F(\delta_{i+2m-1} v_i) + \frac{1}{2} F(\delta_{i+2m-1} w_i) & \text{if } i \text{ is odd,} \\ F \delta_i + \frac{1}{2} F(\delta_{i+2m-1} v_i) & \text{if } i \text{ is even,} \end{cases}$$

$$F_1 \delta'_i = F \delta'_i + (-1)^i \frac{1}{2} F(v_{i+1} \delta'_i),$$

$$F_{1}\varepsilon_{i} = \begin{cases} F\varepsilon_{i} & \text{if } i \text{ is odd,} \\ F\varepsilon_{i} + \frac{1}{2}(\varepsilon_{i+2m-1}w_{i}) & \text{if } i \text{ is even,} \end{cases}$$

$$F_{1}\varepsilon_{i}' = F\varepsilon_{i}',$$

$$F_{1}\zeta_{i} = F\zeta_{i} + (-1)^{i}\frac{1}{2}F(\zeta_{i+2m-1}v_{i}),$$

$$F_{1}\zeta_{i}' = F\zeta_{i}'.$$

We set

$$F_{1}\kappa_{1} = F\kappa_{1} + \frac{1}{2}F(\delta_{2m}l_{2m-1}...l_{2}\delta'_{1}\kappa_{1}),$$

$$F_{1}\iota_{2m-1} = F\iota_{2m-1}.$$

We extend F_1 to all arrows δ_i , δ'_i , ε_i , ε'_i , ζ'_i ; $\iota_{s(2m-1)}$, $\kappa_{s(2m-1)+1}$ by $\tau^{(2m-1)\mathbb{Z}}$ -periodicity. We have to check that

$$F_1\theta_{(i+1,q)} \in \mathcal{R}^{8m-2}(\pi(i,q),\pi(i+1,q))$$

for all (i, q) with $1 \le i \le 2m - 1$ and $q \ge n - 2$. Notice that we need not take products of "correction terms" in \mathcal{R}^{4m-1} into account.

The case (i, q) = (2m - 1, n - 1) and all combinations q = n - 2, n - 1, n and i even or odd for (i, q) have to be treated separately. Observe that, for $1 \le i \le 2m - 1$, (i, n - 1) is \mathscr{C} -congruent if and only if i is odd. This implies that, for $1 \le i \le 2m - 2$,

$$F(h_{i+1}\delta'_i) = 0$$
 and hence $F(w_{i+1}\delta'_i) = 0$ if *i* is even,
 $F(h_{i+1}\varepsilon'_i) = 0$ and hence $F(w_{i+1}\varepsilon'_i) = 0$ if *i* is odd.

If we combine these two equations with the facts that F is $\tau^{(2m-1)\mathbb{Z}}$ invariant, that $F\theta_z = 0$ if $z \notin \tau^{(2m-1)\mathbb{Z}}(1, n-1)$, and that $F\theta_{(1,n-1)} = F(\delta_{2m}v_1\delta'_0)$, a straightforward computation shows that $F_1\theta_{(i+1,q)} \in \mathscr{R}^{8m-2}$ for all high vertices (i, q) with $1 \le i \le 2m-1$.

Let *i* be even and $1 \le i \le 2m - 1$. Then

$$F_1 \theta_{(i+1,n-2)} = F_1(\delta'_i \delta_i + \varepsilon'_i \varepsilon_i - \zeta'_i \zeta_i)$$

$$\equiv \frac{1}{2} F(\delta'_{i+2m-1} \delta_{i+2m-1} v_i + v_{i+1} \delta'_i \delta_i)$$

$$+ \varepsilon'_{i+2m-1} \varepsilon_{i+2m-1} w_i - \zeta'_{i+2m-1} \zeta_{i+2m-1} v_i)$$

modulo \mathscr{R}^{8m-2} .

Since i is even, we have $\delta'_i \delta_i = h'_i$, $\delta'_{i+2m-1} \delta_{i+2m-1} = h'_{i+2m-1}$, and

[23]

 $\varepsilon'_{i+2m-1}\varepsilon_{i+2m-1} = h_{i+2m-1}$. We may replace

$$h'_{i+2m-1}$$
 by $-h_{i+2m-1} + l_{i+2m-1}$ in the first summand and
 h'_i by $-h_i + l_i$ in the second summand.

The third summand is \mathscr{C} -forbidden of type (v), since $\delta((i, n-2), (i+2m, n-2)) = 1$, so that we may replace it by

 $v_{i+1}h_i + h_{i+2m-1}v_i - v_{i+1}l_i$

(2.4). We obtain

$$F_1\theta_{(i+1,n-2)} \equiv \frac{1}{2}F(-h_{i+2m-1}v_i + l_{i+2m-1}v_i - v_{i+1}h_i + v_{i+1}l_i + v_{i+1}h_i + h_{i+2m-1}v_i - v_{i+1}l_i - l_{i+2m-1}v_i) \equiv 0 \text{ modulo } \mathscr{R}^{8m-2}.$$

If *i* is odd, we have

$$F_{1}\theta_{(i+1,n-2)} \equiv \frac{1}{2}F(-\delta_{i+2m-1}\delta_{i+2m-1}v_{i} + \delta_{i+2m-1}\delta_{i+2m-1}w_{i} - v_{i+1}\delta_{i}\delta_{i} + \zeta_{i+2m-1}\zeta_{i+2m-1}v_{i}) \equiv \frac{1}{2}F(-h_{i+2m-1}v_{i} + h_{i+2m-1}v_{i} + v_{i+1}h_{i} - l_{i+2m-1}v_{i} - v_{i+1}h_{i} + l_{i+2m-1}v_{i}) \equiv 0 \text{ modulo } \mathcal{R}^{8m-2},$$

because now $\delta'_i \delta_i = h_i$ and $\delta'_{i+2m-1} \delta_{i+2m-1} = h_{i+2m-1}$.

Let us define F_1 on the remaining arrows of Γ . For $\xi: (i, q) \to (i + 1, q - 1)$ with $1 \le i \le 2m - 1$ and $m + 1 \le q \le n - 3$, we set

$$F_1\xi = F\xi + (-1)^i F v_\xi,$$

where $v_{\xi}: (i, q) \to (i + 2m, q - 1)$ is the path composed from the only path $(i, q) \to (i, n - 2)$, the path $l_{i+q-m} \dots l_i: (i, n - 2) \to (i + q - m + 1, n - 2)$, and the only path $(i + q - m + 1, n - 2) \to (i + 2m, q - 1)$ (compare Fig. 9). We extend this definition to the $\tau^{(2m-1)\mathbb{Z}}$ -orbit of such a ξ by $\tau^{(2m-1)\mathbb{Z}}$ -periodicity, and we set $F_1 \alpha = F \alpha$ for all remaining arrows of Γ . Consider a mesh

with $m \le q \le n-3$. If $q \ge m+1$, $v_{\xi'}\eta'$ is \mathscr{C} -homotopic to $\tau^{-(2m-1)}\eta v_{\xi}$ (Fig. 9), because the second coordinates of all low points of \mathscr{C} are less than *m*. We claim that $v_{\xi'}\eta'$ is \mathscr{C} -marginal for q = m. Modulo $\tau^{(2m-1)\mathbb{Z}}$, we may assume $2 \le p+m \le 2m$ (see Fig. 6). If $p \le 0$, $v_{\xi'}\eta'$ is \mathscr{C} -homotopic to the \mathscr{C} -marginal path $(p,m) \to (1, p+m-1) \to (1, m-1) \to (m-1, 1)$ $\to (m-1, 2) \to (m, 1) \to (m, p+2m) \to (p+2m, m)$ (see Fig. 10). If $p \ge 1$, $v_{\xi'}\eta'$ is \mathscr{C} -homotopic to $(p, m) \to (m, p) \to (m, m) \to (2m-1, 1)$ $\to (2m-1, 2) \to (2m, 1) \to (2m, p+m) \to (p+2m, m)$.

We conclude that $F_1\theta_z \in \mathcal{R}^{8m-2}$ for all stable z.

3.5 We construct a k-linear functor $F_2: k\Gamma \to ind \Lambda$ such that

 $F_2\alpha - F_1\alpha \in \mathscr{R}^{8m-3}(\pi x, \pi y),$

for every arrow $\alpha: x \to y$ of Γ , and such that $F_2 \theta_z = 0$ for all stable z. Compare [4], 2.2 and [1], 3.1.

Let $\kappa: \Gamma_0 \to \mathbb{Z}$ be given by $\kappa(p,q) = 2p + \min(q, n-1)$ for stable vertices and $\kappa(i,j)^* = \kappa(i,j) + 1$ for $(i,j) \in \mathscr{C}$. We set $F_2 \alpha = F_1 \alpha$ for all arrows $\alpha: x \to y$ with $\kappa(x) = 0$ and for all $\alpha: (i,j) \to (i,j)^*$ with $\kappa(i,j) \ge 0$. Let z be stable with $\kappa(z) = s \ge 2$, and assume $F_2 \alpha$ is defined for all arrows stopping at some y with $1 \le \kappa(y) < s$, in such a way that $F\theta_y = 0$ if y is stable. Consider the mesh

of Γ , and observe that $\kappa(y_i) = \kappa(z) - 1$, so that $F_2(\sigma \alpha_i)$ is defined. We have

$$\sum s(\alpha_i(\sigma\alpha_i))F_1\alpha_iF_2(\sigma\alpha_i)$$

= $F_1\theta_z + \sum_i s(\alpha_i(\sigma\alpha_i))F_1\alpha_i(F_2(\sigma\alpha_i) - F_1(\sigma\alpha_i)) \in \mathscr{R}^{8m-2}(\pi\tau z, \pi z).$

We find $F_2\alpha_i$ such that $F_2\theta_z = 0$ by Lemma 3.7. In order to define $F_2\alpha$ for arrows $\alpha: x \to y$ with $\kappa(x) < 0$, we use the dual arguments.

3.6 The functor F_2 has all the desired properties, but it need not be $\tau^{(2m-1)\mathbb{Z}}$ -invariant. However, it satisfies

$$F_2(\tau^{2m-1}\alpha) - F_2\alpha \in \mathscr{R}^{8m-3}(\pi x, \pi y)$$

for every arrow $\alpha: x \to y$. Sending w to $F_2 \tilde{w}$ yields a well-behaved functor $F_2: k(\Gamma) \to \text{ind } \Lambda$. We will now define a k-linear $\tau^{(2m-1)\mathbb{Z}}$ -invariant functor $F_3: k\Gamma \to \text{ind } \Lambda$ having all the desired properties.

We set $F_3\alpha = F_2\alpha$ for all arrows $\alpha: x \to y$ in Γ for which the stable vertices in $\{x, y\}$ lie in $\{(p, q): 2 - 2m \le p \le 0\}$, and we set $F_3\gamma_q = F_3(\tau^{2m-1}\gamma_q) = F_2(\tau^{2m-1}\gamma_q)$, for q = 2, ..., n, $F_3\beta_2 = F_2\beta_2$, and $F_3\kappa = F_2\kappa$ (see Fig. 8). By induction on q, we define $F_3\beta_q$ in such a way that

$$F_3\beta_q - F_2\beta_q \in \mathscr{R}^{8m-3}(\pi(0,q),\pi(1,q-1)),$$

for q = 3, ..., n, and that $F_3\theta_{(1,q)} = 0$, for q = 2, ..., n-2. Assume $F_3\beta_3, ..., F_3\beta_{q-1}$ are already defined for some $q \le n-2$. Then

$$\mu = F_2 \beta_q F_3 \alpha_q - F_3 \gamma_{q-1} F_3 \beta_{q-1} \in \mathscr{R}^{8m-2}(\pi(0, q-1), \pi(1, q-1)),$$

and we can write

 $\mu=\sum\lambda_w F_2\tilde{w},$

where $\lambda_w \in k$ and the $w: (0, q-1) \to (1 + (2m-1)s, q-1)$ are \mathscr{C} -essential of length $\geq 8m-2$. Hence s = 2, and we may assume that all the $w: (0, q-1) \to (4m-1, q-1)$ begin with α_q , by Proposition 2.7(a). We obtain

$$\mu = \nu F_2 \tilde{\alpha}_q = \nu F_3 \alpha_q$$

for some $v \in \mathcal{R}^{8m-3}(\pi(0,q), \pi(1,q-1))$, and we set $F_3\beta_q = F_2\beta_q - v$. In the same way, we define $F_3\beta_{n-1}$ and $F_3\beta_n$. By construction,

$$F_3\theta_{(1,n-1)} \in \mathscr{R}^{8m-2}(\pi(0,n-1),\pi(1,n-1))$$

256

and

[27]

$$F_3\theta_{(1,n)} \in \mathscr{R}^{8m-2}(\pi(0,n),\pi(1,n)),$$

which are zero by Proposition 2.7(b). We extend F_3 by $\tau^{(2m-1)\mathbb{Z}}$ -periodicity.

This completes the proof of part (b) of the theorem.

3.7 Let A be a basic, connected, representation-finite k-algebra, let ind A be a category of specific representatives of the indecomposables, \mathcal{R} its radical, and Γ_A its quiver, the Auslander-Reiten quiver of A.

LEMMA: Let z be a non-projective vertex of Γ_A and $\alpha_i: y_i \to z$, for i = 1, ..., s, the arrows with head z. Given irreducible morphisms $f_i: \tau z \to y_i$ and $g_i: y_i \to z$ such that $\sum g_i f_i \in \mathscr{R}^{c+1}(\tau z, z)$, for some $c \ge 2$, there are morphisms $g'_i \in \operatorname{Hom}_A(y_i, z)$ with $g'_i - g_i \in \mathscr{R}^c(y_i, z)$ such that $\sum g'_i f_i = 0$.

PROOF: Let $\pi: \tilde{\Gamma}_A \to \Gamma_A$ be the universal cover of Γ_A ([1], 1.3), and choose $z' \in \pi^{-1}z$. Consider the mesh

of $\tilde{\Gamma}_A$, where $\pi y'_i = y_i$. Choose $\kappa : \tilde{\Gamma}_A \to \mathbb{Z}A_2$ such that $\kappa(\tau z') = 0$ ([1], 1.6). There exists a well-behaved functor $F : k(\tilde{\Gamma}_A) \to \text{ind } A$ with $F(\sigma \overline{\alpha_i}) = f_i$, where $\sigma \overline{\alpha_i}$ is the canonical image of $\sigma \alpha_i$ in $k(\tilde{\Gamma}_A)$. Since F is a covering functor, we can write

$$\sum_{i} g_{i} f_{i} = \sum_{w} \lambda_{w} F \bar{w},$$

where $\lambda_w \in k$ and w ranges over paths from $\tau z'$ to some $x' \in \pi^{-1}z$. We may assume that the length of any w is not less than c + 1. Every w has the form $v(\sigma \alpha_i)$, for some *i*, so that we obtain

$$\sum_{i} g_{i} f_{i} = \sum_{i} \mu_{i} F(\overline{\sigma \alpha_{i}}) = \sum_{i} \mu_{i} f_{i}$$

for some $\mu_i \in \mathscr{R}^c(y_i, z)$. Choose $g'_i = g_i - \mu_i$.

257

Christine Riedtmann

4. Proof of part (a) of the theorem

Let \mathscr{C} be a $\tau^{(2m-1)\mathbb{Z}}$ -stable configuration of $\mathbb{Z}D_{3m}$ containing (0, n-1), where n = 3m. Let $\Gamma = (\mathbb{Z}D_{3m})_{\mathscr{C}}$, and let $\pi: \Gamma \to \Delta = \Gamma/\tau^{(2m-1)\mathbb{Z}}$ be the canonical map.

4.1 In 3.3, we defined an ideal J in the path-category $k\Delta$, and we showed that, for any algebra Λ with Auslander-Reiten quiver Δ , the category ind Λ is isomorphic to either $k\Delta/J$ or the mesh-category $k(\Delta)$. The following proposition implies that there actually exists an algebra Λ with ind $\Lambda \simeq k\Delta/J$, or, in the terminology of [1], that $k\Delta/J$ is an Auslander-category. Indeed, $k(\Gamma)$ has this property by definition, and it is preserved under covering functors ([1], 3.5).

PROPOSITION: There exists a $\tau^{2(2m-1)\mathbb{Z}}$ -invariant covering functor $F:k(\Gamma) \rightarrow k\Delta/J$.

PROOF: Let $G: k\Gamma \to k\Delta/J$ be the composition of $\pi: k\Gamma \to k\Delta$ with the canonical functor $k\Delta \to k\Delta/J$. By definition, $G\theta_z = 0$ for all modified mesh-relations θ_z with $x \notin \tau^{(2m-1)\mathbb{Z}}(1, n-1)$. Therefore, G vanishes on all vectors in I_s which are linear combinations of stable paths.

In order to define F, we use the notations introduced in 3.4. We set

$$F\kappa_{1} = G\kappa_{1} + G(\delta_{2m}l_{2m-1}...l_{2}\delta'_{1}\kappa_{1}),$$

$$F\delta_{1} = G\delta_{1} - G(\delta_{2m}v_{1}) + G(\delta_{2m}w_{1}),$$

$$F\zeta'_{1} = G\zeta'_{1} - G(v_{2}\zeta'_{1}) + G(w_{2}\zeta'_{1}),$$

$$F\zeta_{i} = G\zeta_{i} - G(\zeta_{i+2m-1}w_{i}), \text{ for } i = 2, ..., 2m - 1,$$

$$F\zeta'_{i} = G\zeta'_{i} + G(w_{i+1}\zeta'_{i}) + G(w_{i+2m}v_{i+1}\zeta'_{i}), \text{ for } i = 2, ..., 2m - 2,$$

$$F\delta'_{2m-1} = G\delta'_{2m-1} - G(v_{2m}\delta'_{2m-1}).$$

We extend this definition by $\tau^{2(2m-1)\mathbb{Z}}$ -periodicity to all arrows in the $\tau^{2(2m-1)\mathbb{Z}}$ -orbits of the ones for which F is already defined, and we let F coincide with G on the remaining δ_i , δ'_i , ε_i , ε'_i , ζ'_i ; $\iota_{s(2m-1)}$, $\kappa_{s(2m-1)+1}$. In Fig. 11, the arrows on which F differs from G are drawn full, the other ones broken.

By definition $F\theta_{(i+1,q)} = G\theta_{(i+1,q)}$, which is zero, for all (i,q) with $i = 0, 1, \ldots, 2(2m-1)-1$ and $q \ge n-2$ except (0, n-1), (2m-1, n-1), and (i, n-2) with $i = 1, \ldots, 2m-1$. Straightforward computations yield

259

 $F\theta_{(i+1,q)} = 0$ in these cases, too, given that G vanishes on all stable paths whose length exceeds 2(2n-3) as well as on the following vectors:

The first one of these vectors is $v - \pi' v \in I_s$, where $v = h_{2m}w_1$ and where π' is the projection of 2.4. That the second one lies in I_s follows from the fact that $h_{i+1}l_i$ and $l_{i+1}h_i$ are \mathscr{C} -neighbors if *i* is not a multiple of 2m - 1. For the third one, we use the following lemma. As a consequence, $v_{i+2m}l_{i+2m-1}w_i$ and $v_{i+2m}l_{i+2m-1}v_i$ lie in I_s for all *i*, and hence

$$w_{i+2m}l_{i+2m-1}w_i - w_{i+2m}l_{i+2m-1}v_i$$

= $v - \pi'v + v_{i+2m}l_{i+2m-1}w_i - v_{i+2m}l_{i+2m-1}v_i$

does as well, for i = 1, ..., 2m - 2, where $v = w_{i+2m}l_{i+2m-1}w_i$. Remember also that

$$G(\kappa_1\iota_0 + \delta_1\delta_0') = G(\delta_{2m}v_1\delta_0'),$$

and that any C-admissible path from (0, n-1) to (4m-1, n-1) is C-marginal (2.7). Consider a mesh

For i = 2, ..., 2m - 2, we have

$$F(\zeta_{i+1}\zeta'_{i}) - G(\eta\eta') = G(-\zeta_{i+4m-1}w_{i+2m}w_{i+1}\zeta'_{i} + \zeta_{i+4m-1}w_{i+2m}v_{i+1}\zeta'_{i})$$

which is zero, since

$$w_{i+2m}w_{i+1} - w_{i+2m}v_{i+1} = w_{i+2m}w_{i+1} - \pi'(w_{i+2m}w_{i+1}) + v_{i+2m}w_{i+1} - v_{i+2m}v_{i+1}$$

lies in I_s by 2.4 and the following lemma. For i = 1, we obtain

$$F(\zeta_2\zeta_1') - G(\eta\eta') = -G(\zeta_{2m+1}v_2\zeta_1').$$

We set

$$F\xi = G\xi - Gu_{\xi},$$

for all arrows $\xi: (2, q) \to (3, q-1)$ with $2m-1 \le q \le n-3$, where u_{ξ} is the path composed from $(2, q) \to (2, n-2)$, $l_{q-m+2} \dots l_2: (2, n-2) \to (q-m+3, n-2)$, and the path $(q-m+3, n-2) \to (2m+2, q-1)$ (compare Fig. 9). We let $F\alpha = F\xi$ for all arrows α in the $\tau^{2(2m-1)\mathbb{Z}}$ orbit of such a ξ , and $F\alpha = G\alpha$ for all remaining arrows of Γ . It is easy to check that $F\theta_z = 0$ for all stable z. Notice that the path

$$(2, 2m-2) \rightarrow (2, n-2) \xrightarrow{l_2} (3, n-2) \dots$$
$$\dots \xrightarrow{l_{m+1}} (m+2, n-2) \rightarrow (2m+2, 2m-2)$$

is *C*-marginal (Fig. 6, compare 3.4).

Therefore, F induces a k-linear functor $F: k(\Gamma) \to k\Delta/J$. For any two vertices x and y of Γ , the two maps

$$\bigoplus_{\pi z = \pi y} k(\Gamma)(x, z) \to k\Delta/J(\pi x, \pi y)$$
$$\bigoplus_{\pi z = \pi x} k(\Gamma)(z, y) \to k\Delta/J(\pi x, \pi y)$$

given by F are surjective. Comparing dimensions (3.3), we see that they are bijective, and hence F is a covering functor.

LEMMA: For any $p \in \mathbb{Z}$, $l_{p+4m-4} \dots l_p: (p, n-2) \rightarrow (p+4m-3, n-2)$ is *C-marginal.*

PROOF: Modulo $\tau^{(2m-1)\mathbb{Z}}$, we may assume $2 \le p+n-2 \le 2m$ (see Fig. 6). If $p+n-2 \le m$, the subpath $l_{m-1} \ldots l_p$ is \mathscr{C} -homotopic to $(p, n-2) \to (1, p+n-3) \to (1, m-1) \to (m-1, 1) \to (m-1, 2) \to (m, 1) \to (m, n-2)$, which is \mathscr{C} -marginal. In case $m+1 \le p+n-2$, the subpath

 $l_{2m-1} \dots l_p$ is C-homotopic to the C-marginal path $(p, n-2) \rightarrow (m, p+n-2-m) \rightarrow (m, m) \rightarrow (2m-1, 1) \rightarrow (2m-1, 2) \rightarrow (2m, 1) \rightarrow (2m, n-2).$

4.2 Let Λ' be the full subcategory of $k\Delta/J$ whose objects are the projective vertices of Δ . We claim that $k\Delta/J$ is isomorphic to ind Λ' and that Δ is the Auslander-Reiten quiver of Λ' . Recall from [1], 2.4 that an object x of a locally finite-dimensional category M is top-torsionfree if there exists a non-zero morphism $\mu \in M(x, y)$ for some y such that $\mu v = 0$ for each non-invertible morphism v with range x. The toptorsionfree objects of $k(\Gamma)$ are precisely the projective vertices of Γ ([1], 2). Let $F: k(\Gamma) \to k\Delta/J$ be the covering functor constructed in 4.1. A vertex x of Γ is top-torsionfree in $k(\Gamma)$ or projective in Γ if and only if $Fx = \pi x$ is top-torsionfree in $k\Delta/J$ or projective in Δ , respectively. Thus the top-torsionfree objects of $k\Delta/J$ are precisely the projective vertices of Δ , and hence ind Λ' is isomorphic to $k\Delta/J$ ([1], 2.4). Therefore, the underlying quivers of Δ and the Auslander-Reiten quiver $\Gamma_{\Lambda'}$ of Λ' are isomorphic, and it suffices to show that the Auslander-Reiten translation $\tau_{\mathcal{A}}$ on $\Gamma_{\mathcal{A}'}$ coincides with the translation τ of \mathcal{A} . For each nonprojective vertex x of Γ , the simple representation k_x of $k(\Gamma)$ has a minimal projective resolution

$$0 \to k(\Gamma)(?, \tau x) \to \bigoplus k(\Gamma)(?, y_i) \to k(\Gamma)(?, x) \to k_x \to 0,$$

where y_i ranges over the tails of the arrows with head x ([1], 2.6). Since F is a covering functor, we obtain a minimal projective resolution

$$0 \to k\Delta/J(?, \pi\tau x) \to \bigoplus k\Delta/J(?, \pi y_i) \to k\Delta/J(?, \pi x) \to k_{\pi x} \to 0$$

for the simple representation $k_{\pi x}$ of $k\Delta/J$, which implies that $\tau = \tau_A$ for all vertices of Δ ([1], 2 and 3).

In chapter 3 we showed that, in case char $k \neq 2$, Λ' is isomorphic to the standard category Λ with Auslander-Reiten quiver Λ ; i.e., the full subcategory of $k(\Lambda)$ whose objects are the projective vertices of Λ . In order to complete the proof of the theorem, it is enough to show that, in case char k = 2, $k(\Lambda)$ and $k\Lambda/J$ or equivalently Λ and Λ' are not isomorphic. This is a consequence of the following proposition if we set s = 1.

4.3 Assume char k = 2.

PROPOSITION: There exists a covering functor

 $H: k(\Gamma/\tau^{s(2m-1)\mathbb{Z}}) \to k \Delta/J$

if and only if s is even.

This proposition expresses that a covering $\Gamma_A \to \Gamma_B$ between the Auslander-Reiten quivers of two representation-finite categories A and B need not be induced by a covering functor from ind A to ind B.

PROOF: By 4.1, there exists such a covering functor for s = 2 and hence for all even numbers s. Conversely, assume that there is such a covering functor, or, equivalently, that there exists a $\tau^{s(2m-1)\mathbb{Z}}$ -invariant covering functor $H': k(\Gamma) \to k\Delta/J$ for some s. Then H' maps projective vertices of Γ to projective vertices of Δ , and, if x is not projective, we have $H'(\tau x) = \tau H'(x)$. Thus the covering $\Gamma \to \Delta$ of translation-quivers induced by H' ([1], 3.3) coincides with π .

Let (n-1,q), with $q \le m-1$, be the unique point of \mathscr{C} with first coordinate n-1 (Fig. 5). Let \tilde{A} be the full subcategory of $k(\Gamma)$ whose objects are the projective vertices $(t(2m-1), n-1)^*$ and $(n-1+t(2m-1), q)^*$ of Γ , for $t \in \mathbb{Z}$, and let A' be the full subcategory of $k\Delta/J$ whose objects are the projective vertices $\pi(0, n-1)^*$ and $\pi(n-1, q)^*$ of Δ . Then H' induces a $\tau^{s(2m-1)\mathbb{Z}}$ -invariant covering functor $G': \tilde{A} \to A'$. Using the description of \tilde{A} and A' by quivers and relations (chapter 5), we obtain a covering functor $G: kQ/I \to kQ'/I'$, where Q and Q' are the following quivers:

The ideal I is generated by

 $\gamma_{2i+2}\gamma_{2i} + \beta_{2i+1}\beta_{2i}$ and $\beta_{2i+4}\beta_{2i+1}$,

for i = 0, ..., s - 1, where we set $\gamma_{2s} = \gamma_0$, $\beta_{2s} = \beta_0$, and $\beta_{2s+2} = \beta_2$. The ideal *I'* is generated by

$$c^{2} + b_{1}b_{0}, b_{0}b_{1} + b_{0}cb_{1}, \text{ and } c^{4}.$$

Observe that

$$c^{2}b_{1} \equiv b_{1}b_{0}b_{1} \equiv b_{1}b_{0}cb_{1} \equiv c^{3}b_{1} \equiv c^{4}b_{1} \equiv 0 \text{ modulo } I',$$

and similarly $b_0c^2 \in I'$. Thus the residue classes of c, c^2, c^3 ; b_0, b_0c and b_1, cb_1 modulo I' form k-bases for the vector spaces of non-invertible morphisms in kQ'/I'(0,0); kQ'/I'(0,1), and kQ'/I'(1,0), respectively. Therefore, we can write

$$G\gamma_{2i} = \lambda_{2i,1}c + \lambda_{2i,2}c^2 + \lambda_{2i,3}c^3,$$

$$G\beta_{2i} = \mu_{2i,1}b_0 + \mu_{2i,2}b_0c,$$

$$G\beta_{2i+1} = \mu_{2i+1,1}b_1 + \mu_{2i+1,2}cb_1$$

for some scalars $\lambda_{2i,1} \neq 0$, $\lambda_{2i,2}$, $\lambda_{2i,3}$, $\mu_{j,1} \neq 0$, and $\mu_{j,2}$. Since G maps I into I', we obtain the following relations:

$$\begin{split} \lambda_{2i+2,1}\lambda_{2i,1} &= \mu_{2i+1,1}\mu_{2i,1}, \\ \lambda_{2i+2,1}\lambda_{2i,2} + \lambda_{2i+2,2}\lambda_{2i,1} &= \mu_{2i+1,1}\mu_{2i,2} + \mu_{2i+1,2}\mu_{2i,1}, \\ \mu_{2i+4,1}\mu_{2i+1,1} + \mu_{2i+4,1}\mu_{2i+1,2} + \mu_{2i+4,2}\mu_{2i+1,1} &= 0, \end{split}$$

for i = 0, ..., s - 1. This implies that

$$0 = 2\sum_{i=0}^{s-1} \frac{\lambda_{2i,2}}{\lambda_{2i,1}} = \sum_{i=0}^{s-1} \left(\frac{\lambda_{2i,2}}{\lambda_{2i,1}} + \frac{\lambda_{2i+2,2}}{\lambda_{2i+2,1}} \right) = \sum_{i=0}^{s-1} \left(\frac{\mu_{2i,2}}{\mu_{2i,1}} + \frac{\mu_{2i+1,2}}{\mu_{2i+1,1}} \right)$$
$$= \sum_{i=0}^{s-1} \left(\frac{\mu_{2i+4,2}}{\mu_{2i+4,1}} + \frac{\mu_{2i+1,2}}{\mu_{2i+1,1}} \right) = \sum_{i=0}^{s-1} 1 = s \cdot 1_k.$$

Hence s is even.

5. Quivers and relations

5.1 Let \mathscr{C} be a ϕ -unstable configuration of $\mathbb{Z}D_n$ containing (0, n-1) for $n \geq 5$. Our goal in this chapter is to describe the full subcategory $\tilde{A} = \tilde{A}_{\mathscr{C}}$ of $k((\mathbb{Z}D_n)_{\mathscr{C}})$ whose objects are the projective vertices of $(\mathbb{Z}D_n)_{\mathscr{C}}$ by quiver and relations ([1], 2.1). We use the notations $n_1, n_2, n_3, \mathcal{D}_1^+, \mathcal{D}_2^+, \mathcal{D}_3^+, \chi_1, \chi_2, \chi_3$ introduced in 2. First we extend

$$\chi_k: (\mathbb{Z}A_{n_k+1})_0 \to (\mathbb{Z}D_n)_0$$

to a k-linear functor

$$\chi_k: k((\mathbb{Z}A_{n_k+1})_{\mathscr{D}_k^+}) \to k((\mathbb{Z}D_n)_{\mathscr{C}})$$

for k = 1, 2, 3. We carry the construction out for k = 1; χ_2 and χ_3 are defined in an analogous way.

First we extend χ_1 to a k-linear functor $\chi_1: k\mathbb{Z}A_{n_1+1} \to k\mathbb{Z}D_n$ between the path categories associated with $\mathbb{Z}A_{n_1+1}$ and $\mathbb{Z}D_n$. We send an arrow $\alpha:(p,q) \to (p,q+1)$ with $q \le n_1$ and $p+q \equiv 0$ modulo n_1+1 to the only path from $\chi_1(p,q)$ to $\chi_1(p,q+1)$ containing a \mathscr{C} -congruent crenel path, and we do the same for an arrow $\alpha:(p,q) \to (p+1,q-1)$ with $q \ge 2$ and $p+q \equiv -1$ modulo n_1+1 . Fig. 12 exemplifies this definition. For all other arrows $\alpha: x \to y$, there exists an arrow $\beta: \chi_1 x \to \chi_1 y$, and we set $\chi_1 \alpha = \beta$. On paths, χ_1 is defined by composition.

Fig. 12

Next we extend χ_1 to a k-linear functor

 $\chi_1: k\Gamma_1 \to k\Gamma$

where $\Gamma_1 = (\mathbb{Z}A_{n_1+1})_{\mathscr{D}_1^+}$ and $\Gamma = (\mathbb{Z}D_n)_{\mathscr{C}}$. If $(i,j) \in \mathscr{D}_1^+$ lies in $\omega_{n_1}\mathscr{D}_1$, χ_1 maps the mesh of $\mathbb{Z}A_{n_1+1}$ starting at (i,j) bijectively onto the mesh of $\mathbb{Z}D_n$ starting at $\chi_1(i,j) \in \mathscr{C}$, so that we can send $(i,j)^*$ to $(\chi_1(i,j))^*$ and the arrows with head and tail $(i,j)^*$ to the arrows with head and tail $\chi_1(i,j)^*$, respectively. Let

 $(p, 1) \xrightarrow{\iota} (p, 1)^* \xrightarrow{\kappa} (p+1, 1)$

belong to a mesh of Γ_1 starting at some point in $\tau^{(n_1+1)\mathbb{Z}}(n_1, 1)$ and set $\chi_1(p, 1) = (p', 1)$. Note that $\chi_1(p+1, 1) = (p'+2n-3-n_1, 1)$, and that p' is the first coordinate of a high point (p', j) of \mathscr{C} (Fig. 5). Let

$$(p',j) \xrightarrow{\iota'} (p',j)^* \xrightarrow{\kappa'} (p'+1,j)$$

be part of the mesh of Γ starting at (p', j). We set

$$\chi_1(p, 1)^* = (p', j)^*,$$

$$\chi_1 \iota = \iota' w_1,$$

$$\chi_1 \kappa = w_2 h_{p'+n-n_1-1} l_{p'+n-n_1-2} \dots l_{p'+2} \alpha \kappa'$$

where w_1 and w_2 are the only paths in Γ from (p', 1) to (p', j) and from $(p' + n - n_1, n - 2)$ to $(p' + 2n - 3 - n_1, 1)$, respectively, and $\alpha: (p' + 1, j) \rightarrow (p' + 2, n - 2)$ is an arrow (see Fig. 13).

We define the sign $s'(\alpha)$ of a stable arrow α of Γ_1 to be +1, unless α has the form $\alpha: (i, j) \to (i, j + 1)$, in which case $s'(\alpha) = (-1)^j$ (compare [5], 4.2). We set $s'(\kappa) = 1$ for all arrows κ with projective tail, and we require $s'(\tau^{n_1+1}i) = s'(i)$ if i is an arrow with projective head. For $i: (i, j) \to (i, j)^*$ with $0 \le i \le n_1$, we set

$$s'(i) = \begin{cases} (-1)^n & \text{if } i+j < n_1+1, \\ -1 & \text{if } i+j = n_1+1, \\ (-1)^{n+n_1+1} & \text{if } i+j > n_1+1. \end{cases}$$

Let $\tilde{w} = s'(w)\bar{w}$, where $s'(w) = s'(\alpha_r) \dots s'(\alpha_1)$ for $w = \alpha_r \dots \alpha_1$ and where \bar{w} is the canonical image of w in $k(\Gamma_1)$. The kernel of the functor $k\Gamma_1 \rightarrow k(\Gamma_1)$ obtained by sending w to \tilde{w} is the ideal J of $k\Gamma_1$ generated by the modified mesh-relations

$$\theta_z = \sum s'(\alpha(\sigma\alpha))\alpha(\sigma\alpha),$$

where z is a stable vertex and α ranges over all arrows with head z. By [5], 4.2, J is generated by the θ_z for $\tau z \in \mathcal{D}_1^+$, differences of \mathcal{D}_1^+ -neighbors

of length 2, and \mathscr{D}_1^+ -marginal paths of length 2. We defined the sign functions s' and s (2.3) in such a way that $\chi_1 \theta_z$ lies in I_s for all z with $\tau z \in \mathscr{D}_1^+$. In addition, χ_1 maps \mathscr{D}_1^+ -neighbors of length 2 to \mathscr{C} -admissible \mathscr{C} -homotopic paths and \mathscr{D}_1^+ -marginal paths of length 2 to \mathscr{C} -admissible \mathscr{C} -marginal paths in Γ (see Fig. 12). Hence we obtain an induced functor $\chi_1: k(\Gamma_1) \to (\Gamma)$.

REMARK: This functor χ_1 is actually fully faithful. However, we will not prove this, since we only need the weaker statement of Corollary 5.2.

5.2 LEMMA: Let
$$w:(x, y) \to (p, q)$$
 be \mathscr{C} -essential.
(a) If $n-1 \le x < x + y \le n + n_1$, then
 $n-1 \le p \le n + n_1 - 1$ or
 $2n-2 \le p + \min(q, n-1)$ and $p \le 2n-3 + n_1$ or
 $3n-3 \le p + \min(q, n-1) \le 3n-4 + n_1$.
(b) If $1 \le x < x + y \le n_1 + 1$, then
 $1 \le p \le n_1$ or
 $n \le p + \min(q, n-1) \le n + n_1 - 1$ or
 $n \le p \le n + n_1 - 2$ or
 $2n-1 \le p + \min(q, n-1) \le 2n-3 + n_1$.

See Fig. 14. Analogous results hold for \mathscr{C} -essential paths starting in the images of χ_2 and χ_3 : Replace \mathscr{C} by $\tau^{n_1+n_3+1}\phi^{n_1+n_3}\mathscr{C}$ and $\tau^{n-1+n_1}\phi^{n-1+n_1}\mathscr{C}$, respectively.

Fig. 14

PROOF: We only prove (b). The proof of (a) uses the same methods, and it is somewhat simpler.

If w is low, we have $1 \le p \le n_1$, since any path containing a vertex $(n_1 + 1, j)$ is \mathscr{C} -homotopic to a path containing $(n_1, 1) \rightarrow (n_1, 2) \rightarrow$ $(n_1 + 1, 1)$, and $(n_1, 1) \notin \mathscr{C}$. Next suppose $w = w_2 h_{p_1} w_1$, where both w_1 and w_2 are low. We see that $1 \le p_1 \le n'_1$, and $p \le n + n_1 - 1$ holds for any low \mathscr{C} -essential path $(p_1 + 1, n - 2) \rightarrow (p, q)$. We are done if $n \le p$ $+\min(q, n-1) \le n+n_1-1$. Hence we can assume $n+n_1 \le p$ $+\min(q, n-1)$ and $n_1 + 1 \le p$, since $\delta((p_1, n-1), (n_1 + 1, n-1)) = 0$. We claim that w_2 cannot be free. If it were, w_2 would be \mathscr{C} -homotopic to $w'_2 l_{n_1+1} \dots l_{p_1+1}$ and w to $w'_2 h_{n_1+1} l_{n_1} \dots l_{p_1} w_1$, which is \mathscr{C} -marginal. Since any path $(p_1 + 1, n - 2) \rightarrow (n - 1, q)$ is free, we obtain $n \le p \le n + n_1 - 1$, and we only have to exclude the possibility $p = n + n_1 - 1$. But any low path $(p_1 + 1, n - 2) \rightarrow (n + n_1 - 1, q)$ is C-homotopic to a path containing a \mathscr{C} -essential subpath $(n-1, p_1) \rightarrow (n+n_1-1, 1)$, which is free by Lemma 2.6. Finally, let $w = w_3 h_{p_2} w_2 h_{p_1} w_1$, where w_1 , w_2 , and w_3 are low. Examining the subpath $w_2h_{p_1}w_1$, we obtain $1 \le p_1 \le n_1$ and either $1 \le p_2 \le n_1$ or $n \le p_2 \le n + n_1 - 2$. The first possibility yields a \mathscr{C} -forbidden path $h_{p_2}w_2h_{p_1}$, so that $n \le p_2 \le n + n_1 - 2$. For any \mathscr{C} -essential low path $w_3: (p_2 + 1, n - 2) \to (p, q)$, we have $2n - 1 \le p + \min(q, n - 1)$ and $p \le 2n - 3 + n_1$, and it suffices to exclude the possibility p $+\min(q, n-1) = 2n - 2 + n_1$. As before, w_3 must not be free. Hence we may assume that $q \le n_1$. By [1], 2.8, there is a path $v:(p,q) \to (i,j)^*$ for some $(i,j) \in \mathscr{C}$ such that vw does not lie in I_s . Since 2n-3 < p, $(i,j) \neq j$ (2n-3, n-1), and thus $2i + \min(i, n-1) \ge 2(2n-2+n_1) + 1$; i.e., (i, j)lies "to the right" of the "vertical line" through $(2n - 2 + n_1, 1)$ Since the length of any \mathscr{C} -essential path does not exceed 2(2n-3), we obtain on the other hand that $2i + \min(j, n-1) \le 2x + y + 2(2n-3) \le 2n_1 + 1$ + 2(2n - 3), which is impossible. Clearly, $w_3h_{p_2}w_2h_{p_1}w_1$ cannot stop at a high vertex, and hence w has at most two crenels.

Set $\Gamma_k = (\mathbb{Z}A_{n_k+1})_{\mathscr{D}_k^+}$, for k = 1, 2, 3.

COROLLARY: For any two stable vertices z and z' of Γ_k , χ_k induces a surjection

 $k(\Gamma_k)(z, z') \rightarrow k(\Gamma)(\chi_k(z), \chi_k(z')).$

PROOF: We give a proof for k = 1. It is enough to show that any \mathscr{C} -essential path $w:(x, y) \to (p, q)$ is \mathscr{C} -homotopic to a path $\chi_1 v$ for some $v: z \to z'$, where $(x, y) = \chi_1(z)$ and $(p, q) = \chi_1(z')$. Translating z and z' by $\tau^{s(n_1+1)}$ and (x, y), (p, q), and w by $\tau^{s(2n-3)}$ for a suitable s, we may assume that either $n-1 \le x < x + y \le n + n_1$ or $1 \le x < x + y \le n_1 + 1$.

Clearly $w = \chi_1 v$ if (p, q) lies in the same "connected component" of the image of χ_1 as (x, y), that is, if (p, q) satisfies the same inequalities. Therefore it suffices to consider \mathscr{C} -essential paths $w: (x, y) \to (p, q)$ for which (x, y) and (p, q) are the only vertices in the image of χ_1 .

Assume $x + y = n + n_1$, $y \le n_1 + 1$ and p = 2n - 2, $q \le n_1$ (Fig. 14), and let $w = w_2 h_{p_1} w_1$. Then $n - 1 \le p_1 \le n + n_1 - 1$, and we may exclude $p_1 = n - 1$, since otherwise w_2 is \mathscr{C} -marginal. Replace w_1 by the path $w'_1:(x, y) \to (p_1, n + n_1 - p_1) \to (p_1, n - 2)$ and w_2 by $w'_2:(p_1 + 1, n - 2) \to (2n - 2, p_1 + 1 - n) \to (p, q)$. The path $w' = w'_2 h_{p_1} w'_1$ is \mathscr{C} -homotopic to w, and $w' = \chi_1 v$, where v is the path $(n_1 + 1 - y, y) \to (1 + p_1 - n, n + n_1 - p_1) \to (1 + p_1 - n, n + n_1 - p_1 + 1) \to (q, n_1 + 2 - q)$ in Γ_1 .

In case $x + y = n_1 + 1$, $y \le n_1$ and p = n - 1, $q \le n_1 + 1$, the argument is analogous. The last possibility is that $x + y = n + n_1$, $y \le n_1 + 1$ and p = 3n - 4, $q \le n_1 + 1$ and that $w = w_3 h_{p_2} w_2 h_{p_1} w_1$, where $n \le p_1 \le n + n_1 - 1$ and $2n - 2 \le p_2 \le 2n - 3 + n_1$. Then w_2 is C-homotopic to $(p_1 + 1, n - 2) \rightarrow (2n - 2, p_1 + 1 - n) \rightarrow (2n - 2, n_1) \rightarrow (p_2, 2n - 2 + n_1 - p_2) \rightarrow (p_2, n - 2)$, which reduces the problem to the cases already treated.

5.3 LEMMA: Let $w:(1, n-1) \rightarrow (p, q)$ be \mathscr{C} -essential. Then we have either

$$n \le p + \min(q, n-1)$$
 and $p \le n - 1 + n_1$ or
 $n + n_1 + n_3 + 1 \le p + \min(q, n-1)$ and $p \le 2n - 3$.

See Fig. 15. Again, analogous results hold for \mathscr{C} -essential paths starting in $\tau^{-1}(i, j)$, where (i, j) is any high point of \mathscr{C} .

PROOF: If w is low, we must have $n \le p + \min(q, n-1)$ and $p \le n-1 + n_1$. Assume $w = w_2 h_{p_1} w_1$, where w_1 and w_2 are low. We claim that w_1 is free. If not, it is \mathscr{C} -homotopic to a path $(1, n-1) \to (n-1, 1) \to (p_1, n+n_1-p_1) \to (p_1, n-2)$, which is free by Lemma 2.6, a contradiction.

Since w_1 is \mathscr{C} -admissible, we see that $n_1 + n_3 + 2 \le p_1$, and we may assume $w_1 = l_{p_1-1} \ldots l_2 \alpha$, where α is the arrow $(1, n-1) \rightarrow (2, n-2)$. Then $h_{p_1}w_1$ is \mathscr{C} -homotopic to $l_{p_1} \ldots l_{n_1+n_3+3}h_{n_1+n_3+2}l_{n_1+n_3+1} \ldots l_2 \alpha$, so that we may assume $p_1 = n_1 + n_3 + 2$. For any low \mathscr{C} -essential path $w_2:(n_1 + n_3 + 3, n-2) \rightarrow (p, q)$, we have $n + n_1 + n_3 + 1 \le p + \min(q, n - 1)$ and $p \le 2n - 3$. Finally, assume $w = w_3 h_{p_2} w_2 h_{p_1} w_1$ for some low paths w_1, w_2 , and w_3 , where $p_1 = n_1 + n_3 + 2$. As before, w_2 must be free, and since $p_2 \le 2n - 3$, w is \mathscr{C} -forbidden.

5.4 We recall from [5] the description of the full subcategory $\tilde{\Lambda}_k$ of $k(\Gamma_k)$ whose objects are the projective vertices of Γ_k , for k = 1, 2, 3. For each integer *i*, there is exactly one point $(i, \beta_k i - i)$ in \mathcal{D}_k^+ with first coordinate *i*, and the map $i \to \beta_k i$ is a permutation of \mathbb{Z} . Since \mathcal{D}_k^+ is $\tau^{(n_k+1)\mathbb{Z}}$ -stable, $\beta_k(i + n_k + 1) = \beta_k i + n_k + 1$ for all *i*. Let α_k be the permutation given by $i \to \alpha_k i = \beta_k^{-1} i + n_k + 2$. For each $i \in \mathbb{Z}$, choose $a_k i$ and $b_k i$ such that

$$\alpha_k^{a_k i}(i) = i + n_k + 1 = \beta_k^{b_k i}(i).$$

We let \tilde{Q}_k be the quiver with vertex set \mathbb{Z} containing an arrow $\alpha: i \to \alpha_k i$ and $\beta: i \to \beta_k i$ for each *i*. By \tilde{I}_k we denote the ideal of $k\tilde{Q}_k$ generated by all paths of the form

$$\alpha\beta$$
 and $\beta\alpha$

along with the vectors

$$\alpha^{a_k i} - \beta^{b_k i},$$

for each *i*, where $\alpha^{a_k i}$ and $\beta^{b_k i}$ are the paths from *i* to $i + n_k + 1$ composed from $a_k i \alpha$ -arrows and $b_k i \beta$ -arrows respectively.

Let $d_k(i)$ be the vertex $(\alpha_k i - n_k - 2, n_k + 2 - \alpha_k i + i)$ of \mathcal{D}_k^+ , which is the only point (p, q) of \mathcal{D}_k^+ with p + q = i. By $U_k(i, \alpha)$ we denote the " α path" in Γ_k from $\tau^{-1}d_k(i)$ to $d_k(i + n_k + 1)$ ([5], 5.6). For an arrow $\alpha: i \to \alpha_k i$, we let

$$\mathbf{u}_{k}(\alpha): d_{k}(i)^{*} \rightarrow d_{k}(\alpha_{k}i)^{*}$$

be the path composed from the arrow $d_k(i)^* \rightarrow \tau^{-1} d_k(i)$, the subpath

$$\tau^{-1}d_{k}(i) = (\alpha_{k}i - n_{k} - 1, n_{k} + 2 - \alpha_{k}i + i) \to (\alpha_{k}i - n_{k} - 1, n_{k} + 1)$$

$$\to (\alpha_{k}^{2}i - n_{k} - 2, n_{k} + 2 - \alpha_{k}^{2}i + \alpha_{k}i) = d_{k}(\alpha_{k}i)$$

[39]

of $U_k(i, \alpha)$, and the arrow $d_k(\alpha_k i) \rightarrow d_k(\alpha_k i)^*$. By $U_k(i, \beta)$ we denote the " β -path" from $\tau^{-1}d_k(i)$ to $d_k(i + n_k + 1)$, and we let $u_k(\beta): d_k(i)^* \rightarrow d_k(\beta_k i)^*$ be defined in an analogous way, using the subpath from $\tau^{-1}d_k(i)$ to $d_k(\beta_k i)$ of $U_k(i, \beta)$, for each arrow $\beta: i \rightarrow \beta_k i$.

There exist non-zero scalars $\lambda_k(i, \alpha)$ and $\lambda_k(i, \beta)$, such that sending the vertex *i* to $d_k(i)^*$ and the arrows $\alpha: i \to \alpha_k i$ and $\beta: i \to \beta_k i$ to $\lambda_k(i, \alpha)\tilde{u}_k(\alpha)$ and $\lambda_k(i, \beta)\tilde{u}_k(\beta)$, respectively, we obtain an isomorphism from $k\tilde{Q}_k/\tilde{I}_k$ to \tilde{A}_k . In fact, the non-zero scalars can be chosen to be ± 1 . The quiver of \tilde{A}_k is obtained from \tilde{Q}_k be deleting the arrows from *i* to $i + n_k + 1$, except in case $n_k = 0$, where only one of the two arrows $\alpha, \beta: i \to i + 1$ may be deleted.

Notice that $\alpha_k 0 = n_k + 1$, since \mathscr{D}_k^+ contains (-1, 1) by definition. For *i* in the $\beta_k^{\mathbb{Z}}$ -orbit of 0, but $i \neq 0$ modulo $n_k + 1$, we let $c_k i < b_k i$ be such that

 $\beta_k^{c_k i}(i) \equiv 0 \mod n_k + 1.$

5.5 Now we can describe the full subcategory $\tilde{\Lambda}$ of projective objects of $k(\Gamma)$ by quiver and relations. First we define a quiver $\tilde{Q} = \tilde{Q}(\tilde{Q}_1, \tilde{Q}_2, \tilde{Q}_3)$. We start from the disjoint union K of \tilde{Q}_1, \tilde{Q}_2 , and \tilde{Q}_3 , and we denote its vertices by pairs [k, i], for k = 1, 2, 3 and $i \in \mathbb{Z}$. We delete the arrows

$$\alpha : [k, s(n_k + 1)] \rightarrow [k, (s+1)(n_k + 1)]$$
$$\beta : [k, s(n_k + 1)] \rightarrow [k, s(n_k + 1) + \beta_k 0]$$

in K for all $s \in \mathbb{Z}$. We add the following arrows:

$$[1, s(n_{1} + 1)] \xrightarrow{\gamma} [2, s(n_{2} + 1)] \xrightarrow{\beta} [1, s(n_{1} + 1) + \beta_{1}0],$$

$$[2, s(n_{2} + 1)] \xrightarrow{\gamma} [3, s(n_{3} + 1)] \xrightarrow{\beta} [2, s(n_{2} + 1) + \beta_{2}0],$$

$$[3, s(n_{3} + 1)] \xrightarrow{\gamma} [1, (s + 1)(n_{1} + 1)] \xrightarrow{\beta} [3, s(n_{3} + 1) + \beta_{3}0],$$

for all $s \in \mathbb{Z}$. This is \tilde{Q} .

We let \tilde{I} be the ideal of $k\tilde{Q}$ generated by the paths

$$\begin{aligned} &\alpha\beta \text{ and } \beta\alpha\\ & [1,s(n_1+1)+\beta_1^{-1}0] \xrightarrow{\beta} [1,s(n_1+1)] \xrightarrow{\beta} [3,(s-1)(n_3+1)+\beta_30],\\ & [2,s(n_2+1)+\beta_2^{-1}0] \xrightarrow{\beta} [2,s(n_2+1)] \xrightarrow{\beta} [1,s(n_1+1)+\beta_10],\\ & [3,s(n_3+1)+\beta_3^{-1}0] \xrightarrow{\beta} [3,s(n_3+1)] \xrightarrow{\beta} [2,s(n_2+1)+\beta_20], \end{aligned}$$

along with the differences of paths $[k, i] \rightarrow [k, i + n_k + 1]$

$$\begin{cases} \alpha^{a_k i} - \beta^{b_k i} \text{ if } i \notin \beta_k^{\mathbb{Z}} 0, \\ \alpha^{a_k i} - \beta^{b_k i - c_k i} \gamma \beta^{c_k i} \text{ if } i \in \beta_k^{\mathbb{Z}} 0, \text{ but } i \neq 0 \text{ modulo } n_k + 1, \end{cases}$$

and finally the differences

$$\begin{cases} \gamma^2 - \beta^{b_30} : [1, s(n_1 + 1)] \to [3, s(n_3 + 1)], \\ \gamma^2 - \beta^{b_10} : [2, s(n_2 + 1)] \to [1, (s + 1)(n_1 + 1)], \\ \gamma^2 - \beta^{b_20} : [3, s(n_3 + 1)] \to [2, (s + 1)(n_2 + 1)], \end{cases}$$

for all $s \in \mathbb{Z}$.

Fig. 16 shows Γ and Γ_k , portions of the quivers of $\tilde{\Lambda}$ and $\tilde{\Lambda}_k$, and the quivers $Q = \tilde{Q}/\tau^{(2n-3)\mathbb{Z}}$ and $Q_k = \tilde{Q}_k/\tau^{(n_k+1)\mathbb{Z}}$, where k = 1, 2, 3, for a configuration \mathscr{C} of $\mathbb{Z}D_{10}$ with $n_1 = 0$, $n_2 = 3$, $n_3 = 4$. The α - and γ -arrows are drawn full, the β -arrows broken.

Fig. 16

PROPOSITION: The category $k\tilde{Q}/\tilde{I}$ is isomorphic to \tilde{A} .

[42]

PROOF: We identify the vertices of \tilde{Q} with the objects of $\tilde{\Lambda}$, sending [k, i] to $\psi[k, i] = \chi_k d_k(i)^*$. Note that

$$\psi[k, i + n_k + 1] = \tau^{-(2n-3)}\psi[k, i]$$

and that

$$\psi[1,0] = (\phi^{n+n_1-1}(2-n+n_1,n-1))^*,$$

$$\psi[2,0] = (0,n-1)^*,$$

$$\psi[3,0] = (\phi^{n_1+n_3}(n_1+n_3+1,n-1))^*,$$

(see 5.1). For each arrow $\delta:[k,i] \to [k',i']$ of \tilde{Q} , we define a path $v(\delta): \psi[k,i] \to \psi[k',i']$ in Γ . For an arrow $\alpha:[k,i] \to [k,\alpha_k i]$ or $\beta:[k,i] \to [k,\beta_k i]$ with $i \neq 0$ modulo $n_k + 1$, we set

 $v(\alpha) = \chi_k u_k(\alpha)$ and $v(\beta) = \chi_k u_k(\beta)$.

For an arrow $\gamma:[k, s(n_k + 1)] \rightarrow [j, t(n_j + 1)]$, the vertices $\psi[k, s(n_k + 1)] = (p_1, q_1)^*$ and $\psi[j, t(n_j + 1)] = (p_2, q_2)^*$ are consecutive high projective vertices of Γ , and we set

$$v(\gamma) = \begin{cases} l_2 \varepsilon_2 l_{p_2 - 1} \dots l_{p_1 + 2} \delta_1 \kappa_1 & \text{if } p_2 > p_1 + 1 \\ l_2 \kappa_1 & \text{if } p_2 = p_1 + 1 \end{cases}$$

with

$$(p_1, q_1)^* \xrightarrow{\kappa_1} (p_1 + 1, q_1) \xrightarrow{\delta_1} (p_1 + 2, n - 2)$$
 and
 $(p_2, n - 2) \xrightarrow{\epsilon_2} (p_2, q_2) \xrightarrow{\iota_2} (p_2, q_2)^*$ (Fig. 17).

For the arrow $\beta:[j, t(n_j + 1)] \rightarrow [k, s(n_k + 1) + \beta_k 0]$, the vertex $\psi[k, s(n_k + 1) + \beta_k 0] = (p_3, q_3)^*$ satisfies $p_3 = p_2 + n - 1$; it is high if and only if $n_k = 0$. We set

$$v(\beta) = \iota_3 w_2 w_1 \delta_2 \kappa_2$$

with

$$(p_2, q_2)^* \xrightarrow{\kappa_2} (p_2 + 1, q_2) \xrightarrow{\delta_2} (p_2 + 2, n - 2)$$
 and
 $(p_3, q_3) \xrightarrow{\iota_3} (p_3, q_3)^*,$

where w_1 and w_2 are the only paths $w_1: (p_2 + 2, n - 2) \rightarrow (p_2 + n - 1, 1) = (p_3, 1)$ and $w_2: (p_3, 1) \rightarrow (p_3, q_3)$ (Fig. 17).

We claim that

$$\tilde{v}(\beta)\tilde{v}(\gamma)=-\chi_k\tilde{u}_k(\beta),$$

where on the left-hand side $\gamma:[k, s(n_k + 1)] \rightarrow [j, t(n_j + 1)]$ and $\beta:[j, t(n_j + 1)] \rightarrow [k, s(n_k + 1) + \beta_k 0]$ are arrows of \tilde{Q} and on the right-hand side $\beta: s(n_k + 1) \rightarrow s(n_k + 1) + \beta_k 0$ is an arrow of \tilde{Q}_k . Indeed modulo vectors in I_s , we have

$$\delta_2 \kappa_2 \iota_2 \varepsilon_2 = -h_{p_2+1} h_{p_2} = -l_{p_2+1} h_{p_2} - h_{p_2+1} l_{p_2} + l_{p_2+1} l_{p_2},$$

and $w_1 l_{p_2+1}$ is \mathscr{C} -marginal (Fig. 17). In case $p_2 > p_1 + 1$, we see that

$$\tilde{v}(\beta)\tilde{v}(\gamma) = -\tilde{\iota}_3\tilde{w}_2\tilde{w}_1\tilde{h}_{p_2+1}\tilde{l}_{p_2}\dots\tilde{l}_{p_1+2}\tilde{\delta}_1\tilde{\kappa}_1 = -\chi_k\tilde{u}_k(\beta)$$

(5.1, Fig. 13). In case $p_2 = p_1 + 1$, we replace $\kappa_2 \iota_2$ by $-(\sigma \varepsilon_2)(\sigma^2 \varepsilon_2)$.

In 5.3, we saw that any C-essential path in Γ from (1, n-1) to (2n-3, n-1) is C-homotopic to

$$w = \delta_4 l_{2n-3} \dots l_{n_1+n_3+3} h_{n_1+n_3+2} l_{n_1+n_3+1} \dots l_2 \varepsilon_1$$

or equivalently to

$$w' = \delta_4 l_{2n-3} \dots l_{n+n_1} h_{n+n_1-1} l_{n+n_1-2} \dots l_2 \varepsilon_1$$

with $\varepsilon_1: (1, n-1) \to (2, n-2)$ and $\delta_4: (2n-3, n-2) \to (2n-3, n-1)$. On

[43]

the other hand, we know by [2], 1.2 that

$$k(\Gamma)((0, n-1)^*, (2n-3, n-1)^*) \neq 0,$$

and hence w and w' are \mathscr{C} -essential. It is easy to see that the subpath $v:(1, n-1) \rightarrow (2n-3, n-1)$ of $v(\gamma_3)v(\gamma_2)v(\gamma_1)$ satisfies $\pi'v = w$, where π' is the projection to the space of \mathscr{C} -admissible paths defined in 2.4, and where $\gamma_1, \gamma_2, \gamma_3$ are the arrows

$$[2,0] \xrightarrow{\gamma_1} [3,0] \xrightarrow{\gamma_2} [1,n_1+1] \xrightarrow{\gamma_3} [2,n_2+1].$$

The subpath $\delta_3 l_{n-2+n_1} \dots l_2 \varepsilon_1 : (1, n-1) \to \phi^{n+n_1-1}(n+n_1, n-1)$ of w is C-homotopic to the path $\delta_3 w_3 w_2 w_1 \varepsilon_1$ with $w_1 : (2, n-2) \to (n-1, 1)$, $w_2 : (n-1, 1) \to (n-1, n_1+1) \to (n+n_1-1, 1)$ and $w_3 : (n+n_1-1, 1)$ $\to (n+n_1-1, n-2)$. The path w_3 is the image under χ_1 of the α -path $U_1(0, \alpha) : (0, 1) \to (n_1, 1)$ in Γ_1 , and hence it is C-homotopic to $\chi_1 U_1(0, \beta)$. We see that

$$\tilde{v}(\gamma_2)\tilde{v}(\gamma_1) = \pm \tilde{v}(\beta_{b_10})\ldots\tilde{v}(\beta_1),$$

where $\beta_1: [2,0] \rightarrow [1,\beta_10], \beta_r: [1,\beta_1^{r-1}0] \rightarrow [1,\beta^r0]$, for $r = 2, ..., b_10$. In the same way, we obtain

$$\tilde{v}(\gamma_3)\tilde{v}(\gamma_2) = \pm \tilde{v}(\beta_{b_2 0})\dots\tilde{v}(\beta_1),$$

where $\beta_1:[3,0] \to [2,\beta_20]$, $\beta_r:[2,\beta_2^{r-1}0] \to [2,\beta_2^r0]$, for $r = 2,...,b_20$. On the other hand, any low \mathscr{C} -essential path from (1,n-1) to a low point of \mathscr{C} factors through $w_1\varepsilon_1$ (5.3), and by 5.2 it has the form $\chi_1(v')w_1\varepsilon_1$, where $v':(1,1) \to d_1(i) \in \mathscr{D}_1^+$ is \mathscr{D}_1^+ -essential. Then we know that $i = \beta_1^{b}0$ for some $b < b_10$ by [5], 5.7. To summarize, the paths $\delta_r...\delta_1$ in \tilde{Q} starting at [2,0] which give rise to non-zero morphisms $\tilde{v}(\delta_r)...\tilde{v}(\delta_1)$ in \tilde{A} are precisely the paths

$$\gamma^{r}$$
 for $r \leq 3$, β^{b} for $b \leq b_{1}0$, $\gamma\beta^{b_{1}0}$, and $\beta^{b}\gamma$ for $b \leq b_{2}0$.

Because by [2], 1.2,

$$k(\Gamma)(\psi[2,0],\psi[k,i]) \neq 0$$

if and only if

$$k(\Gamma)(\psi[k,i],\psi[2,n_2+1]) \neq 0,$$

we obtain that the paths $\delta_r \dots \delta_1$ of \tilde{Q} stopping at $[2, n_2 + 1]$ which give rise to non-zero morphisms $\tilde{v}(\delta_r) \dots \tilde{v}(\delta_1)$ are precisely the

$$\gamma^r$$
 for $r \leq 3$, β^b for $b \leq b_2 0$, $\beta^{b_2 0} \gamma$, and $\gamma \beta^b$ for $b \leq b_1 0$.

Of course, we obtain analogous descriptions for all paths $\delta_r \dots \delta_1$ starting or stopping at any vertex $[k, s(n_k + 1)]$ with $\tilde{v}(\delta_r) \dots \tilde{v}(\delta_1) \neq 0$.

Let [k, i] be a vertex of \tilde{Q} with $i \neq 0 \mod n_k + 1$. There exists a \mathscr{C} essential path $w: \tau^{-1}\chi_k d_k(i) \to \chi_k d_k(i+n_k+1)$ in Γ , and, by 5.2, w is \mathscr{C} homotopic to $\chi_k v$ for some $v: \tau^{-1} d_k(i) \to d_k(i+n_k+1)$. Any such v is \mathscr{D}_k^+ homotopic to both the α -path $U_k(i, \alpha)$ and the β -path $U_k(i, \beta)$ ([5], 5.7). Let $\alpha_{a_ki}...\alpha_2\alpha_1$ and $\beta_{b_ki}...\beta_2\beta_1$ be paths from i to $i+n_k+1$ in \tilde{Q}_k . Then

$$\begin{split} \tilde{u}(\alpha_{a_k i}) \dots \tilde{u}(\alpha_1) &= \pm \tilde{\iota} \tilde{U}_k(i, \alpha) \tilde{\kappa}, \\ \tilde{u}(\beta_{b_k i}) \dots \tilde{u}(\beta_1) &= \pm \tilde{\iota} \tilde{U}_k(i, \beta) \tilde{\kappa}, \end{split}$$

where $\kappa: d_k(i)^* \to \tau^{-1}d_k$ and $\iota: d_k(i+n_k+1) \to d_k(i+n_k+1)^*$. Therefore we see that the following paths $\delta_r \dots \delta_1$ of \tilde{Q} starting at [k, i] give rise to non-zero morphisms $\tilde{v}(\delta_r) \dots \tilde{v}(\delta_1)$ in \tilde{A} :

$$\begin{cases} \alpha^{a} \text{ for } a \leq a_{k}i, \\ \beta^{b} \text{ for } b \leq b_{k}i, \text{ if } i \notin \beta_{k}^{\mathbb{Z}}0, \\ \beta^{b} \text{ for } b \leq c_{k}i \text{ and } \beta^{b}\gamma\beta^{c_{k}i} \text{ for } b \leq b_{k}i - c_{k}i, \text{ if } i \in \beta_{k}^{\mathbb{Z}}0. \end{cases}$$

On the other hand, let $w: \tau^{-1}\chi_k d_k(i) \to \chi_{k'} d_{k'}(i')$ be a \mathscr{C} -essential path. We may assume that $i' \neq 0$ modulo $n_{k'} + 1$. Then k' = k by 5.2, and w is \mathscr{C} -homotopic to some $\chi_k v$. Thus $i' = \beta_k^b(i)$ for $b \leq b_k i$ or $i' = \alpha_k^a(i)$ for $a \leq a_k i$, and the paths $\delta_r \dots \delta_1$ listed above are the only ones with $\tilde{v}(\delta_r) \dots \tilde{v}(\delta_1) \neq 0$.

By definition, $\tilde{I} \subset k\tilde{Q}$ is the ideal generated by the differences of paths yielding non-zero morphisms in \tilde{A} along with the paths yielding zero. We conclude that $k\tilde{Q}/\tilde{I}$ is isomorphic to \tilde{A} ([2], 5). In fact, for each arrow δ of \tilde{Q} we can choose $\lambda_{\delta} = \pm 1$ such that the functor $\psi : k\tilde{Q} \to \tilde{A}$ induced by sending δ to $\psi \delta = \lambda_{\delta} \tilde{v}(\delta)$ induces the above isomorphism.

REMARK: The quiver $Q_k = \tilde{Q}_k / \tau^{(n_k+1)\mathbb{Z}}$ is an oriented Brauer-quiver with $n_k + 1$ vertices containing an α -loop in $\tau^{(n_k+1)\mathbb{Z}}$ 0, for k = 1, 2, 3 ([3], [5], 6.2). Denote the Brauer-quiver obtained by changing the orientation of Q_k by P_k . Then $\tilde{\Lambda}/\tau^{(2n-3)\mathbb{Z}}$ is isomorphic to the category defined by the quiver and the relations describing the three-cornered algebra $D(P_3P_2P_1)$ ([2], 7.2).

5.6 Let \mathscr{C} be a configuration of $\mathbb{Z}D_n$ for which all numbers n_1 , n_2 , and n_3 are positive, and let \tilde{A} be the full subcategory of $k(\Gamma)$ whose objects are the high projective vertices of Γ together with the $(i, j)^*$ for which i is congruent to n - 1, $n + n_1 + n_3$, or $2n - 2 + n_1$ modulo 2n - 3 (compare 4.3). The category \tilde{A} is isomorphic to the full subcategory of $k\tilde{Q}/\tilde{I}$ whose objects are the $[k, s(n_k + 1)]$ and $[k, s(n_k + 1) + \beta_k 0]$, for k = 1, 2, 3 and $s \in \mathbb{Z}$. Write $i \in \mathbb{Z}$ as $i = 6s_i + t_i$ with $0 \le t_i < 6$, and identify \mathbb{Z} with the objects of \tilde{A} by sending i to

$$[1, s_i(n_1 + 1)], [2, s_i(n_2 + 1)], [3, s_i(n_3 + 1)]$$

for $t_i = 0, 2, 4$, respectively,
$$[3, (s_i - 1)(n_3 + 1) + \beta_3 0], [1, s_i(n_1 + 1) + \beta_1 0],$$

$$[2, s_i(n_2 + 1) + \beta_2 0]$$
 for $t_i = 1, 3, 5$, respectively.

We obtain that \tilde{A} is isomorphic to $k\tilde{K}/\tilde{J}$, where \tilde{K} is the quiver with vertex set \mathbb{Z} which contains the arrows

$$\gamma_{2i}: 2i \to 2i+2, \ \beta_{2i}: 2i \to 2i+1, \ \text{and} \ \beta_{2i+1}: 2i+1 \to 2i+4,$$

for each $i \in \mathbb{Z}$, and where \tilde{J} is the ideal of $k\tilde{K}$ generated by

$$\gamma_{2i+2}\gamma_{2i} - \beta_{2i+1}\beta_{2i}$$
 and $\beta_{2i+4}\beta_{2i+1}$

for all *i*.

5.7 Let \mathscr{C} be a $\tau^{(2m-1)\mathbb{Z}}$ -stable configuration of $\mathbb{Z}D_{3m}$ containing (0, n-1), where n = 3m, and let $\pi: \Gamma \to \Delta = \Gamma/\tau^{(2m-1)\mathbb{Z}}$ be the universal covering. Our aim is to describe the standard category Λ , and if char k = 2, the non-standard category Λ' with Auslander-Reiten quiver Δ by quivers and relations.

The three numbers n_1 , n_2 , and n_3 associated with \mathscr{C} are all equal to m-1, and the three configurations \mathscr{D}_1^+ , \mathscr{D}_2^+ , and \mathscr{D}_3^+ of $\mathbb{Z}A_m$ coincide (2.5). By α and β we denote the permutations $\alpha = \alpha_1$ and $\beta = \beta_1$ of \mathbb{Z} , and we set $ai = a_1i$, $bi = b_1i$, and $ci = c_1i$, for each $i \in \mathbb{Z}$ (5.4). The automorphism τ^m of Γ_1 induces an automorphism τ^m of \tilde{Q}_1 , which is given by $\tau^m i = i - m$. We let Q_1 be the residue quiver $\tilde{Q}_1/\tau^{m\mathbb{Z}}$. We identify the vertex $\tau^{m\mathbb{Z}}i$ of Q_1 with the residue class \bar{i} of i modulo m, and we set $\tau^{m\mathbb{Z}}\alpha = \bar{\alpha}$ and $\tau^{m\mathbb{Z}}\beta = \bar{\beta}$ for the arrows. The quiver Q_1 is an oriented Brauer-quiver with m vertices ([3], 1.4, [5], 3.4). Since $\overline{\alpha 0} = \bar{0}$, Q_1 contains an $\bar{\alpha}$ -loop in $\bar{0}$.

The automorphism τ^{2m-1} of Γ induces an automorphism τ^{2m-1} of \tilde{Q} ,

which takes

$$[3, i]$$
 to $[2, i]$, $[2, i]$ to $[1, i]$, and $[1, i]$ to $[3, i - m]$.

The residue quiver $Q = \tilde{Q}/\tau^{(2m-1)\mathbb{Z}}$ is obtained from Q_1 by replacing the loop $\bar{\alpha}: \bar{0} \to \bar{0}$ by the loop $\bar{\gamma}: \bar{0} \to \bar{0}$ (5.5). We let $\pi: \tilde{Q} \to Q$ be the natural map. Fig. 18 shows Q for a configuration \mathscr{C} of $\mathbb{Z}D_{24}$.

Let I and I' be the ideals of kQ generated by

$$\overline{\beta}^2:\overline{\beta^{-1}0}\to\overline{\beta}\overline{0} \text{ and } \overline{\beta}^2+\overline{\beta}\overline{\gamma}\overline{\beta}:\overline{\beta^{-1}0}\to\overline{\beta}\overline{0}, \,\overline{\gamma}^4:\overline{0}\to\overline{0},$$

respectively, along with

all paths
$$\overline{\alpha}\overline{\beta}$$
 and $\overline{\beta}\overline{\alpha}$,
 $\overline{\alpha}^{ai} - \overline{\beta}^{bi} : \overline{i} \to \overline{i}$ if $i \notin \beta^{\mathbb{Z}} 0$,
 $\overline{\alpha}^{ai} - \overline{\beta}^{bi-ci} \overline{\gamma} \overline{\beta}^{ci} : \overline{i} \to \overline{i}$ if $\overline{i} \neq \overline{0}$, $i \in \beta^{\mathbb{Z}} 0$,
 $\overline{\gamma}^{2} - \overline{\beta}^{b0} : \overline{0} \to \overline{0}$.

PROPOSITION: (a) The category Λ is isomorphic to kQ/I. (b) The category Λ' is isomorphic to kQ/I'. **REMARKS:** (i) The standard and non-standard algebras

 $\oplus \Lambda(x, y)$ and $\oplus \Lambda'(x, y)$

with Auslander-Reiten quiver Δ are given by the quiver Q and the relations I and I', respectively; the summations range over all objects x and y of Λ and Λ' .

(ii) As a consequence of (b), we obtain the description of the full subcategory of $k\Delta/J$ whose objects are $\pi(0, n-1)^*$ and $\pi(n-1, \beta 0)^*$, or equivalently the full subcategory of Λ' whose objects are $\overline{0}$ and $\overline{\beta 0}$, by quiver and relations used in 4.3.

PROOF: (a) By [2], 5.3, Λ is isomorphic the residue category of kQ modulo the image of \tilde{I} under $\pi: k\tilde{Q} \to kQ$, which is I (5.5).

(b) Let char k = 2. Then the functor $\psi : k\tilde{Q} \to \tilde{\Lambda}$ defined in 5.5 is given by $\psi(\delta) = \tilde{v}(\delta)$ for all arrows δ ; in other words, all scalars λ_{δ} equal + 1. We will define a functor $\psi' : kQ/I' \to \Lambda'$ and a covering functor $F' : k\tilde{Q}/\tilde{I} \to kQ/I'$ so that the following diagram commutes

$$k\tilde{Q}/\tilde{I} \xrightarrow{\Psi} \tilde{A}$$

$$F' \downarrow \qquad \downarrow F$$

$$kQ/I' \xrightarrow{\Psi'} A'$$

where $F: \tilde{\Lambda} \to \Lambda'$ is induced by the covering functor $F: k(\Gamma) \to k\Delta/J$ defined in 4.1. Remember that Λ' is the full subcategory of $k\Delta/J$ whose objects are the projective vertices of Δ . Then ψ' is a covering functor, and hence an isomorphism, because it is bijective on the objects.

First we define F'. We set $F'[k, i] = \overline{i}$ and

 $F'\alpha = \overline{\alpha} \text{ for all arrows } \alpha,$ $F'\beta = \overline{\beta} + \overline{\beta}\overline{\gamma} \text{ if } \beta \text{ lies in the } \tau^{2(2m-1)\mathbb{Z}}\text{-orbit of}$ $[2,0] \xrightarrow{\beta} [1,\beta0],$ $F'\beta = \overline{\beta} + \overline{\gamma}\overline{\beta} \text{ if } \beta \text{ lies in the } \tau^{2(2m-1)\mathbb{Z}}\text{-orbit of}$ $[3,\beta^{-1}0] \xrightarrow{\beta} [3,0],$ $F'\beta = \overline{\beta} \text{ for all other arrows } \beta,$ $F'\gamma = \overline{\gamma} + \overline{\gamma}^2 \text{ if } \gamma \text{ lies in the } \tau^{2(2m-1)\mathbb{Z}}\text{-orbit of}$ $[2,0] \xrightarrow{\gamma} [3,0],$ $F'(\gamma) = \overline{\gamma} \text{ for all other arrows } \gamma.$

It is easy to check that F' maps \tilde{I} into I'.

Next we show that F' is a covering functor; i.e., that for any two vertices x and y of \tilde{Q} , F' induces bijections

$$\bigoplus_{\pi z = \pi y} k \widetilde{Q} / \widetilde{I}(x, z) \to k Q / I'(\pi x, \pi y) \leftarrow \bigoplus_{\pi z = \pi x} k \widetilde{Q} / \widetilde{I}(z, y).$$

We will prove that the first map is an isomorphism. Notice that

$$\overline{\gamma^2}\overline{\beta}:\overline{\beta^{-1}0}\to\overline{0} \text{ and } \overline{\beta}\overline{\gamma^2}:\overline{0}\to\overline{\beta}\overline{0}$$

lie in I'; indeed,

г ¬

$$\overline{\gamma^2}\overline{\beta} \equiv \overline{\beta}^{b0-1}\overline{\beta}\overline{\gamma}\overline{\beta} \equiv \overline{\gamma^3}\overline{\beta} \equiv \overline{\gamma^4}\overline{\beta} \equiv 0 \text{ modulo } I'.$$

If $\overline{i} \neq \overline{j}$ and $i \notin \beta^{\mathbb{Z}} 0$, $j \notin \beta^{\mathbb{Z}} 0$, there is at most one path from \overline{i} to \overline{j} which does not lie in I'; if there is one, or equivalently if $j \in \alpha^{\mathbb{Z}} i$ or $j \in \beta^{\mathbb{Z}} i$, we choose its residue class modulo I' as a basis for $kQ/I'(\overline{i}, \overline{j})$. If $\overline{i} \neq 0$, we choose the trivial path at \overline{i} and $\overline{\alpha}^{ai}$ as a basis for $kQ/I'(\overline{i}, \overline{i})$. In the remaining cases, we choose the residue classes of the following paths as a basis of $kQ/I'(\overline{i}, \overline{j})$:

$$\begin{split} &1_{\bar{0}}, \, \bar{\gamma}, \, \bar{\gamma}^2, \, \bar{\gamma}^3 \text{ for } \bar{i} = \bar{j} = \bar{0}, \\ &\overline{\beta}^{ci}, \, \bar{\gamma} \overline{\beta}^{ci} \text{ for } \bar{j} = \bar{0}, \, \bar{i} \neq \bar{0}, \\ &\overline{\beta}^{bj-cj}, \, \overline{\beta}^{bj-cj} \overline{\gamma} \text{ for } \bar{i} = \bar{0}, \, \bar{j} \neq \bar{0}, \\ &\overline{\beta}^b \text{ for } \bar{j} = \overline{\beta}^{b\bar{i}} \text{ with } 0 < b < ci, \, \bar{i} \neq \bar{0}, \\ &\overline{\beta}^{b} \overline{\gamma} \overline{\beta}^{ci} \text{ for } \bar{j} = \overline{\beta}^{b\bar{i}} \text{ with } ci < b < bi, \, \bar{i} \neq \bar{0}. \end{split}$$

If $k\tilde{Q}/\tilde{I}([k, i], [k', j]) \neq 0$, we choose the only path from [k, i] to [k', j] in \tilde{Q} which does not lie in \tilde{I} as a basis. With respect to these bases, the map

$$F': \bigoplus_{s \in \mathbb{Z}} k \tilde{Q} / \tilde{I}([k, i], \tau^{s(2m-1)}[k, j]) \to k Q / I'(\bar{i}, \bar{j})$$

of (*) is given by the identity matrix if $i \neq 0$ and $j \neq 0$ modulo *m* or if [k, i] lies in the $\tau^{2(2m-1)\mathbb{Z}}$ -orbit of [3,0] and $j \neq 0$ modulo *m* or if [k, j] lies in the $\tau^{2(2m-1)\mathbb{Z}}$ -orbit of [1, m] and $i \neq 0$ modulo *m*. It is given by

$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \quad \text{if } [k, i] \in \tau^{2(2m-1)\mathbb{Z}}[2, 0] \text{ and } j \neq 0 \text{ modulo } m \text{ or} \\ \text{if } [k, j] \in \tau^{2(2m-1)\mathbb{Z}}[3, 0] \text{ and } i \neq 0 \text{ modulo } m, \end{bmatrix}$$

[49]

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
 if $[k, i] \in \tau^{2(2m-1)\mathbb{Z}}[2, 0]$ and $j \equiv 0$ modulo m,
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
 if $[k, i] \in \tau^{2(2m-1)\mathbb{Z}}[3, 0]$ and $i \equiv 0$ modulo m.

Since all these matrices, as well as the ones obtained from the second map in (*), are non-singular, F' is a covering functor.

Define $\psi': kQ \to \Lambda' \subset k\Delta/J$ to be the functor induced by $\psi'\bar{i} = \pi\psi[1, i]$ and $\psi'\delta = Gv(\delta)$ for all arrows δ of Q, where δ is an arrow of \tilde{Q} with $\pi\delta = \delta$ and where $G: k\Gamma \to k\Delta/J$ is composed from $\pi: k\Gamma \to k\Delta$ and the natural functor $k\Delta \to k\Delta/J$ (4.1). Remember that $G\theta_z = 0$ for all (modified) mesh-relations θ_z with $z \notin \tau^{(2m-1)\mathbb{Z}} \mathbb{1} \phi n - 1$). Therefore $G(\sum \lambda_i v_i) = 0$ if $\sum \lambda_i v_i \in I_s$ and if none of the paths v_i contains a subpath

$$(s(2m-1), n-1) \xrightarrow{\iota_s} (s(2m-1), n-1)^* \xrightarrow{\kappa_s} (s(2m-1)+1, n-1).$$

Hence ψ' vanishes on all generators of I' for which no summand factors through $\overline{0}$. If $\delta_t \dots \delta_1$ is a path in Q which does factor through $\overline{0}$, we choose $\delta_t \dots \delta_1$ in \widetilde{Q} with $\pi(\delta_t \dots \delta_1) = \overline{\delta}_t \dots \overline{\delta}_1$ and we write

$$v(\delta_t)\ldots v(\delta_1) = w_r \kappa_{s_r} \iota_{s_r} w_{r-1}\ldots w_1 \kappa_{s_1} \iota_{s_1} w_0,$$

where no w_i factors through a $(s(2m-1), n-1)^*$. Then

$$\psi'(\delta_t \dots \delta_1) = Gw_r G(\varepsilon_{s_r} \varepsilon'_{s_r} + \varepsilon_{s_r+1} v_{s_r} \varepsilon'_{s_r}) Gw_{r-1} \dots$$

$$\dots Gw_1 G(\varepsilon_{s_1} \varepsilon'_{s_1} + \varepsilon_{s_1+1} v_{s_1} \varepsilon'_{s_1}) Gw_0$$

$$= G(w_r \varepsilon_{s_r} \varepsilon'_{s_r} w_{r-1} \dots w_1 \varepsilon_{s_1} \varepsilon'_{s_1} w_0) + \sum Gu_j,$$

where $(s(2m-1), n-1) \xrightarrow{\varepsilon'_s} (s(2m-1), n-1)^* \xrightarrow{\varepsilon_s} (s(2m-1)+1, n-1)$ and $v_s = l_{(s+1)(2m-1)-1} \dots l_{s(2m-1)+1}$. Notice that each u_j is strictly longer than $v(\delta_t) \dots v(\delta_1)$. In particular, ψ' vanishes on $\overline{\alpha}^{ai} + \overline{\beta}^{bi-ci} \overline{\gamma} \overline{\beta}^{ci}$ for $i \in \beta^{\mathbb{Z}} 0$, $\overline{i} \neq 0$, and on $\overline{\gamma}^4$, $\overline{\beta} \overline{\gamma}^2$, and $\overline{\gamma}^2 \overline{\beta}$, since in these cases all u_j lie in I_s

$$\psi'\bar{\gamma}^2 = G(\iota_2(\sigma\varepsilon'_2)l_{4m-3}\dots l_{2m+1}h_{2m}h_{2m-1}l_{2m-2}\dots$$
$$\dots l_2(\bar{\sigma}^1\varepsilon_0)\kappa_0) + Gu = \psi'\bar{\beta}^{b0},$$

(5.2, 5.3). We see that

since G vanishes on

$$u = \iota_3(\sigma \varepsilon'_3) l_{2n-4} \dots l_{4m} h_{4m-1} l_{4m-2} \dots l_{2m} h_{2m-1} l_{2m-2} \dots l_2(\sigma^{-1} \varepsilon_0) \kappa_0$$

(5.3). Similarly, we obtain

$$\psi'\bar{\beta}^2 = \psi'\bar{\beta}\bar{\gamma}\bar{\beta},$$

for $\overline{\beta}^2: \overline{\beta^{-1}0} \to \overline{\beta}0$. Hence ψ' induces a functor $\psi': kQ/I' \to \Lambda'$.

As for the commutativity, it suffices to show that $F\psi(\delta) = \psi'F'(\delta)$ for all arrows δ of \tilde{Q} . By definition of F (4.1), we have $Fv = Gv + \sum Gu_j$ for any path $v: x \to y$ in Γ , where $u_j: x \to \tau^{-s_j(2m-1)}y$ for $s_j > 0$. This implies that

$$F\psi(\delta) = Fv(\delta) = Gv(\delta) = \psi'F'(\delta),$$

whenever $F'\delta = \overline{\delta}$. For arrows $\delta: [k, i] \to [k, j]$ with $i \neq 0 \neq j$ modulo *m*, this follows from the fact that any path in Γ from $\psi[k, i]$ to $\tau^{-s(2m-1)}\psi[k, j]$ lies in I_s for s > 0. For the other arrows with $F'\delta = \overline{\delta}$, it is a direct consequence of the definition of *F*. It suffices to prove that

$$Fv(\beta) = Gv(\beta) + Gv(\beta)v(\gamma) \text{ for } \beta : [2,0] \to [1,\beta0],$$

$$Fv(\beta) = Gv(\beta) + Gv(\gamma)v(\beta) \text{ for } \beta : [3,\beta^{-1}0] \to [3,0],$$

$$Fv(\gamma) = Gv(\gamma) + Gv(\gamma)v(\gamma) \text{ for } \gamma : [2,0] \to [3,0].$$

Using the notations of 4.1, we obtain in the first case $v(\beta) = w\zeta_2 \delta'_1 \kappa_1$ and

$$Fv(\beta) = Gv(\beta) + G(w\zeta_2\kappa_1)G(\delta_{2m}l_{2m-1}\dots l_2\delta'_1\kappa_1) + GwG(\zeta_{2m+1}w_2)G(\delta'_1\kappa_1).$$

The third summand vanishes, since $(\tau^{-(2m-1)}w)\zeta_{2m-1}w_2\delta'_1\kappa_1$ lies in I_s , and the second summand equals $Gv(\beta)v(\gamma)$. Notice that any path from $(0, n-1)^*$ to $\tau^{-s(2m-1)}\psi[1, \beta 0]$ with $s \ge 2$ lies in I_s as well. The argument in the second case is analogous. In the third case, we have

$$v(\gamma) = \iota_{2m-1}\delta_{2m-1}\zeta'_{2m-2}\zeta_{2m-2}\ldots\zeta'_{2}\zeta_{2}\delta'_{1}\kappa_{1},$$

and a computation yields

$$Fv(\gamma) = Gv(\gamma) + (1 + 2(2m - 3))Gu_1 + 2(2m - 3)(2m - 2)Gu_2,$$

282

$$u_{1} = \iota_{4m-2}\delta_{4m-2}l_{4m-3}\dots l_{2}\delta'_{1}\kappa_{1},$$

$$u_{2} = \iota_{2n-3}\delta_{2n-3}l_{2n-4}\dots l_{2m+1}h_{2m}l_{2m-1}\dots l_{2}\delta'_{1}\kappa_{1}.$$

This ends the proof, since char k = 2 and $Gv(\gamma)v(\gamma) = Gu_1$.

REFERENCES

- [1] K. BONGARTZ and P. GABRIEL: Covering spaces in representation-theory. Invent. Math. 65 (1982) 331-378.
- [2] O. BRETSCHER, CH. LÄSER and CH. RIEDTMANN: Selfinjective and simply connected algebras. Manuscripta Math. 36 (1981) 253–307.
- [3] P. GABRIEL and CH. RIEDTMANN: Group representations without groups. Comment. Math. Helvetici 54 (1979) 240–287.
- [4] CH. RIEDTMANN: Algebren, Darstellungsköcher, Überlagerungen und zurück. Comment. Math. Helvetici 55 (1980) 199–224.
- [5] CH. RIEDTMANN: Representation-finite selfinjective algebras of class A_n , in "Representation Theory II". Springer Lecture Notes 832 (1980) 449-520.
- [6] CH. RIEDTMANN: Configurations of $\mathbb{Z}D_n$, J. of Algebra, to appear.
- [7] J. WASCHBÜSCH: Symmetrische Algebren vom endlichen Modultyp. J. reine angew. Math. 321 (1981) 78–98.

(Oblatum 22-II-1982)

Mathematisches Institut Rheinsprung 21 CH - 4051 Basel