Compositio Mathematica

ChRistine Riedtmann
 Representation-finite selfinjective algebras of class D_{n}

Compositio Mathematica, tome 49, $\mathrm{n}^{\circ} 2$ (1983), p. 231-282
http://www.numdam.org/item?id=CM_1983__49_2_231_0
© Foundation Compositio Mathematica, 1983, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

REPRESENTATION-FINITE SELFINJECTIVE ALGEBRAS OF CLASS $\boldsymbol{D}_{\boldsymbol{n}}$

Christine Riedtmann

1. Introduction

In this paper, we complete the classification of finite-dimensional, selfinjective, representation-finite algebras over an algebraically closed field k. If such an algebra Λ is connected, we can associate with it a Dynkingraph $\Delta=A_{n}, D_{n}, E_{6}, E_{7}$, or E_{8}, the tree class of $\Lambda([5], 2)$. The classification has been carried out in [5] for algebras of tree class A_{n} and in [2] for algebras of tree class E_{6}, E_{7}, and E_{8} as well as for a class of algebras of tree class D_{n}. We gave an explicit description of the Auslander-Reiten quivers for algebras of tree class D_{n} in [6]. Here we will determine how many non-isomorphic basic algebras of tree class D_{n} give rise to a given Auslander-Reiten quiver. Throughout the article, we assume the field k to be algebraically closed.

Let Δ be one of the Dynkin-graphs $A_{n}, D_{n}, E_{6}, E_{7}$, or E_{8}, and let $\mathbb{Z} \Delta$ be the corresponding translation-quiver. We associate with a subset \mathscr{C} of vertices of $\mathbb{Z} \Delta$ a translation-quiver $(\mathbb{Z} \Delta)_{\mathscr{E}}$ in the following way. The underlying quiver of $(\mathbb{Z} \Delta)_{\mathscr{C}}$ is obtained by adding to $\mathbb{Z} \Delta$ a vertex c^{*} and the two arrows $c \rightarrow c^{*}$ and $c^{*} \rightarrow \tau^{-1} c$ for every c in \mathscr{C}. We take the translation of $(\mathbb{Z} \Delta)_{\mathscr{C}}$ to be the translation of $\mathbb{Z} \Delta$ on the common vertices and to be undefined on the vertices c^{*}. A set \mathscr{C} is called a configuration of $(\mathbb{Z} \Delta)_{\mathscr{C}}$ is a representable translation-quiver [2]; i.e., if $(\mathbb{Z} \Delta)_{\mathscr{C}}$ satisfies the conditions listed in [1], 2.8. If Δ ranges over all Dynkin-graphs, \mathscr{C} over all configurations of $\mathbb{Z} \Delta$, and Π over all non-trivial admissible automorphism groups of $(\mathbb{Z} \Delta)_{\mathscr{E}}$, the residue quivers $(\mathbb{Z} \Delta)_{\mathscr{C}} / \Pi$ provide a complete list of Auslander-Reiten quivers of finite-dimensional, basic, connected k-algebras which are representation-finite and selfinjective, but not equal to k ([2], 1.3). Two translation-quivers $(\mathbb{Z} \Delta)_{\mathscr{C}} / \Pi$ and $\left(\mathbb{Z} \Delta^{\prime}\right)_{\mathscr{C}^{\prime}} / \Pi^{\prime}$ are isomorphic if and only if there is an isomorphism
$f: \mathbb{Z} \Delta \rightarrow \mathbb{Z} \Delta^{\prime}$ such that $\mathscr{C}^{\prime}=f \mathscr{C}$ and $\Pi^{\prime}=f \Pi f^{-1}$. In particular, Δ^{\prime} equals Δ.

In case $\Delta=A_{n}, E_{6}, E_{7}$, or E_{8}, any two basic algebras with a given Auslander-Reiten quiver $(\mathbb{Z} \Delta)_{\mathscr{C}} / \Pi$ are isomorphic. Our main result is the following:

THEOREM: Let \mathscr{C} be a configuration of $\mathbb{Z} D_{n}$, and let $\Pi \neq\{1\}$ be an admissible automorphism group of $\left(\mathbb{Z} D_{n}\right)_{\mathscr{C}}$.
(a) In case char $k=2$ and $n=3 m$ for some integer m, and if in addition \mathscr{C} is $\tau^{(2 m-1) \mathbb{Z}}$-stable and $\Pi=\tau^{(2 m-1) \mathbb{Z}}$, there are exactly two isomorphism classes of basic k-algebras with Auslander-Reiten quiver $\left(\mathbb{Z} D_{n}\right)_{\mathscr{\&}} / \Pi$.
(b) In all other cases, any two basic k-algebras with Auslander-Reiten quiver $\left(\mathbb{Z} D_{n}\right)_{\mathscr{G}} / \Pi$ are isomorphic.

By $\tau^{(2 m-1) \mathbb{Z}}$ we denote the infinite cyclic group generated by $\tau^{2 m-1}$. Notice that an algebra with Auslander-Reiten quiver $(\mathbb{Z} \Delta)_{\mathscr{C}} / \Pi$ is necessarily connected, selfinjective, and representation-finite.

Let Λ be a basic k-algebra with Auslander-Reiten quiver Γ_{Λ}, and let ind Λ be the full subcategory of the category $\bmod \Lambda$ of finitely generated Λ-modules whose objects are specific representatives of the isomorphism classes of indecomposable modules. Then Λ is called standard if ind Λ is isomorphic to the mesh-category $k\left(\Gamma_{\Lambda}\right)([1], 5.1)$. Part (a) of our theorem provides a large family of non-standard algebras. In fact, we obtain one for each isomorphism class of $\tau^{(2 m-1) \mathbb{Z}}$-stable configurations of $\mathbb{Z} \boldsymbol{D}_{3 m}$, or equivalently for each configuration of $\mathbb{Z} A_{m-1}([6], 6)$. For all such non-standard algebras Λ, we will describe ind Λ by its quiver and relations.

Let us explain for which cases the theorem was proved in [2]. An admissible automorphism group of $\left(\mathbb{Z} D_{n}\right)_{\mathscr{C}}$ is given by an admissible automorphism group of $\mathbb{Z} D_{n}$ stabilizing \mathscr{C}. The admissible automorphism groups Π of $\mathbb{Z} D_{n}$ were described in [4], 4.2: if Π is non-trivial, it is generated by $\tau^{r} \psi$ for some $r \geq 1$, where ψ is an automorphism of $\mathbb{Z} D_{n}$ with a fixed point. In [2], 1 , we gave a proof for part (b) of the theorem in case Π is generated by $\tau^{r} \psi$ with $r \geq 2 n-3$. We now describe the configurations \mathscr{C} of $\mathbb{Z} D_{n}$ which admit an automorphism $\tau^{r} \psi$ with $1 \leq r<2 n-3$. Representatives of the two isomorphism classes of configurations of $\mathbb{Z} D_{4}$ are displayed in [2], 7.6, and they clearly do not admit such an automorphism. Let ϕ be the automorphism of $\mathbb{Z} D_{n}$ which exchanges $(p, n-1)$ and (p, n) for each p and fixes all other vertices, where we use the coordinates introduced in [5], 1.3 for the vertices of $\mathbb{Z} D_{n}$. The set of vertices (p, q) with $q \geq n-1$ of a ϕ-stable configuration \mathscr{C} consists of the $\tau^{(2 n-3) \mathbb{Z}}$-orbits of $(i, n-1)$ and (i, n) for some integer i
([2], 1.6 or [6], 4), and thus $2 n-3$ divides r for any automorphism $\tau^{r} \psi$ stabilizing \mathscr{C}. Let \mathscr{C} be a ϕ-unstable configuration of $\mathbb{Z} D_{n}$ for $n \geq 5$, and assume $\tau^{r} \psi$ stabilizes \mathscr{C}, where $1 \leq r<2 n-3$. The set of vertices (p, q) in \mathscr{C} with $q \geq n-1$ consists of three $\tau^{(2 n-3) \mathbb{Z}}$-orbits ([2], 1.6 or [6],4). Therefore, $2 n-3$ and hence n must be divisible by 3 , say $n=3 m$, and either $r=2 m-1$ or $r=2(2 m-1)$. Since $\tau^{2 n-3}$ stabilizes \mathscr{C}, ψ^{3} does as well, and thus ψ is the identity. To summarize, we have to prove the theorem for basic algebras Λ with Auslander-Reiten quiver $\Gamma_{\Lambda}=$ $=\left(\mathbb{Z} D_{3 m}\right)_{\mathscr{C}} / \Pi$, where \mathscr{C} is a $\tau^{(2 m-1) \mathbb{Z}}$-stable configuration of $\mathbb{Z} D_{3 m}$ and either $\Pi=\tau^{(2 m-1) \mathbb{Z}}$ or $\Pi=\tau^{2(2 m-1) \mathbb{Z}}$.

Let Λ be such an algebra, and let $\pi:\left(\mathbb{Z} D_{3 m}\right)_{\mathscr{G}} \rightarrow \Gamma_{\Lambda}$ be the canonical map. In case $\Pi=\tau^{2(2 m-1) z}$, we prove the theorem by constructing a Π invariant well-behaved functor $F: k\left(\left(\mathbb{Z} D_{3 m}\right)_{\mathscr{C}}\right) \rightarrow$ ind Λ; i.e., a k-linear functor F with $F x=\pi x$ for every vertex x of $\left(\mathbb{Z} D_{3 m}\right)_{\mathscr{E}}$, such that $F \bar{\alpha}: \pi x \rightarrow \pi y$ is an irreducible morphism in ind Λ for the canonical image $\bar{\alpha}$ in $k\left(\left(\mathbb{Z} D_{3 m}\right)_{\mathscr{C}}\right)$ of every arrow $\alpha: x \rightarrow y$ in $\left(\mathbb{Z} D_{3 m}\right)_{\mathscr{G}}$, and such that $F(\overline{g \alpha})=F \bar{\alpha}$ for each g in $\Pi([5], 2.5)$. Such a functor F induces a wellbehaved functor

$$
H: k\left(\Gamma_{\Lambda}\right) \rightarrow \operatorname{ind} \Lambda,
$$

which is an isomorphism ([5], 2.5). The construction of F goes along the lines of the corresponding construction in the case $A_{n}([5], 4)$. In particular, we need some information about morphisms in $k\left(\left(\mathbb{Z} D_{3 m}\right)_{\mathscr{G}}\right)$, which we collect in chapter 2. In fact, we provide a k-basis for $k\left(\left(\mathbb{Z} D_{n}\right)_{\mathscr{G}}\right)(x, y)$ for any two vertices x and y, where \mathscr{C} is a ϕ-unstable configuration of $\mathbb{Z} D_{n}$, for $n \geq 5$.

In the remaining case $\Pi=\tau^{(2 m-1) \mathbb{Z}}$, we define an ideal J in the pathcategory $k \Delta$, where $\Delta=\left(\mathbb{Z} D_{3 m}\right)_{\mathscr{G}} / \tau^{(2 m-1) \mathbb{Z}}$, and we show that ind Λ is isomorphic either to the mesh-category $k(\Delta)$ or to $k \Delta / J$, for every algebra Λ with Auslander-Reiten quiver Δ. In case char $k \neq 2$, we construct an isomorphism to $k(\Delta)$, which completes the proof of part (b) of the theorem. As for part (a), it suffices to show that $k \Delta / J$ is isomorphic to ind Λ^{\prime} for some Λ^{\prime} and that $k \Delta / J$ and $k(\Delta)$ are not isomorphic if char $k=2$. It is possible to check the second fact directly by showing that some huge system of linear equations has no solution. However, we will take a different approach, describing Λ^{\prime} and the standard algebra Λ with Auslander-Reiten quiver Δ by quivers and relations (see also [7]) and proving that Λ and Λ^{\prime} are not isomorphic. Moreover, we will show that ind Λ^{\prime} has only even-fold coverings. More precisely, the map $\left(\mathbb{Z} D_{3 m}\right)_{\mathscr{C}} / \tau^{2(2 m-1) \mathbb{Z}} \rightarrow \Delta$, which is a covering of translation-quivers for all s, gives rise to a covering functor $k\left(\left(\mathbb{Z} D_{3 m}\right)_{\mathscr{G}}\right) / \tau^{s(2 m-1) \mathbb{Z}} \rightarrow$ ind Λ^{\prime} if and only if s is even.

I wish to thank Brandeis University and the University of Washington for their hospitality and the Schweizerischer Nationalfonds for its support.

2. Morphisms in $k\left(\left(\mathbb{Z} D_{n}\right)_{\mathscr{\ell}}\right)$

Let \mathscr{C} be a ϕ-unstable configuration of $\mathbb{Z} D_{n}$, for $n \geq 5$. By Γ we denote the translation-quiver $\left(\mathbb{Z} D_{n}\right)_{\mathscr{C}}$. Our aim is to construct a k-basis for $k(\Gamma)(x, y)$ for any two objects x and y of the mesh-category $k(\Gamma)$.
2.1 A vertex (p, q) of $\mathbb{Z} D_{n}$ or $(p, q)^{*}$ of Γ with $(p, q) \in \mathscr{C}$ is called low if $q \leq n-2$ and high otherwise. For any two vertices x and y of $\mathbb{Z} D_{n}$, we let $\delta(x, y)$ be the maximal number of high projective vertices on any path in Γ from x or $\phi(x)$ to y or $\phi(y)$. Notice that $\delta(x, z)=\delta(x, y)+\delta(y, z)$, provided there are any paths in Γ from x to y and from y to z, and also that $\delta\left((p, q), \quad\left(p^{\prime}, q^{\prime}\right)\right)=\delta\left((p, n-1), \quad\left(p^{\prime}+\min \left(q^{\prime}, n-1\right)+1-n, n-1\right)\right)$. Define a high vertex (p, q) of $\mathbb{Z} D_{n}$ to be \mathscr{C}-congruent if the high vertex (i, j) in \mathscr{C} with minimal $i \geq p$ satisfies $i+j \equiv p+q$ modulo 2 , and call $(p, q) \mathscr{C}$-incongruent otherwise.

Let h_{p}, h_{p}^{\prime}, and l_{p} be the three paths from $(p, n-2)$ to $(p+1, n-2)$ in $\mathbb{Z} D_{n}$, where h_{p} and h_{p}^{\prime} contain the \mathscr{C}-congruent and \mathscr{C}-incongruent high vertex with first coordinate p, respectively, and l_{p} goes through ($p+1$, $n-3$), for any integer p. We call h_{p} and h_{p}^{\prime} the \mathscr{C}-congruent and \mathscr{C}-incongruent crenel path starting at $(p, n-2)$. Define a path w in Γ to be stable if all vertices in w lie in $\mathbb{Z} D_{n}$. Call w low if it is stable and contains no crenel path, and \mathscr{C}-congruent if it is stable and contains no \mathscr{C}-incongruent crenel path. Notice that a low path may start or stop in a high vertex and a \mathscr{C}-congruent path in a high \mathscr{C}-incongruent vertex. We say that a path f is free (with respect to \mathscr{C}) if f is low and if no low vertex (p, q) of f satisfies $2 p+q=2 i+j+1$ and $q<j$ for any low projective vertex $(i, j)^{*}$ of Γ. Note that $2 p+\min (q, n-1)$ is constant on "vertical lines" of $\mathbb{Z} D_{n}$. Fig. 1 shows a low path which is not free.

Fig. 1

Definition: A path $w: x \rightarrow y$ in Γ is \mathscr{C}-forbidden if w is \mathscr{C}-congruent and satisfies at least one of the following conditions:
(i) w contains a free subpath $f: x^{\prime} \rightarrow y^{\prime}$, where x^{\prime} and y^{\prime} are high, one \mathscr{C}-congruent and one \mathscr{C}-incongruent, and $\delta\left(x^{\prime}, y^{\prime}\right)=0$.
(ii) w contains a proper free subpath $f: x^{\prime} \rightarrow y^{\prime}$, where $x^{\prime} \neq y^{\prime}$ are high \mathscr{C}-congruent and $\delta\left(x^{\prime}, y^{\prime}\right)=0$.
(iii) w is free, x and y are \mathscr{C}-incongruent, and $\delta(x, y)=1$.
(iv) w contains a proper free subpath $f: x^{\prime} \rightarrow y^{\prime}$, where x^{\prime} and y^{\prime} are high, one \mathscr{C}-congruent and one \mathscr{C}-incongruent, and $\delta\left(x^{\prime}, y^{\prime}\right)=1$.
(v) w contains a subpath $h_{p^{\prime}} f h_{p}$, where f is free and

$$
\delta\left((p, n-2),\left(p^{\prime}+1, n-2\right)\right)=1
$$

A subpath v of w is a proper subpath of $v \neq w$.
We call $w \mathscr{C}$-admissible if it is \mathscr{C}-congruent and not \mathscr{C}-forbidden. Clearly, any subpath of a \mathscr{C}-admissible path is again \mathscr{C}-admissible.

Lemma: (a) If $w_{2} h_{p} w_{1}: x \rightarrow y$ is \mathscr{C}-admissible, then $w_{2} l_{p} w_{1}$ is, too.
(b) If $f h_{p} w$ is \mathscr{C}-admissible for some free path $f:(p+1, n-2) \rightarrow y$, then $\alpha f l_{p} w$ is \mathscr{C}-admissible for any arrow $\alpha: y \rightarrow z$ for which $\alpha f l_{p} w$ is \mathscr{C} congruent.

Proof: (a) Let (p, q) be the high \mathscr{C}-congruent vertex of $\mathbb{Z} D_{n}$ with first coordinate p. Inspection of the five possible cases shows that, if $w_{2} l_{p} w_{1}$ is \mathscr{C}-forbidden, then either the subpath from x to (p, q) or the one from (p, q) to y of $w_{2} h_{p} w_{1}$ is \mathscr{C}-forbidden as well.
(b) Assume $v=\alpha f l_{p} w$ is \mathscr{C}-forbidden. Since $f l_{p} w$ is \mathscr{C}-admissible, any \mathscr{C}-forbidden subpath of v contains $\alpha f l_{p}$, and hence we may assume all proper subpaths of v to be \mathscr{C}-admissible. Again we look at all possibilities separately, and it turns out that, whenever v is \mathscr{C}-forbidden, $h_{p} w$ is \mathscr{C}-forbidden, too. We treat the first case as an example; i.e., we let $v=\alpha f l_{p} f^{\prime}: x \rightarrow z$, where f^{\prime} is free, x and z are high, one \mathscr{C}-congruent and one \mathscr{C}-incongruent, and $\delta(x, z)=0$. Then $h_{p} f^{\prime}$ is \mathscr{C}-forbidden of type (ii) if x is \mathscr{C}-congruent and of type (i) if x is \mathscr{C}-incongruent.
2.2 Definition: Two paths w and w^{\prime} are \mathscr{C}-neighbors if $w=w_{2} v w_{1}$ and $w^{\prime}=w_{2} v^{\prime} w_{1}$, where the set $\left\{v, v^{\prime}\right\}$ consists either of the two paths $\beta \alpha$ and $\delta \gamma$ from (p, q) to $(p+1, q)$ for some $(p, q) \notin \mathscr{C}$ with $1<q<n-2$ or of the two paths $h_{p+1} l_{p}$ and $l_{p+1} h_{p}$ for some integer p for which $(p, n-1) \notin \mathscr{C}$ and $(p, n) \notin \mathscr{C}$ (see Fig. 2). Call w and $w^{\prime} \mathscr{C}$-homotopic if they are linked by a sequence $w=w_{0}, w_{1}, \ldots, w_{r}=w^{\prime}$ of successive \mathscr{C}-neighbors.

Fig. 2

Note that a \mathscr{C}-neighbor of a \mathscr{C}-admissible path is \mathscr{C}-admissible. We call a \mathscr{C}-admissible path $w \mathscr{C}$-marginal if w is \mathscr{C}-homotopic to some w^{\prime} containing $(p, 1) \rightarrow(p, 2) \rightarrow(p+1,1)$ for a p such that $(p, 1) \notin \mathscr{C}$. Call w \mathscr{C} essential if it is \mathscr{C}-admissible, but not \mathscr{C}-marginal. Compare [5], 4.2.

We say that the low projective vertex $(i, j)^{*}$ lies between the low paths w and w^{\prime} from x to y if w contains a vertex (p, q) and w^{\prime} a vertex $\left(p^{\prime}, q^{\prime}\right)$ with $2 p+q=2 i+j+1=2 p^{\prime}+q^{\prime}$ and either $q<j<q^{\prime}$ or $q^{\prime}<j<q$ (compare [5], 5.5).

Lemma: (a) Two low paths w and w^{\prime} are \mathscr{C}-homotopic if and only if no low projective vertex lies between w and w^{\prime}.
(b) A low path w is \mathscr{C}-homotopic to some free path if and only if w is free.

Proof: For (a), we refer to [5], 5.5, and (b) follows from (a) and the definition of free paths.
2.3 With any arrow α of Γ, we associate its $\operatorname{sign} s(\alpha)$: we set $s(\alpha)=1$, unless α is a stable arrow of the form $(p, q) \rightarrow(p, q+1)$ with $q<n-2$, in which case we set $s(\alpha)=(-1)^{n-q}$. For a path $w=\alpha_{r} \ldots \alpha_{1}$, we let $s(w)$ $=s\left(\alpha_{r}\right) \ldots s\left(\alpha_{1}\right)$. We obtain a functor from the path category of Γ onto the mesh-category $k(\Gamma)$ by sending any path w to $\tilde{w}=s(w) \bar{w}$, where \bar{w} denotes the canonical image of w in $k(\Gamma)$. Its kernel I_{s} is the ideal generated by the elements

$$
\theta_{z}=\sum s(\alpha(\sigma \alpha)) \alpha(\sigma \alpha)
$$

where z is a stable vertex of Γ, the sum is taken over all arrows $\alpha: z^{\prime} \rightarrow z$, and $\sigma \alpha$ is the arrow $\tau z \rightarrow z^{\prime}$. We call I_{s} the ideal of modified meshrelations.

Lemma: If $f:(p, n-2) \rightarrow\left(p^{\prime}, n-2\right)$ is free, then $f-w$ lies in I_{s}, where $w=l_{p^{\prime}-1} \ldots l_{p}$.

Proof: Since f is free, w must be free, too, and hence w and f are \mathscr{C} homotopic by Lemma 2.2. Clearly, differences of low \mathscr{C}-neighbors, and hence of low \mathscr{C}-homotopic paths, lie in I_{s}.

2.4 Proposition: For any two stable vertices x and y of Γ, we have

$$
k(\Gamma)(x, y)=\oplus k \tilde{w},
$$

where w runs through a set of representatives of the \mathscr{C}-homotopy classes of \mathscr{C}-essential paths from x to y.

Remark: This proposition yields a basis for $k(\Gamma)(x, y)$ in case x or y or both are projective, too. In fact, if e.g. $y=(p, q)^{*}$ for some $(p, q) \in \mathscr{C}$ and \imath is the arrow $(p, q) \rightarrow(p, q)^{*}$, composition with $\tilde{\imath}$ induces a bijection

$$
k(\Gamma)(x,(p, q)) \rightarrow k(\Gamma)\left(x,(p, q)^{*}\right)
$$

for any $x \neq(p, q)^{*}([1], 2.6)$.
Proof: Let W be the vector space freely generated by all paths from x to y in Γ. Let $C \subset S \subset W$ be the subspaces spanned by the \mathscr{C}-congruent and the stable paths, respectively, and let A_{i} be the subspace spanned by the \mathscr{C}-congruent paths $\alpha_{r} \ldots \alpha_{1}$ for which $\alpha_{i} \ldots \alpha_{1}$ is \mathscr{C}-admissible. If r is the common length of all paths in W, we have

$$
C=A_{1} \supset A_{2} \supset \ldots \supset A_{r}=A
$$

where A is spanned by the \mathscr{C}-admissible paths. We will define a string of projections

$$
W \xrightarrow{\pi_{0}} S \xrightarrow{\pi_{1}} C=A_{1} \xrightarrow{\pi_{2}} A_{2} \rightarrow \ldots \rightarrow A_{r-1} \xrightarrow{\pi_{r}} A_{r}
$$

such that the kernel of each π_{i} lies in $I_{s}(x, y)$. In addition, we will show that the image of $I_{s}(x, y)$ under $\pi=\pi_{r} \ldots \pi_{0}$ is the subspace of A spanned by the \mathscr{C}-marginal paths and the differences of \mathscr{C}-neighbors. This will imply our proposition.

In order to define $\pi_{0}: W \rightarrow S$, we notice that any path w in W can be written as

$$
w=w_{m} \kappa_{m} l_{m} w_{m-1} \ldots w_{1} \kappa_{1} l_{1} w_{0}
$$

where w_{i} is stable and l_{i} and κ_{i} are arrows with projective head and tail,
respectively, for any i. We set

$$
\pi_{0} w=(-1)^{m} w_{m}\left(\sum s\left(\alpha_{m}\left(\sigma \alpha_{m}\right)\right) \alpha_{m}\left(\sigma \alpha_{m}\right)\right) w_{m-1} \ldots w_{1}\left(\sum s\left(\alpha_{1}\left(\sigma \alpha_{1}\right)\right) \alpha_{1}\left(\sigma \alpha_{1}\right)\right) w_{0}
$$

where for each i the α_{i} range over all stable arrows whose head is the head of κ_{i}. By induction on m, the vector $w-\pi_{0} w$ lies in I_{s}, and the kernel of π_{0} is spanned by such vectors.

Let w be a stable path and write

$$
w=w_{m} h_{p_{m}}^{\prime} w_{m-1} \ldots w_{1} h_{p_{0}}^{\prime} w_{0}
$$

where w_{i} is \mathscr{C}-congruent for any i. Setting

$$
\pi_{1} w=w_{m}\left(l_{p_{m}}-h_{p_{m}}\right) w_{m-1} \ldots w_{1}\left(l_{p_{1}}-h_{p_{1}}\right) w_{0}
$$

we obtain a vector in C. By definition, $s\left(h_{p}\right)=s\left(h_{p}^{\prime}\right)=-s\left(l_{p}\right)=1$ for any p, so that $h_{p}+h_{p}^{\prime}-l_{p}$ lies in I_{s}, provided that $(p, n-2) \notin \mathscr{C}$. But we know from [6], 6 that the second coordinate of any low point of a ϕ unstable configuration \mathscr{C} is strictly less than $n-2$. As before, we conclude that the kernel of π_{1} lies in I_{s}.

Let us define $\pi_{i}: A_{i-1} \rightarrow A_{i}$, for $i=2, \ldots, r$. Let $w=\alpha_{r} \ldots \alpha_{1}$ be a path in A_{i-1}. If $w \in A_{i}$, we set $\pi_{i} w=w$. Otherwise, the path $v=\alpha_{i} \ldots \alpha_{1}: x \rightarrow z$ is \mathscr{C}-forbidden, whereas $\alpha_{i-1} \ldots \alpha_{1}$ is not. Thus v contains a unique \mathscr{C} forbidden subpath of minimal length, which includes α_{i}. In each of the possible cases listed in 2.1 , we define a linear combination ψv of \mathscr{C} admissible paths from x to z, and we show that $v-\psi v$ lies in I_{s}. We set $\pi_{i} w=\alpha_{r} \ldots \alpha_{i+1}(\psi v)$.
(i) Assume v contains a free subpath $f: x^{\prime} \rightarrow z$, where $x^{\prime}=(p, q)$ and $z=\left(p^{\prime}, q^{\prime}\right)$ are high, one \mathscr{C}-congruent and one \mathscr{C}-incongruent, with $\delta\left(x^{\prime}, z\right)=0$. Set $\psi v=0$. In order to see that v lies in I_{s}, it suffices by Lemma 2.3 to show that $\beta l_{p^{\prime}-1} \ldots l_{p+1} \alpha$ does, where $\alpha:(p, q) \rightarrow(p+1$, $n-2$) and $\beta:\left(p^{\prime}, n-2\right) \rightarrow\left(p^{\prime}, q^{\prime}\right)$ are arrows. Assume first $p^{\prime}=p+1$. The condition $\delta\left((p, q),\left(p+1, q^{\prime}\right)\right)=0$ implies that neither $(p, n-1)$ nor (p, n) belongs to \mathscr{C}. Since one of the vertices $(p, q),\left(p+1, q^{\prime}\right)$ is \mathscr{C}-congruent and one \mathscr{C}-incongruent, we see that $p+q \not \equiv p+1+q^{\prime}$ modulo 2 , so that q^{\prime} $=q$. Clearly, the path $\beta \alpha:(p, q) \rightarrow(p+1, n-2) \rightarrow(p+1, q)$ lies in I_{s}. In case $p^{\prime}=p+t+1$ for some $t>0$, we write

$$
\begin{aligned}
& \beta l_{p+t} \ldots l_{p+1} \alpha=\beta\left(l_{p+t}-h_{p+t}-h_{p+t}^{\prime}\right) l_{p+t-1} \ldots l_{p+1} \alpha+ \\
& +\beta h_{p+t} l_{p+t-1} \ldots l_{p+1} \alpha+\beta h_{p+t}^{\prime} l_{p+t-1} \ldots l_{p+1} \alpha .
\end{aligned}
$$

The first summand lies in I_{s} by definition, the second and third by induction on t.
(ii) If v contains a proper free subpath from x^{\prime} to y^{\prime}, where $x^{\prime} \neq y^{\prime}$ are high \mathscr{C}-congruent and $\delta\left(x^{\prime}, y^{\prime}\right)=0$, two cases are possible (see Fig. 3). In case $x=x^{\prime}, y^{\prime}=(p, q), z=(p+1, n-2)$, and $v=h_{p} f$ for some free path f, we set $\psi v=l_{p} f$, which is \mathscr{C}-admissible. By (i), the path $h_{p}^{\prime} f$ lies in I_{s}, so that

$$
v-\psi v=\left(h_{p}+h_{p}^{\prime}-l_{p}\right) f-h_{p}^{\prime} f
$$

does as well. In the second case, we have $z=y^{\prime}=\left(p^{\prime}, q^{\prime}\right), x^{\prime}=(p, q)$, and $v=\beta f h_{p} v_{1}$ for some free path $f:(p+1, n-2) \rightarrow\left(p^{\prime}, n-2\right)$. We set $\psi v=\beta f l_{p} v_{1}$, which is \mathscr{C}-admissible by Lemma 2.1(b). As in the first case, $v-\psi v$ lies in I_{s}.

Fig. 3
(iii) In case v is free, x and z are high \mathscr{C}-incongruent and $\delta(x, z)=1$, we must have $v=w$, and we set $\pi_{r} w=0$. In order to see that w lies in I_{s}, it suffices to prove that $u=\beta l_{p^{\prime}-1} \ldots l_{p+1} \alpha:(p, q) \rightarrow\left(p^{\prime}, q^{\prime}\right)$ does, provided that (p, q) and $\left(p^{\prime}, q^{\prime}\right)$ are high \mathscr{C}-incongruent and there is exactly one high point $(i, j) \in \mathscr{C}$ with $p \leq i<p^{\prime}$. In case $p=i=p^{\prime}-1$, we have (p, q) $=(i, q) \notin \mathscr{C}$ and $q^{\prime}=q$, since the high point $\left(i^{\prime}, j^{\prime}\right)$ in \mathscr{C} with minimal $i^{\prime} \geq p^{\prime}=i+1$ satisfies $p^{\prime}+q^{\prime} \not \equiv i^{\prime}+j^{\prime} \not \equiv i+j \not \equiv i+q$ modulo 2 . Indeed, consecutive high points (i, j) and (i^{\prime}, j^{\prime}) of a ϕ-unstable configuration \mathscr{C} satisfy $i+j \not \equiv i^{\prime}+j^{\prime}$ modulo 2 ([6],4). Clearly $\beta \alpha:(p, q) \rightarrow(p+1$, $n-2) \rightarrow(p+1, q)$ lies in I_{s}. Let $p^{\prime}=p+t+1$ for some $t>0$, and assume $i+1<p^{\prime}$. Then

$$
\begin{aligned}
u=\beta\left(l_{p+t}-h_{p+t}-h_{p+t}^{\prime}\right) l_{p+t-1} \ldots l_{p+1} \alpha & +\beta h_{p+t} l_{p+t-1} \ldots l_{p+1} \alpha \\
& +\beta h_{p+t}^{\prime} l_{p+t-1} \ldots l_{p+1} \alpha
\end{aligned}
$$

lies in I_{s}, by induction on t and since βh_{p+t} does by (i). In case $p^{\prime}=i+1$, we obtain

$$
\begin{aligned}
u=\beta l_{p+t} \ldots l_{p+2}\left(l_{p+1}-h_{p+1}-h_{p+1}^{\prime}\right) \alpha+ & \beta l_{p+t} \ldots l_{p+2} h_{p+1} \alpha \\
& +\beta l_{p+t} \ldots l_{p+2} h_{p+1}^{\prime} \alpha .
\end{aligned}
$$

(iv) Assume v contains a proper free subpath from x^{\prime} to y^{\prime}, where x^{\prime} and y^{\prime} are high, one \mathscr{C}-congruent and one \mathscr{C}-incongruent, and $\delta\left(x^{\prime}, y^{\prime}\right)$
$=1$. In case $x=x^{\prime}$ is \mathscr{C}-incongruent, $y^{\prime}=(p, q), z=(p+1, n-2)$, and $v=h_{p} f$ for some free path f, we set $\psi v=l_{p} f$, and in case $z=y^{\prime}=\left(p^{\prime}, q^{\prime}\right)$ is \mathscr{C}-incongruent, $x^{\prime}=(p, q)$, and $v=w=\beta f h_{p} v_{1}$ for some free path $f:(p+1, n-2) \rightarrow\left(p^{\prime}, n-2\right)$, we set $\psi v=\beta f l_{p} v_{1}$ (Fig. 3). In both cases, ψv is \mathscr{C}-admissible by Lemma 2.1 , and using (iii) it is easy to check that $v-\psi v$ lies in I_{s}.
(v) In case $v=h_{p^{\prime}} f h_{p} v_{1}$, where f is free and $\delta\left((p, n-2),\left(p^{\prime}+1, n-2\right)\right)$ $=1$, we set $\psi v=h_{p^{\prime}} f l_{p} v_{1}+l_{p^{\prime}} f h_{p} v_{1}-l_{p^{\prime}} f l_{p} v_{1}$. The first one of these paths is \mathscr{C}-admissible by Lemma 2.1(b), the second one because $f h_{p} v_{1}$ is, and the third one by Lemma 2.1(a). Moreover, we have

$$
v-\psi v=h_{p^{\prime}}^{\prime} f h_{p}^{\prime} v_{1}
$$

which belongs to I_{s} by (iii).
It remains to be seen that $\pi I_{s}(x, y)$ is the subspace of A spanned by the \mathscr{C}-marginal paths and the differences of \mathscr{C}-neighbors. Clearly, \mathscr{C}-marginal paths as well as differences of \mathscr{C}-neighbors lie in I_{s}, since

$$
\begin{aligned}
l_{p+1} h_{p}-h_{p+1} l_{p}= & h_{p+1}\left(h_{p}+h_{p}^{\prime}-l_{p}\right) \\
& -h_{p+1} h_{p}^{\prime}-\left(h_{p+1}+h_{p+1}^{\prime}-l_{p+1}\right) h_{p}+h_{p+1}^{\prime} h_{p}
\end{aligned}
$$

does, whenever $(p, n-1) \notin \mathscr{C}$ and $(p, n) \notin \mathscr{C}$.
As $I_{s}(x, y)$ is spanned by the vectors

$$
\mu=w_{2} \sum s(\alpha(\sigma \alpha)) \alpha(\sigma \alpha) w_{1},
$$

where w_{1} and w_{2} are paths from x to τz and from z to y for some stable z, respectively, and where the sum is taken over all arrows α with head z, it suffices to write $\pi \mu$ as a linear combination of \mathscr{C}-marginal paths and differences of \mathscr{C}-neighbors. We may assume that τz does not lie in \mathscr{C}, since otherwise $\pi_{0} \mu=0$, and that μ lies in S. Similarly, we have $\pi_{1} \mu=0$ if the second coordinate of z is $n-2$. The proof in case z is high is straightforward, the main problems being the large number of possible cases and the bookkeeping. In most cases, $\pi \mu$ turns out to be zero. As an example, we treat one of the harder cases, and we skip the rest.

Assume $z=(p+1, q) \neq y$ is high \mathscr{C}-incongruent and $\tau z=(p, q) \neq x$ is \mathscr{C}-congruent. Then μ has the form

$$
\mu=v_{2}\left(\sigma^{-1} \alpha\right) \alpha(\sigma \alpha)\left(\sigma^{2} \alpha\right) v_{1}=v_{2} h_{p+1}^{\prime} h_{p} v_{1}
$$

and we may assume that

$$
\pi_{1} \mu=v_{2}\left(l_{p+1}-h_{p+1}\right) h_{p} v_{1} .
$$

Let i be the length of v_{1}. Then $\pi_{i+1} \ldots \pi_{1} \mu$ is either zero or a linear combination of vectors of the form

$$
v=v_{2}\left(l_{p+1}-h_{p+1}\right) h_{p} v_{3} .
$$

Let us assume that $v_{3}=f h_{p^{\prime}}, v_{4}$, where $f:\left(p^{\prime}+1, n-2\right) \rightarrow(p, n-2)$ is free and $\delta\left(\left(p^{\prime}, n-2\right),(p+1, n-2)\right)=1$; i.e., we suppose $h_{p} v_{3}$ to be \mathscr{C}-forbidden of type v). We obtain

$$
\begin{aligned}
& v=v_{2}\left(l_{p+1}-h_{p+1}\right) h_{p} f h_{p^{\prime}} v_{4} \\
& v_{1}=\pi_{i+2} v=v_{2}\left(l_{p+1}-h_{p+1}\right)\left(h_{p} f l_{p^{\prime}}+l_{p} f h_{p^{\prime}}-l_{p} f l_{p^{\prime}}\right) v_{4}
\end{aligned}
$$

By our assumptions, neither $(p, n-1)$ nor (p, n) lies in \mathscr{C}, so that $\delta((p, n-1),(p+1, n-1))=0$ and $\delta\left(\left(p^{\prime}, n-1\right),(p+1, n-1)\right)=1$. Hence $v_{2} h_{p+1} h_{p} f l_{p^{\prime}}, v_{4}$ is the only path occurring in v_{1} which does not lie in A_{i+3}. We obtain

$$
\begin{aligned}
& \begin{aligned}
& v_{2}=\pi_{i+3} v_{1}=v_{2}\left(l_{p+1} h_{p}-h_{p+1} l_{p}\right) f l_{p^{\prime}} v_{4} \\
&+v_{2}\left(l_{p+1}-h_{p+1}\right) l_{p} f\left(h_{p^{\prime}}-l_{p^{\prime}}\right) v_{4},
\end{aligned} \\
& \begin{aligned}
\rho=\pi_{i+4} v_{2}=v_{2}\left(l_{p+1} h_{p}-h_{p+1} l_{p}\right) f l_{p^{\prime}} v_{4} .
\end{aligned}
\end{aligned}
$$

Suppose $\rho=v_{2}\left(l_{p+1} h_{p}-h_{p+1} l_{p}\right) v_{5}$ belongs to A_{j}, but not to A_{j+1} for some j with $i+4 \leq j<r$, and let $v_{2}=v_{7} v_{6}$, where the length of v_{6} is $j-i-3$. In case v_{6} itself is \mathscr{C}-forbidden, we clearly have

$$
\pi_{j+1} \rho=v_{7} v_{6}^{\prime}\left(l_{p+1} h_{p}-h_{p+1} l_{p}\right) v_{5} \text { or } \pi_{j+1} \rho=0 .
$$

Otherwise,

$$
v_{6} l_{p+1} h_{p} \text { and } v_{6} h_{p+1} l_{p}
$$

are \mathscr{C}-forbidden of the same type, since $\delta((p, n-1),(p+1, n-1))=0$. Unless they are \mathscr{C}-forbidden of type (v), we have $\pi_{j+1} \rho=0$, since π_{j+1} either annihilates both summands separately, or

$$
\pi_{j+1}\left(v_{7} v_{6} l_{p+1} h_{p} v_{5}\right)=v_{7} v_{6} l_{p+1} l_{p} v_{5}=\pi_{j+1}\left(v_{7} v_{6} h_{p+1} l_{p} v_{5}\right) .
$$

In the remaining case, there is a free path $f:(p+2, n-2) \rightarrow\left(p^{\prime}, n-2\right)$, where $\delta\left((p+1, n-2),\left(p^{\prime}+1, n-2\right)\right)=1$, such that $v_{6}=h_{p^{\prime}} f$. Then

$$
\begin{aligned}
& \pi_{j+1} \rho=v_{7}\left(h_{p^{\prime}} f l_{p+1} l_{p}+l_{p^{\prime}} f l_{p+1} h_{p}-l_{p^{\prime}} f l_{p+1} l_{p}-h_{p^{\prime}} f l_{p+1} l_{p}\right. \\
&\left.-l_{p^{\prime}} f h_{p+1} l_{p}+l_{p^{\prime}} f l_{p+1} l_{p}\right) v_{5}=v_{7} l_{p^{\prime}} f\left(l_{p+1} h_{p}-h_{p+1} l_{p}\right) v_{5}
\end{aligned}
$$

so that by induction we may assume ρ lies in A, and hence it is the difference of two \mathscr{C}-neighbors.

Finally, if $\tau z=(p, q)$ does not lie in \mathscr{C} and $q \leq n-3, \pi \mu$ is a linear combination of vectors of the form

$$
v_{2} \sum s(\alpha(\sigma \alpha)) \alpha(\sigma \alpha) v_{1}
$$

each of which is either the difference of two \mathscr{C}-neighbors or \mathscr{C}-marginal.
2.5 In the remainder of this chapter, we derive the auxiliary results needed in the proof of the theorem. From now on, we assume that \mathscr{C} contains the vertex $(0, n-1)$. This condition can always be fulfilled by replacing \mathscr{C} by an isomorphic configuration. We recall the following description of \mathscr{C} from [6], 6. The set of high vertices of \mathscr{C} consists of the $\tau^{(2 n-3) Z}$-orbits of

$$
(0, n-1), \phi^{n_{1}+n_{3}}\left(n_{1}+n_{3}+1, n-1\right), \text { and } \phi^{n-1+n_{1}}\left(n-1+n_{1}, n-1\right)
$$

for some natural numbers (including zero) n_{1}, n_{2}, and n_{3} with $n_{1}+n_{2}$ $+n_{3}=n-3$. There are configurations $\mathscr{D}_{1}, \mathscr{D}_{2}$, and \mathscr{D}_{3} of $\mathbb{Z} A_{n_{1}}, \mathbb{Z} A_{n_{2}}$, and $\mathbb{Z} A_{n_{3}}$, respectively, such that the set of low vertices of \mathscr{C} is the disjoint union of the sets

$$
\tau^{1-n} \psi_{n_{1}} \mathscr{D}_{1}, \tau^{-\left(n+n_{1}+n_{3}\right)} \psi_{n_{2}} \mathscr{D}_{2}, \text { and } \tau^{-\left(2 n-2+n_{1}\right)} \psi_{n_{3}} \mathscr{D}_{3} .
$$

For any natural number $m \leq n-2$, the injection

$$
\psi_{m}:\left(\mathbb{Z} A_{m}\right)_{0} \rightarrow\left(\mathbb{Z} D_{n}\right)_{0}
$$

from the vertex set of $\mathbb{Z} A_{m}$ to the vertex set of $\mathbb{Z} D_{n}$ is defined by

$$
\psi_{m}(p, q)= \begin{cases}(p, q) & \text { if } 0 \leq p<p+q \leq m \\ (p+q+n-2-m, m+1-q) & \text { if } p<m<p+q\end{cases}
$$

and by requiring that $\psi_{m} \tau^{m}=\tau^{2 n-3} \psi_{m}$, where τ denotes the translation of $\mathbb{Z} A_{\boldsymbol{m}}$ on the left-hand side and $\mathbb{Z} D_{n}$ on the right-hand side. Notice that, for any $m<n-2, \psi_{m}$ factors through ψ_{m+1}. In fact, we have ψ_{m} $=\psi_{m+1} \omega_{m}$, where the injection

$$
\omega_{m}:\left(\mathbb{Z} A_{m}\right)_{0} \rightarrow\left(\mathbb{Z} A_{m+1}\right)_{0}
$$

is given by

$$
\omega_{m}(p, q)= \begin{cases}(p, q) & \text { if } 0 \leq p<p+q \leq m \\ (p, q+1) & \text { if } p<m<p+q\end{cases}
$$

and by the rule $\omega_{m} \tau^{m}=\tau^{m+1} \omega_{m}$ (see Fig. 4).

Fig. 4

Lemma: A set \mathscr{D} in $\left(\mathbb{Z} A_{m}\right)_{0}$ is a configuration of $\mathbb{Z} A_{m}$ if and only if

$$
\mathscr{D}^{+}=\omega_{m} \mathscr{D} \cup \tau^{(m+1) \mathbb{Z}}(m, 1)
$$

is a configuration of $\mathbb{Z} A_{m+1}$.
Proof: We use the characterization of configurations of $\mathbb{Z} A_{m}$ and $\mathbb{Z} A_{m+1}$ in terms of rectangles ([5], 2.6). By $R_{s}(x)$ we denote the rectangle of $\mathbb{Z} A_{s}$ starting at x, for $s=m, m+1$. The following facts are easy to verify, and they clearly imply the lemma:

$$
\begin{aligned}
& \omega_{m}^{-1} R_{m+1}\left(\omega_{m}(p, q)\right)=R_{m}(p, q) \text { for any }(p, q) \text { in }\left(\mathbb{Z} A_{m}\right)_{0}, \\
& \omega_{m}^{-1} R_{m+1}(t(m+1)-1, q)=R_{m}(t m, q-1) \text { for } q \geq 2 \text { and } t \in \mathbb{Z}, \\
& R_{m+1}\left(\omega_{m}(p, q)\right) \cap \tau^{(m+1) \mathbb{Z}}(m, 1)=\emptyset \text { for any }(p, q) \text { in }\left(\mathbb{Z} A_{m}\right)_{0} .
\end{aligned}
$$

2.6 Set

$$
\begin{aligned}
& \chi_{1}=\tau^{1-n} \psi_{n_{1}+1}:\left(\mathbb{Z} A_{n_{1}+1}\right)_{0} \rightarrow\left(\mathbb{Z} D_{n}\right)_{0}, \\
& \chi_{2}=\tau^{-\left(n+n_{1}+n_{3}\right)} \psi_{n_{2}+1}:\left(\mathbb{Z} A_{n_{2}+1}\right)_{0} \rightarrow\left(\mathbb{Z} D_{n}\right)_{0}, \\
& \chi_{3}=\tau^{-\left(2 n-2+n_{1}\right)} \psi_{n_{3}+1}:\left(\mathbb{Z} A_{n_{3}+1}\right) \rightarrow\left(\mathbb{Z} D_{n}\right)_{0} .
\end{aligned}
$$

Fig. 5 shows the images of χ_{1}, χ_{2}, and χ_{3}. In chapter 5 , we will show that χ_{k} can be extended to a k-linear functor

$$
\chi_{k}: k\left(\left(\mathbb{Z} A_{n_{k}+1}\right)_{\mathscr{D}_{k}^{+}}\right) \rightarrow k\left(\left(\mathbb{Z} D_{n}\right)_{\mathscr{G}}\right)
$$

for $k=1,2$, and 3 . This will enable us to describe the full subcategory of projective objects in $k\left(\left(\mathbb{Z} D_{n}\right)_{\mathscr{C}}\right)$ in terms of the full subcategories of projectives in $k\left(\left(\mathbb{Z} A_{n_{k}+1}\right)_{\mathscr{O}_{k}^{+}}\right)$.

Fig. 5
Lemma: Any \mathscr{C}-essential path in $\Gamma=\left(\mathbb{Z} D_{n}\right)_{\mathscr{C}}$ from $(n-1,1)$ to $\left(n+n_{1}-q, q\right)$ and from $\left(n-1, q^{\prime}\right)$ to $\left(n+n_{1}-1,1\right)$ is free.

Remark: The same statement holds for \mathscr{C}-essential paths in Γ from $\left(n_{1}+n_{3}+n, 1\right)$ to $(2 n-2-q, q)$, from $\left(n_{1}+n_{3}+n, q^{\prime}\right)$ to $(2 n-3,1)$, from $\left(2 n-2+n_{1}, 1\right)$ to $\left(2 n-1+n_{1}+n_{3}-q, q\right)$, and from $\left(2 n-2+n_{1}\right.$, $\left.q^{\prime}\right)$ to $\left(2 n-2+n_{1}+n_{3}, 1\right)$.

Proof: Clearly, χ_{1} extends to an isomorphism from the full subquiver Δ of $\left(\mathbb{Z} A_{n_{1}+1}\right)_{\mathscr{O}_{1}^{+}}$given by the vertices x for which there are paths $(0,1) \rightarrow x \rightarrow\left(n_{1}, 1\right)$ in $\left(\mathbb{Z} A_{n_{1}+1}\right)_{\mathscr{Q}_{1}^{+}}$to the full subquiver Δ^{\prime} of $\left(\mathbb{Z} D_{n}\right)_{\mathscr{C}}$ given by the vertices x^{\prime} for which there are paths $(n-1,1) \rightarrow x^{\prime} \rightarrow\left(n-1+n_{1}\right.$, 1) in $\left(\mathbb{Z} D_{n}\right)_{\mathscr{G}}$. The stable vertices of Δ and Δ^{\prime} are the (p, q) and $\chi_{1}(p, q)$ with $0 \leq p<p+q \leq n_{1}+1$, respectively. Notice that χ_{1} induces a bijection between \mathscr{D}_{1}^{+}-homotopy classes of stable paths from x to y in Δ and \mathscr{C}-homotopy classes of stable paths from $\chi_{1} x$ to $\chi_{1} y$ in Δ^{\prime}, under which \mathscr{D}_{1}^{+}-essential paths correspond to \mathscr{C}-essential paths ([5], 4.2).

Since $(-1,1)$ lies in \mathscr{D}_{1}^{+}by construction, any \mathscr{D}_{1}^{+}-essential path $\tau^{-1}(-1,1)=(0,1) \rightarrow\left(n_{1}+1-q, q\right)$ is \mathscr{D}_{1}^{+}-homotopic to a subpath of the " α-path" $(0,1) \rightarrow\left(0, n_{1}+1\right) \rightarrow\left(n_{1}, 1\right)$ (see [5], 5). Thus any \mathscr{C}-essential path $w:(n-1,1) \rightarrow\left(n+n_{1}-q, q\right)$ is \mathscr{C}-homotopic to $(n-1,1) \rightarrow(n-1$, $\left.n_{1}+1\right) \rightarrow\left(n+n_{1}-q, q\right)$, which is free, since all low vertices of \mathscr{C} lie in the image of χ_{1}, χ_{2}, or χ_{3}. Since \mathscr{C}-neighbors of free paths are free, w is free as well. The proof in the other case is analogous.
2.7 Let \mathscr{C} be a configuration of $\mathbb{Z} D_{n}$ as in 2.5 , and assume $n=3 m$, $n_{1}=n_{2}=n_{3}=m-1$ (see Fig. 6). We will need the following proposition only in case \mathscr{C} is $\tau^{(2 m-1) \mathbb{Z}}$-stable. However, this assumption does not simplify the proof. Set $\Gamma=\left(\mathbb{Z} D_{n}\right)_{\mathscr{C}}$.

Fig. 6

Proposition: (a) If $2 \leq q \leq n-2$, any \mathscr{C}-essential path in Γ from $(0, q)$ to $(2 m, q)$ or $(4 m-1, q)$ starting with the arrow $(0, q) \rightarrow(1, q-1)$ is \mathscr{C} homotopic to a path starting with $(0, q) \rightarrow(1, q-1) \rightarrow(1, q)$.
(b) If $q \geq n-1$, there is no \mathscr{C}-essential path from $(0, q)$ to $(4 m-1, q)$.
(c) Any \mathscr{C}-admissible path from $(0, n)$ to $(2 m, n)$ is \mathscr{C}-homotopic to $\beta l_{2 m-1} \ldots l_{1} \alpha$, where α and β are the arrows $\alpha:(0, n) \rightarrow(1, n-2)$ and $\beta:(2 m, n-2) \rightarrow(2 m, n)$.
(d) Any \mathscr{C}-admissible path from $(0, n-1)$ to $(2 m, n-1)$ is \mathscr{C}-homotopic to either $\delta l_{2 m-1} \ldots l_{1} \gamma$ or $\delta l_{2 m-1} \ldots l_{2} h_{1} \gamma$, where γ and δ are the arrows $\gamma:(0, n-1) \rightarrow(1, n-2)$ and $\delta:(2 m, n-2) \rightarrow(2 m, n-1)$.

Proof: Notice that by 2.5 the set of high points of \mathscr{C} is the $\tau^{(2 m-1) \mathbb{Z}}$ orbit of ($0, n-1$).
(a) Assume our assertion is wrong for some \mathscr{C}-essential path w : $(0, q) \rightarrow(x, q)$ starting with $(0, q) \rightarrow(1, q-1)$, where $x=2 m$ or $x=4 m$ -1 . Then there is a low point $(i, j) \in \mathscr{C}$ with $i+j=q$ and $2 \leq j \leq q$, such that w contains the only path w_{1} from $(0, q)$ to $(i+1, j-1)$ (see Fig. 7).

Fig. 7

Indeed, if such an $(i, j) \in \mathscr{C}$ does not exist, the subpath $(1, q-1)$ $\rightarrow\left(x^{\prime}, y\right) \rightarrow\left(x^{\prime}, y+1\right)$ is \mathscr{C}-homotopic to $(1, q-1) \rightarrow(1, q) \rightarrow\left(x^{\prime}, y+1\right)$, and we are done (2.2). Notice that any low path from $(i+1, j-1)$ to (x, q) is \mathscr{C}-homotopic to a path containing $(x-1,1) \rightarrow(x-1,2) \rightarrow(x, 1)$, which is \mathscr{C}-marginal, since neither $(2 m-1,1)$ nor $(4 m-2,1)$ lie in \mathscr{C}. Therefore, w has the form $w=w_{3} h_{p} w_{2} w_{1}$, where w_{2} is low, but w_{3} need
not be. Clearly, we have $p \geq i+1$. If $x=2 m$, there is no path in Γ from $(p+1, n-2)$ to $(x, q)=(2 m, q)$: since the second coordinate j of $(i, j) \in \mathscr{C}$ is less than m, we have $p+n-1 \geq i+n=q-j+n>q+2 m$. This proves (a) in case $x=2 m$.

If $(x, q)=(4 m-1, q)$, we distinguish three cases, depending on the position of (i, j) (compare Fig. 6).
(i) $1 \leq i<i+j \leq m-1$: We must have $p \leq m-1$, since otherwise w_{2} contains $(m-1,1) \rightarrow(m-1,2) \rightarrow(m, 1)$, up to \mathscr{C}-homotopy. A similar argument, using $(4 m-2,1) \notin \mathscr{C}$, shows that w_{3} cannot be low. Hence $w_{3}=w_{5} h_{p^{\prime}, w_{4}}$ for some low path $w_{4}:(p+1, n-2) \rightarrow\left(p^{\prime}, n-2\right)$, which must not be free, since $0 \leq \delta\left((p+1, n-2),\left(p^{\prime}, n-2\right)\right) \leq 1$. This implies that $3 m \leq p^{\prime}$. But there is no path in Γ from $\left(p^{\prime}+1, n-2\right)$ to $(4 m-1, q)$, since $q=i+j \leq m-1$ forces $p^{\prime}+n-1 \geq 6 m-1>4 m-1+q$.
(ii) $m \leq i<i+j \leq 2 m-1$: That w_{2} is \mathscr{C}-essential implies $p \leq 2 m-1$. Then any low path $(p+1, n-2) \rightarrow\left(p^{\prime}, n-2\right)$ is free, provided that $p^{\prime} \leq 4 m-1$, and therefore w_{3} must be low and free. Up to \mathscr{C}-homotopy, we may choose $w_{3}=w_{4} l_{2 m-1} l_{2 m-2} \ldots l_{p+1}$, where w_{4} is a free path from $(2 m, n-2)$ to $(4 m-1, q)$. Here we use that $4 m-1+q=4 m-1+i+$ $+j>5 m-1$. Then $w_{3} h_{p}$ is \mathscr{C}-homotopic to $w_{4} h_{2 m-1} l_{2 m-2} \ldots l_{p+1} l_{p}$. Hence we can choose $p=2 m-1$, and we can choose w_{1} to contain ($2 m-1,1$), up to \mathscr{C}-homotopy. By Lemma 2.6, w_{1} is \mathscr{C}-homotopic to the path $(0, q) \rightarrow(m, q-m) \rightarrow(m, m) \rightarrow(2 m-1,1)$, which contradicts our assumption.
(iii) $2 m \leq i<i+j \leq 3 m-2$: We must have $p \leq 3 m-2$, since otherwise w_{1} is \mathscr{C}-marginal. Then w_{3} is free, and we may assume $w_{3}=w_{4} l_{3 m-1} \ldots l_{p+1}$, since $4 m-1+q>6 m-1$. As before, $w_{3} h_{p}$ is \mathscr{C}-homotopic to $w_{4} h_{3 m-1} l_{3 m-2} \ldots l_{p}$, which is a contradiction.
(b) Assume there is a \mathscr{C}-essential path $w:(0, q) \rightarrow(4 m-1, q)$ for $q \geq n$ -1 . If $q=n$, both $(0, n)$ and $(4 m-1, n)$ are \mathscr{C}-incongruent. For any high \mathscr{C}-congruent vertex $\left(p, q^{\prime}\right)$ with $1 \leq p \leq 4 m-2$, either $\delta\left((0, q),\left(p, q^{\prime}\right)\right)=1$ or $\delta\left(\left(p, q^{\prime}\right),(4 m-1, q)\right)=1$, so that w must be low, which is impossible. In case $q=n-1, w$ has the form $w_{2} h_{p} w_{1}$, where $p \leq 3 m-2$ and w_{1} is low, and thus free.
(i) $p \leq 2 m-1$: We may assume $p=1$. Then w_{2} cannot be low; i.e., $w_{2}=w_{4} h_{p^{\prime}} w_{3}$ for some p^{\prime} with $2 m \leq p^{\prime} \leq 4 m-2$ and some low path w_{3}, which must not be free. Thus w_{3} contains a vertex ($3 m-1, y$) with $y \leq m-1$. Since w_{4} is free, we can choose $p^{\prime}=4 m-2$, and we may assume that w_{3} contains $(4 m-2,1)$. By Lemma $2.6, w_{3}$ is free, which is a contradiction.
(ii) $2 m \leq p$: Since w_{2} is free, we can "push the crenel to the right" and violate the condition $p \leq 3 m-2$.
(c) and (d) follow from the definition and Lemma 2.3, since in these cases all low paths are free.

3. Proof of part (b) of the theorem

Let Λ be a basic algebra with Auslander-Reiten quiver $\Gamma_{\Lambda}=$ $=\left(\mathbb{Z} D_{n}\right)_{\mathscr{C}} / \tau^{r \mathbb{Z}}$, where $n=3 m$ for some $m>1, \mathscr{C}$ is stable under $\tau^{(2 m-1) \mathbb{Z}}$, and $r=2 m-1$ or $r=2(2 m-1)$. We choose \mathscr{C} to contain $(0, n-1)$, and we let $\pi: \Gamma \rightarrow \Gamma_{A}$ be the canonical map. As explained in the introduction, we have to construct a $\tau^{r \mathbb{Z}}$-invariant well-behaved functor $k(\Gamma) \rightarrow$ ind Λ, provided that either char $k \neq 2$ or $r \neq 2 m-1$. It suffices to find a k linear functor

$$
F: k \Gamma \rightarrow \operatorname{ind} \Lambda
$$

from the path-category $k \Gamma$ of Γ to ind Λ such that $F x=\pi x$ for all vertices $x, F \alpha \in \operatorname{Hom}_{\Lambda}(\pi x, \pi y)$ is irreducible for all arrows $\alpha: x \rightarrow y$, $F\left(\tau^{r} \alpha\right)=F \alpha$, and $F \theta_{z}=0$ for all stable vertices z, where

$$
\theta_{z}=\sum s(\alpha(\sigma \alpha)) \alpha(\sigma \alpha)
$$

is the modified mesh-relation arising from the mesh of Γ which stops at z. Then sending \tilde{w} to $F w$, for any path w in Γ, yields our desired $\tau^{r \mathbb{Z}}-$ invariant well-behaved functor.
3.1 In a first step, we construct the irreducible $F \alpha$ so that $F\left(\tau^{r} \alpha\right)=F \alpha$ and so that $F \theta_{z}=0$ for all z which do not belong to $\tau^{r \mathbb{Z}}(1, n-1)$ or $\tau^{r \mathbb{Z}}(1, n)$. We make no assumption on char k or r yet. Start from any wellbehaved functor $F_{0}: k(\Gamma) \rightarrow$ ind Λ. Such a functor exists, since $\pi: \Gamma \rightarrow \Gamma_{\Lambda}$ is the universal covering, and F_{0} is a covering functor; i.e., for any two vertices x and y of Γ, F_{0} induces isomorphisms

$$
\begin{aligned}
& \underset{\pi z=\pi y}{\oplus} k(\Gamma)(x, z) \rightarrow \operatorname{Hom}_{\Lambda}(\pi x, \pi y), \\
& \underset{\pi z=\pi x}{\oplus} k(\Gamma)(z, y) \rightarrow \operatorname{Hom}_{\Lambda}(\pi x, \pi y)
\end{aligned}
$$

(see [4], 2 and [1], 3.1). Set $F \alpha=F_{0} \tilde{\alpha}$ for any arrow $\alpha: x \rightarrow y$ of Γ for which the stable vertices in $\{x, y\}$ lie in the set $\{(p, q): 1-r \leq p \leq 0\}$, and set $F\left(\tau^{r} \gamma_{q}\right)=F \gamma_{q}$, for $q=2, \ldots, n, F \beta_{2}=F_{0} \widetilde{\beta}_{2}$ (see Fig. 8).

Fig, 8

By induction on q, we define $F \beta_{q}$ in such a way that

$$
F \beta_{q} F \alpha_{q}-F \gamma_{q-1} F \beta_{q-1}=0
$$

for $q=3, \ldots, n-2$. The construction is analogous to the one used in [5], 1.6 and 4 ; it is based on Proposition 2.7(a). As an example, we show how to find $F \beta_{n-1}$ and $F \beta_{n}$ so that

$$
F \beta_{n-1} F \alpha_{n-1}+F \beta_{n} F \alpha_{n}-F \gamma_{n-2} F \beta_{n-2}=0
$$

Choose an Auslander-Reiten sequence

$$
\begin{aligned}
\pi(0, n-2) & \xrightarrow{\left[F \alpha_{n-1} F \alpha_{n} F \beta_{n-2}\right]^{T}} \pi(0, n-1) \oplus \pi(0, n) \oplus \pi(1, n-3) \\
& \xrightarrow{\left[\underline{\underline{\beta}} \underline{\beta}^{\prime} \underline{\gamma}\right]} \pi(1, n-2)
\end{aligned}
$$

in $\bmod \Lambda$. There exists a $\lambda \in k$ such that

$$
\mu=\lambda \underline{\gamma}-F \gamma_{n-2} \in \mathscr{R}^{2}(\pi(1, n-3), \pi(1, n-2)),
$$

where \mathscr{R} denotes the radical of ind Λ. Since F_{0} is a covering functor, we can write

$$
\mu F \beta_{n-2}=\sum \lambda_{w} F_{0} \tilde{w},
$$

where λ_{w} is a scalar and the w 's are \mathscr{C}-essential paths in Γ from $(0, n-2)$ to ($s r+1, n-2$) with $s \geq 1$. Notice that ($s r+1, n-2$) must be either $(2 m, n-2)$ or $(4 m-1, n-2)$, since the length of any \mathscr{C}-essential path in Γ is at most $2(2 n-3)([2], 1.2)$. Suppose one of the paths w has the form
$w^{\prime} \beta_{n-2}$. By Proposition 2.7(a), we may assume $w=v \gamma_{n-2} \beta_{n-2}=v l_{0}$. Since $\tilde{I}_{0}=\widetilde{h}_{0}+\widetilde{h}_{0}^{\prime}$, we see that we can write

$$
\mu F \beta_{n-2}=\mu_{1} F_{0} \tilde{\alpha}_{n-1}+\mu_{2} F_{0} \tilde{\alpha}_{n}=\mu_{1} F \alpha_{n-1}+\mu_{2} F \alpha_{n}
$$

for some $\mu_{1} \in \mathscr{R}^{2}(\pi(0, n-1), \pi(1, n-2))$ and $\mu_{2} \in \mathscr{R}^{2}(\pi(0, n), \pi(1, n-2))$. We set

$$
F \beta_{n-1}=-\lambda \underline{\beta}-\mu_{1} \text { and } F \beta_{n}=-\lambda \underline{\beta^{\prime}}-\mu_{2}
$$

which are irreducible. By construction,

$$
F \theta_{(1, n-2)}=F \beta_{n-1} F \alpha_{n-1}+F \beta_{n} F \alpha_{n}-F \gamma_{n-2} F \beta_{n-2}=0
$$

Finally, we find a irreducible morphism $F \kappa \in \operatorname{Hom}_{\Lambda}\left(\pi(0, n-1)^{*}, \pi(1\right.$, $n-1)$) such that

$$
F \kappa F l+F \gamma_{n-1} F \beta_{n-1} \in \mathscr{R}^{2 r+2}(\pi(0, n-1), \pi(1, n-1)),
$$

and we extend F first to all arrows of Γ by periodicity, requiring that $F\left(\tau^{r} \alpha\right)=F \alpha$, and then to a k-linear functor $F: k \Gamma \rightarrow$ ind Λ.

3.2 Let $r=2(2 m-1)$. Write

$$
\begin{aligned}
& F \gamma_{n-1} F \beta_{n-1}+F \kappa F l=\sum \lambda_{w} F_{0} \tilde{w} \\
& F \gamma_{n} F \beta_{n}=\sum \mu_{v} F_{0} \tilde{v}
\end{aligned}
$$

where $\lambda_{w}, \mu_{v} \in k$, the $w:(0, n-1) \rightarrow(2(2 m-1) s+1, n-1)$ are \mathscr{C}-essential with $s \geq 1$, and the $v:(0, n) \rightarrow(2(2 m-1) t+1, n)$ are \mathscr{C}-essential with $t \geq 0$. There are no such paths for $t=0, t \geq 2$, or $s \geq 2$, since the length of a \mathscr{C}-essential path is at most $2(2 n-3)$. By Proposition $2.7(\mathrm{~b})$, there is none for $s=1, t=1$ either, so that $F \theta_{(1, n-1)}=F \theta_{(1, n)}=0$. This completes the proof of the theorem in case $r=2(2 m-1)$.
3.3 From now on, we let $r=2 m-1$. By Proposition 2.7(b), (c), (d), we obtain

$$
\begin{aligned}
F \gamma_{n-1} F \beta_{n-1}+F \kappa F l=\lambda^{\prime} F_{0}\left(\tilde{\gamma}_{n-1}^{\prime} \tilde{l}_{2 m-1}\right. & \left.\ldots \tilde{l}_{1} \tilde{\beta}_{n-1}\right) \\
& +\mu^{\prime} F_{0}\left(\tilde{\gamma}_{n-1}^{\prime} \tilde{l}_{2 m-1} \ldots \tilde{l}_{2} \tilde{h}_{1} \widetilde{\beta}_{n-1}\right)
\end{aligned}
$$

$$
F \gamma_{n} F \beta_{n}=v^{\prime} F_{0}\left(\tilde{\gamma}_{n}^{\prime} \tilde{l}_{2 m-1} \ldots \tilde{1}_{1} \tilde{\beta}_{n}\right)
$$

where $\lambda^{\prime}, \mu^{\prime}, v^{\prime}$ are scalars and $\gamma_{n-1}^{\prime}=\tau^{-(2 m-1)} \gamma_{n-1}, \quad \gamma_{n}^{\prime}=\tau^{-(2 m-1)} \gamma_{n}$. Since for any arrow $\alpha, F \alpha$ and $F_{0} \tilde{\alpha}$ differ only by a non-zero scalar modulo \mathscr{R}^{2}, and since

$$
\mathscr{R}^{8 m-2}(\pi(0, n-1), \pi(1, n-1))=0=\mathscr{R}^{8 m-2}(\pi(0, n), \pi(1, n)),
$$

we obtain
$\left(^{*}\right)\left\{\begin{array}{lr}F \gamma_{n-1} F \beta_{n-1}+F \kappa F l=\lambda F\left(\gamma_{n-1}^{\prime} l_{2 m-1} \ldots l_{1} \beta_{n-1}\right) \\ F & +\mu F\left(\gamma_{n-1}^{\prime} l_{2 m-1} \ldots l_{2} h_{1} \beta_{n-1}\right) \\ F \gamma_{n} F \beta_{n}=\nu F\left(\gamma_{n}^{\prime} l_{2 m-1} \ldots l_{1} \beta_{n}\right) & \end{array}\right.$
for some $\lambda, \mu, v \in k$.
Let J be the ideal in $k \Gamma_{\Lambda}$ generated by the images $\pi \theta_{z}$ under $\pi: k \Gamma \rightarrow k \Gamma_{\Lambda}$ of all modified mesh-relations with $z \notin \tau^{(2 m-1) \mathbb{Z}}(1, n-1)$ along with

$$
\pi\left(\gamma_{n-1} \beta_{n-1}\right)+\pi(\kappa l)-\pi\left(\gamma_{n-1}^{\prime} l_{2 m-1} \ldots l_{1} \beta_{n-1}\right)
$$

Notice that the associated graded category ($[1], 5.1$) of $k \Gamma_{\Lambda} / J$ is the mesh-category $k\left(\Gamma_{\Lambda}\right)$. In particular, we have

$$
\begin{aligned}
& \operatorname{dim}_{k} k \Gamma_{\Lambda} / J(\pi x, \pi y)=\operatorname{dim}_{k} k\left(\Gamma_{\Lambda}\right)(\pi x, \pi y) \\
& \quad=\sum_{\pi z=\pi y} \operatorname{dim}_{k} k(\Gamma)(x, z)=\operatorname{dim}_{k} \operatorname{Hom}_{\Lambda}(\pi x, \pi y)
\end{aligned}
$$

for any x and y in Γ.
Proposition: The category ind Λ is isomorphic to either $k\left(\Gamma_{\Lambda}\right)$ or $k \Gamma_{\Lambda} / J$.

Proof: It is enough to show that we can choose $\mu=v=0$ and either $\lambda=0$ or $\lambda=1$ in $\left({ }^{*}\right)$. Indeed, then the full k-linear functor $k \Gamma_{\Lambda} \rightarrow$ ind Λ

Fig. 9
induced by F factors through either $k\left(\Gamma_{\Lambda}\right)$ or $k \Gamma_{\Lambda} / J$. By the dimension formulas above, we obtain an isomorphism from $k\left(\Gamma_{\Lambda}\right)$ or $k \Gamma_{\Lambda} / J$ to ind Λ.

Let us get rid of μ and v. For any q with $2 m+1 \leq q \leq n-2$, we let $v_{q}:(0, q) \rightarrow(2 m, q-1)$ be the path composed from the only path $(0, q) \rightarrow(0, n-2)$, the path $l_{q-m} \ldots l_{0}:(0, n-2) \rightarrow(q-m+1, n-2)$, and the only path $(q-m+1, n-2) \rightarrow(2 m, q-1)$ (see Fig. 9).

Set $v=l_{2 m-1} \ldots l_{1}:(1, n-2) \rightarrow(2 m, n-2)$, and define

$$
\begin{aligned}
& F^{\prime} \beta_{q}= \begin{cases}F \beta_{q}-v F v_{q} & \text { if } 2 m+1 \leq q \leq n-2, \\
F \beta_{q} & \text { if } 2 \leq q \leq 2 m,\end{cases} \\
& F^{\prime} \beta_{n-1}=F \beta_{n-1}-v F\left(v \beta_{n-1}\right), \\
& F^{\prime} \beta_{n}=F \beta_{n}-v F\left(v \beta_{n}\right), \\
& F^{\prime} \kappa=F \kappa+\mu F\left(\gamma_{n-1}^{\prime} l_{2 m-1} \ldots l_{2}\left(\sigma^{-1} \gamma_{n-1}\right) \kappa\right),
\end{aligned}
$$

(see Fig. 8).

In order to check that

$$
F^{\prime} \beta_{q+1} F \alpha_{q+1}-F \gamma_{q} F^{\prime} \beta_{q}=0
$$

for $q=2, \ldots, n-3$, we have to show that

$$
F\left(v_{q+1} \alpha_{q+1}\right)=F\left(\tau^{-(2 m-1)} \gamma_{q} v_{q}\right), \text { for } q=2 m+1, \ldots, n-3 \text {, }
$$

and that

$$
F\left(v_{2 m+1} \alpha_{2 m+1}\right)=0
$$

Since $F \theta_{z}=0$ for all low vertices z, the value of F is constant on \mathscr{C} homotopy classes of low paths. Clearly, $v_{q+1} \alpha_{q+1}$ and $\tau^{-(2 m-1)} \gamma_{q} v_{q}$ are \mathscr{C}-homotopic, for $q=2 m+1, \ldots, n-3$ (see Fig. 9), and $v_{2 m+1} \alpha_{2 m+1}$ is \mathscr{C}-homotopic to $(0,2 m) \rightarrow(2 m-1,1) \rightarrow(2 m-1,2) \rightarrow(2 m, 1) \rightarrow(2 m, 2 m)$, which is \mathscr{C}-marginal (Fig. 6). A direct computation yields:

$$
\begin{aligned}
& F^{\prime} \beta_{n-1} F \alpha_{n-1}+F^{\prime} \beta_{n} F \alpha_{n}-F \gamma_{n-2} F^{\prime} \beta_{n-2}=0, \\
& F \gamma_{n} F^{\prime} \beta_{n}=0, \\
& F \gamma_{n-1} F^{\prime} \beta_{n-1}+F^{\prime} \kappa F l=(\lambda-v) F\left(\gamma_{n-1}^{\prime} v \beta_{n-1}\right),
\end{aligned}
$$

where for the last equation we use $\mathscr{R}^{8 m-2}(\pi(0, n-1), \pi(1, n-1))=0$ again.

It follows that we may assume $\mu=v=0$ in $\left(^{*}\right)$. If $\lambda=0$, we are done. Otherwise, choose $\lambda^{\prime} \in k$ with $\lambda^{\prime 2(2 m-1)}=\lambda$ and replace $F \alpha$ by $F^{\prime} \alpha=\lambda^{\prime} F \alpha$ for all arrows α. Then we still have $F^{\prime} \theta_{z}=0$ for all $z \notin \tau^{(2 m-1) z}(1, n-1)$. However,

$$
F^{\prime} \gamma_{n-1} F^{\prime} \beta_{n-1}+F^{\prime} \kappa F^{\prime} l=F^{\prime}\left(\gamma_{n-1}^{\prime} v \beta_{n-1}\right) .
$$

To summarize, we find a $\tau^{(2 m-1) z}$-invariant k-linear functor F : $k \Gamma \rightarrow$ ind Λ such that $F x=\pi x$ for all $x, F \alpha$ is irreducible for all $\alpha, F \theta_{z}$ $=0$ for all $z \notin \tau^{(2 m-1) \mathbb{Z}}(1, n-1)$, and either $F \theta_{(1, n-1)}=0$ or $F \theta_{(1, n-1)}$ $=F\left(\gamma_{n-1}^{\prime} v \beta_{n-1}\right)$. This finishes the proof of our proposition.
3.4 Assume that char $k \neq 2$. Suppose F does not induce a well-behaved $\tau^{(2 m-1) \mathbb{Z}}$-invariant functor $k(\Gamma) \rightarrow$ ind Λ; i.e., $F \theta_{(1, n-1)}=F\left(\gamma_{n-1}^{\prime} v \beta_{n-1}\right)$. Notice that F vanishes on all vectors in the ideal I_{s} of modified meshrelations which are linear combinations of stable paths. Our next step is to construct a $\tau^{(2 m-1) \mathbb{Z}}$-invariant k-linear functor $F_{1}: k \Gamma \rightarrow$ ind Λ such that $F_{1} x=\pi x$ for all $x, F_{1} \alpha-F \alpha \in \mathscr{R}^{4 m-1}$ for all α, and

$$
F_{1} \theta_{z} \in \mathscr{R}^{8 m-2}(\pi \tau z, \pi z)
$$

for all stable vertices z. In the following sections, we will modify F_{1} further in order to obtain a $\tau^{(2 m-1) \mathbb{Z}}$-invariant well-behaved functor.

We name the arrows in the meshes of Γ stopping at $(i+1, n-2)$, for $i \in \mathbb{Z}$, or $(i+1, n-1)$, for $i=s(2 m-1)$ and $s \in \mathbb{Z}$, as follows:

Set $v_{i}=l_{i+2 m-2} \ldots l_{i}$ and $w_{i}=l_{i+2 m-2} \ldots l_{i+1} h_{i}$ for each $i \in \mathbb{Z}$. For $1 \leq i \leq 2 m-1$, we define:

$$
\begin{aligned}
& F_{1} \delta_{i}= \begin{cases}F \delta_{i}-\frac{1}{2} F\left(\delta_{i+2 m-1} v_{i}\right)+\frac{1}{2} F\left(\delta_{i+2 m-1} w_{i}\right) \text { if } i \text { is odd, } \\
F \delta_{i}+\frac{1}{2} F\left(\delta_{i+2 m-1} v_{i}\right) & \text { if } i \text { is even },\end{cases} \\
& F_{1} \delta_{i}^{\prime}=F \delta_{i}^{\prime}+(-1)^{i} \frac{1}{2} F\left(v_{i+1} \delta_{i}^{\prime}\right),
\end{aligned}
$$

$$
\begin{aligned}
& F_{1} \varepsilon_{i}= \begin{cases}F \varepsilon_{i} & \text { if } i \text { is odd }, \\
F \varepsilon_{i}+\frac{1}{2}\left(\varepsilon_{i+2 m-1} w_{i}\right) & \text { if } i \text { is even },\end{cases} \\
& \mathrm{F}_{1} \varepsilon_{i}^{\prime}=F \varepsilon_{i}^{\prime}, \\
& F_{1} \zeta_{i}=F \zeta_{i}+(-1)^{i} \frac{1}{2} F\left(\zeta_{i+2 m-1} v_{i}\right), \\
& F_{1} \zeta_{i}^{\prime}=F \zeta_{i}^{\prime} .
\end{aligned}
$$

We set

$$
\begin{aligned}
& F_{1} \kappa_{1}=F \kappa_{1}+\frac{1}{2} F\left(\delta_{2 m} l_{2 m-1} \ldots l_{2} \delta_{1}^{\prime} \kappa_{1}\right), \\
& F_{1} l_{2 m-1}=F l_{2 m-1} .
\end{aligned}
$$

We extend F_{1} to all arrows $\delta_{i}, \delta_{i}^{\prime}, \varepsilon_{i}, \varepsilon_{i}^{\prime}, \zeta_{i}, \zeta_{i}^{\prime} ; l_{s(2 m-1)}, \kappa_{s(2 m-1)+1}$ by $\tau^{(2 m-1) \mathbb{Z}}$-periodicity. We have to check that

$$
F_{1} \theta_{(i+1, q)} \in \mathscr{R}^{8 m-2}(\pi(i, q), \pi(i+1, q))
$$

for all (i, q) with $1 \leq i \leq 2 m-1$ and $q \geq n-2$. Notice that we need not take products of "correction terms" in $\mathscr{R}^{4 m-1}$ into account.

The case $(i, q)=(2 m-1, n-1)$ and all combinations $q=n-2, n-1$, n and i even or odd for (i, q) have to be treated separately. Observe that, for $1 \leq i \leq 2 m-1,(i, n-1)$ is \mathscr{C}-congruent if and only if i is odd. This implies that, for $1 \leq i \leq 2 m-2$,

$$
\begin{aligned}
& F\left(h_{i+1} \delta_{i}^{\prime}\right)=0 \text { and hence } F\left(w_{i+1} \delta_{i}^{\prime}\right)=0 \text { if } i \text { is even, } \\
& F\left(h_{i+1} \varepsilon_{i}^{\prime}\right)=0 \text { and hence } F\left(w_{i+1} \varepsilon_{i}^{\prime}\right)=0 \text { if } i \text { is odd. }
\end{aligned}
$$

If we combine these two equations with the facts that F is $\tau^{(2 m-1) \mathbb{Z}_{-}}$ invariant, that $F \theta_{z}=0$ if $z \notin \tau^{(2 m-1) \mathbb{Z}}(1, n-1)$, and that $F \theta_{(1, n-1)}=$ $=F\left(\delta_{2 m} v_{1} \delta_{0}^{\prime}\right)$, a straightforward computation shows that $F_{1} \theta_{(i+1, q)}$ $\in \mathscr{R}^{8 m-2}$ for all high vertices (i, q) with $1 \leq i \leq 2 m-1$.

Let i be even and $1 \leq i \leq 2 m-1$. Then

$$
\begin{aligned}
& F_{1} \theta_{(i+1, n-2)}=F_{1}\left(\delta_{i}^{\prime} \delta_{i}+\varepsilon_{i}^{\prime} \varepsilon_{i}-\zeta_{i}^{\prime} \zeta_{i}\right) \\
& \quad \equiv \frac{1}{2} F\left(\delta_{i+2 m-1}^{\prime} \delta_{i+2 m-1}^{\prime} v_{i}+v_{i+1} \delta_{i}^{\prime} \delta_{i}\right. \\
& \left.\quad+\varepsilon_{i+2 m-1}^{\prime} \varepsilon_{i+2 m-1}^{\prime} w_{i}-\zeta_{i+2 m-1}^{\prime} \zeta_{i+2 m-1} v_{i}\right)
\end{aligned}
$$

modulo $\mathscr{R}^{8 m-2}$.
Since i is even, we have $\delta_{i}^{\prime} \delta_{i}=h_{i}^{\prime}, \delta_{i+2 m-1}^{\prime} \delta_{i+2 m-1}=h_{i+2 m-1}^{\prime}$, and
$\varepsilon_{i+2 m-1}^{\prime} \varepsilon_{i+2 m-1}=h_{i+2 m-1}$. We may replace
$h_{i+2 m-1}^{\prime}$ by $-h_{i+2 m-1}+l_{i+2 m-1}$ in the first summand and
h_{i}^{\prime} by $-h_{i}+l_{i} \quad$ in the second summand.

The third summand is \mathscr{C}-forbidden of type (v), since $\delta((i, n-2)$, $(i+2 m, n-2))=1$, so that we may replace it by

$$
v_{i+1} h_{i}+h_{i+2 m-1} v_{i}-v_{i+1} l_{i}
$$

(2.4). We obtain

$$
\begin{aligned}
& F_{1} \theta_{(i+1, n-2)} \equiv \frac{1}{2} F\left(-h_{i+2 m-1} v_{i}+l_{i+2 m-1} v_{i}-v_{i+1} h_{i}+v_{i+1} l_{i}\right. \\
& \left.\quad+v_{i+1} h_{i}+h_{i+2 m-1} v_{i}-v_{i+1} l_{i}-l_{i+2 m-1} v_{i}\right) \equiv 0 \text { modulo } \mathscr{R}^{8 m-2}
\end{aligned}
$$

If i is odd, we have

$$
\begin{aligned}
& F_{1} \theta_{(i+1, n-2)} \equiv \frac{1}{2} F\left(-\delta_{i+2 m-1}^{\prime} \delta_{i+2 m-1} v_{i}+\delta_{i+2 m-1}^{\prime} \delta_{i+2 m-1} w_{i}\right. \\
& \left.\quad-v_{i+1} \delta_{i}^{\prime} \delta_{i}+\zeta_{i+2 m-1}^{\prime} \zeta_{i+2 m-1} v_{i}\right) \equiv \frac{1}{2} F\left(-h_{i+2 m-1} v_{i}+h_{i+2 m-1} v_{i}\right. \\
& \left.\quad+v_{i+1} h_{i}-l_{i+2 m-1} v_{i}-v_{i+1} h_{i}+l_{i+2 m-1} v_{i}\right) \equiv 0 \text { modulo } \mathscr{R}^{8 m-2}
\end{aligned}
$$

because now $\delta_{i}^{\prime} \delta_{i}=h_{i}$ and $\delta_{i+2 m-1}^{\prime} \delta_{i+2 m-1}=h_{i+2 m-1}$.
Let us define F_{1} on the remaining arrows of Γ. For $\xi:(i, q) \rightarrow(i+1$, $q-1)$ with $1 \leq i \leq 2 m-1$ and $m+1 \leq q \leq n-3$, we set

$$
F_{1} \xi=F \xi+(-1)^{i} F v_{\xi}
$$

where $v_{\xi}:(i, q) \rightarrow(i+2 m, q-1)$ is the path composed from the only path $(i, q) \rightarrow(i, n-2)$, the path $l_{i+q-m} \ldots l_{i}:(i, n-2) \rightarrow(i+q-m+1, n-2)$, and the only path $(i+q-m+1, n-2) \rightarrow(i+2 m, q-1)$ (compare Fig. 9). We extend this definition to the $\tau^{(2 m-1) \mathbb{Z}}$-orbit of such a ξ by $\tau^{(2 m-1) \mathbb{Z}}$-periodicity, and we set $F_{1} \alpha=F \alpha$ for all remaining arrows of Γ. Consider a mesh

with $m \leq q \leq n-3$. If $q \geq m+1, v_{\xi^{\prime}} \eta^{\prime}$ is \mathscr{C}-homotopic to $\tau^{-(2 m-1)} \eta v_{\xi}$ (Fig. 9), because the second coordinates of all low points of \mathscr{C} are less than m. We claim that $v_{\xi^{\prime}} \eta^{\prime}$ is \mathscr{C}-marginal for $q=m$. Modulo $\tau^{(2 m-1) \mathbb{Z}}$, we may assume $2 \leq p+m \leq 2 m$ (see Fig. 6). If $p \leq 0, v_{\xi^{\prime}} \cdot \eta^{\prime}$ is \mathscr{C}-homotopic to the \mathscr{C}-marginal path $(p, m) \rightarrow(1, p+m-1) \rightarrow(1, m-1) \rightarrow(m-1,1)$ $\rightarrow(m-1,2) \rightarrow(m, 1) \rightarrow(m, p+2 m) \rightarrow(p+2 m, m) \quad$ (see Fig. 10). If $p \geq 1, \quad v_{\xi}, \eta^{\prime}$ is \mathscr{C}-homotopic to $(p, m) \rightarrow(m, p) \rightarrow(m, m) \rightarrow(2 m-1,1)$ $\rightarrow(2 m-1,2) \rightarrow(2 m, 1) \rightarrow(2 m, p+m) \rightarrow(p+2 m, m)$.

Fig. 10

We conclude that $F_{1} \theta_{z} \in \mathscr{R}^{8 m-2}$ for all stable z.
3.5 We construct a k-linear functor $F_{2}: k \Gamma \rightarrow$ ind Λ such that

$$
F_{2} \alpha-F_{1} \alpha \in \mathscr{R}^{8 m-3}(\pi x, \pi y)
$$

for every arrow $\alpha: x \rightarrow y$ of Γ, and such that $F_{2} \theta_{z}=0$ for all stable z. Compare [4], 2.2 and [1], 3.1.

Let $\kappa: \Gamma_{0} \rightarrow \mathbb{Z}$ be given by $\kappa(p, q)=2 p+\min (q, n-1)$ for stable vertices and $\kappa(i, j)^{*}=\kappa(i, j)+1$ for $(i, j) \in \mathscr{C}$. We set $F_{2} \alpha=F_{1} \alpha$ for all arrows $\alpha: x \rightarrow y$ with $\kappa(x)=0$ and for all $\alpha:(i, j) \rightarrow(i, j)^{*}$ with $\kappa(i, j) \geq 0$. Let z be stable with $\kappa(z)=s \geq 2$, and assume $F_{2} \alpha$ is defined for all arrows stopping at some y with $1 \leq \kappa(y)<s$, in such a way that $F \theta_{y}=0$ if y is stable. Consider the mesh

of Γ, and observe that $\kappa\left(y_{i}\right)=\kappa(z)-1$, so that $F_{2}\left(\sigma \alpha_{i}\right)$ is defined. We have

$$
\begin{aligned}
& \sum s\left(\alpha_{i}\left(\sigma \alpha_{i}\right)\right) F_{1} \alpha_{i} F_{2}\left(\sigma \alpha_{i}\right) \\
& \quad=F_{1} \theta_{z}+\sum_{i} s\left(\alpha_{i}\left(\sigma \alpha_{i}\right)\right) F_{1} \alpha_{i}\left(F_{2}\left(\sigma \alpha_{i}\right)-F_{1}\left(\sigma \alpha_{i}\right)\right) \in \mathscr{R}^{8 m-2}(\pi \tau z, \pi z)
\end{aligned}
$$

We find $F_{2} \alpha_{i}$ such that $F_{2} \theta_{z}=0$ by Lemma 3.7. In order to define $F_{2} \alpha$ for arrows $\alpha: x \rightarrow y$ with $\kappa(x)<0$, we use the dual arguments.
3.6 The functor F_{2} has all the desired properties, but it need not be $\tau^{(2 m-1) \mathbb{Z}}$-invariant. However, it satisfies

$$
F_{2}\left(\tau^{2 m-1} \alpha\right)-F_{2} \alpha \in \mathscr{R}^{8 m-3}(\pi x, \pi y)
$$

for every arrow $\alpha: x \rightarrow y$. Sending w to $F_{2} \tilde{w}$ yields a well-behaved functor $F_{2}: k(\Gamma) \rightarrow$ ind Λ. We will now define a k-linear $\tau^{(2 m-1) \mathbb{Z}}$-invariant functor $F_{3}: k \Gamma \rightarrow$ ind Λ having all the desired properties.

We set $F_{3} \alpha=F_{2} \alpha$ for all arrows $\alpha: x \rightarrow y$ in Γ for which the stable vertices in $\{x, y\}$ lie in $\{(p, q): 2-2 m \leq p \leq 0\}$, and we set $F_{3} \gamma_{q}=$ $=F_{3}\left(\tau^{2 m-1} \gamma_{q}\right)=F_{2}\left(\tau^{2 m-1} \gamma_{q}\right)$, for $q=2, \ldots, n, F_{3} \beta_{2}=F_{2} \beta_{2}$, and $F_{3} \kappa=$ $=F_{2} \kappa$ (see Fig. 8). By induction on q, we define $F_{3} \beta_{q}$ in such a way that

$$
F_{3} \beta_{q}-F_{2} \beta_{q} \in \mathscr{R}^{8 m-3}(\pi(0, q), \pi(1, q-1))
$$

for $q=3, \ldots, n$, and that $F_{3} \theta_{(1, q)}=0$, for $q=2, \ldots, n-2$. Assume $F_{3} \beta_{3}, \ldots, F_{3} \beta_{q-1}$ are already defined for some $q \leq n-2$. Then

$$
\mu=F_{2} \beta_{q} F_{3} \alpha_{q}-F_{3} \gamma_{q-1} F_{3} \beta_{q-1} \in \mathscr{R}^{8 m-2}(\pi(0, q-1), \pi(1, q-1)),
$$

and we can write

$$
\mu=\sum \lambda_{w} F_{2} \tilde{w}
$$

where $\lambda_{w} \in k$ and the $w:(0, q-1) \rightarrow(1+(2 m-1) s, q-1)$ are \mathscr{C}-essential of length $\geq 8 m-2$. Hence $s=2$, and we may assume that all the $w:(0$, $q-1) \rightarrow(4 m-1, q-1)$ begin with α_{q}, by Proposition 2.7(a). We obtain

$$
\mu=v F_{2} \tilde{\alpha}_{q}=v F_{3} \alpha_{q}
$$

for some $v \in \mathscr{R}^{8 m-3}(\pi(0, q), \pi(1, q-1))$, and we set $F_{3} \beta_{q}=F_{2} \beta_{q}-v$. In the same way, we define $F_{3} \beta_{n-1}$ and $F_{3} \beta_{n}$. By construction,

$$
F_{3} \theta_{(1, n-1)} \in \mathscr{R}^{8 m-2}(\pi(0, n-1), \pi(1, n-1))
$$

and

$$
F_{3} \theta_{(1, n)} \in \mathscr{R}^{8 m-2}(\pi(0, n), \pi(1, n)),
$$

which are zero by Proposition $2.7(\mathrm{~b})$. We extend F_{3} by $\tau^{(2 m-1) Z_{-}}$ periodicity.

This completes the proof of part (b) of the theorem.
3.7 Let A be a basic, connected, representation-finite k-algebra, let ind A be a category of specific representatives of the indecomposables, \mathscr{R} its radical, and Γ_{A} its quiver, the Auslander-Reiten quiver of A.

Lemma: Let z be a non-projective vertex of Γ_{A} and $\alpha_{i}: y_{i} \rightarrow z$, for $i=1, \ldots, s$, the arrows with head z. Given irreducible morphisms $f_{i}: \tau z \rightarrow y_{i}$ and $g_{i}: y_{i} \rightarrow z$ such that $\sum g_{i} f_{i} \in \mathscr{R}^{c+1}(\tau z, z)$, for some $c \geq 2$, there are morphisms $g_{i}^{\prime} \in \operatorname{Hom}_{A}\left(y_{i}, z\right)$ with $g_{i}^{\prime}-g_{i} \in \mathscr{R}\left(y_{i}, z\right)$ such that $\sum g_{i}^{\prime} f_{i}=0$.

Proof: Let $\pi: \tilde{\Gamma}_{A} \rightarrow \Gamma_{A}$ be the universal cover of Γ_{A} ([1], 1.3), and choose $z^{\prime} \in \pi^{-1} z$. Consider the mesh

of $\tilde{\Gamma}_{A}$, where $\pi y_{i}^{\prime}=y_{i}$. Choose $\kappa: \tilde{\Gamma}_{A} \rightarrow \mathbb{Z} A_{2}$ such that $\kappa\left(\tau z^{\prime}\right)=0([1], 1.6)$. There exists a well-behaved functor $F: k\left(\tilde{\Gamma}_{A}\right) \rightarrow$ ind A with $F\left(\overline{\sigma \alpha_{i}}\right)=f_{i}$, where $\overline{\sigma \alpha_{i}}$ is the canonical image of $\sigma \alpha_{i}$ in $k\left(\tilde{\Gamma}_{A}\right)$. Since F is a covering functor, we can write

$$
\sum_{i} g_{i} f_{i}=\sum_{w} \lambda_{w} F \bar{w}
$$

where $\lambda_{w} \in k$ and w ranges over paths from τz^{\prime} to some $x^{\prime} \in \pi^{-1} z$. We may assume that the length of any w is not less than $c+1$. Every w has the form $v\left(\sigma \alpha_{i}\right)$, for some i, so that we obtain

$$
\sum_{i} g_{i} f_{i}=\sum_{i} \mu_{i} F\left(\overline{\sigma \alpha_{i}}\right)=\sum_{i} \mu_{i} f_{i}
$$

for some $\mu_{i} \in \mathscr{R}^{c}\left(y_{i}, z\right)$. Choose $g_{i}^{\prime}=g_{i}-\mu_{i}$.

4. Proof of part (a) of the theorem

Let \mathscr{C} be a $\tau^{(2 m-1) \mathbb{Z}}$-stable configuration of $\mathbb{Z} D_{3 m}$ containing $(0, n-1)$, where $n=3 m$. Let $\Gamma=\left(\mathbb{Z} D_{3 m}\right)_{\mathscr{C}}$, and let $\pi: \Gamma \rightarrow \Delta=\Gamma / \tau^{(2 m-1) \mathbb{Z}}$ be the canonical map.
4.1 In 3.3, we defined an ideal J in the path-category $k \Delta$, and we showed that, for any algebra Λ with Auslander-Reiten quiver Δ, the category ind Λ is isomorphic to either $k \Delta / J$ or the mesh-category $k(\Delta)$. The following proposition implies that there actually exists an algebra Λ with ind $\Lambda \leadsto k \Delta / J$, or, in the terminology of [1], that $k \Delta / J$ is an Auslander-category. Indeed, $k(\Gamma)$ has this property by definition, and it is preserved under covering functors ([1], 3.5).

Proposition: There exists a $\tau^{2(2 m-1) \mathbb{Z}}$-invariant covering functor $F: k(\Gamma) \rightarrow k \Delta / J$.

Proof: Let $G: k \Gamma \rightarrow k \Delta / J$ be the composition of $\pi: k \Gamma \rightarrow k \Delta$ with the canonical functor $k \Delta \rightarrow k \Delta / J$. By definition, $G \theta_{z}=0$ for all modified mesh-relations θ_{z} with $x \notin \tau^{(2 m-1) \mathbb{Z}}(1, n-1)$. Therefore, G vanishes on all vectors in I_{s} which are linear combinations of stable paths.

In order to define F, we use the notations introduced in 3.4. We set

$$
\begin{aligned}
& F \kappa_{1}=G \kappa_{1}+G\left(\delta_{2 m} l_{2 m-1} \ldots l_{2} \delta_{1}^{\prime} \kappa_{1}\right), \\
& F \delta_{1}=G \delta_{1}-G\left(\delta_{2 m} v_{1}\right)+G\left(\delta_{2 m} w_{1}\right), \\
& F \zeta_{1}^{\prime}=G \zeta_{1}^{\prime}-G\left(v_{2} \zeta_{1}^{\prime}\right)+G\left(w_{2} \zeta_{1}^{\prime}\right), \\
& F \zeta_{i}=G \zeta_{i}-G\left(\zeta_{i+2 m-1} w_{i}\right), \text { for } i=2, \ldots, 2 m-1, \\
& F \zeta_{i}^{\prime}=G \zeta_{i}^{\prime}+G\left(w_{i+1} \zeta_{i}^{\prime}\right)+G\left(w_{i+2 m} v_{i+1} \zeta_{i}^{\prime}\right), \text { for } i=2, \ldots, 2 m-2, \\
& F \delta_{2 m-1}^{\prime}=G \delta_{2 m-1}^{\prime}-G\left(v_{2 m} \delta_{2 m-1}^{\prime}\right) .
\end{aligned}
$$

We extend this definition by $\tau^{2(2 m-1) \mathbb{Z}}$-periodicity to all arrows in the $\tau^{2(2 m-1)} \mathbb{Z}_{\text {-orbits }}$ of the ones for which F is already defined, and we let F coincide with G on the remaining $\delta_{i}, \delta_{i}^{\prime}, \varepsilon_{i}, \varepsilon_{i}^{\prime}, \zeta_{i}, \zeta_{i}^{\prime} ; l_{s(2 m-1)}, \kappa_{s(2 m-1)+1}$. In Fig. 11, the arrows on which F differs from G are drawn full, the other ones broken.

By definition $F \theta_{(i+1, q)}=G \theta_{(i+1, q)}$, which is zero, for all (i, q) with $i=0,1, \ldots, 2(2 m-1)-1$ and $q \geq n-2$ except $(0, n-1),(2 m-1, n-1)$, and (i,n-2) with $i=1, \ldots, 2 m-1$. Straightforward computations yield

Fig. 11
$F \theta_{(i+1, q)}=0$ in these cases, too, given that G vanishes on all stable paths whose length exceeds $2(2 n-3)$ as well as on the following vectors:

$$
\begin{aligned}
& \delta_{2 m}^{\prime} \delta_{2 m} w_{1}-\delta_{2 m}^{\prime} \delta_{2 m} v_{1}-v_{2} \delta_{1}^{\prime} \delta_{1}+v_{2} \zeta_{1}^{\prime} \zeta_{1}, \\
& \zeta_{i+2 m-1}^{\prime} \zeta_{i+2 m-1} w_{i}-w_{i+1} \zeta_{i}^{\prime} \zeta_{i}, \text { for } i=1, \ldots, 2 m-2, \\
& v_{i+2 m-1} v_{i}, \text { for any } i, \\
& w_{i+2 m} \zeta_{i+2 m-1}^{\prime} \zeta_{i+2 m-1} w_{i}-w_{i+2 m} \zeta_{i+2 m-1}^{\prime} \zeta_{i+2 m-1} v_{i}, \\
& \qquad \quad \text { for } i=1, \ldots, 2 m-2 .
\end{aligned}
$$

The first one of these vectors is $v-\pi^{\prime} v \in I_{s}$, where $v=h_{2 m} w_{1}$ and where π^{\prime} is the projection of 2.4. That the second one lies in I_{s} follows from the fact that $h_{i+1} l_{i}$ and $l_{i+1} h_{i}$ are \mathscr{C}-neighbors if i is not a multiple of $2 m-1$. For the third one, we use the following lemma. As a consequence, $v_{i+2 m} l_{i+2 m-1} w_{i}$ and $v_{i+2 m} l_{i+2 m-1} v_{i}$ lie in I_{s} for all i, and hence

$$
\begin{aligned}
& w_{i+2 m} l_{i+2 m-1} w_{i}-w_{i+2 m} l_{i+2 m-1} v_{i} \\
& \quad=v-\pi^{\prime} v+v_{i+2 m} l_{i+2 m-1} w_{i}-v_{i+2 m} l_{i+2 m-1} v_{i}
\end{aligned}
$$

does as well, for $i=1, \ldots, 2 m-2$, where $v=w_{i+2 m} l_{i+2 m-1} w_{i}$. Remember also that

$$
G\left(\kappa_{1} l_{0}+\delta_{1} \delta_{0}^{\prime}\right)=G\left(\delta_{2 m} v_{1} \delta_{0}^{\prime}\right)
$$

and that any \mathscr{C}-admissible path from $(0, n-1)$ to $(4 m-1, n-1)$ is \mathscr{C} marginal (2.7). Consider a mesh

For $i=2, \ldots, 2 m-2$, we have

$$
F\left(\zeta_{i+1} \zeta_{i}^{\prime}\right)-G\left(\eta \eta^{\prime}\right)=G\left(-\zeta_{i+4 m-1} w_{i+2 m} w_{i+1} \zeta_{i}^{\prime}+\zeta_{i+4 m-1} w_{i+2 m} v_{i+1} \zeta_{i}^{\prime}\right)
$$

which is zero, since

$$
\begin{aligned}
w_{i+2 m} w_{i+1} & -w_{i+2 m} v_{i+1} \\
& =w_{i+2 m} w_{i+1}-\pi^{\prime}\left(w_{i+2 m} w_{i+1}\right)+v_{i+2 m} w_{i+1}-v_{i+2 m} v_{i+1}
\end{aligned}
$$

lies in I_{s} by 2.4 and the following lemma. For $i=1$, we obtain

$$
F\left(\zeta_{2} \zeta_{1}^{\prime}\right)-G\left(\eta \eta^{\prime}\right)=-G\left(\zeta_{2 m+1} v_{2} \zeta_{1}^{\prime}\right) .
$$

We set

$$
F \xi=G \xi-G u_{\xi}
$$

for all arrows $\xi:(2, q) \rightarrow(3, q-1)$ with $2 m-1 \leq q \leq n-3$, where u_{ξ} is the path composed from $(2, q) \rightarrow(2, n-2), l_{q-m+2} \ldots l_{2}:(2, n-2) \rightarrow$ $(q-m+3, n-2)$, and the path $(q-m+3, n-2) \rightarrow(2 m+2, q-1)$ (compare Fig. 9). We let $F \alpha=F \xi$ for all arrows α in the $\tau^{2(2 m-1) Z_{-}}$ orbit of such a ξ, and $F \alpha=G \alpha$ for all remaining arrows of Γ. It is easy to check that $F \theta_{z}=0$ for all stable z. Notice that the path

$$
\begin{aligned}
(2,2 m-2) \rightarrow(2, n-2) & \xrightarrow{l_{2}}(3, n-2) \ldots \\
& \ldots \xrightarrow{l_{m+1}}(m+2, n-2) \rightarrow(2 m+2,2 m-2)
\end{aligned}
$$

is \mathscr{C}-marginal (Fig. 6, compare 3.4).
Therefore, F induces a k-linear functor $F: k(\Gamma) \rightarrow k \Delta / J$. For any two vertices x and y of Γ, the two maps

$$
\begin{aligned}
& \underset{\pi z=\pi y}{\oplus} k(\Gamma)(x, z) \rightarrow k \Delta / J(\pi x, \pi y) \\
& { }_{\pi z}^{\oplus}=\pi x
\end{aligned}
$$

given by F are surjective. Comparing dimensions (3.3), we see that they are bijective, and hence F is a covering functor.

Lemma: For any $p \in \mathbb{Z}, l_{p+4 m-4} \ldots l_{p}:(p, n-2) \rightarrow(p+4 m-3, n-2)$ is \mathscr{C}-marginal.

Proof: Modulo $\tau^{(2 m-1) \mathbb{Z}}$, we may assume $2 \leq p+n-2 \leq 2 m$ (see Fig. 6). If $p+n-2 \leq m$, the subpath $l_{m-1} \ldots l_{p}$ is \mathscr{C}-homotopic to (p, $n-2) \rightarrow(1, p+n-3) \rightarrow(1, m-1) \rightarrow(m-1,1) \rightarrow(m-1,2) \rightarrow(m, 1) \rightarrow$ ($m, n-2$), which is \mathscr{C}-marginal. In case $m+1 \leq p+n-2$, the subpath
$l_{2 m-1} \ldots l_{p}$ is \mathscr{C}-homotopic to the \mathscr{C}-marginal path $(p, n-2) \rightarrow(m$, $p+n-2-m) \rightarrow(m, m) \rightarrow(2 m-1,1) \rightarrow(2 m-1,2) \rightarrow(2 m, 1) \rightarrow(2 m, n-2)$.
4.2 Let Λ^{\prime} be the full subcategory of $k \Delta / J$ whose objects are the projective vertices of Δ. We claim that $k \Delta / J$ is isomorphic to ind Λ^{\prime} and that Δ is the Auslander-Reiten quiver of Λ^{\prime}. Recall from [1], 2.4 that an object x of a locally finite-dimensional category M is top-torsionfree if there exists a non-zero morphism $\mu \in M(x, y)$ for some y such that $\mu \nu=0$ for each non-invertible morphism ν with range x. The toptorsionfree objects of $k(\Gamma)$ are precisely the projective vertices of Γ ([1], 2). Let $F: k(\Gamma) \rightarrow k \Delta / J$ be the covering functor constructed in 4.1. A vertex x of Γ is top-torsionfree in $k(\Gamma)$ or projective in Γ if and only if $F x=\pi x$ is top-torsionfree in $k \Delta / J$ or projective in Δ, respectively. Thus the top-torsionfree objects of $k \Delta / J$ are precisely the projective vertices of Δ, and hence ind Λ^{\prime} is isomorphic to $k \Delta / J([1], 2.4)$. Therefore, the underlying quivers of Δ and the Auslander-Reiten quiver $\Gamma_{\Lambda^{\prime}}$ of Λ^{\prime} are isomorphic, and it suffices to show that the Auslander-Reiten translation τ_{A} on $\Gamma_{A^{\prime}}$ coincides with the translation τ of Δ. For each nonprojective vertex x of Γ, the simple representation k_{x} of $k(\Gamma)$ has a minimal projective resolution

$$
0 \rightarrow k(\Gamma)(?, \tau x) \rightarrow \oplus k(\Gamma)\left(?, y_{i}\right) \rightarrow k(\Gamma)(?, x) \rightarrow k_{x} \rightarrow 0
$$

where y_{i} ranges over the tails of the arrows with head $x([1], 2.6)$. Since F is a covering functor, we obtain a minimal projective resolution

$$
0 \rightarrow k \Delta / J(?, \pi \tau x) \rightarrow \oplus k \Delta / J\left(?, \pi y_{i}\right) \rightarrow k \Delta / J(?, \pi x) \rightarrow k_{\pi x} \rightarrow 0
$$

for the simple representation $k_{\pi x}$ of $k \Delta / J$, which implies that $\tau=\tau_{A}$ for all vertices of Δ ([1], 2 and 3).

In chapter 3 we showed that, in case char $k \neq 2, \Lambda^{\prime}$ is isomorphic to the standard category Λ with Auslander-Reiten quiver Δ; i.e., the full subcategory of $k(\Delta)$ whose objects are the projective vertices of Δ. In order to complete the proof of the theorem, it is enough to show that, in case char $k=2, k(\Delta)$ and $k \Delta / J$ or equivalently Λ and Λ^{\prime} are not isomorphic. This is a consequence of the following proposition if we set $s=1$.
4.3 Assume char $k=2$.

Proposition: There exists a covering functor

$$
H: k\left(\Gamma / \tau^{s(2 m-1) \mathbb{Z}}\right) \rightarrow k \Delta / J
$$

if and only if s is even.

This proposition expresses that a covering $\Gamma_{A} \rightarrow \Gamma_{B}$ between the Auslander-Reiten quivers of two representation-finite categories A and B need not be induced by a covering functor from ind A to ind B.

Proof: By 4.1, there exists such a covering functor for $s=2$ and hence for all even numbers s. Conversely, assume that there is such a covering functor, or, equivalently, that there exists a $\tau^{s(2 m-1) \mathbb{Z}}$-invariant covering functor $H^{\prime}: k(\Gamma) \rightarrow k \Delta / J$ for some s. Then H^{\prime} maps projective vertices of Γ to projective vertices of Δ, and, if x is not projective, we have $H^{\prime}(\tau x)=\tau H^{\prime}(x)$. Thus the covering $\Gamma \rightarrow \Delta$ of translation-quivers induced by $H^{\prime}([1], 3.3)$ coincides with π.

Let $(n-1, q)$, with $q \leq m-1$, be the unique point of \mathscr{C} with first coordinate $n-1$ (Fig. 5). Let \tilde{A} be the full subcategory of $k(\Gamma)$ whose objects are the projective vertices $(t(2 m-1), n-1)^{*}$ and $(n-1+t(2 m-1), q)^{*}$ of Γ, for $t \in \mathbb{Z}$, and let A^{\prime} be the full subcategory of $k \Delta / J$ whose objects are the projective vertices $\pi(0, n-1)^{*}$ and $\pi(n-1, q)^{*}$ of Δ. Then H^{\prime} induces a $\tau^{s(2 m-1) \mathbb{Z}}$-invariant covering functor $G^{\prime}: \tilde{A} \rightarrow A^{\prime}$. Using the description of \tilde{A} and A^{\prime} by quivers and relations (chapter 5), we obtain a covering functor $G: k Q / I \rightarrow k Q^{\prime} / I^{\prime}$, where Q and Q^{\prime} are the following quivers:

Q^{\prime}

The ideal I is generated by

$$
\gamma_{2 i+2} \gamma_{2 i}+\beta_{2 i+1} \beta_{2 i} \text { and } \beta_{2 i+4} \beta_{2 i+1}
$$

for $i=0, \ldots, s-1$, where we set $\gamma_{2 s}=\gamma_{0}, \beta_{2 s}=\beta_{0}$, and $\beta_{2 s+2}=\beta_{2}$. The ideal I^{\prime} is generated by

$$
c^{2}+b_{1} b_{0}, b_{0} b_{1}+b_{0} c b_{1}, \text { and } c^{4}
$$

Observe that

$$
c^{2} b_{1} \equiv b_{1} b_{0} b_{1} \equiv b_{1} b_{0} c b_{1} \equiv c^{3} b_{1} \equiv c^{4} b_{1} \equiv 0 \text { modulo } I^{\prime}
$$

and similarly $b_{0} c^{2} \in I^{\prime}$. Thus the residue classes of $c, c^{2}, c^{3} ; b_{0}, b_{0} c$ and $b_{1}, c b_{1}$ modulo I^{\prime} form k-bases for the vector spaces of non-invertible morphisms in $k Q^{\prime} / I^{\prime}(0,0) ; k Q^{\prime} / I^{\prime}(0,1)$, and $k Q^{\prime} / I^{\prime}(1,0)$, respectively. Therefore, we can write

$$
\begin{aligned}
& G \gamma_{2 i}=\lambda_{2 i, 1} c+\lambda_{2 i, 2} c^{2}+\lambda_{2 i, 3} c^{3} \\
& G \beta_{2 i}=\mu_{2 i, 1} b_{0}+\mu_{2 i, 2} b_{0} c \\
& G \beta_{2 i+1}=\mu_{2 i+1,1} b_{1}+\mu_{2 i+1,2} c b_{1}
\end{aligned}
$$

for some scalars $\lambda_{2 i, 1} \neq 0, \lambda_{2 i, 2}, \lambda_{2 i, 3}, \mu_{j, 1} \neq 0$, and $\mu_{j, 2}$. Since G maps I into I^{\prime}, we obtain the following relations:

$$
\begin{aligned}
& \lambda_{2 i+2,1} \lambda_{2 i, 1}=\mu_{2 i+1,1} \mu_{2 i, 1}, \\
& \lambda_{2 i+2,1} \lambda_{2 i, 2}+\lambda_{2 i+2,2} \lambda_{2 i, 1}=\mu_{2 i+1,1} \mu_{2 i, 2}+\mu_{2 i+1,2} \mu_{2 i, 1}, \\
& \mu_{2 i+4,1} \mu_{2 i+1,1}+\mu_{2 i+4,1} \mu_{2 i+1,2}+\mu_{2 i+4,2} \mu_{2 i+1,1}=0,
\end{aligned}
$$

for $i=0, \ldots, s-1$. This implies that

$$
\begin{aligned}
0 & =2 \sum_{i=0}^{s-1} \frac{\lambda_{2 i, 2}}{\lambda_{2 i, 1}}=\sum_{i=0}^{s-1}\left(\frac{\lambda_{2 i, 2}}{\lambda_{2 i, 1}}+\frac{\lambda_{2 i+2,2}}{\lambda_{2 i+2,1}}\right)=\sum_{i=0}^{s-1}\left(\frac{\mu_{2 i, 2}}{\mu_{2 i, 1}}+\frac{\mu_{2 i+1,2}}{\mu_{2 i+1,1}}\right) \\
& =\sum_{i=0}^{s-1}\left(\frac{\mu_{2 i+4,2}}{\mu_{2 i+4,1}}+\frac{\mu_{2 i+1,2}}{\mu_{2 i+1,1}}\right)=\sum_{i=0}^{s-1} 1=s \cdot 1_{k} .
\end{aligned}
$$

Hence s is even.

5. Quivers and relations

5.1 Let \mathscr{C} be a ϕ-unstable configuration of $\mathbb{Z} D_{n}$ containing $(0, n-1)$ for $n \geq 5$. Our goal in this chapter is to describe the full subcategory $\tilde{\Lambda}=\tilde{\Lambda}_{\mathscr{C}}$ of $k\left(\left(\mathbb{Z} D_{n}\right)_{\mathscr{C}}\right)$ whose objects are the projective vertices of $\left(\mathbb{Z} D_{n}\right)_{\mathscr{C}}$ by quiver and relations ([1], 2.1). We use the notations $n_{1}, n_{2}, n_{3}, \mathscr{D}_{1}^{+}$, $\mathscr{D}_{2}^{+}, \mathscr{D}_{3}^{+}, \chi_{1}, \chi_{2}, \chi_{3}$ introduced in 2 . First we extend

$$
\chi_{k}:\left(\mathbb{Z} A_{n_{k}+1}\right)_{0} \rightarrow\left(\mathbb{Z} D_{n}\right)_{0}
$$

to a k-linear functor

$$
\chi_{k}: k\left(\left(\mathbb{Z} A_{n_{k}+1}\right)_{\mathscr{D}_{k}^{+}}\right) \rightarrow k\left(\left(\mathbb{Z} D_{n}\right)_{\mathscr{G}}\right)
$$

for $k=1,2,3$. We carry the construction out for $k=1 ; \chi_{2}$ and χ_{3} are defined in an analogous way.

First we extend χ_{1} to a k-linear functor $\chi_{1}: k \mathbb{Z} A_{n_{1}+1} \rightarrow k \mathbb{Z} D_{n}$ between the path categories associated with $\mathbb{Z} A_{n_{1}+1}$ and $\mathbb{Z} D_{n}$. We send an arrow $\alpha:(p, q) \rightarrow(p, q+1)$ with $q \leq n_{1}$ and $p+q \equiv 0$ modulo $n_{1}+1$ to the only path from $\chi_{1}(p, q)$ to $\chi_{1}(p, q+1)$ containing a \mathscr{C}-congruent crenel path, and we do the same for an arrow $\alpha:(p, q) \rightarrow(p+1, q-1)$ with $q \geq 2$ and $p+q \equiv-1$ modulo $n_{1}+1$. Fig. 12 exemplifies this definition. For all other arrows $\alpha: x \rightarrow y$, there exists an arrow $\beta: \chi_{1} x \rightarrow \chi_{1} y$, and we set $\chi_{1} \alpha=\beta$. On paths, χ_{1} is defined by composition.

Fig. 12
Next we extend χ_{1} to a k-linear functor

$$
\chi_{1}: k \Gamma_{1} \rightarrow k \Gamma
$$

where $\Gamma_{1}=\left(\mathbb{Z} A_{n_{1}+1}\right)_{\mathscr{D}_{1}^{+}}$and $\Gamma=\left(\mathbb{Z} D_{n}\right)_{\mathscr{G}}$. If $(i, j) \in \mathscr{D}_{1}^{+}$lies in $\omega_{n_{1}} \mathscr{D}_{1}, \chi_{1}$ maps the mesh of $\mathbb{Z} A_{n_{1}+1}$ starting at (i, j) bijectively onto the mesh of $\mathbb{Z} D_{n}$ starting at $\chi_{1}(i, j) \in \mathscr{C}$, so that we can send $(i, j)^{*}$ to $\left(\chi_{1}(i, j)\right)^{*}$ and the arrows with head and tail $(i, j)^{*}$ to the arrows with head and tail $\chi_{1}(i, j)^{*}$, respectively. Let

$$
(p, 1) \xrightarrow{\iota}(p, 1)^{*} \xrightarrow{\kappa}(p+1,1)
$$

belong to a mesh of Γ_{1} starting at some point in $\tau^{\left(n_{1}+1\right) \mathbb{Z}}\left(n_{1}, 1\right)$ and set $\chi_{1}(p, 1)=\left(p^{\prime}, 1\right)$. Note that $\chi_{1}(p+1,1)=\left(p^{\prime}+2 n-3-n_{1}, 1\right)$, and that p^{\prime} is the first coordinate of a high point (p^{\prime}, j) of \mathscr{C} (Fig. 5). Let

$$
\left(p^{\prime}, j\right) \xrightarrow{\iota^{\prime}}\left(p^{\prime}, j\right)^{*} \xrightarrow{\kappa^{\prime}}\left(p^{\prime}+1, j\right)
$$

be part of the mesh of Γ starting at $\left(p^{\prime}, j\right)$. We set

$$
\begin{aligned}
& \chi_{1}(p, 1)^{*}=\left(p^{\prime}, j\right)^{*}, \\
& \chi_{1} \imath=\imath^{\prime} w_{1}, \\
& \chi_{1} \kappa=w_{2} h_{p^{\prime}+n-n_{1}-1} l_{p^{\prime}+n-n_{1}-2} \ldots l_{p^{\prime}+2} \alpha \kappa^{\prime},
\end{aligned}
$$

where w_{1} and w_{2} are the only paths in Γ from $\left(p^{\prime}, 1\right)$ to $\left(p^{\prime}, j\right)$ and from $\left(p^{\prime}+n-n_{1}, n-2\right)$ to ($\left.p^{\prime}+2 n-3-n_{1}, 1\right)$, respectively, and $\alpha:\left(p^{\prime}+1\right.$, $j) \rightarrow\left(p^{\prime}+2, n-2\right)$ is an arrow (see Fig. 13).

Fig. 13

We define the sign $s^{\prime}(\alpha)$ of a stable arrow α of Γ_{1} to be +1 , unless α has the form $\alpha:(i, j) \rightarrow(i, j+1)$, in which case $s^{\prime}(\alpha)=(-1)^{j}$ (compare [5],4.2). We set $s^{\prime}(\kappa)=1$ for all arrows κ with projective tail, and we require $s^{\prime}\left(\tau^{n_{1}+1} \imath\right)=s^{\prime}(\imath)$ if \imath is an arrow with projective head. For $\imath:(i, j) \rightarrow(i, j)^{*}$ with $0 \leq i \leq n_{1}$, we set

$$
s^{\prime}(l)= \begin{cases}(-1)^{n} & \text { if } i+j<n_{1}+1 \\ -1 & \text { if } i+j=n_{1}+1 \\ (-1)^{n+n_{1}+1} & \text { if } i+j>n_{1}+1\end{cases}
$$

Let $\tilde{w}=s^{\prime}(w) \bar{w}$, where $s^{\prime}(w)=s^{\prime}\left(\alpha_{r}\right) \ldots s^{\prime}\left(\alpha_{1}\right)$ for $w=\alpha_{r} \ldots \alpha_{1}$ and where \bar{w} is the canonical image of w in $k\left(\Gamma_{1}\right)$. The kernel of the functor $k \Gamma_{1} \rightarrow k\left(\Gamma_{1}\right)$ obtained by sending w to \tilde{w} is the ideal J of $k \Gamma_{1}$ generated by the modified mesh-relations

$$
\theta_{z}=\sum s^{\prime}(\alpha(\sigma \alpha)) \alpha(\sigma \alpha),
$$

where z is a stable vertex and α ranges over all arrows with head z. By [5], 4.2, J is generated by the θ_{z} for $\tau z \in \mathscr{D}_{1}^{+}$, differences of \mathscr{D}_{1}^{+}-neighbors
of length 2 , and \mathscr{D}_{1}^{+}-marginal paths of length 2 . We defined the sign functions s^{\prime} and $s(2.3)$ in such a way that $\chi_{1} \theta_{z}$ lies in I_{s} for all z with $\tau z \in \mathscr{D}_{1}^{+}$. In addition, χ_{1} maps \mathscr{D}_{1}^{+}-neighbors of length 2 to \mathscr{C}-admissible \mathscr{C}-homotopic paths and \mathscr{D}_{1}^{+}-marginal paths of length 2 to \mathscr{C}-admissible \mathscr{C}-marginal paths in Γ (see Fig. 12). Hence we obtain an induced functor $\chi_{1}: k\left(\Gamma_{1}\right) \rightarrow(\Gamma)$.

Remark: This functor χ_{1} is actually fully faithful. However, we will not prove this, since we only need the weaker statement of Corollary 5.2.
5.2 Lemma: Let $w:(x, y) \rightarrow(p, q)$ be \mathscr{C}-essential.
(a) If $n-1 \leq x<x+y \leq n+n_{1}$, then

$$
\begin{aligned}
& n-1 \leq p \leq n+n_{1}-1 \text { or } \\
& 2 n-2 \leq p+\min (q, n-1) \text { and } p \leq 2 n-3+n_{1} \text { or } \\
& 3 n-3 \leq p+\min (q, n-1) \leq 3 n-4+n_{1} .
\end{aligned}
$$

(b) If $1 \leq x<x+y \leq n_{1}+1$, then
$1 \leq p \leq n_{1}$ or
$n \leq p+\min (q, n-1) \leq n+n_{1}-1$ or
$n \leq p \leq n+n_{1}-2$ or
$2 n-1 \leq p+\min (q, n-1) \leq 2 n-3+n_{1}$.

See Fig. 14. Analogous results hold for \mathscr{C}-essential paths starting in the images of χ_{2} and χ_{3} : Replace \mathscr{C} by $\tau^{n_{1}+n_{3}+1} \phi^{n_{1}+n_{3} \mathscr{C}}$ and $\tau^{n-1+n_{1}} \phi^{n-1+n_{1}} \mathscr{C}$, respectively.

Fig. 14

Proof: We only prove (b). The proof of (a) uses the same methods, and it is somewhat simpler.

If w is low, we have $1 \leq p \leq n_{1}$, since any path containing a vertex $\left(n_{1}+1, j\right)$ is \mathscr{C}-homotopic to a path containing $\left(n_{1}, 1\right) \rightarrow\left(n_{1}, 2\right) \rightarrow$ $\left(n_{1}+1,1\right)$, and $\left(n_{1}, 1\right) \notin \mathscr{C}$. Next suppose $w=w_{2} h_{p_{1}} w_{1}$, where both w_{1} and w_{2} are low. We see that $1 \leq p_{1} \leq n_{1}^{\prime}$, and $p \leq n+n_{1}-1$ holds for any low \mathscr{C}-essential path $\left(p_{1}+1, n-2\right) \rightarrow(p, q)$. We are done if $n \leq p$ $+\min (q, n-1) \leq n+n_{1}-1$. Hence we can assume $n+n_{1} \leq p$ $+\min (q, n-1)$ and $n_{1}+1 \leq p$, since $\delta\left(\left(p_{1}, n-1\right),\left(n_{1}+1, n-1\right)\right)=0$. We claim that w_{2} cannot be free. If it were, w_{2} would be \mathscr{C}-homotopic to $w_{2}^{\prime} l_{n_{1}+1} \ldots l_{p_{1}+1}$ and w to $w_{2}^{\prime} h_{n_{1}+1} l_{n_{1}} \ldots l_{p_{1}} w_{1}$, which is \mathscr{C}-marginal. Since any path $\left(p_{1}+1, n-2\right) \rightarrow(n-1, q)$ is free, we obtain $n \leq p \leq n+n_{1}-1$, and we only have to exclude the possibility $p=n+n_{1}-1$. But any low path $\left(p_{1}+1, n-2\right) \rightarrow\left(n+n_{1}-1, q\right)$ is \mathscr{C}-homotopic to a path containing a \mathscr{C}-essential subpath $\left(n-1, p_{1}\right) \rightarrow\left(n+n_{1}-1,1\right)$, which is free by Lemma 2.6. Finally, let $w=w_{3} h_{p_{2}} w_{2} h_{p_{1}} w_{1}$, where w_{1}, w_{2}, and w_{3} are low. Examining the subpath $w_{2} h_{p_{1}} w_{1}$, we obtain $1 \leq p_{1} \leq n_{1}$ and either $1 \leq p_{2} \leq n_{1}$ or $n \leq p_{2} \leq n+n_{1}-2$. The first possibility yields a \mathscr{C}-forbidden path $h_{p_{2}} w_{2} h_{p_{1}}$, so that $n \leq p_{2} \leq n+n_{1}-2$. For any \mathscr{C}-essential low path $w_{3}:\left(p_{2}+1, n-2\right) \rightarrow(p, q)$, we have $2 n-1 \leq p+\min (q, n-1)$ and $p \leq 2 n-3+n_{1}$, and it suffices to exclude the possibility p $+\min (q, n-1)=2 n-2+n_{1}$. As before, w_{3} must not be free. Hence we may assume that $q \leq n_{1}$. By [1], 2.8 , there is a path $v:(p, q) \rightarrow(i, j)^{*}$ for some $(i, j) \in \mathscr{C}$ such that $v w$ does not lie in I_{s}. Since $2 n-3<p,(i, j) \neq$ $(2 n-3, n-1)$, and thus $2 i+\min (j, n-1) \geq 2\left(2 n-2+n_{1}\right)+1$; i.e., (i, j) lies "to the right" of the "vertical line" through $\left(2 n-2+n_{1}, 1\right)$ Since the length of any \mathscr{C}-essential path does not exceed $2(2 n-3)$, we obtain on the other hand that $2 i+\min (j, n-1) \leq 2 x+y+2(2 n-3) \leq 2 n_{1}+1$ $+2(2 n-3)$, which is impossible. Clearly, $w_{3} h_{p_{2}} w_{2} h_{p_{1}} w_{1}$ cannot stop at a high vertex, and hence w has at most two crenels.

Set $\Gamma_{k}=\left(\mathbb{Z} A_{n_{k}+1}\right)_{\mathscr{D}_{k}^{+}}$, for $k=1,2,3$.
Corollary: For any two stable vertices z and z^{\prime} of Γ_{k}, χ_{k} induces a surjection

$$
k\left(\Gamma_{k}\right)\left(z, z^{\prime}\right) \rightarrow k(\Gamma)\left(\chi_{k}(z), \chi_{k}\left(z^{\prime}\right)\right) .
$$

Proof: We give a proof for $k=1$. It is enough to show that any \mathscr{C} essential path $w:(x, y) \rightarrow(p, q)$ is \mathscr{C}-homotopic to a path $\chi_{1} v$ for some $v: z \rightarrow z^{\prime}$, where $(x, y)=\chi_{1}(z)$ and $(p, q)=\chi_{1}\left(z^{\prime}\right)$. Translating z and z^{\prime} by $\tau^{s\left(n_{1}+1\right)}$ and $(x, y),(p, q)$, and w by $\tau^{s(2 n-3)}$ for a suitable s, we may assume that either $n-1 \leq x<x+y \leq n+n_{1}$ or $1 \leq x<x+y \leq n_{1}+1$.

Clearly $w=\chi_{1} v$ if (p, q) lies in the same "connected component" of the image of χ_{1} as (x, y), that is, if (p, q) satisfies the same inequalities. Therefore it suffices to consider \mathscr{C}-essential paths $w:(x, y) \rightarrow(p, q)$ for which (x, y) and (p, q) are the only vertices in the image of χ_{1}.

Assume $x+y=n+n_{1}, y \leq n_{1}+1$ and $p=2 n-2, q \leq n_{1}$ (Fig. 14), and let $w=w_{2} h_{p_{1}} w_{1}$. Then $n-1 \leq p_{1} \leq n+n_{1}-1$, and we may exclude $p_{1}=n-1$, since otherwise w_{2} is \mathscr{C}-marginal. Replace w_{1} by the path $w_{1}^{\prime}:(x, y) \rightarrow\left(p_{1}, n+n_{1}-p_{1}\right) \rightarrow\left(p_{1}, n-2\right)$ and w_{2} by $w_{2}^{\prime}:\left(p_{1}+1\right.$, $n-2) \rightarrow\left(2 n-2, p_{1}+1-n\right) \rightarrow(p, q)$. The path $w^{\prime}=w_{2}^{\prime} h_{p_{1}} w_{1}^{\prime}$ is \mathscr{C}-homotopic to w, and $w^{\prime}=\chi_{1} v$, where v is the path $\left(n_{1}+1-y, y\right) \rightarrow$ $\left(1+p_{1}-n, n+n_{1}-p_{1}\right) \rightarrow\left(1+p_{1}-n, n+n_{1}-p_{1}+1\right) \rightarrow\left(q, n_{1}+2-q\right)$ in Γ_{1}.

In case $x+y=n_{1}+1, y \leq n_{1}$ and $p=n-1, q \leq n_{1}+1$, the argument is analogous. The last possibility is that $x+y=n+n_{1}, y \leq n_{1}+1$ and $p=3 n-4, \quad q \leq n_{1}+1$ and that $w=w_{3} h_{p_{2}} w_{2} h_{p_{1}} w_{1}$, where $n \leq p_{1} \leq n+n_{1}-1$ and $2 n-2 \leq p_{2} \leq 2 n-3+n_{1}$. Then w_{2} is \mathscr{C}-homotopic to $\left(p_{1}+1, n-2\right) \rightarrow\left(2 n-2, p_{1}+1-n\right) \rightarrow\left(2 n-2, n_{1}\right) \rightarrow\left(p_{2}\right.$, $\left.2 n-2+n_{1}-p_{2}\right) \rightarrow\left(p_{2}, n-2\right)$, which reduces the problem to the cases already treated.
5.3 Lemma: Let $w:(1, n-1) \rightarrow(p, q)$ be \mathscr{C}-essential. Then we have either

$$
\begin{aligned}
n & \leq p+\min (q, n-1) \text { and } p \leq n-1+n_{1} \text { or } \\
n+n_{1}+n_{3}+1 & \leq p+\min (q, n-1) \text { and } p \leq 2 n-3 .
\end{aligned}
$$

See Fig. 15. Again, analogous results hold for \mathscr{C}-essential paths starting in $\tau^{-1}(i, j)$, where (i, j) is any high point of \mathscr{C}.

Fig. 15
Proof: If w is low, we must have $n \leq p+\min (q, n-1)$ and $p \leq n-1$ $+n_{1}$. Assume $w=w_{2} h_{p_{1}} w_{1}$, where w_{1} and w_{2} are low. We claim that w_{1} is free. If not, it is \mathscr{C}-homotopic to a path $(1, n-1) \rightarrow(n-1,1) \rightarrow\left(p_{1}\right.$, $\left.n+n_{1}-p_{1}\right) \rightarrow\left(p_{1}, n-2\right)$, which is free by Lemma 2.6, a contradiction.

Since w_{1} is \mathscr{C}-admissible, we see that $n_{1}+n_{3}+2 \leq p_{1}$, and we may assume $w_{1}=l_{p_{1}-1} \ldots l_{2} \alpha$, where α is the arrow $(1, n-1) \rightarrow(2, n-2)$. Then $h_{p_{1}} w_{1}$ is \mathscr{C}-homotopic to $l_{p_{1}} \ldots l_{n_{1}+n_{3}+3} h_{n_{1}+n_{3}+2} l_{n_{1}+n_{3}+1} \ldots l_{2} \alpha$, so that we may assume $p_{1}=n_{1}+n_{3}+2$. For any low \mathscr{C}-essential path $w_{2}:\left(n_{1}+n_{3}+3, n-2\right) \rightarrow(p, q)$, we have $n+n_{1}+n_{3}+1 \leq p+\min (q, n$ -1) and $p \leq 2 n-3$. Finally, assume $w=w_{3} h_{p_{2}} w_{2} h_{p_{1}} w_{1}$ for some low paths w_{1}, w_{2}, and w_{3}, where $p_{1}=n_{1}+n_{3}+2$. As before, w_{2} must be free, and since $p_{2} \leq 2 n-3, w$ is \mathscr{C}-forbidden.
5.4 We recall from [5] the description of the full subcategory $\tilde{\Lambda}_{k}$ of $k\left(\Gamma_{k}\right)$ whose objects are the projective vertices of Γ_{k}, for $k=1,2,3$. For each integer i, there is exactly one point $\left(i, \beta_{k} i-i\right)$ in \mathscr{D}_{k}^{+}with first coordinate i, and the map $i \rightarrow \beta_{k} i$ is a permutation of \mathbb{Z}. Since \mathscr{D}_{k}^{+}is $\tau^{\left(n_{k}+1\right) \mathbb{Z}_{-}}$ stable, $\beta_{k}\left(i+n_{k}+1\right)=\beta_{k} i+n_{k}+1$ for all i. Let α_{k} be the permutation given by $i \rightarrow \alpha_{k} i=\beta_{k}^{-1} i+n_{k}+2$. For each $i \in \mathbb{Z}$, choose $a_{k} i$ and $b_{k} i$ such that

$$
\alpha_{k}^{a_{k} i}(i)=i+n_{k}+1=\beta_{k}^{b_{k} i}(i)
$$

We let \widetilde{Q}_{k} be the quiver with vertex set \mathbb{Z} containing an arrow $\alpha: i \rightarrow \alpha_{k} i$ and $\beta: i \rightarrow \beta_{k} i$ for each i. By \tilde{I}_{k} we denote the ideal of $k \widetilde{Q}_{k}$ generated by all paths of the form
$\alpha \beta$ and $\beta \alpha$
along with the vectors

$$
\alpha^{a_{k} i}-\beta^{b_{k} i}
$$

for each i, where $\alpha^{a_{k} i}$ and $\beta^{b_{k} i}$ are the paths from i to $i+n_{k}+1$ composed from $a_{k} i \alpha$-arrows and $b_{k} i \beta$-arrows respectively.

Let $d_{k}(i)$ be the vertex $\left(\alpha_{k} i-n_{k}-2, n_{k}+2-\alpha_{k} i+i\right)$ of \mathscr{D}_{k}^{+}, which is the only point (p, q) of \mathscr{D}_{k}^{+}with $p+q=i$. By $U_{k}(i, \alpha)$ we denote the " $\alpha-$ path" in Γ_{k} from $\tau^{-1} d_{k}(i)$ to $d_{k}\left(i+n_{k}+1\right)([5], 5.6)$. For an arrow $\alpha: i \rightarrow \alpha_{k} i$, we let

$$
u_{k}(\alpha): d_{k}(i)^{*} \rightarrow d_{k}\left(\alpha_{k} i\right)^{*}
$$

be the path composed from the arrow $d_{k}(i)^{*} \rightarrow \tau^{-1} d_{k}(i)$, the subpath

$$
\begin{aligned}
\tau^{-1} d_{k}(i)=\left(\alpha_{k} i-n_{k}-1\right. & \left., n_{k}+2-\alpha_{k} i+i\right) \rightarrow\left(\alpha_{k} i-n_{k}-1, n_{k}+1\right) \\
& \rightarrow\left(\alpha_{k}^{2} i-n_{k}-2, n_{k}+2-\alpha_{k}^{2} i+\alpha_{k} i\right)=d_{k}\left(\alpha_{k} i\right)
\end{aligned}
$$

of $U_{k}(i, \alpha)$, and the arrow $d_{k}\left(\alpha_{k} i\right) \rightarrow d_{k}\left(\alpha_{k} i\right)^{*}$. By $U_{k}(i, \beta)$ we denote the " β path" from $\tau^{-1} d_{k}(i)$ to $d_{k}\left(i+n_{k}+1\right)$, and we let $u_{k}(\beta): d_{k}(i)^{*} \rightarrow d_{k}\left(\beta_{k} i\right)^{*}$ be defined in an analogous way, using the subpath from $\tau^{-1} d_{k}(i)$ to $d_{k}\left(\beta_{k} i\right)$ of $U_{k}(i, \beta)$, for each arrow $\beta: i \rightarrow \beta_{k} i$.

There exist non-zero scalars $\lambda_{k}(i, \alpha)$ and $\lambda_{k}(i, \beta)$, such that sending the vertex i to $d_{k}(i)^{*}$ and the arrows $\alpha: i \rightarrow \alpha_{k} i$ and $\beta: i \rightarrow \beta_{k} i$ to $\lambda_{k}(i, \alpha) \tilde{u}_{k}(\alpha)$ and $\lambda_{k}(i, \beta) \tilde{u}_{k}(\beta)$, respectively, we obtain an isomorphism from $k \widetilde{Q}_{k} / \tilde{I}_{k}$ to $\tilde{\Lambda}_{k}$. In fact, the non-zero scalars can be chosen to be ± 1. The quiver of $\tilde{\Lambda}_{k}$ is obtained from \widetilde{Q}_{k} be deleting the arrows from i to $i+n_{k}+1$, except in case $n_{k}=0$, where only one of the two arrows $\alpha, \beta: i \rightarrow i+1$ may be deleted.

Notice that $\alpha_{k} 0=n_{k}+1$, since \mathscr{D}_{k}^{+}contains $(-1,1)$ by definition. For i in the $\beta_{k}^{\mathbb{Z}}$-orbit of 0 , but $i \not \equiv 0$ modulo $n_{k}+1$, we let $c_{k} i<b_{k} i$ be such that

$$
\beta_{k}^{c_{k} i}(i) \equiv 0 \text { modulo } n_{k}+1
$$

5.5 Now we can describe the full subcategory $\tilde{\Lambda}$ of projective objects of $k(\Gamma)$ by quiver and relations. First we define a quiver $\tilde{Q}=$ $=\widetilde{Q}\left(\widetilde{Q}_{1}, \tilde{Q}_{2}, \tilde{Q}_{3}\right)$. We start from the disjoint union K of $\widetilde{Q}_{1}, \widetilde{Q}_{2}$, and \widetilde{Q}_{3}, and we denote its vertices by pairs $[k, i]$, for $k=1,2,3$ and $i \in \mathbb{Z}$. We delete the arrows

$$
\begin{aligned}
& \alpha:\left[k, s\left(n_{k}+1\right)\right] \rightarrow\left[k,(s+1)\left(n_{k}+1\right)\right] \\
& \beta:\left[k, s\left(n_{k}+1\right)\right] \rightarrow\left[k, s\left(n_{k}+1\right)+\beta_{k} 0\right]
\end{aligned}
$$

in K for all $s \in \mathbb{Z}$. We add the following arrows:

$$
\begin{aligned}
& {\left[1, s\left(n_{1}+1\right)\right] \xrightarrow{\gamma}\left[2, s\left(n_{2}+1\right)\right] \xrightarrow{\beta}\left[1, s\left(n_{1}+1\right)+\beta_{1} 0\right],} \\
& {\left[2, s\left(n_{2}+1\right)\right] \xrightarrow{\gamma}\left[3, s\left(n_{3}+1\right)\right] \xrightarrow{\beta}\left[2, s\left(n_{2}+1\right)+\beta_{2} 0\right],} \\
& {\left[3, s\left(n_{3}+1\right)\right] \xrightarrow{\gamma}\left[1,(s+1)\left(n_{1}+1\right)\right] \xrightarrow{\beta}\left[3, s\left(n_{3}+1\right)+\beta_{3} 0\right],}
\end{aligned}
$$

for all $s \in \mathbb{Z}$. This is \widetilde{Q}.
We let \tilde{I} be the ideal of $k \tilde{Q}$ generated by the paths

$$
\left\{\begin{array}{l}
\alpha \beta \text { and } \beta \alpha \\
{\left[1, s\left(n_{1}+1\right)+\beta_{1}^{-1} 0\right] \xrightarrow{\beta}\left[1, s\left(n_{1}+1\right)\right] \xrightarrow{\beta}\left[3,(s-1)\left(n_{3}+1\right)+\beta_{3} 0\right],} \\
{\left[2, s\left(n_{2}+1\right)+\beta_{2}^{-1} 0\right] \xrightarrow{\beta}\left[2, s\left(n_{2}+1\right)\right] \xrightarrow{\beta}\left[1, s\left(n_{1}+1\right)+\beta_{1} 0\right],} \\
{\left[3, s\left(n_{3}+1\right)+\beta_{3}^{-1} 0\right] \xrightarrow{\beta}\left[3, s\left(n_{3}+1\right)\right] \xrightarrow{\beta}\left[2, s\left(n_{2}+1\right)+\beta_{2} 0\right],}
\end{array}\right.
$$

along with the differences of paths $[k, i] \rightarrow\left[k, i+n_{k}+1\right]$

$$
\left\{\begin{array}{l}
\alpha^{a_{k} i}-\beta^{b_{k} i} \text { if } i \notin \beta_{k}^{\mathbb{Z}} 0, \\
\alpha^{a_{k} i}-\beta^{b_{k} i-c_{k} i} \gamma \beta^{c_{k} i} \text { if } i \in \beta_{k}^{\mathbb{Z}} 0, \text { but } i \not \equiv 0 \text { modulo } n_{k}+1,
\end{array}\right.
$$

and finally the differences

$$
\left\{\begin{array}{l}
\gamma^{2}-\beta^{b_{3} 0}:\left[1, s\left(n_{1}+1\right)\right] \rightarrow\left[3, s\left(n_{3}+1\right)\right] \\
\gamma^{2}-\beta^{b_{1} 0}:\left[2, s\left(n_{2}+1\right)\right] \rightarrow\left[1,(s+1)\left(n_{1}+1\right)\right] \\
\gamma^{2}-\beta^{b_{2} 0}:\left[3, s\left(n_{3}+1\right)\right] \rightarrow\left[2,(s+1)\left(n_{2}+1\right)\right]
\end{array}\right.
$$

for all $s \in \mathbb{Z}$.
Fig. 16 shows Γ and Γ_{k}, portions of the quivers of $\tilde{\Lambda}$ and $\tilde{\Lambda}_{k}$, and the quivers $Q=\widetilde{Q} / \tau^{(2 n-3) \mathbb{Z}}$ and $Q_{k}=\widetilde{Q}_{k} / \tau^{\left(n_{k}+1\right) \mathbb{Z}}$, where $k=1,2,3$, for a configuration \mathscr{C} of $\mathbb{Z} D_{10}$ with $n_{1}=0, n_{2}=3, n_{3}=4$. The α - and γ-arrows are drawn full, the β-arrows broken.

Γ_{2}

r_{3}

Γ

Q

Fig. 16

Proposition: The category $k \tilde{Q} / \tilde{I}$ is isomorphic to $\tilde{\Lambda}$.

Proof: We identify the vertices of \tilde{Q} with the objects of $\tilde{\Lambda}$, sending $[k, i]$ to $\psi[k, i]=\chi_{k} d_{k}(i)^{*}$. Note that

$$
\psi\left[k, i+n_{k}+1\right]=\tau^{-(2 n-3)} \psi[k, i]
$$

and that

$$
\begin{aligned}
& \psi[1,0]=\left(\phi^{n+n_{1}-1}\left(2-n+n_{1}, n-1\right)\right)^{*}, \\
& \psi[2,0]=(0, n-1)^{*}, \\
& \psi[3,0]=\left(\phi^{n_{1}+n_{3}}\left(n_{1}+n_{3}+1, n-1\right)\right)^{*},
\end{aligned}
$$

(see 5.1). For each arrow $\delta:[k, i] \rightarrow\left[k^{\prime}, i^{\prime}\right]$ of \tilde{Q}, we define a path $v(\delta): \psi[k, i] \rightarrow \psi\left[k^{\prime}, i^{\prime}\right]$ in Γ. For an arrow $\alpha:[k, i] \rightarrow\left[k, \alpha_{k} i\right]$ or $\beta:[k, i] \rightarrow\left[k, \beta_{k} i\right]$ with $i \not \equiv 0$ modulo $n_{k}+1$, we set

$$
v(\alpha)=\chi_{k} u_{k}(\alpha) \text { and } v(\beta)=\chi_{k} u_{k}(\beta)
$$

For an arrow $\gamma:\left[k, s\left(n_{k}+1\right)\right] \rightarrow\left[j, t\left(n_{j}+1\right)\right]$, the vertices $\psi\left[k, s\left(n_{k}+1\right)\right]$ $=\left(p_{1}, q_{1}\right)^{*}$ and $\psi\left[j, t\left(n_{j}+1\right)\right]=\left(p_{2}, q_{2}\right)^{*}$ are consecutive high projective vertices of Γ, and we set

$$
v(\gamma)= \begin{cases}l_{2} \varepsilon_{2} l_{p_{2}-1} \ldots l_{p_{1}+2} \delta_{1} \kappa_{1} & \text { if } p_{2}>p_{1}+1 \\ l_{2} \kappa_{1} & \text { if } p_{2}=p_{1}+1\end{cases}
$$

with

$$
\begin{aligned}
& \left(p_{1}, q_{1}\right)^{*} \xrightarrow{\kappa_{1}}\left(p_{1}+1, q_{1}\right) \xrightarrow{\delta_{1}}\left(p_{1}+2, n-2\right) \text { and } \\
& \left(p_{2}, n-2\right) \xrightarrow{\varepsilon_{2}}\left(p_{2}, q_{2}\right) \xrightarrow{\iota_{2}}\left(p_{2}, q_{2}\right)^{*} \text { (Fig. 17). }
\end{aligned}
$$

Fig. 17

For the arrow $\beta:\left[j, t\left(n_{j}+1\right)\right] \rightarrow\left[k, s\left(n_{k}+1\right)+\beta_{k} 0\right]$, the vertex $\psi[k$, $\left.s\left(n_{k}+1\right)+\beta_{k} 0\right]=\left(p_{3}, q_{3}\right)^{*}$ satisfies $p_{3}=p_{2}+n-1$; it is high if and only if $n_{k}=0$. We set

$$
v(\beta)=\iota_{3} w_{2} w_{1} \delta_{2} \kappa_{2}
$$

with

$$
\begin{aligned}
& \left(p_{2}, q_{2}\right)^{*} \xrightarrow{\kappa_{2}}\left(p_{2}+1, q_{2}\right) \xrightarrow{\delta_{2}}\left(p_{2}+2, n-2\right) \text { and } \\
& \left(p_{3}, q_{3}\right) \xrightarrow{\iota_{3}}\left(p_{3}, q_{3}\right)^{*}
\end{aligned}
$$

where w_{1} and w_{2} are the only paths $w_{1}:\left(p_{2}+2, n-2\right) \rightarrow\left(p_{2}+n-1,1\right)$ $=\left(p_{3}, 1\right)$ and $w_{2}:\left(p_{3}, 1\right) \rightarrow\left(p_{3}, q_{3}\right)($ Fig. 17 $)$.

We claim that

$$
\tilde{v}(\beta) \tilde{v}(\gamma)=-\chi_{k} \tilde{u}_{k}(\beta)
$$

where on the left-hand side $\gamma:\left[k, s\left(n_{k}+1\right)\right] \rightarrow\left[j, t\left(n_{j}+1\right)\right]$ and $\beta:[j$, $\left.t\left(n_{j}+1\right)\right] \rightarrow\left[k, s\left(n_{k}+1\right)+\beta_{k} 0\right]$ are arrows of \tilde{Q} and on the right-hand side $\beta: s\left(n_{k}+1\right) \rightarrow s\left(n_{k}+1\right)+\beta_{k} 0$ is an arrow of \tilde{Q}_{k}. Indeed modulo vectors in I_{s}, we have

$$
\delta_{2} \kappa_{2} l_{2} \varepsilon_{2}=-h_{p_{2}+1} h_{p_{2}}=-l_{p_{2}+1} h_{p_{2}}-h_{p_{2}+1} l_{p_{2}}+l_{p_{2}+1} l_{p_{2}},
$$

and $w_{1} l_{p_{2}+1}$ is \mathscr{C}-marginal (Fig. 17). In case $p_{2}>p_{1}+1$, we see that

$$
\tilde{v}(\beta) \tilde{v}(\gamma)=-\tilde{i}_{3} \tilde{w}_{2} \tilde{w}_{1} \tilde{h}_{p_{2}+1} \tilde{l}_{p_{2}} \ldots \tilde{l}_{p_{1}+2} \tilde{\delta}_{1} \tilde{\kappa}_{1}=-\chi_{k} \tilde{u}_{k}(\beta)
$$

(5.1, Fig. 13). In case $p_{2}=p_{1}+1$, we replace $\kappa_{2} l_{2}$ by $-\left(\sigma \varepsilon_{2}\right)\left(\sigma^{2} \varepsilon_{2}\right)$.

In 5.3 , we saw that any \mathscr{C}-essential path in Γ from $(1, n-1)$ to $(2 n-3, n-1)$ is \mathscr{C}-homotopic to

$$
w=\delta_{4} l_{2 n-3} \ldots l_{n_{1}+n_{3}+3} h_{n_{1}+n_{3}+2} l_{n_{1}+n_{3}+1} \ldots l_{2} \varepsilon_{1}
$$

or equivalently to

$$
w^{\prime}=\delta_{4} l_{2 n-3} \ldots l_{n+n_{1}} h_{n+n_{1}-1} l_{n+n_{1}-2} \ldots l_{2} \varepsilon_{1}
$$

with $\varepsilon_{1}:(1, n-1) \rightarrow(2, n-2)$ and $\delta_{4}:(2 n-3, n-2) \rightarrow(2 n-3, n-1)$. On
the other hand, we know by [2], 1.2 that

$$
k(\Gamma)\left((0, n-1)^{*},(2 n-3, n-1)^{*}\right) \neq 0
$$

and hence w and w^{\prime} are \mathscr{C}-essential. It is easy to see that the subpath $v:(1, n-1) \rightarrow(2 n-3, n-1)$ of $v\left(\gamma_{3}\right) v\left(\gamma_{2}\right) v\left(\gamma_{1}\right)$ satisfies $\pi^{\prime} v=w$, where π^{\prime} is the projection to the space of \mathscr{C}-admissible paths defined in 2.4, and where $\gamma_{1}, \gamma_{2}, \gamma_{3}$ are the arrows

$$
[2,0] \xrightarrow{\gamma_{1}}[3,0] \xrightarrow{\gamma_{2}}\left[1, n_{1}+1\right] \xrightarrow{\gamma_{3}}\left[2, n_{2}+1\right] .
$$

The subpath $\delta_{3} l_{n-2+n_{1}} \ldots l_{2} \varepsilon_{1}:(1, n-1) \rightarrow \phi^{n+n_{1}-1}\left(n+n_{1}, n-1\right)$ of w is \mathscr{C}-homotopic to the path $\delta_{3} w_{3} w_{2} w_{1} \varepsilon_{1}$ with $w_{1}:(2, n-2) \rightarrow(n-1,1)$, $w_{2}:(n-1,1) \rightarrow\left(n-1, n_{1}+1\right) \rightarrow\left(n+n_{1}-1,1\right) \quad$ and $\quad w_{3}:\left(n+n_{1}-1,1\right)$ $\rightarrow\left(n+n_{1}-1, n-2\right)$. The path w_{3} is the image under χ_{1} of the α-path $U_{1}(0, \alpha):(0,1) \rightarrow\left(n_{1}, 1\right)$ in Γ_{1}, and hence it is \mathscr{C}-homotopic to $\chi_{1} U_{1}(0, \beta)$. We see that

$$
\tilde{v}\left(\gamma_{2}\right) \tilde{v}\left(\gamma_{1}\right)= \pm \tilde{v}\left(\beta_{b_{1} 0}\right) \ldots \tilde{v}\left(\beta_{1}\right),
$$

where $\beta_{1}:[2,0] \rightarrow\left[1, \beta_{1} 0\right], \beta_{r}:\left[1, \beta_{1}^{r-1} 0\right] \rightarrow\left[1, \beta^{r} 0\right]$, for $r=2, \ldots, b_{1} 0$. In the same way, we obtain

$$
\tilde{v}\left(\gamma_{3}\right) \tilde{v}\left(\gamma_{2}\right)= \pm \tilde{v}\left(\beta_{b_{2} 0}\right) \ldots \tilde{v}\left(\beta_{1}\right)
$$

where $\beta_{1}:[3,0] \rightarrow\left[2, \beta_{2} 0\right], \beta_{r}:\left[2, \beta_{2}^{r-1} 0\right] \rightarrow\left[2, \beta_{2}^{r} 0\right]$, for $r=2, \ldots, b_{2} 0$. On the other hand, any low \mathscr{C}-essential path from $(1, n-1)$ to a low point of \mathscr{C} factors through $w_{1} \varepsilon_{1}(5.3)$, and by 5.2 it has the form $\chi_{1}\left(v^{\prime}\right) w_{1} \varepsilon_{1}$, where $v^{\prime}:(1,1) \rightarrow d_{1}(i) \in \mathscr{D}_{1}^{+}$is \mathscr{D}_{1}^{+}-essential. Then we know that $i=\beta_{1}^{b} 0$ for some $b<b_{1} 0$ by [5], 5.7. To summarize, the paths $\delta_{r} \ldots \delta_{1}$ in \tilde{Q} starting at $[2,0]$ which give rise to non-zero morphisms $\tilde{v}\left(\delta_{r}\right) \ldots \tilde{v}\left(\delta_{1}\right)$ in $\tilde{\Lambda}$ are precisely the paths

$$
\gamma^{r} \text { for } r \leq 3, \beta^{b} \text { for } b \leq b_{1} 0, \gamma \beta^{b_{1} 0} \text {, and } \beta^{b} \gamma \text { for } b \leq b_{2} 0 .
$$

Because by [2], 1.2,

$$
k(\Gamma)(\psi[2,0], \psi[k, i]) \neq 0
$$

if and only if

$$
k(\Gamma)\left(\psi[k, i], \psi\left[2, n_{2}+1\right]\right) \neq 0
$$

we obtain that the paths $\delta_{r} \ldots \delta_{1}$ of \tilde{Q} stopping at [2, $\left.n_{2}+1\right]$ which give rise to non-zero morphisms $\tilde{v}\left(\delta_{r}\right) \ldots \tilde{v}\left(\delta_{1}\right)$ are precisely the

$$
\gamma^{r} \text { for } r \leq 3, \beta^{b} \text { for } b \leq \mathrm{b}_{2} 0, \beta^{b_{2} 0} \gamma, \text { and } \gamma \beta^{b} \text { for } b \leq b_{1} 0 .
$$

Of course, we obtain analogous descriptions for all paths $\delta_{r} \ldots \delta_{1}$ starting or stopping at any vertex $\left[k, s\left(n_{k}+1\right)\right]$ with $\tilde{v}\left(\delta_{r}\right) \ldots \tilde{v}\left(\delta_{1}\right) \neq 0$.

Let $[k, i]$ be a vertex of \tilde{Q} with $i \not \equiv 0 \bmod n_{k}+1$. There exists a \mathscr{C} essential path $w: \tau^{-1} \chi_{k} d_{k}(i) \rightarrow \chi_{k} d_{k}\left(i+n_{k}+1\right)$ in Γ, and, by $5.2, w$ is \mathscr{C} homotopic to $\chi_{k} v$ for some $v: \tau^{-1} d_{k}(i) \rightarrow d_{k}\left(i+n_{k}+1\right)$. Any such v is $\mathscr{D}_{k}^{+}-$ homotopic to both the α-path $U_{k}(i, \alpha)$ and the β-path $U_{k}(i, \beta)([5], 5.7)$. Let $\alpha_{a_{k} i} \ldots \alpha_{2} \alpha_{1}$ and $\beta_{b_{k} i} \ldots \beta_{2} \beta_{1}$ be paths from i to $i+n_{k}+1$ in \tilde{Q}_{k}. Then

$$
\begin{aligned}
& \tilde{u}\left(\alpha_{a_{k} i}\right) \ldots \tilde{u}\left(\alpha_{1}\right)= \pm \tilde{u} \widetilde{U}_{k}(i, \alpha) \tilde{\kappa}, \\
& \tilde{u}\left(\beta_{b_{k} i}\right) \ldots \tilde{u}\left(\beta_{1}\right)= \pm \tilde{U_{k}}(i, \beta) \tilde{\kappa}
\end{aligned}
$$

where $\kappa: d_{k}(i)^{*} \rightarrow \tau^{-1} d_{k}$ and $\imath: d_{k}\left(i+n_{k}+1\right) \rightarrow d_{k}\left(i+n_{k}+1\right)^{*}$. Therefore we see that the following paths $\delta_{r} \ldots \delta_{1}$ of \widetilde{Q} starting at $[k, i]$ give rise to non-zero morphisms $\tilde{v}\left(\delta_{r}\right) \ldots \tilde{v}\left(\delta_{1}\right)$ in $\tilde{\Lambda}$:

$$
\left\{\begin{array}{l}
\alpha^{a} \text { for } a \leq a_{k} i, \\
\beta^{b} \text { for } b \leq b_{k} i, \text { if } i \notin \beta_{k}^{\mathbb{Z}} 0 \\
\beta^{b} \text { for } b \leq c_{k} i \text { and } \beta^{b} \gamma \beta^{c_{k} i} \text { for } b \leq b_{k} i-c_{k} i, \text { if } i \in \beta_{k}^{\mathbb{Z} 0} 0
\end{array}\right.
$$

On the other hand, let $w: \tau^{-1} \chi_{k} d_{k}(i) \rightarrow \chi_{k^{\prime}} d_{k^{\prime}}\left(i^{\prime}\right)$ be a \mathscr{C}-essential path. We may assume that $i^{\prime} \not \equiv 0$ modulo $n_{k^{\prime}}+1$. Then $k^{\prime}=k$ by 5.2 , and w is \mathscr{C} homotopic to some $\chi_{k} v$. Thus $i^{\prime}=\beta_{k}^{b}(i)$ for $b \leq b_{k} i$ or $i^{\prime}=\alpha_{k}^{a}(i)$ for $a \leq a_{k} i$, and the paths $\delta_{r} \ldots \delta_{1}$ listed above are the only ones with $\tilde{v}\left(\delta_{r}\right) \ldots \tilde{v}\left(\delta_{1}\right) \neq 0$.

By definition, $\tilde{I} \subset k \tilde{Q}$ is the ideal generated by the differences of paths yielding non-zero morphisms in $\tilde{\Lambda}$ along with the paths yielding zero. We conclude that $k \tilde{Q} / \tilde{I}$ is isomorphic to $\tilde{\Lambda}([2], 5)$. In fact, for each arrow δ of \tilde{Q} we can choose $\lambda_{\delta}= \pm 1$ such that the functor $\psi: k \tilde{Q} \rightarrow \tilde{\Lambda}$ induced by sending δ to $\psi \delta=\lambda_{\delta} \tilde{v}(\delta)$ induces the above isomorphism.

Remark: The quiver $Q_{k}=\widetilde{Q}_{k} / \tau^{\left(n_{k}+1\right) \mathbb{Z}}$ is an oriented Brauer-quiver with $n_{k}+1$ vertices containing an α-loop in $\tau^{\left(n_{k}+1\right) \mathbb{Z}} 0$, for $k=1,2,3$ ([3], [5], 6.2). Denote the Brauer-quiver obtained by changing the orientation of Q_{k} by P_{k}. Then $\tilde{\Lambda} / \tau^{(2 n-3) \mathbb{Z}}$ is isomorphic to the category defined by the quiver and the relations describing the three-cornered algebra $D\left(P_{3} P_{2} P_{1}\right)([2], 7.2)$.
5.6 Let \mathscr{C} be a configuration of $\mathbb{Z} D_{n}$ for which all numbers n_{1}, n_{2}, and n_{3} are positive, and let \tilde{A} be the full subcategory of $k(\Gamma)$ whose objects are the high projective vertices of Γ together with the $(i, j)^{*}$ for which i is congruent to $n-1, n+n_{1}+n_{3}$, or $2 n-2+n_{1}$ modulo $2 n-3$ (compare 4.3). The category \tilde{A} is isomorphic to the full subcategory of $k \tilde{Q} / \tilde{I}$ whose objects are the $\left[k, s\left(n_{k}+1\right)\right]$ and $\left[k, s\left(n_{k}+1\right)+\beta_{k} 0\right]$, for $k=1,2,3$ and $s \in \mathbb{Z}$. Write $i \in \mathbb{Z}$ as $i=6 s_{i}+t_{i}$ with $0 \leq t_{i}<6$, and identify \mathbb{Z} with the objects of \tilde{A} by sending i to

$$
\left\{\begin{array}{l}
{\left[1, s_{i}\left(n_{1}+1\right)\right],\left[2, s_{i}\left(n_{2}+1\right)\right],\left[3, s_{i}\left(n_{3}+1\right)\right]} \\
\quad \text { for } t_{i}=0,2,4, \text { respectively } \\
{\left[3,\left(s_{i}-1\right)\left(n_{3}+1\right)+\beta_{3} 0\right],\left[1, s_{i}\left(n_{1}+1\right)+\beta_{1} 0\right]} \\
\quad\left[2, s_{i}\left(n_{2}+1\right)+\beta_{2} 0\right] \text { for } t_{i}=1,3,5, \text { respectively. }
\end{array}\right.
$$

We obtain that \tilde{A} is isomorphic to $k \tilde{K} / \tilde{J}$, where \tilde{K} is the quiver with vertex set \mathbb{Z} which contains the arrows

$$
\gamma_{2 i}: 2 i \rightarrow 2 i+2, \beta_{2 i}: 2 i \rightarrow 2 i+1, \text { and } \beta_{2 i+1}: 2 i+1 \rightarrow 2 i+4
$$

for each $i \in \mathbb{Z}$, and where \tilde{J} is the ideal of $k \tilde{K}$ generated by

$$
\gamma_{2 i+2} \gamma_{2 i}-\beta_{2 i+1} \beta_{2 i} \text { and } \beta_{2 i+4} \beta_{2 i+1}
$$

for all i.
5.7 Let \mathscr{C} be a $\tau^{(2 m-1) \mathbb{Z}}$-stable configuration of $\mathbb{Z} D_{3 m}$ containing (0 , $n-1$), where $n=3 m$, and let $\pi: \Gamma \rightarrow \Delta=\Gamma / \tau^{(2 m-1) \mathbb{Z}}$ be the universal covering. Our aim is to describe the standard category Λ, and if char k $=2$, the non-standard category Λ^{\prime} with Auslander-Reiten quiver Δ by quivers and relations.

The three numbers n_{1}, n_{2}, and n_{3} associated with \mathscr{C} are all equal to $m-1$, and the three configurations $\mathscr{D}_{1}^{+}, \mathscr{D}_{2}^{+}$, and \mathscr{D}_{3}^{+}of $\mathbb{Z} A_{m}$ coincide (2.5). By α and β we denote the permutations $\alpha=\alpha_{1}$ and $\beta=\beta_{1}$ of \mathbb{Z}, and we set $a i=a_{1} i, b i=b_{1} i$, and $c i=c_{1} i$, for each $i \in \mathbb{Z}$ (5.4). The automorphism τ^{m} of Γ_{1} induces an automorphism τ^{m} of \tilde{Q}_{1}, which is given by $\tau^{m} i=i-m$. We let Q_{1} be the residue quiver $\widetilde{Q}_{1} / \tau^{m \mathbb{Z}}$. We identify the vertex $\tau^{m \mathbb{Z}_{i}}$ of Q_{1} with the residue class \bar{i} of i modulo m, and we set $\tau^{m \mathbb{Z}} \alpha=\bar{\alpha}$ and $\tau^{m \mathbb{Z}} \beta=\bar{\beta}$ for the arrows. The quiver Q_{1} is an oriented Brauer-quiver with m vertices ([3], 1.4, [5], 3.4). Since $\overline{\alpha 0}=\overline{0}$, Q_{1} contains an $\bar{\alpha}$-loop in $\overline{0}$.

The automorphism $\tau^{2 m-1}$ of Γ induces an automorphism $\tau^{2 m-1}$ of \tilde{Q},
which takes

$$
[3, i] \text { to }[2, i],[2, i] \text { to }[1, i], \text { and }[1, i] \text { to }[3, i-m] .
$$

The residue quiver $Q=\tilde{Q} / \tau^{(2 m-1) \mathbb{Z}}$ is obtained from Q_{1} by replacing the loop $\bar{\alpha}: \overline{0} \rightarrow \overline{0}$ by the loop $\bar{\gamma}: \overline{0} \rightarrow \overline{0}(5.5)$. We let $\pi: \widetilde{Q} \rightarrow Q$ be the natural map. Fig. 18 shows Q for a configuration \mathscr{C} of $\mathbb{Z} D_{24}$.

Fig. 18

Let I and I^{\prime} be the ideals of $k Q$ generated by

$$
\bar{\beta}^{2}: \overline{\beta^{-1} 0} \rightarrow \overline{\beta 0} \text { and } \bar{\beta}^{2}+\bar{\beta} \bar{\gamma} \bar{\beta}: \overline{\beta^{-1} 0} \rightarrow \overline{\beta 0}, \bar{\gamma}^{4}: \overline{0} \rightarrow \overline{0},
$$

respectively, along with

$$
\left\{\begin{array}{l}
\text { all paths } \bar{\alpha} \bar{\beta} \text { and } \bar{\beta} \bar{\alpha}, \\
\bar{\alpha}^{a i}-\bar{\beta}^{b i}: \bar{i} \rightarrow \bar{i} \text { if } i \notin \beta^{\mathbb{Z}} 0, \\
\bar{\alpha}^{a i}-\bar{\beta}^{b i-c i} \bar{\gamma} \bar{\beta}^{c i}: \bar{i} \rightarrow \bar{i} \text { if } \bar{i} \neq \overline{0}, i \in \beta^{\mathbb{Z}} 0, \\
\bar{\gamma}^{2}-\bar{\beta}^{b 0}: \overline{0} \rightarrow \overline{0}
\end{array}\right.
$$

Proposition: (a) The category Λ is isomorphic to $k Q / I$.
(b) The category Λ^{\prime} is isomorphic to $k Q / I^{\prime}$.

Remarks: (i) The standard and non-standard algebras
$\oplus \Lambda(x, y)$ and $\oplus \Lambda^{\prime}(x, y)$
with Auslander-Reiten quiver Δ are given by the quiver Q and the relations I and I^{\prime}, respectively; the summations range over all objects x and y of Λ and Λ^{\prime}.
(ii) As a consequence of (b), we obtain the description of the full subcategory of $k \Delta / J$ whose objects are $\pi(0, n-1)^{*}$ and $\pi(n-1, \beta 0)^{*}$, or equivalently the full subcategory of Λ^{\prime} whose objects are $\overline{0}$ and $\overline{\beta 0}$, by quiver and relations used in 4.3.

Proof: (a) By [2], 5.3, Λ is isomorphic the residue category of $k Q$ modulo the image of \tilde{I} under $\pi: k \widetilde{Q} \rightarrow k Q$, which is I (5.5).
(b) Let char $k=2$. Then the functor $\psi: k \widetilde{Q} \rightarrow \tilde{\Lambda}$ defined in 5.5 is given by $\psi(\delta)=\tilde{v}(\delta)$ for all arrows δ; in other words, all scalars λ_{δ} equal +1 . We will define a functor $\psi^{\prime}: k Q / I^{\prime} \rightarrow \Lambda^{\prime}$ and a covering functor $F^{\prime}: k \tilde{Q} / \tilde{I} \rightarrow k Q / I^{\prime}$ so that the following diagram commutes

where $F: \tilde{\Lambda} \rightarrow \Lambda^{\prime}$ is induced by the covering functor $F: k(\Gamma) \rightarrow k \Delta / J$ defined in 4.1. Remember that Λ^{\prime} is the full subcategory of $k \Delta / J$ whose objects are the projective vertices of Δ. Then ψ^{\prime} is a covering functor, and hence an isomorphism, because it is bijective on the objects.

First we define F^{\prime}. We set $F^{\prime}[k, i]=\bar{i}$ and
$F^{\prime} \alpha=\bar{\alpha}$ for all arrows α,
$F^{\prime} \beta=\bar{\beta}+\bar{\beta} \bar{\gamma}$ if β lies in the $\tau^{2(2 m-1) \mathbb{Z}}$-orbit of

$$
[2,0] \xrightarrow{\beta}[1, \beta 0],
$$

$F^{\prime} \beta=\bar{\beta}+\overline{\gamma \beta}$ if β lies in the $\tau^{2(2 m-1) \mathbb{Z}}$-orbit of

$$
\left[3, \beta^{-1} 0\right] \xrightarrow{\beta}[3,0],
$$

$F^{\prime} \beta=\bar{\beta}$ for all other arrows β,
$F^{\prime} \gamma=\bar{\gamma}+\bar{\gamma}^{2}$ if γ lies in the $\tau^{2(2 m-1) \mathbb{Z}}$-orbit of

$$
[2,0] \xrightarrow{\gamma}[3,0],
$$

$\boldsymbol{F}^{\prime}(\gamma)=\bar{\gamma}$ for all other arrows γ.

It is easy to check that F^{\prime} maps \tilde{I} into I^{\prime}.
Next we show that F^{\prime} is a covering functor; i.e., that for any two vertices x and y of \tilde{Q}, F^{\prime} induces bijections

$$
\underset{\pi z=\pi y}{\oplus} k \tilde{Q} / \tilde{I}(x, \dot{z}) \rightarrow k Q / I^{\prime}(\pi x, \pi y) \leftarrow \oplus_{\pi z=\pi x}^{\oplus} k \tilde{Q} / \tilde{I}(z, y) .
$$

We will prove that the first map is an isomorphism. Notice that

$$
\bar{\gamma}^{2} \bar{\beta}: \overline{\beta^{-1} 0} \rightarrow \overline{0} \text { and } \bar{\beta} \bar{\gamma}^{2}: \overline{0} \rightarrow \overline{\beta 0}
$$

lie in $I^{\prime} ;$ indeed,

$$
\bar{\gamma}^{2} \bar{\beta} \equiv \bar{\beta}^{b 0-1} \bar{\beta} \bar{\gamma} \bar{\beta} \equiv \bar{\gamma}^{3} \bar{\beta} \equiv \bar{\gamma}^{4} \bar{\beta} \equiv 0 \text { modulo } I^{\prime} .
$$

If $\bar{i} \neq \bar{j}$ and $i \notin \beta^{\mathbb{Z}} 0, j \notin \beta^{\mathbb{Z}} 0$, there is at most one path from \bar{i} to \bar{j} which does not lie in I^{\prime}; if there is one, or equivalently if $j \in \alpha^{\mathbb{Z}} i$ or $j \in \beta^{\mathbb{Z}} i$, we choose its residue class modulo I^{\prime} as a basis for $k Q / I^{\prime}(\bar{i}, \bar{j})$. If $\bar{i} \neq 0$, we choose the trivial path at \bar{i} and $\bar{\alpha}^{a i}$ as a basis for $k Q / I^{\prime}(\bar{i}, \bar{i})$. In the remaining cases, we choose the residue classes of the following paths as a basis of $k Q / I^{\prime}(\bar{i}, \bar{j})$:

$$
\begin{aligned}
& 1_{\overline{0}}, \bar{\gamma}, \bar{\gamma}^{2}, \bar{\gamma}^{3} \text { for } \bar{i}=\bar{j}=\overline{0}, \\
& \bar{\beta}^{c i}, \bar{\gamma} \bar{\beta}^{c i} \text { for } \bar{j}=\overline{0}, \bar{i} \neq \overline{0}, \\
& \bar{\beta}^{b j-c j}, \bar{\beta}^{b j-c j} \bar{\gamma} \text { for } \bar{i}=\overline{0}, \bar{j} \neq \overline{0}, \\
& \bar{\beta}^{b} \text { for } \bar{j}=\overline{\beta^{b} i} \text { with } 0<b<c i, \bar{i} \neq \overline{0}, \\
& \bar{\beta}^{b} \bar{\gamma} \bar{\beta}^{c i} \text { for } \bar{j}=\overline{\beta^{b} i} \text { with } c i<b<b i, \bar{i} \neq \overline{0} .
\end{aligned}
$$

If $k \widetilde{Q} / \tilde{I}\left([k, i],\left[k^{\prime}, j\right]\right) \neq 0$, we choose the only path from $[k, i]$ to $\left[k^{\prime}, j\right]$ in \tilde{Q} which does not lie in \tilde{I} as a basis. With respect to these bases, the map

$$
F^{\prime}: \underset{s \in \mathbb{Z}}{\oplus} k \widetilde{Q} / \tilde{I}\left([k, i], \tau^{s(2 m-1)}[k, j]\right) \rightarrow k Q / I^{\prime}(\bar{i}, \bar{j})
$$

of $\left(^{*}\right)$ is given by the identity matrix if $i \not \equiv 0$ and $j \not \equiv 0$ modulo m or if $[k, i]$ lies in the $\tau^{2(2 m-1) \mathbb{Z}}$-orbit of $[3,0]$ and $j \not \equiv 0$ modulo m or if $[k, j]$ lies in the $\tau^{2(2 m-1) \mathbb{Z}}$-orbit of $[1, m]$ and $i \not \equiv 0$ modulo m. It is given by

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \quad \begin{aligned}
& \text { if }[k, i] \in \tau^{2(2 m-1) \mathbb{Z}}[2,0] \text { and } j \not \equiv 0 \text { modulo } m \text { or } \\
& \text { if }[k, j] \in \tau^{2(2 m-1) \mathbb{Z}}[3,0] \text { and } i \not \equiv 0 \text { modulo } m,
\end{aligned}
$$

$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$ if $[k, i] \in \tau^{2(2 m-1) \mathbb{Z}}[2,0]$ and $j \equiv 0$ modulo m,
$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$ if $[k, i] \in \tau^{2(2 m-1) \mathbb{Z}}[3,0]$ and $i \equiv 0$ modulo m.

Since all these matrices, as well as the ones obtained from the second map in (*), are non-singular, F^{\prime} is a covering functor.

Define $\psi^{\prime}: k Q \rightarrow \Lambda^{\prime} \subset k \Delta / J$ to be the functor induced by $\psi^{\prime} \bar{i}=\pi \psi[1, i]$ and $\psi^{\prime} \bar{\delta}=\operatorname{Gv}(\delta)$ for all arrows $\bar{\delta}$ of Q, where δ is an arrow of \tilde{Q} with $\pi \delta=\delta$ and where $G: k \Gamma \rightarrow k \Delta / J$ is composed from $\pi: k \Gamma \rightarrow k \Delta$ and the natural functor $k \Delta \rightarrow k \Delta / J$ (4.1). Remember that $G \theta_{z}=0$ for all (modified) mesh-relations θ_{z} with $\left.\left.z \notin \tau^{(2 m-1) \mathbb{Z}}\right\rangle \phi n-1\right)$. Therefore $G\left(\sum \lambda_{i} v_{i}\right)=0$ if $\sum \lambda_{i} v_{i} \in I_{s}$ and if none of the paths v_{i} contains a subpath

$$
(s(2 m-1), n-1) \xrightarrow{\imath_{s}}(s(2 m-1), n-1)^{*} \xrightarrow{\kappa_{s}}(s(2 m-1)+1, n-1) .
$$

Hence ψ^{\prime} vanishes on all generators of I^{\prime} for which no summand factors through $\overline{0}$. If $\bar{\delta}_{t} \ldots \bar{\delta}_{1}$ is a path in Q which does factor through $\overline{0}$, we choose $\delta_{t} \ldots \delta_{1}$ in \tilde{Q} with $\pi\left(\delta_{t} \ldots \delta_{1}\right)=\bar{\delta}_{t} \ldots \bar{\delta}_{1}$ and we write

$$
v\left(\delta_{t}\right) \ldots v\left(\delta_{1}\right)=w_{r} \kappa_{s_{r}} l_{s_{r}} w_{r-1} \ldots w_{1} \kappa_{s_{1}} l_{s_{1}} w_{0}
$$

where no w_{j} factors through a $(s(2 m-1), n-1)^{*}$. Then

$$
\begin{aligned}
& \psi^{\prime}\left(\delta_{t} \ldots \delta_{1}\right)=G w_{r} G\left(\varepsilon_{s_{r}} \varepsilon_{s_{r}}^{\prime}+\varepsilon_{s_{r}+1} v_{s_{r}} \varepsilon_{s_{r}}^{\prime}\right) G w_{r-1} \ldots \\
& \quad \ldots G w_{1} G\left(\varepsilon_{s_{1}} \varepsilon_{s_{1}}^{\prime}+\varepsilon_{s_{1}+1} v_{s_{1}} \varepsilon_{s_{s_{1}}}\right) G w_{0} \\
& \quad=G\left(w_{r} \varepsilon_{s_{r}}^{\prime} \varepsilon_{s_{r}}^{\prime} w_{r-1} \ldots w_{1} \varepsilon_{s_{1}} \varepsilon_{s_{1}}^{\prime} w_{0}\right)+\sum G u_{j}
\end{aligned}
$$

where $\quad(s(2 m-1), n-1) \xrightarrow{\varepsilon_{s}^{\prime}}(s(2 m-1), n-1)^{*} \xrightarrow{\varepsilon_{s}}(s(2 m-1)+1$, $n-1)$ and $v_{s}=l_{(s+1)(2 m-1)-1} \ldots l_{s(2 m-1)+1}$. Notice that each u_{j} is strictly longer than $v\left(\delta_{t}\right) \ldots v\left(\delta_{1}\right)$. In particular, ψ^{\prime} vanishes on $\bar{\alpha}^{a i}+\bar{\beta}^{b i-c i} \bar{\gamma}^{c i}$ for $i \in \beta^{\mathbb{Z}} 0, \bar{i} \neq 0$, and on $\bar{\gamma}^{4}, \bar{\beta} \bar{\gamma}^{2}$, and $\bar{\gamma} \bar{\beta}$, since in these cases all u_{j} lie in I_{s} $(5.2,5.3)$. We see that

$$
\begin{aligned}
\psi^{\prime} \bar{\gamma}^{2} & =G\left(l_{2}\left(\sigma \varepsilon_{2}^{\prime}\right) l_{4 m-3} \ldots l_{2 m+1} h_{2 m} h_{2 m-1} l_{2 m-2} \ldots\right. \\
& \left.\ldots l_{2}\left(\bar{\sigma}^{1} \varepsilon_{0}\right) \kappa_{0}\right)+G u=\psi^{\prime} \bar{\beta}^{b 0}
\end{aligned}
$$

since G vanishes on

$$
u=l_{3}\left(\sigma \varepsilon_{3}^{\prime}\right) l_{2 n-4} \ldots l_{4 m} h_{4 m-1} l_{4 m-2} \ldots l_{2 m} h_{2 m-1} l_{2 m-2} \ldots l_{2}\left(\sigma^{-1} \varepsilon_{0}\right) \kappa_{0}
$$

(5.3). Similarly, we obtain

$$
\psi^{\prime} \bar{\beta}^{2}=\psi^{\prime} \bar{\beta} \bar{\gamma} \bar{\beta}
$$

for $\bar{\beta}^{2}: \overline{\beta^{-1} 0} \rightarrow \overline{\beta 0}$. Hence ψ^{\prime} induces a functor $\psi^{\prime}: k Q / I^{\prime} \rightarrow \Lambda^{\prime}$.
As for the commutativity, it suffices to show that $F \psi(\delta)=\psi^{\prime} F^{\prime}(\delta)$ for all arrows δ of \widetilde{Q}. By definition of $F(4.1)$, we have $F v=G v+\sum G u_{j}$ for any path $v: x \rightarrow y$ in Γ, where $u_{j}: x \rightarrow \tau^{-s_{j}(2 m-1)} y$ for $s_{j}>0$. This implies that

$$
F \psi(\delta)=F v(\delta)=G v(\delta)=\psi^{\prime} F^{\prime}(\delta)
$$

whenever $F^{\prime} \delta=\bar{\delta}$. For arrows $\delta:[k, i] \rightarrow[k, j]$ with $i \not \equiv 0 \not \equiv j$ modulo m, this follows from the fact that any path in Γ from $\psi[k, i]$ to $\tau^{-s(2 m-1)} \psi[k, j]$ lies in I_{s} for $s>0$. For the other arrows with $F^{\prime} \delta=\bar{\delta}$, it is a direct consequence of the definition of F. It suffices to prove that

$$
\begin{aligned}
& F v(\beta)=G v(\beta)+G v(\beta) v(\gamma) \text { for } \beta:[2,0] \rightarrow[1, \beta 0], \\
& F v(\beta)=G v(\beta)+G v(\gamma) v(\beta) \text { for } \beta:\left[3, \beta^{-1} 0\right] \rightarrow[3,0], \\
& F v(\gamma)=G v(\gamma)+G v(\gamma) v(\gamma) \text { for } \gamma:[2,0] \rightarrow[3,0] .
\end{aligned}
$$

Using the notations of 4.1 , we obtain in the first case $v(\beta)=w \zeta_{2} \delta_{1}^{\prime} \kappa_{1}$ and

$$
\begin{aligned}
F v(\beta)=G v(\beta) & +G\left(w \zeta_{2} \kappa_{1}\right) G\left(\delta_{2 m} l_{2 m-1} \ldots l_{2} \delta_{1}^{\prime} \kappa_{1}\right) \\
& +G w G\left(\zeta_{2 m+1} w_{2}\right) G\left(\delta_{1}^{\prime} \kappa_{1}\right) .
\end{aligned}
$$

The third summand vanishes, since $\left(\tau^{-(2 m-1)} w\right) \zeta_{2 m-1} w_{2} \delta_{1}^{\prime} \kappa_{1}$ lies in I_{s}, and the second summand equals $G v(\beta) v(\gamma)$. Notice that any path from $(0, n-1)^{*}$ to $\tau^{-s(2 m-1)} \psi[1, \beta 0]$ with $s \geq 2$ lies in I_{s} as well. The argument in the second case is analogous. In the third case, we have

$$
v(\gamma)=t_{2 m-1} \delta_{2 m-1} \zeta_{2 m-2}^{\prime} \zeta_{2 m-2} \ldots \zeta_{2}^{\prime} \zeta_{2} \delta_{1}^{\prime} \kappa_{1}
$$

and a computation yields

$$
F v(\gamma)=G v(\gamma)+(1+2(2 m-3)) G u_{1}+2(2 m-3)(2 m-2) G u_{2},
$$

where

$$
\begin{aligned}
& u_{1}=l_{4 m-2} \delta_{4 m-2} l_{4 m-3} \ldots l_{2} \delta_{1}^{\prime} \kappa_{1} \\
& u_{2}=l_{2 n-3} \delta_{2 n-3} l_{2 n-4} \ldots l_{2 m+1} h_{2 m} l_{2 m-1} \ldots l_{2} \delta_{1}^{\prime} \kappa_{1}
\end{aligned}
$$

This ends the proof, since char $k=2$ and $G v(\gamma) v(\gamma)=G u_{1}$.

REFERENCES

[1] K. Bongartz and P. Gabriel: Covering spaces in representation-theory. Invent. Math. 65 (1982) 331-378.
[2] O. Bretscher, Ch. Läser and Ch. Riedtmann: Selfinjective and simply connected algebras. Manuscripta Math. 36 (1981) 253-307.
[3] P. Gabriel and Ch. Riedtmann: Group representations without groups. Comment. Math. Helvetici 54 (1979) 240-287.
[4] Ch. Riedtmann: Algebren, Darstellungsköcher, Überlagerungen und zurück. Comment. Math. Helvetici 55 (1980) 199-224.
[5] Ch. Riedtmann: Representation-finite selfinjective algebras of class A_{n}, in "Representation Theory II". Springer Lecture Notes 832 (1980) 449-520.
[6] Ch. Riedtmann: Configurations of $\mathbb{Z} D_{n}$, J. of Algebra, to appear.
[7] J. Waschbüsch: Symmetrische Algebren vom endlichen Modultyp. J. reine angew. Math. 321 (1981) 78-98.
(Oblatum 22-II-1982)
Mathematisches Institut
Rheinsprung 21
CH - 4051 Basel

