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Abstract

The word "number" stands for nonnegative integer, "set" for collec-
tion of numbers and "class" for collection of sets. A BBD on afinite set 03C3
of cardinality ~ 2 is a class r of subsets of 6 (called blocks) for which
there exist positive numbers k, r, 03BB such that k ~ 2 and (i) all blocks

have cardinality k, (ii) every element of 6 occurs in exactly r blocks, and
(iii) every two distinct elements of 6 occur together in exactly 03BB blocks.
The numbers v = card 6, b = card r, k, r and 03BB are the parameters of r.
The basic relations between the parameters of a BBD are: bk = vr and

r(k - 1) = 03BB(v - 1). Using partial recursive functions we generalize the
notion of a BBD on a finite set to that of an 03C9-BBD on an isolated set.
We then prove BK = VR and R(K - 1) = 03BB(V - 1), where Y, B, K, R
are isols instead of numbers, while 03BB remains finite. As examples we
discuss the cases K = 3, 03BB = 1 (Steiner triple systems) and V = B, K
= R, 03BB = 1 (projective planes). Let c denote the cardinality of the conti-
nuum. While there are only denumerably many BBDs on finite sets,
there are c co-BBDs on isolated sets. Among these there are c Steiner
triple systems (whose orders need not be - 1 or 3 modulo 6) and c
projective planes.

§ 1. Preliminaries

Let r be a class of subsets of a nonempty finite set a and b = card r.
Choose a set /3 of cardinality b, but disjoint from 6 and a one-to-one
mapping 0 from /3 onto r. Let Gr be the bigraph with 6 U /3 as set of
vertices and {(x, y) E 6 x /31 x E ~(y)} as class of edges. Then we can repre-
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sent the class r by the bigraph Gr; in fact, we can interpret an element b
of 03B2 as the name of the set ~(b) in 0393.

All graphs under consideration will be undirected, simple and

countable. Let G = 03C3 u 03B2,~&#x3E; be a finite bigraph and dx the degree of x,
for x E 03C3 ~ 03B2. Then G is regular, if dx is the same for all x E 03C3 ~ 03B2, semi-
regular, if the value of dx depends only on whether x E 03C3 or x E 03B2, i.e., if
there exist positive numbers r and k such that dx = r, for x E 6, while dx
= k, for x E fi. The numbers v = card (7, b = card 03B2, r and k are the para-
meters of the semiregular bigraph G = 03C3 ~ fi, YI). If we put e = card YI,
we clearly have bk = vr = e; thus G is regular iff k = r or equivalently,
iff b = v.

We shall generalize the notion of a semiregular, finite bigraph to that
of an 03C9-semiregular, countable bigraph G by imposing some computa-
bility conditions on G which are trivially satisfied if G is finite. For a
summary of the basic concepts and propositions involving RETs (i.e.,
recursive equivalence types) and isols, see [3, sections 1 and 2]; for a
detailed exposition, see [6] or [8]. Let 03C1n&#x3E; be the canonical enumera-
tion of the class of all finite sets [3, p. 277] and rn = card pn. Then rn is a
recursive function. For every finite set y there is exactly one number i

such that y = pi; this number is called the canonical index of y and de-

noted by can y. We write B for the set (0,1,...) and [03B1; k] for

{n ~ 03B5|03C1n c a &#x26; r n = kl. Henceforth, the word "graph" will be used in the
sense of an ordered pair G = v, YI), where v and ri are sets and YI
= {can(x,y)~[v;2] 1 x adj. yl. Every vertex of G is therefore a number,
while every edge of G is identified with the canonical index of the set of
its endpoints. Let x, y, z be vertices of G. Then we write "x, y adj. z" if

both x and y are adjacent to z, and "x adj. y, z" if x is adjacent to both y
and z. The sets a and f3 are separable (written: 03B1 1 fi), if they can be sep-
arated by r.e. sets. The graph G = v, ~&#x3E; is an a-graph, if there is an

effective procedure which enables us to decide, given any two vertices,
whether they are adjacent, in short, if ~[v; 2]-~. A connected graph is
an w-graph, if there exists an effective procedure which enables us, given
any two distinct vertices, to find a path of minimal length between them.
Trivially, every cv-graph is an a-graph ; however, a connected oc-graph
need not be an co-graph [5, Prop. 2]. If y is any set, we write (y x y)- for
{x,y&#x3E;~03B3 x y 1 x * yl. Let p be a vertex of G; then we denote the set of
all edges of G which are incident with p by rip. The phrase "function of n
variables" is used for a mapping f from a subcollection of en into e; its
domain and range are denoted by bf and pf respectively. If f(p, q, x) is a
function of three variables, we associate with each ordered pair p,q&#x3E; a
function fpq(x) of one variable, namely the function h such that
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DEFINITION Dl: The bigraph G = 03C3~03B2,~&#x3E; is w-semiregular, if (a)
03C3|03B2, (b) G is an a-graph, (c) there is a function f(p, q, x) such that fpq(~p)
= riq, for p,q&#x3E;~03C3 x 03C3 and f(p, q, x) has a partial recursive extension
J(P, q, x) such that fpq(x) is a one-to-one (partial recursive) function of x,
and (d) there is a function g(r, s, x) such that grs(~r)=~s , for r,s&#x3E;~03B2 03B2
and g(r, s, x) has a partial recursive extension g(r, s, x) such that grs(x) is a
one-to-one (partial recursive) function of x.
The graph G = (v, ~&#x3E; is isolic if the set v (hence 11) is isolated. Let c

denote the cardinality of the continuum. While there are only ~0 finite,
semiregular bigraphs, there are c isolic, cv-semiregular bigraphs. This
follows from the observation that for any two separable, isolated sets a
and 03B2, the complete bigraph K,, 0 = 03C3~03B2~&#x3E; with il = {can(x,y)|x~03C3
&#x26; y~03B2} is isolic and w-semiregular. If G = 03C3~03B2,~&#x3E; is an w-

semiregular bigraph, the RETs

are the parameters of G.

DEFINITION D2: Let G = 03C3~03B2,~&#x3E; be a bigraph and v = 6 u /3. Then
G is w-regular, if (a) u |03B2, (b) G is an a-graph, and (c) there is a function
m(c, d, x) such that mcd(~c) = 11d, for c, d&#x3E; E v x v and m(c, d, x) has a
partial recursive extension m(c, d, x) such that mcd(x) is a one-to-one

(partial recursive) function of x.

REMARK RI: Let G = 03C3~03B2,~&#x3E; be an 03C9-semiregular bigraph with
parameters V, B, K, R and let v = 6 u /3. We claim that G is w-regular iff
R = K. For cv-regularity trivially implies co-semiregularity and R = K.
Now assume that G is cv-semiregular with R = K and that the functions
f(p, q, x) and g(r, s, x) are related to G as specified in conditions (c) and
(d) of Dl. Put a = min a, b = min 03B2, then R = Req 11a and K = Req 11b.
Since R = K, there is a partial recursive one-to-one function h with
11a c bh and h(11a) = qb. Define for c, d&#x3E; E v x v,

Then M,d(X) is a one-to-one function from ~c onto 1Jd and m(c, d, x) has a
partial recursive extension m(c, d, x) such that mcd(x) is a one-to-one

function of x. Hence G is 03C9-regular.
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PROPOSITION Pl: Let the w-semiregular bigraph G = 03C3 u fi, ~&#x3E; have
parameters V, B, R, K and let E = Req il. Then VR = BK = E.

PROOF: Put a = min 6, b = min fi, y = {j(x, y) c-j(u x 03B2)|x adj. y}, then
we claim: (1) 03B3 ~ ~, (2) j(6 x ~a) ~ y, (3) j(03B2  ~b) ~ y. If we can prove
these relations, we are done, for they imply Req y = E, VR = Req y,
BK = Req y respectively.
Re (1). Let 6 and e be disjoint r.e. sets such that 6 c 6 and 03B2 c 03B2.

Define the function 1 by: 03B4f = j(6 x ff), fj(x, y) = can(x, y), then f is a
partial recursive, one-to-one function with y c b¡ and f (y) = il.
Re (2). Let the functions f, f g, g be related to G as described in

conditions (c) and (d) of Dl. Define ml, m2, ml, m2 by

e = can(ml(e), m2(e)), for ml(e) E (J, M2(e) E 03B2,

e = can(m1(e), M2(e», for m1(e) E fi, ffi2(e) E 03B2,

then ml, m2 have the partial recursive extensions ml, m2 respectively.
Let bh = j(6 x ’1a) and hj(x, y) = j[x, m2fax(y)]. If we can prove (4) ph
= y, (5) h is one-to-one and (6) h has a partial recursive one-to-one
extension, we are done, for they imply 03B4h ~ y, i.e. j(6 x ~a) ~ y.

Re (4). Let j(x, y) E bh, i.e., XE (J and y E ’1a’ Then fax(y) E ’1x and hj(x, y)
= j(x, y*), where y* is the vertex in fi of fax(y), hence hj(x, y) E y. Thus
ph c y. Now assume j(u, v) E y, then u E 6, 03C5~03B2 and u adj. v, i.e.,
can(u, v) E ~u. Put w = f-au 1 can(u, v), then fau(w) = can(u, v) and

hj(u, w) = jeu, m2fau(w)] = j[u, M2 can(u, v)] = j(u, v).

However, can(u, v) E ’1u implies f-1au can(u, v) E ’1a, i.e., w E ’1a; then

j(u, w) E 03B4h, since u E 6. Thus j(u, v) E ph and the relation ph c y can be
strengthened to ph = y.
Re (5). Let (Xl,Yl), x2, y2&#x3E; be different elements of bh, then Xl =1= X2,

or x1 = x2 &#x26; y1 ~ y2. In the former case we trivially have

hj(x1, y1) ~ hj(x2, y2); in the latter case we put x = x 1 = x2. Then yi and
Y2 are distinct edges through a, hence fax(y1) and fax(Y2) distinct edges
through x so that mlhx(Yl) =1= m2Jax(Y2) and again h(xl, y1) ~ h(x2, y2).
Re (6). The functions m2(e) and hx(Y) have partial recursive exten-

sions, hence so has h. Let the number j(u, v) E ph be given. By our proof
of (4) we have h-1 j(u, v) = j(u, w), where w = faü 1 can(u, v). Since can(u, v)
and f-1au(x) have partial recursive extensions so has h -1. Both the one-
to-one functions h and h -1 have partial recursive extensions, hence h
has a partial recursive one-to-one extension.
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Re (3). Since the bigraph G = (a u fi, g) is w-semiregular, so is the

bigraph G* = 03B2~03C3,~&#x3E;. Hence (3) follows from (2).

§2. Balanced block designs

Henceforth the letter 03C3 will only be used to denote a set of cardinality
~ 2. As observed in the beginning of section 1, every finite class r of
subsets of a finite set 03C3 can after a suitable choice of a set 13 be represen-
ted by (or identified with) a bigraph G = 03C3 u 03B2, ~&#x3E;. This is also the case
if r and (7 are countable, provided 03B5 - 03C3 is infinite, since 13 should be
disjoint from 03C3. We write Oy = {x ~ 03C3|x adj. y}, for y ~ 03B2.

DEFINITION D3: An 03C9-block design (co-BD) on a set u is a bigraph G
= 03C3 ~ fi, ~&#x3E; such that (i) G is ro-semiregular and (ii) 03C3y ~ a Z’ for y, z E 03B2
and y ~ z.

REMARK R2: The interpretation of G in terms of sets is r = {03C3y|y E 03B2},
but we shall adhere to the bigraph terminology. The purpose of con-
dition (ii) is to avoid repetitions of blocks. Note that an ev-BD G
= 03C3~03B2,~&#x3E; need not be connected. For let a = (1, 2, 3, 4), fi = (6, 24)
and il consist of can(1, 6), can(2, 6), can(3, 24) and can(4, 24). Then G is a
finite 03C9-semiregular bigraph with V = 4, B = 2, K = 2, R = 1 which has
two components.

DEFINITION D4: An 03C9-balanced block design (co-BBD) on a set u is an
co-BD G = 03C3 u fi, ~&#x3E; on 03C3 such that K ~ 2 and

(iii) if 03B2xy = {z E f3lx, y adj. zl, for (x, y) ~(03C3 x 03C3)-, there is a positive
number 03BB such that card 03B2xy = 03BB, for all x, y&#x3E; ~ (03C3 x 03C3)-; moreover, the
function hxy = can 03B2xy has a partial recursive extension,

(iv) there is an effective procedure which enables us, given any two
distinct elements y, z of 13 to decide whether (3x)[x E 03C3 &#x26; x adj. y, z] and if
so, to find such a number x.

REMARK R3: Assume that G = 03C3 ~ 03B2, ~&#x3E; is an ev-BD on the set 03C3

with K ~ 2 which satisfies (iii). We claim
(a) G is connected,
(03B2) G is an w-graph iff G satisfies (iv).

For let us assume that G = 03C3~03B2,~&#x3E; is an cv-BD on 03C3 with K ~ 2

which satisfies (iii). Define bxy = min 03B2xy, for x, y E a and x ~ y. Let 03A01
be the effective procedure which associates bxy with x and y. Since G is
co-semiregular, there also exists an effective procedure 03A02 which as-
sociates with every vertex z in fi two distinct edges through z.
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Re (a). Let two distinct elements p and q of 6 u fi be given. If exactly
one of p, q belongs to cr, we may assume without loss of generality that it
be p. We now distinguish three cases:

If (I) holds, 03A0p,q = p,bpq,q&#x3E; is a minimal path from p to q; it can be

effectively found from p and q by 03A01. If (II) holds, we can decide
whether p adj. q, since G is an a-graph. If p adj. q, then 03A0p,q = p, q&#x3E; is
the only minimal path from p to q. If not[p adj. q], we choose an edge
through q, say can(s, q) ; then 03A0p,q = p,bps,s,q&#x3E; is not only a minimal
path from p to q, but it can be effectively found from p and q by H2-
Now suppose that (III) holds. Let "x~03C3&#x26;xadj.p,q" be abbreviated
"Ax". If Ax holds for some x, then il pq = p, x, q) is a minimal path from
p to q for each such x. If Ax holds for no x, we choose an edge through
p, say can(s, p), and an edge through q, say can(t, q) ; then s ~ t and H pq
= p, s, bst, t, q) is a minimal path from p to q. Note that the distance

between p and q equals 2 if (~x)Ax, but 4 if not(3x)Ax. Anyhow, we
proved that G is connected and we described an effective procedure to
find a minimal path 03A0pq from p to q in cases (I) and (II).
Re (j8). If G satisfies (iv) we can also effectively find a minimal path

from p to q in case (III), hence G is an m-graph. Now suppose G is an 03C9-
graph. Then we can compute the distance between p and q, hence decide
whether (~x)Ax. Moreover, if (~x)Ax is true and p, t, q&#x3E; is a minimal

path from p to q, then A, is true and t can be computed from (p, t, q&#x3E;.
Thus G satisfies (iii).

If G = 03C3 ~ 03B2, ~&#x3E; is an A)-BBD on a, the RETs V, B, R, K and the
number 03BB are called the parameters of G. We write 03A9 for the collection

of all RETs and 039B for the collection of all isols, i.e., of all X E 03A9 such that
X ~ X + 1. Recall that for every nonzero element A ~ 03A9 the equation
X + 1 = A has exactly one solution; it is denoted by A - 1. We have
A - 1 = A iff A ~ 03A9 - 039B, while A - 1  A iff A ~ 039B.

PROPOSITION P2: For an co-BBD G = 03C3 u 03B2, ~&#x3E; with parameters V, B,
K, R and Â, we have VR = BK and R(K - 1) Â(V - 1).

PROOF: Assume the hypothesis. VR = BK holds in every m-BD,
hence in G. Put a = min a and
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Let the functions f and g be related to G as described in Dl. Define

then fpq(~p) = ~q, for p, q&#x3E; ~03B4f and grs(~r) = ~s, for r,s&#x3E;~03B4g. It is

readily seen that f and g have partial recursive extensions related to f
and g as f and g are related to f and g as described in conditions (c)
and (d) of D1. Since G is an a-graph with |, we conclude that G is also
03C9-semiregular; let its parameters be , B, Rand K. Then V = Req  =
V - 1 and B = Req  = Req fia = R, where (*) is justified, since the func-

(*)

tion can(a, y), for y ~ a is partial recursive, one-to-one and maps P onto
fia’ Put ã = mina and b = minp, then

Application of Pl to G yields  = BK, i.e., R(K - 1) = 03BB(V - 1).

DEFINITION D5: An 03C9-BBD G = 03C3 ~03B2, ~&#x3E; is isolic, if 6 and pare
isolated, i.e., if Y, R, B and K are isols.

DEFINITION D6: An 03C9-BBD G = (cru 03B2,~&#x3E; is symmetric, if (a) G is
isolic and (b) V = B or equivalently R = K or equivalently G is co-

regular.

REMARK R4: According to P2 the crucial formula R(K - 1) =
03BB(V - 1) holds for every 03C9-BBD G, not only if G is isolic. However, in
the non-isolic case this formula loses much of its interest by being
equivalent to RK = 03BBV. The propositions of the remainder of this paper
will therefore deal with isolic co-BBDs.

DEFINITION D7: Let G1 = v1, ~1&#x3E; and G2 = v2, ~2&#x3E; be cv-graphs.
Then G1 is an induced subgraph of G2 (written: G1 ~ G2), if Vl c V2 and
~1 = {can(x,y)|x,y~v1}~~2. We write G1  G2, if G1 ~ G2 and

G1 ~ G2-
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DEFINITION D8: An m-BBD G = 03C3 ~ 03B2, ~&#x3E; is locally finite, if given
two nonempty, finite sets 6o c 03C3 and 03B20 ~ 03B2, there exist finite sets

03C3*, 03B2*, ~* such that ao c Q* c 6, 03B20 ~ 03B2* ~ 03B2, ~* ~ ~ such that G*
= 03C3* ~ 03B2*, ~*&#x3E; is a finite 03C9-BBD and G* ~ G. Moreover, G is recur-

sively locally finite, if given two nonempty, finite sets ao c u and 03B20 c fi
such finite sets u*, fi*, ri* can be effectively found.

PROPOSITION P3: Every isolic 03C9-BBD is recursively locally finite.

PROOF: Let G = 03C3 u fi, ~&#x3E; be an isolic w- BBD, then we may assume
without loss of generality that 03C3 is infinite. Suppose 03A01 and II2 are the
effective procedures mentioned in R3, 03A03 an effective procedure which
associates with every x c- a two distinct edges through x and Il, the
effective procedure described in condition (iv) of D4. Let G*
= 03C3* ~ 03B2*, ~*&#x3E; be the 03C9-BBD and induced subgraph of G which can
be obtained by fully exploiting the information 6o c 03C3, 03B20 ~ 03B2 and the
effective procedures 03A01,..., il4. Then u*, fi*, 11* can be effectively ob-
tained from 6o and flo, hence 6*, fi*, ri* are r.e. Since 6, 03B2, ~ are isolated,
we conclude that 6*, 03B2*, ~* are finite. Thus G is recursively locally finite.

COROLLARY: For every infinite, isolic 03C9-BBD G there exists an infinite
sequence (Gn) of finite w-BBDs such that Go  G, ...  G and

~~n=0Gn = G.

We conjecture that a considerable part of the theory of BBDs [see
e.g., 11, Chs. 7, 8] can be generalized to isolic 03C9-BBDs. However, in the
remainder of this paper we shall restrict our attention to the case 03BB = 1,
more specifically, to Steiner triple systems (K = 3, 03BB = 1) and projective
planes (V = B, K = R, 03BB = 1). Note that if we take 03BB = 1 in condition

(iii) of D4 and mxy is the only member of 03B2xy for x, y E a, x ~ y, then the
function mxy from (03C3 x u) - into e has a partial recursive extension iff the
function hxy = can 03B2xy has a partial recursive extension.

§3. Steiner triple systems

We shall generalize the notion of an STS on a finite set to that of an
03C9-STS on a countable set.

DEFINITION D9: An STS on a set 03C3 is a class r of 3-subsets of 03C3 (called
triples) such that every two distinct elements of 03C3 belong together to
exactly one triple of 0393. The Steiner-function (S-function) of r is the
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function Sxy from (a x 03C3)- into u such that (x, y, Sxy) E r. An STS is an
w-STS, if its S-function has a partial recursive extension.

REMARK R5: The function Sxy has the following properties: (i)
sxy e (x, y), (ii) Sxy = Syx, (iii) if Sxy = Suv, then (x, y) and (u, v) are equal or
disjoint, (iv) Sxy = z ~ Syz = x ~ Szx = y. Conversely, if the function f
from (03C3 x 03C3)- into 6 has these four properties, then the class r
= {(x, y, Sxy)|x,y&#x3E;~(03C3 x u) - 1 is an STS with Sxy as its S-function. For
the relations between STSs, quasigroups and loops, the reader is refer-
red to Bruck’s paper [1, pp. 63-65]; they will, however, not be used in
the present paper.
An STS on a set 6 is finite (infinite, isolic, immune), if the set 03C3 is finite

(infinite, isolated, immune). Since every function with a finite domain is
partial recursive, every finite STS is an isolic co-STS. The order of an co-
STS r on a set 6 is defined by o(r) = Req 0". Thus o(r) has the usual
meaning iff 6 is finite. In the remainder of this section we assume that 6
is a set of cardinality 3 which consists of odd numbers; this turns out
to be convenient (but not essential).

DEFINITION D10: Let r be an STS on 0" with Sxy as its S-function.
Then the standard representation of r is the bigraph Gr = 03C3 u fi, ’1),
where

PROPOSITION P4: Let F be an isolic STS on 03C3 and let Gr be its

standard representation. Then

r an co-STS ~ Gr an 03C9-BBD with K = 3 and À = 1.

PROOF: Let r be an w-STS and Gr = 03C3 ~ 03B2, ~&#x3E;. Then Gr is a BBD
with K = 3 and 03BB = 1. It remains to be shown that

Gr is 03C9-semiregular, (7)

03C3y ~ 03C3z, for y, z ~ 03B2 and y ~ z, (8)

Gr satisfies conditions (iii) and (iv) of D4. (9)

Re (7). Since 6 consists of odd numbers, we have o ~ 03C3. Thus the
canonical index of every finite subset of a is even, j8 consists of even
numbers and 03C3|1 fi. For x E 6, y E 03B2, say y = can(u, v, w), we have x adj. y iff
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x E (u, v, w); hence Gr is an a-graph. Now consider condition (c) of D1.
For p E 0’,

A function h(x) is an involution without fixed points (abbreviated iwfp) of
a set T, if h is a permutation of r such that h(x) ~ x and h2(x) = x, for
x ~ 03C4. The iwfp h of 03C4 is an m-iwfp, if h has a partial recursive one-to-one
extension (or equivalently, a partial recursive extension, since h is one-
to-one and h = h -1). We may assume without loss of generality that the
set 6 is immune. Define Tr = {(r, x, y)|(r, x, y) ~ 0393}, for r ~ 03C3, and !pq = 03C3

- (p, q, Spq), for p, q E 6, p ~ q. Let S p(x) and Sq(x) be the functions with
domain !pq such that Sp(x) = S(p, x) and Sq(x) = S(q, x). A subset p of ipq
is closed, if Sp(p) c p and S,(p) - p. The closure p* of p is the inter-

section of all closed sets a with p c oc c ipq, The closure p* of a finite
subset p Of T pq can be effectively obtained from p as follows: test whether
p is closed; if not, adjoin to p all elements x such that x e p, but there is
a finite sequence x0, ..., xn&#x3E; such that xo E p, Xn = x and xi + 1 = Sp(xi)
or xi+ = Sq(xi), for 0 ~ i ~ n - 1. Since p is a finite subset of ipq, it

follows that p* is a r.e., hence (i pq being immune) a finite subset of i pq.
We need the following

LEMMA: For every ordered pair p, q) E 03C3 X 03C3 there is a one-to-one

mapping 4Jpqfrom rp onto F qsuch that from p, q&#x3E; we can find (definitions
oj) effective procedures which enable us (i) given any T ~ 0393p, to compute
4Jpq(T), and (ii) given any TErq, to compute 03A6-1pqT.

PROOF: Let p, q&#x3E;~03C3 X 6 be given. If p = q we define 4Jpq(T) = T, for
T~ 0393p. Now assume p ~ q. Then we put

where (u, v) is obtained from (c, d) as follows. Compute the (canonical
index of) the finite set 03B1cd = (c, d)*; then (c, d) c rxcd C ! pq and both Spi 1 acd
and Sq|03B1cd are co-iwfps of 03B1cd. Thus card 03B1cd is even, say card 03B1cd = 2m.

Then Otcd can be expressed as
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where the 2-sets (xi, S,(xi», (y;, Sq(yi)) can be computed from a. Then we
compute the numbers c1,..., cm, d1,..., dm, u1,..., um, v1,..., vm such that

We can now effectively locate (c, d) in the sequence (c1, dl), ..., (cm, dm)&#x3E;,
i.e., compute the number i such that (c, d) = (c;, di). Then we define (u, v)
as (ui, vi). To prove that the mapping e pq is well-defined and one-to-one
we use

Let R be the relation in ! pq such that zRw iff there exists a finite se-
quence z0,...,zn&#x3E; of elements in r pq such that zo = z, zn = w and zi+1
= Sp(zi) or zi+1 = Sq(zi), for 0 ~ i ~ n - 1. Then R is an equivalence
relation in ! pq’ 03B1cd is the equivalence class containing c and d [for cRd,
since Sp(c) = d], while 03B1c’d’ is the equivalence class containing c’ and d’.
Thus (11) is true. We described an effective procedure for computing
03A6pq(p, c, d), given any triple (p, c, d) E 0393p. Now assume the triple (q, u, v)
- 03A6pq(p, c, d) is given. If p = q we have (p, c, d) = (q, u, v). Now assume
p ~ q. We know that Sq(u) = v. We can compute the set 03B1cd = (u, v)*
from u and v; let card 03B1cd = 2m. By computing the 2-sets (ci, di), (ui, rj,
for 1 ~ i ~ m associated with 03B1cd we can find the number i with (u, v)
= (ui, vi), hence also the 2-set (c, d) = (ci, di). Thus 03A6-1pq(q, u, v) = (p, c, d)
can be computed from (q, u, v). This completes the proof of the lemma.

We now continue our proof of (7). In view of (10) we can define a
function f(p, q, x) by
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Using the lemma it follows that the function f is related to Gr
= 03C3 ~ 03B2, ~&#x3E; as described in condition (c) of Dl. Now consider con-
dition (d) of Dl. Let fJ = [e; 3], i.e., let e be the infinite, recursive set
consisting of the canonical indices of all 3-sets; put = {x ~ 03B2|03C1x ~ 0393}.
Define the functions 9 and g by: (i) bg x 03B2, (ii) if r, s ~ 03B2, say r

= can(rl, r2, r3), s = can(sl, S2, S3), where rl  r2  r3, Sl  S2  S3, then

g[r, s, can(ri, r)] = can(si, s), for 1 ::::; i ::::; 3, (iii) g = g| 03B2 x 03B2. Then g and g
are related to o- and P as described in condition (d) of Dl. We have now
proved that Gr is co-semiregular.
Re (8). Let y, z ~ 03B2, say y = can(a, b, c), z = can(d, e, f). Then y ~ z im-

plies (a, b, c) :0 (d, e, f), hence 03C3y ~ 03C3z.

Re (9). Let bh = (03C3 x 03C3)- and h(x, y) = can(z E PI x, y adj. zl. Since Sxy
has a partial recursive extension so has the function h(x, y)
= can(x, y, Sxy). Thus Gr satisfies condition (iii) of D4. Assume two dist-
inct elements y1, y2 ~ 03B2 are given, say y1 = can(u1, v1, w1 ), y2
= can(u2, v2, w2). Then there is an x with x ~ 03C3 &#x26; x adj. Yl, Y2 if

(Ul, Vl, Wl) n (U2, V2, W2) is a singleton; moreover, if such an x exists, it is
the common element of (u1, v1, w1) and (u2, v2, w2). Since ul, vl,

Wl, U2, V2, W2 can be computed from YI and Y2, we conclude that Gr
satisfies condition (iv) of D4. This completes the proof of (9) and thereby
of the conditional from the left to the right. The other conditional is

trivial. For if the function h with 03B4h = (03C3  03C3)- and h(x, y)
= can{z EPI x, y adj. zl has a partial recursive extension, so has the func-
tion Sxy with Ph(x, y) = (Sxy)-

Let r be an isolic o-STS and Gr its standard representation. Then the
parameters V, B, R of Gr are called the parameters of r.

PROPOSITION P5: If the isolic o-S 7S r has parameters V, B and R, then
V=2R+ 1 and V(V - 1 ) = 6B.

PROOF: Substitution of K = 3, À = 1 in VR = BK and 03BB(V - 1) =

R(K - 1) yields VR = 3B and V = 2R + 1. Thus 6B = V(2R) =
V(V - 1).

DEFINITION D 11: Let A, B ~ 039B, m~03B5 and m ~ 1. Then A is congruent B
modulo m [written: A - B(mod m)], if there exist isols X and Y such that
A + mX = B + mY.

DEFINITION D12: An isol V is a Steiner-isol (S-isol), if V = o(r), for
some isolic oi-STS r.

We refer to [2, p. 116] for a list of the basic properties of the
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~ (mod m) relation in A. We write As for the collection of all S-isols and
es for E n As. It is known [1, pp. 91-97] that

The isolic analogue of (12), namely

fails. More specifically, (a) X ~ 039BS implies X odd &#x26; X(X - 1) ~ 0(mod 6)
by P5, but whether the converse holds is unknown, (b) trivially, X - 1
or 3(mod 6) implies X odd &#x26; X(X - 1) ~ 0(mod 6), but the converse is
false.

PROPOSITION P6: Every isol of the form 2N - 1 with N ~ 2 is an S-isol.

PROOF: We generalize the classical construction of an STS in terms of
the group Zn2. Let N ~ 2 and v E N. Denote the class of all finite subsets
of v by Pf;"(v) and the symmetric difference of a and p by a ~ 03B2. Then
G,, = Pfin(v), ~&#x3E; is an Abelian group with the empty set o as unit ele-
ment ; thus a = - a, since a p a = o. Define

then 0393v satisfies the four conditions listed in R5, hence Tv is an STS on
Pfin(v) - (o). Put

then g is a partial recursive function and F’ v an STS on 2’’ - (0). Define

then 6 consists of odd numbers and 0393"v is an STS on 6. Note that 0393"v is
an o-STS on 6, since

Clearly, o(0393"v) = Req(2V - (0)) = 2N - 1, hence 2N - 1 E As.
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REMARK R6: Since p is an associative operation, each isolic 03C9-STS
of order 2N - 1 constructed in the proof of P6 is associative, i.e., has the
property S(Sxy, z) = S(x, 5’yJ, for distinct elements x, y, z of 03C3.

Since 2n ~ 0(mod 3) we have 2" - 1 or 2(mod 3). In fact, 2n ~ 1 (mod 3)
if n is even, while 2" ~ 2(mod 3) if n is odd. The two statements of the
preceding sentence can be generalized to isols, but the proofs are less
obvious in the isolic case, since an isol need not be even or odd nor need

it be = 0, 1 or 2(mod 3).

PROPOSITION P7: For every isol N,
(a) 2N = 1(mod 3) ~ N even, (b) 2N = 2(mod 3) ~ N odd.

PROOF: We may assume without loss of generality that N ~ 1. Note
that 2N = 2(mod 3) ~ 2N-1 ~ 1(mod 3) by relations (3.11) and (3.12) of
[2]. Hence (a) ~ (b) and it suffices to prove (a). We split up (a) into two

parts:

(ai) N even ==&#x3E; 2N - 1(mod 3),

(a2) 2N - 1(mod 3) ~ N even,

and we shall use the fact that (a 1 ) and (a2) hold in e.
Re (ai). Let the canonical extension from e to ll of a recursive com-

binatorial function h(x) be denoted by h039B(X). Suppose that f(x) and g(x)
are recursive, combinatorial functions. According to a result due to
Nerode [8, p. 398],

The functions f(x) = 2’x and g(x) = 1 are recursive and combinatorial,
hence

Since the hypothesis is true, so is the conclusion.
Re (a2). E. Ellentuck pointed out to us that this can be proved using

the method employed by Nerode [10, p. 413] to show that 2X
= Y2 ~ X even, for isols X and Y Consider the formula (Vx)(Vy)(3z)[2’
= 3y + 1 =&#x3E; x = 2z] which holds in e. It is a Horn sentence in prenex
form involving the recursive, combinatorial functions 2’, 3y + 1 and 2z;
moreover, it has a recursive Skolem function. Hence this formula holds

in eA* by [10, part (3.3) of Thm. (3.1)]. Let 2x . 3Y + 1, for X, Y e A.
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Then there is a ZEe A*, hence a Z E A * such that X = 2Z. However,
2Z~039B implies Z~039B by [10, (4.1)], hence X is even.

PROPOSITION P8: There are c isols which are S-isols and c which are

not. Among the c S-isols there are c which are = 1(mod 6), c which are = 3
(mod 6) and c which are neither - 1 nor - 3(mod 6).

PROOF: Every S-isol is odd by P5. Thus, since there are c isols which
are not odd, there are exactly c isols which are not S-isols. Note that for
N e A, N ~ 1,

2N-1 ~ l(mod 3) 2 N ~ 2(mod 6) ~ 2N - 1 - 1(mod 6),

2N-1 ~ 2(mod 3) ~ 2N = 4(mod 6) ~ 2N - 1 ~ 3(mod 6).

Using P7 we see that
(i) 2N - 1 - 1(mod 6) « N odd,

(ii) 2N - 1 3(mod 6) « N even,
(iii) 2N - 1 ~ 1 or 3(mod 6) ~ N even or odd.

According to P6 every isol of the form 2N - 1 with N ~ 2 is an S-isol.
The remaining statements of P8 now follow from the fact that the funct-
ion F(N) = 2N - 1 from 039B into 039B is one-to-one and that there are c even

isols, c odd isols and c isols which are neither even nor odd.

COROLLARY: There are exactly c odd isols V such that V(V - 1)
0(mod 6), while V is neither - 1 nor ~ 3(mod 6).

PROOF: Every isol V = 2N - 1, where N is neither even nor odd sat-
isfies the requirements.

So far all infinite S-isols of which we proved the existence were of the
form 2N - 1 with N E A - e. The direct product construction which as-
sociates with two finite STSs of orders a and b a finite STS of order ab

can be generalized to 03C9-STSs.

PROPOSITION P9: If A and B are S-isols, so is AB.

PROOF: Let r and A be cv-STSs on the isolated sets a and 03B2 respect-
ively and suppose y = j(a x fi). Define the following three conditions on
a triple of elements of y, say (j(a1, b1), j(a2, b2 ), j(a3, b3)): (I) (a1, a2,
a3) ~ 0393 and b1 = b2 = b3, (II) a1 = a2 = a3 &#x26; (b1, b2, b3) ~ 0394, (III)
(a1, a2, a3) ~ 0393 &#x26; (b1, b2, b3) ~ 0394. Let 0 be the class of all triples of r
which satisfy at least one (hence exactly one) of these three conditions.
Then 0 is an o-STS on the isolated set y and o(O) = o(f) ’ o(A).
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REMARK R7: Let r be an isolic 03C9-STS of order N. While Gr is an 03C9-

semiregular a)-graph associated with 0393, one can also associate an 03C9-

regular o-graph Sr with 0393, the so-called Steiner graph of r. Here Sr
= 03B2, ~&#x3E;, where f3 = {can(x, y, z)|(x, y, z) ~ 0393} and two vertices are adja-
cent if the triples they represent have exactly one element in common.
Let D = Req ~p, for p E 03B2. It can now be proved that (i) Sr is connected,
(ii) Sr is an 03C9-graph, (iii) D = 3(N - 3)/2, so that D does not depend on
the choice of p, (iv) Sr is 03C9-regular, (v) E = Req il = N(N - 1)(N - 3)/8.

§4. Projective planes .

There is a well-known correspondence between finite, symmetric
BBDs with 03BB = 1 and finite, projective planes. We shall extend this cor-
respondence to one between isolic, symmetric BBDs with 03BB = 1 and the

isolic projective 03C9-planes introduced in [4] and defined below.
An incidence system is an ordered triple il = (a, f3, inc.), where u and

03B2 are disjoint sets and inc. c (03C3 x 03B2) u (03B2 x 03C3); the elements of 6 and 03B2
are called points and lines respectively. We call il finite (infinite, isolic
immune), if the sets a and f3 are finite (infinite, isolated, immune). In this
section the word "plane" is used in the sense of a projective plane. All
planes under consideration are countable. We define a plane as an in-
cidence system II = 03C3, f3, inc.) such that the classical three axioms are
satisfied. Let p, q E 03C3, p ~ q, r, s E 03B2, r ~ s, then we write Lpq for the line
joining p and q, and Prs for the point in which r and s intersect. The
plane 03A0 = 03C3, 03B2, inc.&#x3E; is an 03C9-plane, if alf3 and the functions L from
(03C3  03C3)- into f3 and P from (03B2 x 03B2)- into Q have partial recursive exten-
sions. Since every function with a finite domain is partial recursive,
every finite plane is an isolic 03C9-plane. It was proved in [4] that (i) there
are c isolic o-planes, and (ii) for every 03C9-plane II = 03C3, 03B2, inc.&#x3E; there
exists a unique RET N such that every point lies on

N + 1 lines, every line passes through N + 1 points, while Req 03C3 = Req
03B2 = N2 + N + 1. This RET N is called the order o(H) of H. Thus o(H)
has the usual meaning iff II is finite.

DEFINITION D13: The standard representation of the incidence

system 03A0=03C3, 03B2, inc.&#x3E; is the bigraph G03A0 = 03C3 ~ 03B2, ~&#x3E;, where

ri = {can(x, y)|x ~ 03C3 &#x26; y ~ 03B2 &#x26; xinc. y}.

PROPOSITION P10: Let Gn be the standard representation of the isolic
incidence system II. Then
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Il an 03C9-plane ~ Gn a symmetric 03C9-BBD with A = 1.

PROOF: Let Il = 03C3, 03B2, inc.) and let Gn = 03C3 ~ 03B2, ~&#x3E; be its standard
representation. Since the theorem holds if II is finite, we may assume
that a and pare infinite.

(a) Assume that lI is an 03C9-plane. With II we associate an ordered
quintuple a1, ..., a5&#x3E; of points no three of which are collinear; from
now on a1,...,a5 remain fixed. Since II is an 03C9-plane, we have 03C3|03B2.
Moreover, given a point p and a line 1 of II we can decide whether p inc.
l by [4, §3(e)], hence whether can(p, 4 E 17; thus Gn is an a-graph. Let the
lines r and s of II be given. If r = s we define f(r, s, x) = x, for x ~ 17r’
f(r, s, x) = x, for x ~ e. Now assume r ~ s. From a1, ..., as, r, s we can
find the first point in a1, ..., a5&#x3E; which lies neither on r nor on s, say a.
Let y and à be the sets of points of II which are incident with r and s
respectively. Define

then hl maps y one-to-one onto ô and h2 = h-11. Using the (definitions
of) partial recursive extensions P and L of P and L respectively, we can
find (definitions of) partial recursive extensions bi and li2 of hl and h2
respectively, hence also (a definition of) the partial recursive one-to-one
extension h*1=h1|03C4, where 03C4={x~03B4h1|h1(x)~03B4h2 &#x26; h2h1(x) = x}.
Write f(r, s, x) for hl(x) and 1(r, s, x) for h*1(x) and define the functions
g(r, s, y) and g(r, s, y) by

Then grs(~r) = I1s and g(r, s, x) is a partial recursive extension of g(r, s, x)
such that grs(x) is a one-to-one function of x. Hence Gn satisfies con-
dition (d) of Dl. In a similar manner or using duality it can be shown
that Gn satisfies condition (c) of Dl. We have proved that Gn is 0)-

semiregular. Two distinct lines of II have only one point in common,
hence, since each contains at least three points, we have ay :0 03C3z, for

y, z ~ 03B2, y ~ z. Thus Gn is an o-BD on the set a. Every two distinct
points x and y of lI lie on exactly one line, namely Lxy; since Lxy has a
partial recursive extension, so has the canonical index of the set with Lxy
as its only member; thus Gn satisfies condition (iii) of D4. Every two
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distinct lines y and z of II intersect in a point Py,- and Pyz can be com-
puted from y and z; hence Gn also satisfies condition (iv). We have
proved that Gn is an o-BBD on (1 with Â = 1. Let N = o(II). Then we
have Req 6 = Req f3 = N’ + N + 1, hence V = B ; we conclude that the
o-BBD Gn is symmetric.

(b) Let Gn = 03C3 u f3, ~&#x3E; be a symmetric 03C9-BBD with A = 1. To prove
that II is an 03C9-plane we have to show:

(a) every two distinct points x and y of Il lie on exactly one line, say
Lxy; moreover, given x and y, we can compute Lxy,

(03B2) there are four points of II, no three of which are collinear,
(y 1) every two distinct lines of II intersect, i.e., have exactly one point

in common,

(y2) if the distinct lines x and y of II intersect, the point of inter-
section can be computed from x and y.

Re (a). Gn has A = 1 and satisfies condition (iii) of D4.
Re (03B2). Let p be a point of II and l, m distinct lines through p. Then

there are points ql, q2, rl, r2 such that p, ql, q2 are distinct points of 1,
while p, rl, r2 are distinct points of m. By (a) no three of the four points
q1, q2, r1, r2 are collinear.
Re (YI) and (72). Note that (y,) holds, since Gn satisfies condition (iv)

of D4. We now prove (03B31). Let II have the parameters V, B, R, K, then
V- 1 = R(K - 1), since A = 1. Put N = K - 1, then K = R = N + 1
and B = h = N2 + N + 1. Let l, m be distinct lines of II. In view of (a)
we only need to show that l and m have at least one point in common.
Suppose not. Let y and à be the sets of points on l and m respectively.
Put ( = {Lxy|x ~ 03B3 &#x26; y ~ 03B4} and define the function f by: ôf = j(y x 03B4),
fj(x, y) = Lxy. Using (a) we see that f maps j(y x ô) one-to-one onto (
and that f has a partial recursive extension. Moreover, f-1(z) = j(P1z,
Pmz), for z ~ 03B6; here both P1z and P.- can be computed from 1, m, z by (y2),
since we know that both l and m intersect z. Thus f-1 also has a partial
recursive extension and j(y x 03B4) ~ (. We conclude that Req ( = Req 03B3·

Req 03B4 = (N + 1)2 = N 2 + 2N + 1. Since Req 03B2 = B = N2 + N + 1,
we have Req fi  Req (. This contradicts the fact that 03B6 c 03B2. The lines l
and m must therefore intersect.

REMARK R8: Once (a) and (03B2) of part (b) of the proof of P10 have
been established, one can also prove both (yi) and (y2) without using the
hypothesis that Gn satisfies condition (iv) of D4. We only sketch the
proof, but stress the fact that it depends on the fact that Gn is isolic and
that every finite symmetric BBD with Â = 1 is a projective plane. Let
two distinct lines 1 and m of II be given. By fully exploiting the in-
formation that Gn is 03C9-regular and satisfies condition (iii) of D4 we can
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effectively generate a subsystem G03A0 = 03C3 ~ 03B2, ~&#x3E; of Gn such that : 1,
m ~ 03B2, the sets (1, 03B2, ~ are r.e., hence finite, Gn is a symmetric BBD with
= 1. Put 03A0 = 03C3, 03B2, inc.). Then il is a finite plane with 1 ~ 03B2 and m n fI
as lines; let these lines intersect in the point p of ll. Then the lines 1 and
m of II also intersect in p and p can be computed, since 03A0 is a finite

plane.
For more information concerning isolic cv-planes the reader is refer-

red to [4] and [7].
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