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§0. Introduction

The objective of this paper is to prove:

THEOREM 0.1: For each positive integer p ~ 1, there exists a smooth

simplicial scheme BU., with a smooth, closed subsimplicial scheme ZP of
codimension p in each degree, having the property that if X is any noether-
ian scheme and Y c X any codimension p subscheme locally a complete
intersection in X, then there is an open cover {U03B1} of X and a map of
simplicial schemes

such that ~-1Y(Zp.) = N.{U03B1~ YI c N.{U03B1}. Furthermore the subscheme
ZP has cycle classes in three cohomology theories: the K-theoretic version
of the Chow ring, étale cohomology and crystalline cohomology, which we
may regard as universal cycle classes for local complete intersections.

Given a pair Y c X as above, the universal cycle classes may be
pulled back via the classifying map Xy to define cycle classes

if X is defined over a field

if 1/n E (9x(X)
if X is defined over a perfect field k of char-
acteristic p &#x3E; 0, and W is the ring of Witt
vectors of k.

One can verify in the first two cases that these cycle classes have good
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properties, in particular if X is smooth over a field in the Chow ring
case or Spec(Z[1/n]) in the étale case they coincide with the cycle classes
defined in ([21], [7]). In the crystalline case it seems more difficult to

compare these classes with those of Berthelot [1], so we do not consider
the question (one may easily see that they do agree locally).
We also construct a similar universal cycle class for general codimen-

sion two determinental subschemes Y c X lying in H2Y(X, K2). This class
defines a Gysin homomorphism CH*(X) ~ CH*(Y), whose existence has
so far only been known (using the grassmannian graph construction of
MacPherson [3]) for quasi-projective X.
The primary motivation for proving these results is to improve our

understanding of intersection theory on singular varieties and schemes,
and in particular to explore the possibility that the groups H*( , K*) are
the right Chow cohomology groups in the sense of ([10], [11]). One
already knows that Quillen K-theory may be used to describe inter-
section theory on smooth varieties over a field.
The idea of the construction of BLp came from the work of Toledo

and Tong who considered the problem of passing from local cycle
classes to global cycle classes in DeRham cohomology, the analogue of
the problem considered here of passing from a local class in

H°(X, HpY(Kp)) (as originally constructed by Bloch for the case p = 2 [2])
to a global class in HpY(X, Kp). I would like to thank David Mumford for
drawing my attention to the paper [22], and Spencer Bloch for pointing
out errors in the earlier versions of this paper.

§ 1 outlines the properties of simplicial schemes that we shall be using
and §2 gives a brief description of Toledo and Tong’s theory of twisted
resolutions. In §3 we construct the classifying schemes BLP for p ~ 0 and
describe their properties, while in §4 we define the universal cycle classes
referred to in Theorem 0.1, so §3 and §4 constitute the proof of the main
theorem. Finally in §5 we consider the determinental case.
As we shall see in Section 3, twisted complexes play a key role in the

construction of the classifying space BZA However, in this paper 1 have
not attempted a more general examination of their role in K-theory. In
a future paper 1 hope to remedy this by describing how twisted

complexes may be used to construct elements of a modified Quillen K-
theory of locally free sheaves and how they may then be used to define
Gysin homomorphisms in the K-theory of coherent sheaves.

All schemes will be assumed to be separated, noetherian and excel-
lent. A variety over a field will mean a scheme, reduced, irreducible and
of finite type over the ground field.
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§1. Cohomology of simplicial schemes

In this section we shall review those facts about the cohomology
theory of sheaves on simplicial schemes that we shall need in the main
body of the paper. For a more general discussion see [6].

Recall that if C is a category, a simplicial object in C is a contrava-
riant functor 4 - C where A is the category of finite totally ordered sets.
An object X. E [AOP, C] (the category of all such functors) will be de-
scribed by what it does to the sets [n] = {0  1  ...  nl and the
monotonic morphisms between them (in particular the face maps

di : [n] ~ [n + 1] and the degeneracies si : [n + 1] - [n] ; see [20] for de-
tails). [0394op, C] is a category in a natural way: the category of simplicial
objects in C (sometimes denoted CA op rather than [AOP, C]). We shall be
concerned in this paper with simplicial schemes, i.e. objects in [0394op, Sch]
or more specifically [AOP, Vark] the category of simplicial varieties over
k, where k is some fixed field.

Generally if X, is a simplicial topological space, by a sheaf on X. we
shall mean a compatible system of sheaves Y. = {Jn}, one on each X",
together with morphisms Y(!): yn -+ x(!)*ym for each monotonic

T : [n] ~ [m]. For an abelian sheaf J on X. we may define the coho-
mology groups Hi(X., J) as the derived functors of the global section
functor

T : Sheaves/X. ~ Abelian Groups

We can define these cohomology groups more explicitly as follows. By a
Lubkin covering 0Jt. of X, shall mean Lubkin covers OJtn of each Xn (see
[26] 1 §5 for a definition of Lubkin cover) such that for i : [n] ~ [m] *,n
refines X(03C4)-1Un. Given a sheaf J on X. we obtain a cosimplicial dif-
ferential complex of abelian groups:

"Lubkin p-chains with coefficients in yq with respect to the Lubkin
cover Uq of Xq". C**L(X, U.; Y*) is naturally a bicomplex, and we define
the cohomology of Y. with respect to 0Jt., H*(X., r1lt.; Y*) to be the coho-
mology of the associated total complex. In the situation discussed in this
paper, taking the limit over all such covers computes the cohomology of
J. There is an important spectral sequence converging to the coho-
mology H*(X., Y*):
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The El and E2 terms of E**r(X., J) are:

This spectral sequence comes from the ’filtration (in the notation of [13]
§4.8),

of the double complexes computing the Lubkin cohomology of J.
We can also introduce relative cohomology. If U.  X, is a morphism

of simplicial topological spaces such that each Un is an open subset of
X", then the family ({Xn, Un}) defines a Lubkin cover of X, . If r. is a
refinement of this cover we can define the bicomplex Cp,q(X., U.; 1/.; y*)
of relative cochains to be the kernel of the restriction map:

where V.|U. is the Lubkin cover of U. consisting of those members of 1/.
contained in U,. The relative cohomology groups Hp(X., U.; /7.) are by
definition the direct limit over all such refinements V., of the coho-
mology of the total complex of C**(X., U,; 1/.; y’). Again there is a

spectral sequence:

If Y -+ X, is a closed subsimplicial space (i.e. each Yn  Xn is a closed
subspace), the complement of which is an open subsimplicial space of X,
we can regard the relative cohomology H*(X.,X. 2013 Y.,J) as coho-
mology with supports in Y, H*Y (X., /7.).
A type of simplicial topological space that we shall be making much

use of later on is the nerve of an open covering. Suppose U = {U03B1} is a

cover of the topological space X. Then the nerve N.U of U is the sim-
plicial space:

If F is a sheaf on X, then it induces a sheaf F on N. U (Fk = F|N03BAU)
and Hp(N.U,F) is isomorphic to Hp(X, F). A similar natural isomor-
phism holds for relative cohomology; if V c X is an open subset,
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Sometimes we may abuse terminology and speak of morphisms
N. 0&#x26; --+ Y being "morphisms X - Y" when W is an open cover of X.

In the previous paragraph we saw one typical example of a sheaf on a
simplicial topological space, in which any sheaf n on a space X induced
a simplicial sheaf W° on N.U for any open cover O/J. of X. In this case
there is a very simple relationship between the !Fk for various k, specifi-
cally F03BA is the restriction to Xk of F0. A more complicated example is
of central importance in the following sections. The Quillen K-functors
Kn (n ~ 0) give rise to sheaves Kn in the Zariski topology on any scheme.
If f : X ~ Y is an arbitrary morphism of schemes then there is a natural
map f’ : Kn ~ f*Kn. It follows that on any simplicial scheme X, K-theory
gives rise to sheaves Kn for all n ~ 0. However the sheaf Kn on Xk can in
no way be deduced from its counterpart on Xo.

REMARKS: Some readers may find sheaves on simplicial topological
spaces slightly mystifying at first. For example, given 97* on X., the
cohomology groups Hk(X., F) only depend on the (k + l)-skeleton of
X,; i.e. on the family of spaces and sheaves (Xi, Fi) for i = 0... k + 1 and
the maps between them. One can make arbitrary changes in !Fi for
i &#x3E; k + 1 without changing H k(X. F). Another fact to notice is that the
process of passing from a sheaf on a space to a sheaf on the nerve of any
open cover of that space is not reversible. For example, if we take the
trivial cover of X consisting of X itself then N. {X} is just the constant
simplicial space with all maps the identity:

and a sheaf on N.{X} is a cosimplicial sheaf on X. However to show
that all is not confusion, the following may be interesting.

EXAMPLE 1.1: First of all a definition: IfX. is a simplicial scheme, by a
vector bundle V. over X. we mean: for each k ~ 0, a vector bundle Yk
over Xk and for each morphism i : [m] - [n] in L1 an isomorphism
!*Vm -+ Y". Note that this is not the same as requiring that V. be a sheaf
locally free in each degree. On X, we also have a sheaf of groups GLn
for each n ~ 0 (GLkn is just the sheaf GLn(OXk)). The reassuring fact is
that vector bundles of rank n over X. are classified up to isomorphism
by H1(X., GLn). To see this one observes first that a vector bundle V./X.
is determined entirely by the data:

(a) A vector bundle V0/X0
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(b) An isomorphism a : d* V0 ~ d i V1
such that d*203B1 o d*003B1 = d*103B1.

However there exists some Lubkin covering {U.} of X, such that vo is
trivial on each open set in U0 and hence there is a 1-cochain

03B301 ~ C1(X0, U0; GLn) such that:

(i) ~03B301 = 0 (where ô is the coboundary on Lubkin cochains)

We have oc: d* V0 ~ d i vo and since U1 is a common refinement of both
dû 1U0 and d-11U0 there is a 0-cochain y 10 in CO(X1, U1; GLn) represent-
ing the isomorphism oc such that:

The fact that on X2 we have a commutative triangle of isomorphisms
between the three pull backs of v° corresponds to the following identity
between cochains in C’(X2, ôk2; GLn):

Now one observes that the identities (i), (ii), (iii) are precisely the con-
dition for the pair (ylo, yol) to define an element of H1(X.,GLn).

§2. Twisted resolutions

In this section we introduce twisted cocycles and twisted resolutions.
Both concepts are due to Toledo and Tong ([22], see also [16]) and the
results of this section are adapted from their work.

Let X, be a simplicial scheme and E* a complex of coherent locally
free sheaves on Xo. On X", for each i (0  i ~ n) we have a complex
E* = X(Ei)*E* of locally free OXn modules where X(03B5i): Xn ~ X0 is the "i-
th vertex" map corresponding to the map 03B5i: [0] ~ [n] sending 0 to i.

We define a brigaded module:

(Homq = maps of degree q) which has an associative product defined
by (fp,q~Cp(X., Endq(E)), gr,s~Cr(X., Ends(E))) : . fp,q.gr,s = (
-1)qr(X(p,..., p+r)*gr,s)o(X(0,...,p)*fp,q E Cp+r(X, Endq+s(E)). (Here
and in the future, a multi-index 0  oco  ...  oc. ::::; 0 defines a map
oc: [m] ~ [n], 03B1(i) = ai and X(a) is written (X(oco,..., oc,,». We also have a
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differentials

where d*i:HomqOXp(E*0, E*p) ~ HomqOXq+1(E*0,E*p+1) is the natural map

(note that for 1  ~ i ~ n - 1, 03B5jodi = Bj for j = 0 or n).

DEFINITION 2.1: (1) A twisting cochain is an element a = EP 0 ap° 1-p
of total degree 1 in C*(X., End*(E)) satisfying:

(i) a0,1 is the differential of E*.

(ii) ôa +a. a= 0.
We shall refer to the pair (E*, a) as a twisted complex.

(2) Let 9’* be a coherent sheaf on X.. A twisted resolution of F is a
triple (e, E*, a) where E* is a complex of locally free OX0 modules, with
Ei = 0 for j &#x3E; 0, a is a twisting cocyle for E* and e : E° ~ F° is an

augmentation, such that:

is a resolution of Fn (ei = X(03B5i)*((e)·F(03B5i))).
(ii) The following diagram commutes:

Note that conditions (i) and (ii) force a1,0 to be a weak equivalence of
complexes. Since a is a twisted cocycle we have (in C2(X., End*(E.))):

and because a0,1 is the differential in E* this means that a2, - 1 is a

homotopy between d*2(a1,0)·d*0(a1,0) and d*1(a1,0). Hence the twisted
complex (E*, a) is an approximation "in the derived category" to a com-
plex of vector bundles on X (see Example (1.1): (E*, a) being a complex
of vector bundles on X is equivalent to requiring ap,1-p = 0 for p &#x3E; 1).
The advantage of twisted resolutions is that even though a coherent
sheaf F that has local resolutions by vector bundles on a scheme X
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may not have a global resolution, we have:

THEOREM 2.2: Let X be a scheme and 57 a coherent sheaf on X, locally
of finite projective dimension. Then there exists an open cover {U03B1} of X
such that there is a twisted resolution of the restriction of 57 to N.{U03B1}.

PROOF: Choose {U03B1} an affine cover so that on each Ua, F|U03B1 has a
finite locally free resolution:

On each Uao n Ua 1 two such resolutions are related by a map of

complexes

Proceeding by induction on n we may assume that we have constructed
ap,1-p for all p  n. First recall that if K *, L* are complexes in an
abelian category, then the differential in Hom*(K’, L’) is

where If | is the degree of f. Hence if D is the differential in

-LL Hom*OU03B10~...~U03B1p(E03B10,E03B1p) we find that if f is an element of

bidegree (p, q) in C*(N.{U03B1}, End*(E)) that

Now consider

When n = 2, (An)03B103B203B3=a1,003B103B2a1,003B203B3-a1,003B103B3 and since E*03B1|U03B1~U03B2~U03B3 and

E*03B3|U03B1~U03B2~U03B3 are both resolutions of :F, (An) represents zero in

Ext0OU03B1~U03B2~U03B3 (E03B1, E03B3), hence there exixts an element f2,103B1,03B2,03B3 E

Hom-1O|U03B1~U03B2~U03B3 (E03B1, E03B3) such that D(f2,1) = A2; we set a2,1 = -f2,1.
When n &#x3E; 2, we shall show D(AJ=0 and then since ExtiONn{U03B1}
(F|Nn{U03B1}, F|Nn{U03B1}) = 0 for i  0 there exists an element fn,1-n of
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Hom1-nONn{U03B1}(E*0,E*n) such that

If we set an,1-n = -fn,1-n then by (2.3) this equation becomes:

and the inductive step is completed. Now

By the induction hypothesis, for all p  n we have:

It also follows from the definition of b and of the product in

C*(N.{U03B1}, End*(E)) that:

By (2.5)

Hence
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All the terms in this expression sum to zero except those involving ô,
and by (2.6) they may be seen to equal

which is zero by the induction hypothesis.
This proof is different from that of [22] and has advantage of show-

ing the existence of twisted resolutions for general schemes. Twisted re-
solutions have advantages even when X is regular (when global locally
free resolutions do exist), since twisted resolutions can be constructed
using preferred local resolutions such as the Koszul complex. This was
Toledo and Tong’s original motivation for the definition (see [22] where
they use twisted resolutions to prove the Riemann-Roch theorem).

§3. The Universal Local Complete Intersection

We turn now to the construction, in the category of simplicial
schemes, of the "classifying space" ZP c BLP. Given a codimension p
local complete intersection Y ~ X, there exists, by definition, an affine
open cover {U03B1} of X such that the ideal of Y n Ua is generated by a
regular sequence {f03B11,..., f03B1p} in r(Ua, (9x). Y n Ua is then the inverse

image of the origin in ApZ under the map

(We shall think of Ap as the space Mp,1 of p x 1 matrices). fil can be
regarded as a "local trivialization" of Y, and we set Zo c BLô equal to
{0} c ApZ. Two such local trivializations f03B1 and f03B2 say, differ by an
element T"O of Mpp(OX(U03B1 n Uo» such that fa = T03B103B2f03B2. Unlike a transi-
tion function between two local trivializations of a vector bundle, T03B103B2 is

unique only up to homotopy. This means that if we regard T’O as a map
between the Koszul complexes K(f03B1)* and K(f03B2)* (whose terms we think

of as being composed of row vectors), any p x p matrix H defines a
map K(f03B1)1~ K(f03B2)2 such that H·d· f03B2 = 0 where d : K(f03B2)2 ~ K(f03B2)1 is
the differential in the Koszul complex and for such an H, T03B103B2 + H - d is
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an alternative transition matrix between the two local trivializations of

Y in order to take into account this lack of uniqueness, the classifying
space BLP must contain information about all possible transition func-
tions between local trivializations and also about all homotopies be-
tween different choices of transition function. In order to construct

ZP c BLpn for all n, we must first construct Z1 1 C BLp1 so that a morph-
ism U ~ BLp1 transverse to Z1 defines a pair (f, T) where f = (fl, ..., fp)t
is a regular sequence in OU and T = (tij) 1 ::::; i, j ::::; p is a p x p matrix of

functions in OU such that the ideals generated by f and Tf coincide.
That we are able to do this, follows from:

LEMMA 3.1: If 0  r  s let D c M = Spec(Z [xij] 1  i ~ s,

1 ~ j ::::; r) be the universal determinental subscheme whose ideal is gen-

erated by the maximal minors 0394k(X) of the matrix X = (xij); there are s
such minors, one for each increasing r-tuple k
= {0 ~ kl  k,  ...  kr ~ sl. Now consider the scheme Ms,r x M(sr),(sr)
= Spec(Z [X, Y]) where X = (xi, j) 1  i ~ s, 1 ::g j ~ r; Y = (Yk, 1), k

= (0 ~ k1  ...  kr ~ s), l = (0 ~ l1  ...  lr ~ s) and define r to be
the set of points of this scheme where the ideals (0394(X) = ({0394k(X)}k) and
(Y.0394(X)) = ({03A3lyk,l0394(X)l}k) coincide. Then r is a Zariski open subset.

PROOF: Define the Z[X, Y] (X, Y as above) module C by the exact
sequence:

Then 0393 = Ms,r x k4(s) (s) - Supp(C) and is therefore Zariski open.

In fact, in general if X is any scheme and A, B are r x s and s x t

matrices respectively of elements of r(X, (9x) then the subset of X on
which the ideals (B) and (A, B) coincide is Zariski open in X.
We can given an explicit description of X as follows. The ideal (0394(X))

has an explicit resolution which is described in [8]. As in the discussion
preceding the lemma, the two ideals (0394(X)) and (Y.0394(X)) coincide if and
only if there are matrices Z~M(sr),(sr)(Z[X, Y]), H E M(sr)(sr)r(Z[X, Y])
such that

where I is the S (sr) identity matrix and R is the Cr + 1 r (sr)
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matrix representing the first differential in the Eagon-Northcott resolu-
tion of the ideal (0394(X)). Equation (3.2) can also be written:

It is now clear that the existence of Hand Z as above is equivalent to

requiring that the r 
s + s x r matrix R has maximal

rank, which is an open condition on Ms,r x M(sr),(sr).

THEOREM 3.3: For each p ~ 1 there exists a simplicial science BU. of
finite type over Z and a closed sub-simplicial scheme Z. c BLP such that

(i) ZP c BLô is isomorphic to the pair fOl c ApZ.
(ii) for each n ~ 0, BLpn is smooth over Z.
(iii) for each n ~ 0, ZP is a complete intersection subscheme of BLn and

is smooth over Z.

(iv) for each n ~ 1 and each i = 0,..., n, the diagram

is Cartesian, and [Zpn] is the inverse image under di of [Zpn-1] in the sense
of algebraic cycles ([25]).

(v) OZp has a twisted resolution on BLP.

PROOF: We shall construct BLn by induction on n, building up BLp by
skelata. For each n ~ 0 set

Remember that each multi-index (03B10, ..., ai) is to be viewed as an in-

jective monotone map a : [i] - [n]; we shall write i = Jal. Given oc with

locl = i, we write the p x (pi) matrix of coordinates on the oc factor of Pn
as ’1a. For any monotone 03C4:[m] ~ [n] there is a natural map

P(i) : Ppn ~ Pm defined by setting
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Clearly i ~ P(i) is a contravariant functor, so the family Pp = {Ppn}n~ 0

is a simplicial scheme.
BLP is going to be constructed as a locally closed subscheme of Pf.

For each n ~ 0 and each injective monotone map a : [i] - [n] for i ~ n,

the restriction of il" to BLI, which we shall also write ~03B1, is a p x p 
matrix of functions on BLP,,; in particular for each j = 0,..., n we have
the column vector ~j and the corresponding Koszul complex K(ri’)* of
free OBLpn modules. For each j = 0,..., n the entries of ~J will generate the
ideal of ZP c BLn and the twisted resolution of (9z, will be built out of
the Koszul complexes K(pi),, so for each j, K(~j)* = (03B5j)*K(~0)*. The
twisting cocycle which in the notation of §2 we would write a*,1-* with
an,1-n a map of degree 1 - n from K(~0)* to K(~n)* on BLpn we shall in
fact write as an,1-n=039B*~0,...,n where 039Bi~0,...,n:K(~0)i+n-1,
with 039B1~0,...,n being defined by the matrix 10, .... n. This notation is

chosen to generalize the n = 1 case, where 039Bi~01 will be the usual i-th
exterior power of ~01. The conditions that the 039B*~0,...,n from a twisting
cocycle on BLp may be expressed by the equations

where for any multi-index oc: [i] - [n]:

It is important to note that if n &#x3E; 1, 039B*~0,...,n is not the usual exterior
power of 170,...,n; however since the latter makes no appearance in this
paper, this abuse of notation should not cause any confusion.

Turning now to the construction, we can (following Lemma 3.1)
define an open sub-simplicial scheme Qp. c Pf by the condition that for
all n &#x3E;_ 0 and aIl 0’: [1] ~ [n] the ideals (~03C31) and (~03C30, 03C31~03C31) coincide. To
check that if T : [m] - [n] is a monotone map, QP c P(03C4)-1(Qpm) we need
only observe that if the ideals (~03C31) and (~03C30,03C31~03C31) coincide, so do (~03C4(03C31))
and (~03C4(03C30),03C4(03C31)~03C4(03C31)).



16

We now construct by induction on n ~ 0, BLpn as a closed subscheme
ofe?

n = 0. We set BLô = Qg = Mp,1. Zo is the subscheme of BI1ô defined
by the equation ~0 = 0, so

n = 1. BLp is the closed subscheme of Qï defined by the equation

E01 = ~0 - ~01·~1 = 0. (3.5)

Clearly projection to the (~01, ~1) factor of Pf defines an open immersion
of BLi into the affine space Mp,p x Mp,1, hence the map do : BLp1 ~ BLp0
is smooth and the entries of il’ form a regular sequence on BLp1. Turning
to dl, consider the diagram:

The immersion j is defined by the equation Eoi = 0 (3.5). Now in

Mp, 1 (Qbf/BLB)

If we look at the matrix describing dE° 1 in terms of d~01 and dri 1 we see
that it has maximal rank at a point x of Qp1 if either ~01 is invertible at x,
or ~1 is not identically zero at x. However on Qp1 one or the other of
these properties must hold at each point as a consequence of the dis-
cussion following the proof of Lemma 3.1, since if ~1 is zero at x then all
the differentials in K(r¡l)* will be zero there too. Hence the face map
d 1: BLp1 ~ BLô is smooth.
Now we can observe since d1 is smooth, the entries of il’ form a

regular sequence on BLp1, and we have verified parts (iii) and (iv) of the
theorem for BU¡. Furthermore, we know that both the Koszul

complexes K(~i)* for i = 0 and 1 are resolutions of OZp1 and that

is a quasi-isomorphism.
Finally, we must check that our definition of BLp1 is compatible with
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the single degeneracy so : Qp0 ~ Q i; i.e., that

but this is obvious, for s°(BLô) is the subscheme of Qp1 where ~01 = Ip, p
and ~0 = ~1 and this is certainly a subscheme of BLp1. Note that A*1101 is
the identity on s0(BLp1).

n ~ 2: Before starting the general inductive step, we need some notat-
ion. For all n ~ 0 we shall write Sn for the direct factor

of P:.
(3.6) Our induction hypothesis is that for k = 1,..., n - 1 we have con-
structed closed subschemes BI4 c Qk with the following eight properties
(which are easily checked for BLp1).

(a) For all i = 0,..., k BI4 ~ d-1i(BLpk-1) and for all

i = 0,..., k - 1 BLpk-1 ~ s-1i(BLpk).
(b) The natural map BLpk ~ Sk is an open immersion.
(c) The entries of (~j) for j = 0,..., k form regular sequences on BI4

and the Koszul complexes K(ri’)* are all resolutions of OZpk where
Zk c BLk is defined by the equation ~j = 0 for any j. 

(d) For each multi-index 0 ~ ao  rxl  k

~03B10 = ~03B1003B11~03B11
and A*tl"0"’: K(~03B10)* ~ K(~03B11)* is a quasi-isomorphism.

(e) For each k ~ n - 1 we have a map of complexes

of degree k - 1 on BLk, such that 039B1~0,...,k = il k. Recall that for all
j ~ k and ce : [j] ~ [k], we define

which is a map of degree j - 1

(f) For all k  n - 1, all degeneracies si:BLpk-1 -+ BLPK (i = 0,...,
k - 1) and all multi-indexes 0 ~ ao  ...  03B1j ~ k, s*i039B*~03B1 vanishes

identically on BLpk- 1.
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(g) Again for all k  n - 1 and all multi-indices

0 ~ ao  ...  03B1j ~ k, in the complex of OBLpk modules

Hom(K(~03B10)*, K(l1aj)*)*

we have the equality (where D is the standard differential, see the proof
of theorem 2.2)

(h) For all k ~ n - 1, all j ~ k and all multi-indices a : [j] ~ [k], the
matrices of functions 039Bi~03B1 extend, for all i ~ p, to Sk via the open immer-
sion BLpk ~ SP; i.e., the entries of the 039Bi~03B1 may be expressed as poly-
nomials in the entries ~03B1 for 0 ~ ao  ...  03B1j ~ k with either ao = k or

03B1k - 03B1k-1 = 1.

We now set BLn equal to the closed subscheme of

defined by the matrix of equations (where we set ~03B10,...,03B1i = 0 if i &#x3E; p):

We shall write the left-hand side of this equation as Eo,...,,,. Note that
Ak"k,...,n makes sense on RP by virtue of the existence of 039Bk~0,...,n-k on
BLpn-k, so that the construction of the twisting cocyle 039B*~0,...,n is an
integral part of the construction of BLP.
We must now check that BLpn satisfies conditions (a)-(h).

n

(a) BLn has been constructed as a subscheme of ~ d-1i(BLpn) so the
i=O

first part is tautologous. To check compatibility with degeneracies we
first remark that for any i = 0,..., n - 1 and any j = 0,..., n, we have

where
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while

hence

Therefore it suflices to show that (see 3.7) s*i(E0,...,n) vanishes on BLpn-1.
However by the induction hypothesis 039B*~03B10,...,03B1j = 0 for 2 ~ j ~ n - 1 if
(lk = 03B1k+1 for any k ~ j - 1 and 039B*~k,k = 1 for all k ~ n - 1, so

(b) Turning to the natural map BLpn ~ Sn, first observe that it factors

through a map

which is the product of the face map

and the natural map

Given the induction hypothesis and that Sn = Spn-1 x Yp, in order to
show that BLpn ~ Sn is an open immersion it is sufficient to show that h
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is an open immersion. Next observe that h is the composition of the
closed immersion

deduced from the diagram

(where the horizontal maps are the natural inclusions) with the

projection

deduced from the projection from

and the inclusion BLpn-1 ~ Ppn-1. Our first step is therefore to study the
closed immersion j", which is defined by the ideal In generated by the
entries of the matrices

as a runs through all multiindices 0 = ao  al  ...  03B1k ~ n for k =
= 1,...,n. Note that the use of 039Br~03B1r,...,03B1k in those equations is allowable
since it is defined on BLpn-1.

LEMMA 3.8: For all n ~ 1, the ideal In defining the closed immersion in
is in fact equal to its subideal Jn generated by the entries of the Ea as oc

runs through only those indices with ak - 03B1k-1 = 1.

PROOF: Consider Ea with 0 = ao  ...  03B1k ~ n and 03B1k - 03B1k-1 ~ 1.

We use induction first on n ~ 1 and then on d(a) = ak - ao - k to prove
that the entries of Ea lie in J%. The case n = 1 we have seen already,
while for any n ~ 1 if d(03B1) = 0 we must have ai - ai - = 1 for all
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i = 1,..., k and in particular Otk - 03B1k-1 = 1, hence we can start the in-
duction off. Suppose now that Jm = Im for all m = 1,..., n - 1 and that
for all fl = (0 = 03B20  03B21  ...  03B2l ~ n) with d(03B2)  d(a) for a given a
= (0 = OC 0  03B11 ...  03B1k ~ n) with ak - (Xk-l &#x3E; 1 we know that the en-
tries of Eo lie in JnP. Since dn-ldo = dodn we have a commutative
diagram:

and (dn-1 x dn)*Jpn-1 c Jn is the subideal generated by the entries of
those Eo with 0 = 03B20  03B21  ...  03B2l-1 = 03B2l - 1 :5:,n- 1. We may
therefore suppose that Otk = n. Let us write a’ for the multiindex

0 = ao  ...  Otk - 1  ak - 1  ak = n; then the entries of Ea. lie in Jn
and if we can show that the entries of

lie in Jn we shall be done. Expanding out (3.9) we get, since

dk 1 1(~n)dk(~n) = 0:

We want to show that formula (3.10) vanishes mod J%. By part g of the
induction hypothesis (3.6) we know that for 0  r  k - 1,
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Furthermore, by the induction hypothesis (since d(oco,..., ar)  d(03B1)):

mod Jpn, and since by definition, the entries of E03B10,...,r,...,03B1k-1,n-1,n lie in
Jp, n we have:

mod J%. We may now use formulae 3.11, 3.12, 3.13 in succession to re-
write 3.10 as
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It is now a straightforward, but unfortunately extremely tedious exercise
for the reader to check that this monstrous formula is in fact identically
zero, completing the proof of Lemma 3.8.
Given that jn is defined by the ideal J,,P, we now observe that the

matrices of coordinates {~03B1}1~03B11...03B1k~n on Wp can be divided into two
classes; those for which ak - (Xk-l &#x3E; 1 and those for which Otk - Ctk = 1,
and that the correspondence a - ce’ used in the proof of Lemma 3.8
defines a bijection between these two classes. Each matrix of equations
Ea, = 0 for 03B1’ = (0 = 03B10  03B11  ...  Otk - 1  03B1k - 1  ak) expresses (oc
= (ao = 0  a 1  ...  03B1k - 1  ak = n)) ’1a as a function of ~03B20,...,03B2l with
either 1  k or 03B2l - 03B2l-1 = 1. (Note that by the induction hypothesis
039Br~03B1r,...,03B1k-1,03B1k-1,03B1k is function of the ~03B2 for

{03B20,...,03B2l} c {03B1r...,03B1k-1,03B1k - 1, 03B1k}.) That the map

h : BLI - BLpn-1 x Yp is an open immersion now follows from:

LEMMA 3.15: Let S be a scheme, A1,..., An, B disjoint fznite sets of inde-
pendent variables, Q c S x Spec Z[A1,..., An, B] a Zariski open subset.
Suppose Y c Q is a closed subscheme defined by polynomial equations,
one for each a E Ai, as i runs from 1 to n:

(if a E A1 then we suppose fa is a function of the variables in B alone). Then
the natural map

is an open immersion.



24

PROOF: This is essentially obvious. Clearly it is enough to show that
if Q = S  Spec Z[A1,..., An, B] then Y ~ S  Spec Z[B]. We shall

procede by induction on n. The case n = 0 is trivial. Let us write In for
the sheaf of ideals in OS[A1,..., An, B] generated by the fa for a E Ai with
i  m. By the induction hypothesis we may suppose that the natural
map

is an isomorphism. Hence the map

is an isomorphism. It is therefore sufficient to prove the lemma when
n = 1; but then it becomes entirely obvious.

This completes the proof of part (b) of the induction step.
(c) Turning to r¡j for j = 0,..., n - 1 we observe that by the equations

defining BLpn we have, on BLP,:

hence r¡j extends as a matrix qj of functions on SP. By the construction
of BLn we know that it is the open subset of Sn on which the ideals
generated by the entries of q’ and ~n coincide for all j = 0,..., n - 1. On
SP the entries of ln automatically form a regular sequence, and so by
restriction they form a regular sequence on BLPN. For j  n, we first ob-
serve that we know already that on BL2:

is a weak equivalence. Pulling back via the map:

we see that

is a weak equivalence, hence firstly, K(pli), is a resolution of OZpn where
Zn is the closed subscheme of BLn defined equally by the ideals gen-
erated by the entries of ili for any j = 0,..., n ; and secondly, the entries
of r¡j form a regular sequence on BLn for all j = 0,..., n.
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(d) If 0 ~ ao  03B11 ~ n, by part (c) we know that 039B*~03B10n and 039B*~03B11n are
weak equivalences. Since 039B*~03B10,n is homotopic to 039B*~03B1003B11039B*~03B11,n it fol-

lows that the latter map is a weak equivalence and hence 039B*~03B10,03B11 is also
a weak equivalence.

Before turning to (e) we need a lemma (which gives us part (h) of the
inductive process).

LEMMA 3.16: For each multiindex 0 S ao  ...  oc, ~ n with k S n
- 1 the map

extends to a map of complexes on SP

PROOF: If 03B10 &#x3E; 0 this follows by induction on n, since Sn = Spn-1 x vp
and 039B*~03B10,...,03B1k is pulled back from BLpn-1 ~ Spn-1 via d0:BLpn~BLpn-1.
If 03B10 = 0, then 039B*~03B10,...,03B1k is induced from BLpn-1 via di for some i &#x3E; 0;
therefore we want to extend di:BLpn~BLpn-1 to a map i:Spn~Spn-1,
since we know by the induction hypothesis that 039B*~03B20,...,03B2l extends

across Spn-1 for all 0 ~ Po  ...  03B2l ~ n - 1. In order to construct i it
suffices to show that for all k  n and 0 ~ 03B10  ...  03B1k ~ n, ~03B10,...,03B1k
extends to a global section 03B10,...,03B1k of OSpn. By the proof of Lemma 3.8 we
see that any ~03B10,...,03B1k can be expressed as a function of ~03B20,...,03B2l with
either l  k or 03B2l - 03B2l-1 = 1 (i.e. ~03B20,...,03B2l is one of the coordinate funct-
ions on Spn). Therefore by induction we are reduced to the case of l = 0,
which we have already seen in part (c) above.

(e) We now wish to construct 039B*~0,...,n. Consider the map of

complexes G*: K(~0)* ~ K(~n)* defined on BLpn by:

By Lemma 3.16 this extends to a map

of complexes on Spn. By part (g) of the induction hypothesis we know
that for all 0 ~03B10  ...  03B1k ~ n with k  n
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a straightforward but tedious calculation shows that D(G*) = 0 on BLI,
hence D«5,) = 0 on Sn. However, the complex

is acyclic in positive (homological) degrees since it is quasi-isomorphic
to the complex

which is concentrated in non-positive (homological) degrees, because
K(~n)* is a resolution of OZpn; therefore there exists a map of complexes
039B*~0,...,n:K(0)*~K(n)* such that

This completes the proof of (e).

(f) We now want to show that we can in fact make a more restrictive
choice of 039B*~0,...,n. First we observe that by the proof of Lemma 3.16
each degeneracy for i = 0,..., n - 1, si:BLpn-1 ~ BLpn extends to a map
i:Spn-1 ~ Spn which is the inclusion of the affine subspace Aie Sn de-
fined by the equations ~i-1,i = I, ~i,i+1 = 1 and ~03B1 = 0 if |03B1| &#x3E; 1 with

(i, i + 1) a subsequence of (aO, ak). Let us write A = U d i and if

i = {0  i 1  ...  ij ~ n - 1} is a multiindex we write

finally we denote the ideals defining A and di i in Usn as F0394 and .J’Ai
respectively. Examining the equations defining 0394i ~ Spn-1 in Sn we see
that 0394i(i = (i  ...  ik)) is isomorphic to Spn-k via the map

LEMMA 3.17: The natural map (do)" : 0394 ~ BLp0 ~ AP defined by the

matrix of functions n on SP is aflat morphism.

PROOF: For each j ~ 1 and each j-tuple i = (i1,..., ij) the affine space
d i is flat over BLô since d0n·si = dn-k0: Spn-k ~ BLp0 is flat by the defini-
tion of Spn-k. Now by construction O0394 has a resolution O0394 ~ Rj where
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for j ~ 0 (i running through all 0 ~ i1  ...  ij ~ n - 1):

Since R*0394 is a resolution by flat OBLp0 modules, mAis itself a flat OBLp0
module, and hence the entries of ~n form a regular sequence in O0394.

It follows that K(~n)*~OSpnF0394 is a resolution of the module

Opn~OSpnF0394. By the induction hypothesis G* vanishes on A, and so may
be viewed as a map

such that D(G*) = 0; since K(’1n)* ~OSpnF0394 is acyclic in positive degrees
and K(0)* is a complex of free modules, there is a map

such that D(039B*~0,...,n) = G*.
Having completed part (f) of the induction process we see that parts

(g) and (h) have already been covered, completing the construction of
BLp..

Turning to the proof of parts (ii), (iii) and (iv) of the theorem, we see
first that as a Zariski open subset of Spn which is an affine space over Z,
BLpn is automatically smooth over Z for all n ~ 0. Similarly for all n ~ 0,
Zpn c BLpn is defined by the regular sequence ~n, i.e., it is the inverse

image under (d0)n of zg c BI1ô, and since Spn is smooth over BLô, Zpn is
smooth over zg = Spec(Z), thus proving (iii). For part (iv) we observe
that for i  n, d*i(~n-1) = ~n and so d-1i(Zpn-1) = Zpn both in the sense of
schemes and of algebraic cycles. If i = n, d*n(~n-1) = ~n-1; however by
construction ri" -1 is again a regular sequence defining the subscheme
Zpn, and so d-1n(Zpn-1) = Zpn again, both as schemes and cycles.

Finally (v); we have already made the observation that the condition
on the 039B*~0,...,n making them a twisting cocycle is expressed by
equation (3.4), which is equivalent to part (g) of the induction hypo-
thesis. Hence to complete the proof of the theorem we need only ob-
serve that for all n ~ 0 and all i = 0,..., n, K(~i)* is a resolution of OZpn.
We now show that BU. does indeed classify local complete intersec-

tions.

THEOREM 3.18: Let Y be a codimension p local complete intersection
subscheme of a scheme X. Then there exists an open cover {U03B1} of X and
a morphism of simplicial schemes:
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(which we shall just write X when there is no chance for confusion) such
that

i.e., Xy and Zf are transverse, and by classical intersection theory [25] we
have

(iii) ~*Y(039B*~) is a twisted resolution of (9y on N.{U03B1}.
(Any X satisfying (i), (ii), (iii) will be said to "classify Y".)

PROOF: For {U03B1} we may choose an affine open cover of X such that
for each a, Y n Ua is generated by a regular sequence (f03B11,..., f03B1p) in

T(Ua, OX). Hence we have for each a, a map fa: Ua -+ AP defined by the
column vector (f03B11, ..., f03B1p)t, and hence a map

satisfying (i) and (ii) of the theorem. On each Ua ~ U03B2 f03B1 and f03B2 are
related by a matrix f03B103B2 such that f03B1 = fIXP. fP. By Lemma (3.1) the triple
(fa,faP,fP) defines a map UIX n Up -+ BLP,, and so we may define:

Note that ~*0(~0) = {f03B1} while ~*1(~0, ~01,~1) = (fa, f’O, fP), and that the
diagram

commutes, so that Xodi = dixl for i = 0, 1. In order to define ~n for n ~ 2
we procede by induction on n. Suppose that we have defined y, for
m  n. Then on each component Uao n... n U,,,. of Nn{U03B1} we have for
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each k  n and each multi-index 0 ::; io,..., ik ::; n, maps

of degree (k - 1), where 0394*f03B1i0,...,03B1ik is the pull back via the composition

of 039B*~0,...,k. Since X is separated Uao n ... n Uan is affine and

Extéx«9,, (Dy) = 0 for i  0. Now if

we have Gndn-1f03B1n = 0 since this is true for the ~’s on BLn; hence there
exists 

such that

We may now define

1

It is straightforward to check that Xn is compatible with the face and
degeneracy maps

and that we have therefore defined a morphism of simplicial schemes.
Statement (ii) of the theorem follows from the fact that for each n ~ 0
the inverse image under z of each of the regular sequences generating
FZpn is a regular sequence generating the ideal of Y in Nn{U03B1}. Statement
(iii) is an immediate consequence of (ii) together with the fact that A*q is
a twisted resolution of OZp.

In order to justify completely the assertion that BLP classifies codi-
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mension p local complete intersections, we need to examine what hap-
pens if we make a different choice of open cover and local equations for
Y

PROPOSITION 3.21: Let X, Y be as in (3.18). Suppose that there exist
two open covers {U03B1}{V03B2} and morphisms

classifying Y Then XO and Xl are homotopic in the sense that there exists a
common refinement {W03B3} of {U03B1} and {V03B2}, with refinement maps

and a map

such that for i = 0, 1 the restriction of H to N. {W03B3} x {i} coincides with
Xi . pi (where l. is the simplicial unit interval; [M]).

PROOF: We may assume {W03B3} = {U03B1} = {V03B2}; i.e., it is sufficient to

compare the two different classifying maps Xi. pi (i = 0,1) from N. {W03B3}
to BLP. The simplicial scheme (which is a hypercovering of X):

has the following simple description. If we write W = ~~ Wy, viewing W
y

as a scheme over X we can, for each k ~ 0, form the (k + l)-fold fibre
product (over X) Wk+1 = W x ... x W = Nk{W03B3}. Ik may be identified
with the set of increasing sequences (io ~ il ~ ... ~ ik) such that ij = 0
or 1 for all j; we may also identify Ik with the set { -1,..., kl by the rule
(io ~ ... ~ ik)~j such that ij  ij+1. Now observe that we may write

as
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So

and

with the face maps

being, for i = 1, 0:

and

respectively. Y n Do has local equations f8 on W03B1,0 (where Wo =

= ~~ W03B1,0) and fi on W03B1,1 (in general we shall write 039B*f0,...,ni =

= ~i*n(039B*~0,...,n)); on D1 these local equations are related by the tran-
sition matrices f03B103B2i on (W03B1 ~ W03B2)i, i already defined by the Xi for i = 0, 1,
however on each (W03B1 ~ W03B2)01 we must choose a new transition matrix
f03B103B201

Proceeding in this fashion, we may suppose that for k = 0,..., n - 1 and
all (ao, ..., rlk) we have defined maps ( -1 ~ j ~ k)

where
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such that

Then the f03B10,...,03B1k(j) satisfy equation 3.19 on each (W03B10 n ... n W03B1k)(j); hence
we may choose h03B10,...,03B1n(j) to satisfy (3.20). Furthermore, if j = -1 (or n,
respectively) the h03B10,...,03B1k(j) version of equation (3.19) involves only the
f03B10,...,03B1k0 (f03B10,..,03B1k1 respectively), hence we may choose h03B10,..,03B1n(j) to equal
f03B10,...,03B1n0 if j = -1 (f03B10,..,03B1n1 if j = n). Clearly the h03B10,...,03B1nj now define our
map

Following [20] we know H defines a homotopy between ~1 and Xo.

§4. Universal cycle classes

First, we shall construct universal cycle classes in the Chow ring for
local complete intersections in the category of varieties over a fixed field
k. Until further notice we shall abuse notation and for each p ~ 0

denote the simplicial varieties Zp. ~Zk and BLp 0, k as simply Zp. and
BLp. Our object is to construct for all p ~ 0, classes:

We begin by recalling various properties of the sheaves Kp, p ~ 0.

THEOREM 4.1 (Quillen): Let X be a scheme, regular and of finite type
over a field. Then for each p ~ 0, the sheaf Kp associated to the presheaf

on X defined by the Quillen K-functors (K*(U) is the K-theory of locally
free OU-modules [Q]), has a flasque resolution:

where Rip(U) = ffi Kp-i(K(x)), X(i) being the set of points of codimen-
sion i in X.
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PROOF: [21] The complex R* forms part of the El term of a spectral
sequence

where K’(X) is the Quillen K-theory of the category of coherent sheaves
on X. This spectral sequence is contravariant for flat morphisms.

PROPOSITION 4.3: (i) If X is a noetherian excellent scheme then for all
i ~ 0:

where CHP(X) is the Chow homology group of codimension p cycles on X
modulo rational equivalence [F].

(ii) The isomorphism (4.4) is compatible with the contravariance with
respect to flat maps of both domain and codomain.

PROOF: The proof of (i) is in [21]; though one needs to observe that
the definition of the Chow ring Quillen uses coincides with Fulton’s
definition of the Chow groups. The proof of (ii) is by inspection of the
definitions in [21] and [10] of the two pull back maps concerned.
We must also observe that this proposition may be generalized as

follows:

COROLLARY 4.5: Let Y, X be schemes smooth over a field k, Y a codi-
mension p subscheme of X. Then we have isomorphisms:

(i) HiY(X, Kp) + {
0 

[Y] 

i p 
where Y corresponds to the en-

erator K[Y] ~ K0(K(Y)) = 0393Y(X, Rpp) = Z
(ii) If i, j &#x3E; p : HiY(X, Kj) = Hi- P(1’: Kj- p)(~ CHi- p(Y) if i = j).

(iii) If f : Z -+ X is smooth, we have a commutative diagram for all i ~ p:

(Note that f |f-1(Y) is also smooth).

PROOF: (i) is immediate from the existence of the resolution Kp -+ R*
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since:

(ii) follows from the observation that for i ~ p:

where g : Y ~ X is the inclusion of Y in X together with the isomorph-
ism (4.4) for Y instead of X. (iii) follows from the fact that not only is the
spectral sequence (4.2) contravariant for flat (and therefore smooth)
maps, but that from its construction [21] it is clear that for all i ~ p the
diagram:

commutes.

Returning to the construction of y[Z:lk], we first observe that there is
a spectral sequence:

From Corollary (4.5):

together with (4.6) this implies:

where the differentials in the complex

are induced by the face maps of the simplicial scheme BLP.
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PROPOSITION 4.8: There is an isomorphism HpZp(BLp., Kp) = Z and

HpZp(BLp., Kp) has a canonical generator y[ZP] which restricts to y[ZP] on
BLô.

PROOF: It suffices to show that y[Zô] is a cocycle in the complex (4.7),
that is:

However, since the face maps do and dl are flat, and the isomorphism
(4.4) is compatible with pullback along flat maps it is enough to show
that

however, by (ii) of Theorem 3.3 and (iii) of Corollary 4.5, we have:

DEFINITION 4.9: (i) The cycle class of ZP, 03B3[Zp.] is the canonical gen-
erator of HpZp(BLp., Kp) found in the preceding proposition.

(ii) Let Y- be a codimension p subscheme, locally a complete inter-
section, of the variety X defined over the field k. Then if {U03B1} is an open
cover of X such that there exists a classifying map

with xi 1(Zp.) = Y n N.{U03B1}, then we define the cycle class of Y

PROPOSITION 4.IO: The cycle class 03B3[Y] of definition (4.9) part ii), is

independent of the classifying map Xy.

PROOF: By Proposition (3.21) we know any two classifying maps are
homotopic; but it is a standard fact that homotopic maps between sim-
plicial schemes induce the same map on cohomology:

LEMMA 4.11: Let f, g : X. ~ Y. be maps of simplicial schemes over a fixed
base S. Let F be a sheaf (or complex of sheaves) on the big Zariski site
over S, and

the induced maps. Then if f and g are homotopic f * = g*.
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PROOF OF LEMMA: By construction X, x 7. is a (Zariski) hypercovering
of X, via the natural projection map, and so we have a commutative
diagram of isomorphisms

By assumption, there exists a map

such that fo ’ H = f and i1 · H = g ; then

and the lemma is proved.
The proposition now follows immediately, taking F = Kp.
We now wish to verify that this definition of the cycle class has the

right geometric properties.

THEOREM 4.13: Suppose Y c X are as in (ii) of Definition (4.9).
(i) If f : ~ X is a flat morphism, then y [ f -1 Y] = f*03B3[Y].
(ii) If TeX is a codimension q subscheme, locally a complete inter-

section with TorOXi(OY, (DT) = 0 for i &#x3E; 0, so that T n Y is a local complete
intersection in Y, then y(T) u y(Y) = y(T n Y)(- 1)Pq.

(iii) If U c X is an affine open set in which the ideal of Y is generated
by a regular sequence (f1,..., fp), then 03B3[Y]|U is represented by the Cech
cocycle (-1)p(p-1)/203B3(f1, ..., fp) where

is the cocycle whose value on U n U fl n ... n Ufp is the symbol
{f1,..., fp} E Kp(X) defined by the product [24]

(iv) If X is smooth over k then y[Y] coincides with the class defined by
the isomorphism in (ii) of Corollary 4.5.
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PROOF: (i) If f : Z ~ X is flat and {U03B1} is an open cover of X and

a map classifying Y, then if we define fo~Y as the composition

fo~Y classifies ~f-1(Y), and hence

To prove (ii) we first observe that we may suppose that the classifying
maps XI, xT are both defined relative to the same open cover of X. Then

Y n T is classified by the map lY nT that represents the tensor product of
the twisted resolutions of (9y and (9T, i.e. ~Y~T factors through the
natural map:

such that

Hence it is sufficient to show that

Using the spectral sequence (4.6) it is sufficient to check the result in

degree zero, i.e.:

Since the map BLp0 x BL’b -+ BI1’o+q is just the product
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and 03BC*p,q(Zp,q0) = (zg x AZ) n (AP x Zô). The equality (4.4) now follows
from the compatibility of the product on K-theory with intersection
theory ([12], [15]). (iii) is an immediate consequence of (i) and (ii) to-
gether with the fact that the cycle class of a Cartier divisor V(f) c U is
the element of Hv(f) (U, K1) coming from the section f E 0393(Uf, K1) via the
boundary map in the long exact cohomology sequence for the pair
(V(f) c U). For part (iv), we know by (ii) of Corollary 4.5 and the
standard local to global spectral sequence that we need only check the
equality of the two classes locally. The result now follows by (iii) to-
gether with the compatability of the K-theory product with intersect-
ions, using induction on p together with the fact that the classes obvi-
ously coincide if p = 1 in which case 03B3[Y] is the cycle class in

H1Y(X, K1 ~ O*X) of the Cartier divisor Y
One can define for all schemes X and all codimension p subschemes

j : Y ~ X a cap product:

which is induced by the product ([12], [15])

together with the isomorphism

In particular cap product with y[ Y], if Y is a local complete intersection
subscheme of a variety X over k, defines a homomorphism

Such a Gysin homomorphism has already been defined by Verdier [23]
by geometrical methods. We wish to compare the two maps, using a
slight reinterpretation of Verdier’s construction.

First we need a special case:

LEMMA 4.15: Let j : Y -+ X be a codimension p subscheme, locally a
complete intersection. Then

PROOF: Since CH0(Y) ~ E9 Ko(K(x)) we need only check that
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the two classes agree in some affine neighborhood of each generic point
of Y Using (iii) of Theorem 4.13 and induction on p, we may suppose
that p = 1, X is affine, Y ~ X(p) consists of a single point y and that the
ideal of Y in OX(X) is generated by a single element f Then 03B3[Y] n [X]
is the image under the boundary map

of the element {f} ~ K1(K(x)). By ([14], [21]) ~{f}=[OY] and the

lemma is proved.

Given Y À X a codimension p regular immersion of varieties over k,

there is a flat family DX/Y~A1 = Spec(k[t]) together with an immersion

Y  A1 ~ DX/Y such that 03C0°j is the natural projection Y x A1 ~ A1,

and there are A 1 -isomorphisms

We now define Verdier’s Gysin homomorphism j* : CH*(X) ~ CH*(Y)
as follows. For an integral subscheme Z c X, i*([Z]) is defined as

03C0*-1([Z  (A1 - {0})] n y[Do]) where y[Do] E HAo(Dx/y, K,) is the spec-
ial fibre 03C0-1{0} regarded as a Cartier divisor, Z x (A1 - {0}) is the

closure of Z x (Al - {0}) in DX/Y and 7r* -’: CH*(NX/Y) ~ CH*(Y) is the
isomorphism induced by the flat projection n : NX/Y ~ Y This last iso-
morphism is cap product with (-1)p(p-1)/2 times the cycle class 03B3N[Y] of
the zero section of Nxly. This is because if S c Y is an integral sub-
scheme, then

To see this we observe that n*[S] = [Nx/ylsJ and that if {U03B1} is an open
cover of Y such that NX/Y|U03B1 is trivial for all a, Y  Nxly may be classi-
fied by a map N. {03C0-1(u03B1)} -+ BLp. Now {U03B1 n SI is a trivializing open
cover for NX/Y|S and S  NX/Y|S may be classified by the composition

so if u: S 4 Y is the natural inclusion, 03C3*03B3[Y] = 03B3[S] E Hl(Nx/yls, Kp).
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But we have

where :NX/Y|S  Nxly is the natural inclusion.
It remains to show that

Examining the local equations for j(Y x A1), Do, and Y x {0} c Do we
find that for any cycle [S] E CH*(D):

Since [Z x (A1 - {0})] n yU(Y x A1)] is a cycle on Y  A1 c D we

may regard ([Z x (A1 - {0}] n y[ Y  A1]) ~ 03B3[D0] as the specializa-
tion of the cycle

to Y x {0}, which is clearly [Z] n y[ Y]. Summarizing:

PROPOSITION 4.16: Given Y j X a codimension p regular immersion of

varieties, the cycle class y[Y] E HpY(X, Kp) defines a Gysin homomorphism

which coincides up to a factor of (-1)p(p-1)/2 with the map defined by
Verdier in [23].

A corollary of this proposition is that if Z c X is an integral sub-
scheme which intersects Y properly (i.e. codim(S = Y n Z) = codim Y
+ codim X) then

(the "classical" intersection product of Y and Z). We can now see this in
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two ways; first of all by classical methods it is true for Verdier’s de-

finition of [Z] n 03B3[Y], alternatively one can use the methods of the

proof of the compatibility of the K-theoretic product on the Chow Ring
with the classical intersection product given in ([12], [14]).
The construction of the universal cycle class in étale cohomology is

somewhat easier than in the Chow ring. We fix an integer n ~ 0, and
consider the category of schemes over Z[1/n]; for each p ~ 1 ZP and

BLp will denote the pullbacks of the simplicial schemes defined in §3
over Spec(Z[1/n]). We want to construct a cycle class

lying in the relative étale cohomology (as defined in [9]) of the pair of
simplicial schemes (BLp., BLp. - Zp.). There is a natural spectral sequence
([9]):

However by ([7] 2.2.8) we know that

Therefore there is an isomorphism:

By [7] (2.3.8) we know

for i = 0 and 1, hence we can make the following:

DEFINITION 4.18: (i) The universal cycle class

is the class defined by the element 03B3[Zp0] via the isomorphism (4.17).
(ii) Let X be a scheme of finite type over Z[1/n], and Y ~ X a codi-

mension p subscheme, locally a complete intersection. Then there exists
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an open cover {U03B1} of X, and a map

classifying Y in the sense of (3.7). We define the cycle class of Y to be:

Using the method of (4.10) it is clear that y [ Y] is well-defined, i.e. inde-
pendent of {U03B1} and Xy.
The following proposition may be proved using the same methods

used to prove Theorem 4.13.

PROPOSITION 4.19: Suppose i:Y ~ X is a regular codimension p em-
bedding of schemes over Z[1/n]. Then:

(i) If f : Z - X is a flat morphism, then

(ii) If j : T ~ X is a codimension q regular embedding such that

j x i : T n Y ~ X is also regular then

(iii) If X is smooth over Z[1/n] then y[Y] coincides with the class de-
fined in ([7] 2.2).

Finally we construct cycle classes for local complete intersections in
crystalline cohomology. We refer to [4] for the results on crystalline
cohomology that we need. For simplicity we restrict our attention to
schemes of finite type over a fixed perfect field k of characteristic p &#x3E; 0.

We wish to construct for each p ~ 1 and for every codimension p sub-
scheme Y locally a complete intersection in a scheme X of finite type
over k a class:

(where fl is the usual ring of truncated Witt vectors). By cohomological
descent ([4] §7.8) there is an isomorphism
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for each open cover {U03B1} of X. (The crystalline cohomology of a sim-
plicial scheme X. over k is the cohomology of the sheaf OX./Wn in the
crystallic topos of X./Wn (op. cit.)). Hence to construct 03B3[Y] it is enough
to construct a universal class:

Here we view Zp. and BLp as schemes over Spec(k) by pulling back from
spec(Z). By (op. cit., §74)

where in the right hand side of this equation BL(/g is the simplicial
scheme smooth over W" obtained by base change from BLp./Z. Hence we
get maps:

so in order to construct our universal class 03B3crys[Zp.], it is enough to
construct a class

This is done in both [1] and [18] and we shall sketch the construction
here. If X is a smooth scheme over W, and Y c X is a codimension p
subscheme, also smooth over W, there is a natural morphism of

complexes of (9x modules:

which is made up from maps

For each y E 1’: the map on stalks, 4J; is constructed as follows; we choose
local equations x1,...,xp for Y in a neighborhood U of y in X, these
define a local cycle class 03B3x1,..., xp ~ HpY(U,03A9pX/W). given by the Cech
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cocycle for the cover (U, Ux1,..., Uxp) of U defined by the section

Given any 03C9~03A9iY/W(U), we can lift it to an element ~03A9iX/W(U), and we
set:

One may easily show that ~i(03C9) is independent of all the choices made,
and that ~ is a map of complexes. Since ~ is defined naturally it is also
well-defined if X and Y are both simplicial schemes. In particular there
is a map of complexes of sheaves on BIl’.IW:

1J. induces a map

By [19] III §8.7, the sheaves HiZp(03A9i+pBLp/W) are zero for i i= p, hence

and composing ~* with the map from cohomology with supports on ZP
to cohomology with supports on BLp, we get a homomorphism:

DEFINITION 4.22: (i) The cycle class y[Zf] E H2pcrys(BLp./W) is the image
of the canonical generator [Z:] E H0DR(Zp./W) under the map 0 com-
posed with the homomorphism (4.21).

(ii) If Y c X is codimension p subscheme, locally a complete inter-
section in a scheme of finite type over W, the cycle class

is defined as the inverse image of y[ZP] under any map
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classifying Y Using the method of (4.10) one sees that this class is inde-
pendent of the choices made.

In view of the complexity of the construction of cycle classes for
smooth subschemes of smooth varieties over k in [1], we shall not com-
pare this definition with that of (op. cit.).

§5. Determinental subschemes

Clearly there must be elements in the cohomology groups HP(X, Kp)
of an algebraic variety which do not arise from local complete inter-
sections in the manner §4. I am unable to give a geometric description of
all the elements of HP(X, K p), but it is possible to identify some of the
"codimension two Cartier cycles" not coming from local complete
intersections.

THEOREM 5.1: Let X be an algebraic variety and Y c X a codimension
two subscheme the structure sheaf’of which locally has projective resolut-
ions of length two (such a Y may be called "perfect"). Then Y has a cycle
class y[Y] E H2Y(X, Kp).

PROOF: Y is in fact locally determinental (see [5] for a proof of this
result, which goes back to Hilbert) and so there is an open cover {U03B1} of
X such that on each Ua there is a resolution

Note that we can make m independent of a, since X is quasi-compact,
by adding superfluous generators as necessary without affecting the lo-
cally determinental nature of Y In Ua the ideal FY~U03B1 of Y in (Duoc is

generated by the maximal minors of the matrix of the differential 1Ja,
and is the inverse image (both scheme and cycle-theoretic) of the

standard determinental subscheme of Mn,(n+1) by the obvious map, also
denoted 1Ja, which classifies the differential between (9" and On+1U03B1 .
We want to do for locally determinental subschemes such as Y what

we did for local complete intersections in §3. That is construct a smooth
simplicial scheme BD, . such that every perfect codimension two sub-
scheme Y is the inverse image of a universal subscheme Z. c BD. by a
suitable classifying map. Clearly BDo = Mn,n+1. However since the re-
solution (*) cannot be explicitly reconstituted from a knowledge the gen-
erators of the ideal Xy alone, if we start with one resolution "1Ja" and
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want to obtain a second resolution "ç1°" we need more information than
just the transition matrix relating the two sets of generators of the ideal.
By Lemma (3.1) there is an open subset T c Mn,n+1 Mn+1,n+1 con-
sisting of all points (X, Y) such that the ideals (Y.0394(X)) and (0394(X)) coin-
cide. Now even though the generators (Y.0394(X)} = {03A3jyi,j0394j(X)} do not
determine a single resolution of the ideal (Y.0394(X)) = (0394(X)) we do know
that this ideal has projective dimension one and so the kernel 6 of the
map

is projective and so locally free. Hence there is a GLn - torsor F(6) over
T, the frame bundle of 6, the sections of which correspond to isomorph-
isms 03B5 = (9;. 1 claim that F(6) is the right choice for BD 1. If S is a

perfect codimension two subscheme of an algebraic variety T, determi-
nental on the elements of an open cover {U03B1} of T, then on the overlaps
U03B1 ~ U03B2 the triples (OOE, ~03B2, Y03B103B2) consisting of resolutions

and transition matrices

are clearly classified by morphisms

which are transverse to the standard determinental subscheme of F(03B5).
"Transverse" here means that if Z c F(6) is the inverse image of the
standard determinental subscheme D of Mn,n+1 then
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In order to construct BD. starting from BDo = Mn,n+1, BD 1 = F(8)
we can adapt the method used in §3. There are two face maps d0,d1 and
a degenerary so between BD1 and BDo:

do is the composition of the structural map F(8) -+ T, together with
projection T - Mn,n+1. dl is the map which classifies the "second" map

so classifies the pair of resolutions consisting of the standard resolution
of the determinental subscheme of BDo repeated twice, together with the
identity map. Now define A,, for each k ~ 2 as the pull back of the
diagram

On 4k we have (k + 1) different resolutions 4J1X (a = 0,..., k) of the ideal
of the same perfect codimension two subscheme Zk c Ak:

together with transition matrices ~03B1,03B1+1 between 4J1X and ~03B1+1. The
scheme BD, classifying all the possible transition matrices ~03B10,03B11 for

0 ~ ao ~ 03B11 ~ k of (k + 1) different resolutions of the same determi-

nental ideal, together with all homotopies between them is the smooth
subvariety of

defined by the equations
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where for i = 2 or 3, (03B10,..., ai) ranges over all i-tuples 03B1: [i] ~ [k] and
where we write the coordinates on Pk as

(If 03B11 &#x3E; ao + 1, ~03B1003B11 is defined inductively using the relationship

The construction of BD. together with the perfect codimension two sub-
scheme Z, c BD. and the universal cycle class

now follows just as in §§3 and 4.

The obstacle to extending these ideas to the more general determi-
nental ideals generated by the maximal minors of r x s matrices for
r  s - 1 (see [8] for some of the properties of these subschemes) is that
not every point (X, Y) in the open set T of Lemma (3.1) gives rise to an
(sr)-tuple {Y,0394(X)} of functions which are the maximal minors of some
matrix. In fact {Y,0394(X)} must satisfy the Plucker relations (see for

example [17] V.2). It follows that there is a closed subscheme P c T

such that if (X, Y) E P, there is a coherent subsheaf 03B5 c OsP, (X, Y) which is
generically a rank r direct summand. Therefore if we restrict 6 to the
open set Q c P on which it is locally free we find that Q classifies deter-
minental ideals coming from two different matrices together with the
transition matrices relating the two sets of generators of the ideals.

Unfortunately P is singular and there seems no reason to believe that its
singular locus misses Q. One might still however be able to construct a
universal cycle class for subschemes whose ideals are locally generated
by the maximal minors of r x s matrices if the following "Purity
Theorem" for algebraic K-theory were known to be true:

QUESTION 5.2: Let X be an algebraic variety and suppose its singular
locus 03A3 has codimension at least p + 1. Then is Hi (X, Kp) = 0?
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