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1. Introduction

Recall that the Hilbert cube Q is the countable infinite product of
closed intervals, and a Q-manifold is a separable metric manifold

modeled on Q. Let f: M - N and p: N ~ B be maps (map ~ con-

tinuous function), where M and N are compact Q-manifolds and B is a
compact metric space. In this paper we will be interested in the follow-

ing approximation question: When is there a homeomorphism h : M ~ N
for which ph is close to pf? The best previous infinite-dimensional result
in this direction is Theorem 3 of [2], where it was additionally assumed
that B is an ANR, p : N ~ B is an approximate fibration, and the fiber
has a "nice" fundamental group (for example, free abelian). With this
assumption a carefully controlled engulfing result was established so
that the entire problem could be wrapped up around a torus and then
unwrapped in the usual manner. The best previous finite-dimensional
result in this direction is the thin h-Cobordism Theorem of [7], where it
was additionally assumed that B is locally simply connected and the
fibers of p have locally constant fundamental groups which are "nice".
Again the problem was wrapped up around a torus and unwrapped, but
this time it was done on the level of geometric groups. The main result
of this paper is the Approximation Theorem which is stated below. In it
we substantially generalize Theorem 3 of [2] by completely eliminating
the requirement that p : N ~ B be an approximate fibration. The only
demand made on p is a locally "nice" condition on fundamental groups
which does not require B to be locally simply connected and does not
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even require the locally constant 7r,-assumption as in [7]. In doing this
we completely lose engulfing and therefore cannot wrap up the problem
around a torus as in [2], but with a much more direct mapping torus
trick we still achieve the approximation result.
Here is some notation that will be used throughout this paper. Given

metric spaces X and Y, a homotopy ht : X ~ Y is said to be an e-

homotopy provided that each set {ht(x)|0 ~ t ~ 1} has diameter ~ e. If B
is also a metric space and p : Y - B is a map, then ht : X - Y is said to be
a p-1(03B5)-homotopy provided that pht : X ~ B is an e-homotopy. A map
f:X ~ Y is said to be a p-1(03B5)-equivalence provided that there is a map
g:Y~X so that gf is (pf )-1(E)-homotopic to idX and fg is p - ’(e)-
homotopic to idy. If Y = B and p = id, then we simply call f an E-

equivalence (see [6]).
For the statement of our main result we will require the Whitehead

group functor, Wh, which is a homotopy functor from the category of
spaces and maps to the category of abelian groups and homomorph-
isms. For any X we define Wh(X) to be the direct sum

where WhZ[xi(C)] is the usual algebraically-defined Whitehead group
[4, p. 39]. It follows from work of Bass-Heller-Swan-Stallings that
Wh(X) = 0 provided that rcl(C) is free or free abelian, for each path
component C of X (see [4, pp. 43-45] for references). For convenience
we define Wh(o) = 0. The key to our main result is the following de-
finition. A map p : Y ~ B of metric spaces is said to be (e, 03B4)-nice if given
any b in B, the inclusion-induced homomorphism,

is the 0-homomorphism, for any n-torus T". (S03B4(b) is the closed b-

neighborhood of b.) A simple example of this is provided by p =
= proj : B x F ~ B, where B and F are compact ANRs for which 03C01(C)
is free abelian, for all path components C of F. From the Tri-condition
we conclude that Wh(F x T") = 0, and from the local contractibility of
B (and the homotopy functorality of Wh) we see that for every E &#x3E; 0

there exists a 03B4 &#x3E; 0 so that p is (e, 03B4)-nice.
Here is the main result of this paper.

APPROXIMATION THEOREM: Let B be a finite-dimensional compact
metric space. For every e &#x3E; 0 there exists a decreasing set {03B4i}ki=1 of
positive numbers so that if M, N are compact Q-manifolds, p : N - B is
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(03B41,03B4i+1)-nice for all i, and f is a P-1(Ôk)-equivalence, then f is p-1(03B5)-
homotopic to a homeomorphism.

The scope of this result is greatly enhanced by the following adden-
dum which clarifies the manner in which k and the bi are chosen.

ADDENDUM: 1. The integer k depends only on dim B.
2. The set {03B4i} clearly depends only on e and B, and it can be rechosen

as follows: For a fixed io and any x ~ (0, 03B4io) we can find another set {03B4’i},
Julfilling the above requirements, which is of the form 03B4’i = ôi, for i  io,
and blo = x.

REMARKS: 1. Regarding the proof of the above result there is an ele-
mentary trick which reduces the case of B a finite-dimensional com-

pactum to B a polyhedron. (This trick does not seem to work for B
infinite-dimensional.) Then the proof proceeds by induction on dim B.
In passing from the case dim B = n - 1 to the case dim B = n a map-
ping torus trick is used to first establish a splitting result, and this is then
used to achieve the inductive reduction.

2. As one runs through an inductive proof on dim B there are a number
of obstructions which are encountered. Some of these are the K-i ob-
structions as detected by Quinn in [7] when one looks at the general
problem of putting a boundary on a manifold with control in a parameter
space, while others are liml-type obstructions as encountered by
Siebenmann in his second exact sequence for infinite-simple homotopy
theory [8], and which do not arise in [7]. One cannot help but wonder
what form the general theory will take.

3. There is a sharper version of the Approximation Theorem which is
established in Section 7. It is called the Relative Approximation Theorem
and it is needed because the statement of the Approximation Theorem does
not seem to be sufficiently strong to carry out the inductive proof ment-
ioned above. This relative version is really nothing but a statement of the
functorial manner in which the ôi can be chosen when we change the target
space N to another target space via an inclusion.

4. Finally we mention that there is the expected stable PL version of the
Approximation Theorem whose proof runs along the same lines. The set-
up is the same except that M and N are now compact polyhedra. In the
conclusion, instead of requiring that f be p-1(E)-homotopic to a

homeomorphism we require that there exists another compact polyhedron
Z and PL surjections a : Z ~ M, 03B2 : Z - N with contractible point-inverses
such that fa is p - ’(e)-homotopic to 03B2. Also we point out that dim(Z) is a
function of dim(M), dim(N) and dim(B).
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We now make a few comments concerning the organization of the
material in this paper. Section 2 contains some applications of the Approx-
imation Theorem and Section 3 has some further definitions and notation.

In Section 4 we establish some general results on mapping telescopes and
mapping tori which are used in Section 5 to establish a splitting theorem.
Section 6 establishes a controlled version of the Sum Theorem for White-

head torsion and Section 7 contains a proof of the Approximation
Theorem. Finally in Section 8 we establish the applications of Section 2.

2. Applications

We have stated the Approximation Theorem of Section 1 in a very broad
form, and because of this it is possible that the conditions could be too
general to make effective use of in certain situations. So in Theorems 2.1
and 2.2 below we derive some simpler (and weaker) forms of this result. For
our first theorem we will need the following definition. A map p : Y ~ B of
metric spaces is said to be nice if for every - &#x3E; 0 there exists a 03B4 &#x3E; 0 so that p
is (E, b)-nice. Thus the example p = proj : B x F ~ B of Section 1 is nice.
Note also that p does not necessarily have to be surjective.

THEOREM 2.1: Let B be a finite-dimensional compact metric space. For
every E &#x3E; 0 there exists a 03B4 &#x3E; 0 so that if M, N are compact Q-manifolds,
p : N ~ B is nice, and f: M ~ N is a p-1(03B4)-equivalence, then f is p-1(03B5)-
homotopic to a homeomorphism.

REMARKS: 1. This generalizes a similar result of [2] if B is assumed to be
an ANR and p is assumed to be an approximate fibration whose fiber F
satisfies Wh(F x T") = 0, for all n. The reader who is familiar with this
notion should be able to easily show that such a map p is a nice map, and
therefore the approximation result of [2] is a corollary of Theorem 2.1.

2. A simple example of a nice map p : N ~ B which is not an approx-
imate fibration is easily constructed by noting that all UV1-maps are nice
maps, where a map p : N ~ B is UV1 if given any b E B and neighborhood U
of b, there is a neighborhood V c U of b so that any map of a 1-complex
into p-1(V) is nullhomotopic in p-1(U). This follows easily from the
dependence of Wh(X) on 03C01(X) and the homotopy functorality of Wh.

3. Finally we mention that there is the expected non-compact version of
Theorem 2.1. In this version all spaces would be locally compact, and all
maps and homotopies would be proper, where a proper map is a map for
which preimages of compacta are compact. Also E and ô would be replaced
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by open covers. There are no surprises in this extension to the non-compact
case, and for this reason we omit details.

For our second version of the Approximation Theorem we will need
some more definitions. A map p : E ~ B of compact ANRs has the e-lifting
property for k-cells if given maps F : lk x [0,1] ~ B, f : Ik ~ E for which
F( , 0) = pf(_), there is a map F : Ik x [0,1] ~ E for which (_,0) =
f(_) and for which pF is s-close to F. The map F is called an e-lift of F.
We say that p is (03B5,1)-movable if it has the e-lifting property for 0- and 1-
cells, and if it also satisfies the following property which is weaker than
the 8-lifting property for 2-cells.

(*) Given maps F : I’ x [0, 1] - B and f : 12 -+ E for which
F( _,0) = pf(_), there is a map F : ô(I2 x [0,1]) ~ E for which
( _,0) = f(_) and for which F is an e-lift of F|~(I2 x [0, 1]).

Following [5] we say that p is 1-movable if it is (03B5,1)-movable, for all e &#x3E; 0.

Intuitively this means that the fibers of p have locally constant fundamental
groups.

THEOREM 2.2: Let B be a compact ANR. For every e &#x3E; 0 there exists a

ô &#x3E; 0 so that if M, N are compact Q-manifolds, p : N - B is (03B4, 1)-movable,
and f : M ~ N is a p-1(03B4)-equivalence, then f is p-1(03B5)-homotopic to a
homeomorphism provided that Wh(F x Tn) = 0, for all n, where F is the
homotopy fiber of p.

One advantage of this over Theorem 2.1 is that B no longer has to be
finite-dimensional (but we now have to settle for the ANR restriction).
Another seemingly apparent advantage is that the (03B4,1 )-movable map
p : N ~ B which occurs in the above statement is not necessarily nice.
However this is artificial because it is not hard to show that the (03B4,1)-
movable map p can be jiggled slightly to obtain a 1-movable map (pro-
vided that b is small), and this 1-movable map is now nice. Details are left to
the reader.

Our final application of the Approximation Theorem is of a completely
different character than that of Theorems 2.1 and 2.2, yet it is difhcult to
ignore because it follows easily from the machinery developed in this
paper. For notation let p : X ~ B be a map of metric spaces. We say that X
is p-1(03B5)-finitely dominated if there exists a compact polyhedron K and
maps f:K ~ X,g:X ~ K such that fg : X ~ X is p -l(e)-homotopic to idx.
Similarly we say that X has p-’(e)-finite type if there exists a compact
polyhedron K and a p-1(03B5)-equivalence f:K ~ X.
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THEOREM 2.3: Let B be a finite-dimensional compact metric space. For
every E &#x3E; 0 there exists a decreasing set {03B4i}li=1 of positive numbers such that
if X is an ANR, p : X ~ B is (03B4i, bi+ 1)-nice for all i, and X is p-1(03B4l)-finitely
dominated, then X has p-1(03B5)-finite type.

REMARKS: 1. There is also an Addendum whose statement is identical

to the Addendum following the statement of the Approximation Theorem.
2. If K is the compact polyhedron which p-1(03B4l)-finitely dominates X,

then we can construct the compact polyhedron L which is p-1(03B5)-
equivalent to X so that dim(L) depends only on dim(K) and dim(B).

3. As in Theorem 2.1 there is a weaker version of this result in which the

set {03B4i} is replaced by a single ô &#x3E; 0 provided that p is additionally assumed
to be a nice map.

4. Finally we mention that there is a relative version of Theorem 2.3
which bears the same relationship to Theorem 2.3 as does the Relative
Approximation Theorem of Section 7 to the Approximation Theorem of
Section 1. The reader who has read these statements should be able to

easily figure out what this realtive version should be.

3. Preliminaries

All spaces in this paper will be equipped with a metric (usually denoted
by d) and for maps f, g : X - Y we define

d( f, g) = lub{d(f(x), g(x))|x E XI

provided that it exists. The composition of maps f : X - Y and g : Y - Z is
denoted by g ~ f : X ~ Z (or simply gf ). If f : X - Y is given and A c X,
then f 1 A: A --+ Y is the restriction map. For A c X we use A to denote the
topological interior of A and Bd(A) to denote the to-

pological boundary of A.
Expanding on the definitions of Section 1 let a be an open cover of Y A

homotopy ht : X ~ Y is said to be an a-homotopy provided that each
{ht(x)|0 ~ t ~ 1} lies in some element of a. If a is an open cover of B and
p : Y ~ B is a map, then ht : X ~ Y is said to be a p - ’(a)-homotopy provided
that pht : X - Y is an a-homotopy. A map f : X - Y is said to be a p-1(03B1)-
equivalence provided that there exists a map g : Y ~ X such that gf is
(pf)-1(03B1)-homotopic to idx and fg is p-1(03B1)-homotopic to My. We call g a
p-1(03B1)-inverse of f. If Y = B and p = id, then we simply call f an a-
equivalence.
Now that we have brought up the subject of controlled homotopies we
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should also mention that there is a controlled version of the homotopy
extension theorem which goes as follows: An a-homotopy of a closed subset
of a metric space into an ANR, X, extends to an oc-homotopy of the entire
space to X provided that the 0-level extends [1]. As an application of this it is
easy to modify the standard proof that the notions of weak deformation
retraction and strong deformation retraction are equivalent for ANRs to
show that if (X, A) is a compact ANR pair and the inclusion A  X is an
ce-equivalence, then for some n there is a retraction r : X ~ A which is Stn( ex)-
homotopic to idx rel A [1]. Of course Stn(03B1) is the nth star of oc defined
inductively by St°(a) = a and

Stn+1(03B1) = {~{S~U|U~03B1 and S~U ~~}|S~Stn(03B1k)}.

We will represent Q as the countable product [0, 1] x [0,1] x ..., and
for any n we let In = [0,1] x ... x [0, 1] (n-times). This gives us a natural
factorization Q = In x Qn + 1 and for convenience we identify I n with

I"  {(0,0,...)} in Q. Numerous results from Q-manifold theory will be
used in the sequel such as Z-set unknotting, the Triangulation Theorem,
and the Classification Theorem which relates the study of homeomorph-
isms on Q-manifolds to simply homotopy theory. We refer the reader to [3]
for the Q-manifold theory and to [4] for the simply homotopy theory.
A map f:X ~ Y of compacta is said to be CE (or cell-like) if it is

surjective and each point inverse has the (Borsuk) shape of a point. In
particular a surjection f : X ~ Y is CE if all the point inverses are con-
tractible. Recall from [3] that CE maps between Q-manifolds are near
homeomorphisms.

If f : X - Yis a map and A is a subset of both X and Y, then we say that f
= id over A when f-1(A) = A and f 1 A = id. More generally if B ~ Y and
f 1: f -’(B) ~ B is a homotopy equivalence, then we say that f is a homo-
topy equivalence over B. Usually we say that f has property P over B if
f 1: f-1(B) - B has property P.

A subset A of a compact Q-manifold M is said to be clean if A is a
compact Q-manifold and Bd(A) is a Q-manifold which is collared in A and
in M - A. Similarly a subset A of a compact polyhedron P is clean if A is a
compact subpolyhedron and Bd(A) is a compact subpolyhedron which is
PL collared in A and in P - A. Finally a pair (A, B) in a compact Q-
manifold is said to be clean if both A and B are clean, and B ~ Å, Note that
if f : M - P is a map, where M is a compact Q-manifold and P is a compact
polyhedron, and A c P is clean, it is not very likely that f-1(A) is going to
be clean in M. However it is possible to approximate f by a map g : M - P
for which f-l(A) is clean. This is easily done by using the Triangulation
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Theorem for Q-manifolds along with the approximation of maps between
polyhedra by PL maps.

If A and B are clean in a compact Q-manifold M, then we say that
they are transverse provided that C = Bd(A) n Bd(B) is a Q-manifold
and there exists a neighborhood U of C so that the triad (U; U n Bd(A),
U n Bd(B) is homeomorphic to the triad (C x R2; C x R x {0},
C x {0} x R). There is an analogous definition of what it means for

clean subsets A, B of a compact polyhedron P to be transverse, where
the homeomorphism of triads is required to be PL. In the same vein one
can easily imagine what it means for A and C to be transverse in P,
where A is clean and C is a compact subpolyhedron which is PL col-
lared. As above if f:M ~ P is a map of a compact Q-manifold to a
compact polyhedron and A, B c P are transverse, then f can be approx-
imated by a map g:M ~ P for which g-1(A), g-1(B) are transverse.

If X is a compact ANR, then a splitting of X is a decomposition
X = Xl U X2, where X1, X2 and Xo = X1 n X2 are also compact ANRs.
If X is a Q-manifold, then we additionally require the Xi to be Q-
manifolds, and if X is a polyhedron, then we additionally require the Xi to be
subpolyhedra.

If f : X - Y is a map of compacta, then we define the mapping cylinder
of f, C f, to be (X x [0,1]) 1L Y/~, where 11 means disjoint union and
~ is the equivalence relation generated by (x, 1) ~ f(x). We will repre-
sent C f as the union of X x [0, 1) and Y, where Y is the base and
X - X x {0} is the top. The collapse to the base is the retraction c : C f ~ Y
defined by ci Y = id and c({x} x [0,1)) = f(x).

Finally we will need the following notation in Section 8. Let at, 0 ~ t ~ 1
and 03B2t, 0 ~ t ~ 1, be paths in a space X for which 03B11 = 03B20. Then at * Pt,
0 ~ t ~ 1, is the path in X wich is a2t on [0,] and P2t-l on [, 1].

4. Constructions with mapping cylinders

As promised in Section 1 we will establish here some results concerning
mapping tori and mapping telescopes which will be needed in the next
section.

We begin by introducing some notation that will be used throughout
this section. Let Xo c X c Y be compact ANRs so that the inclusion X 4 Y
is a homotopy domination rel Xo. This means that there is a homotopy
h,: Y-+ Y for which ho = id, h1(Y) c X, and ht|X0 = id. We also assume
that ht is an a-homotopy, for some open cover a of Y Let

e = h1|:X ~ X and form the (direct) mapping telescope, Se, which is
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the quotient space obtained from the disjoint union

by identifying (x, n) in X x [n - 1, n] with (e(x), n) in X x [n, n + 1]. Note
that Se is just a union of countably many copies of the mapping cylinder,
Ce. Here is a picture:

In a natural way Se may be set-wise identified with X x R (non-
continuously). We use S,,[a,b] to denote the subset of Se which corre-
sponds to the subset X x [a, b] of X x R. Since e|X0 = id it is clear that
the subset of Se corresponding to Xo x R is actually homeomorphic to
Xo x R.

In analogy with the above construction there is the (clockwise) map-
ping torus, T,,, which is the quotient space Ce/~, where - is the equival-
ence relation generated by (x, 0) - x. This. is just the top of Ce sewn to its
base via the map id. Here is a picture:

In a natural way 7§ may be set-wise identified with X  S1 so that the
subset of 7§ corresponding to Xo x SI is actually homeomorphic to
Xo x SI. Let exp : R ~ S1 be the covering map defined by exp(x) = e21tix.
Then it is clear that there is a covering map 03BB:Se - 7§ which makes the
following rectangle commute:

(In this rectangle, = is used for our set identifications mentioned above.)
Now define a map fi: Se ~ Y x R so that a typical mapping cylinder,
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This map naturally wraps up to give a map H:Te ~ Y  S1 so that H
covers H.

THEOREM 4.1: If x = proj : Y x Sl --+ 1’: then there is an integer n
for which H:Te ~ Y  S1 is a 03C0-1(Stn(03B1))-equivalence. Similarly if
Tt = proj : Y x R ~ Y, then H : Se ~ Y x R is a fi-1(Stn(ex))-equivalence.

PROOF: Our proof is just a variation of a trick used in Theorem 3.1 of
[6], so all we will do is show that the maps H and H are homotopy
equivalences and let the reader worry about the size of the integer n. We
will only treat the map H because everything wraps up to do H

simultaneously.
Let i be the inclusion X 4 Y The first step is to define a space Z which is

formed by sewing together countably many copies of Ci and Ch as pictured
below:

There is a natural map r : Z - R so that each r-1([n, n + 2]) is a copy of Ci
and each r-1([n + 2, n + 1]) is a copy of Chl’ This is compatible with
natural identifications

Our strategy is to define maps Se u Z v Y x R so that u and v are
homotopy equivalences and vu is homotopic to H.
We define u : Se ~ Z so that it takes a typical mapping cylinder Se[n, n

+ 1] to r-1([n, n + 1]) by u(x, t) = (x, t), for all (x, t) E Se[n, n + 1]. Let Ce
be Se[0, 1] and let Ci ~ Ch1 i be r-1([0, 1]). If u’ =
= u|: Ce ~ Ci U Chl, then u’ generates u. Since u’ = id on X x {0} and
X  {1} it will suffice to show that u’ is a homotopy equivalence, for then u
will also be a homotopy equivalence. To see that u’ is a homotopy equival-
ence let c : Ce ~ X be the collapse to the base and let j be the inclusion,
X 4 Ci ~ Chl, of the base into Ci ~ Chl. Clearly u’ ~ jc and so u’ is a

homotopy equivalence as desired.
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Now define v : Z ~ Y x R so that it takes r-1([n - !, n + !J) to Y x [n
-1 2, n + 1 2] by

If Chl U Ci is r-1([-1 2,1 2]). then V’ = V 1: Ch, U Ci - Y X [-1 2, 1 2] gener-
ates v. As above we can show that v is a homotopy equivalence simply
by showing that v’ is a homotopy equivalence. But v’ is a homotopy
equivalence because v’ ~ kd, where d : Ch ~ Ci -+ Y is the collapse to the
base and k is the inclusion, Y  Y x [ - 2, 1 2].

Finally we have to show that vu is homotopic to H. If Ce is Se[0, 1], then
vu ( : Ce ~ Y x [0,1] is defined by

All we need is a homotopy of vu Ce to 171 Ce rel the left- and right-hand
ends, for such a homotopy would clearly generate a homotopy of all of vu
to R. But the construction of such a homotopy is easy. ·

REMARKS: 1. Note that the maps H and H defined above satisfy
H = id on Xo x S 1 and 17 = id on X o x R.

2. The above proof enables us to construct a 03C0-1(Stn(03B1))-inverse of
H, H -1: Y x S’ - 7§, and a -1(Stn(03B1))-inverse of , -1: Y x R - Se, s o
that H -1 covers H-1, H-1 = id on X o x S1, and -1 = id on Xo x R.

THEOREM 4.2: There is an integer m for which the inclusion Se[0, ~)  Se
is a ()-1(Stm(03B1))-equivalence.

PROOF: It is not surprising that Se[0, ~)  Se is a homotopy equival-
ence, for one can easily show directly from the definition that the relative
homotopy groups of the pair (Se, Se[0, oo )) vanish. This approach does not
seem to give the desired control on the homotopy equivalence, so we
concoct a different proof which does give this control. The proof that we
give produces and integer m which depends on n, but just as in the proof of
Theorem 4.1 we will not give an explicit calculation for it.

Recall the homotopy equivalence v : Z ~ Y x R of the proof of Theorem
4.1. Using v it follows that there is a homotopy Ft : Z - Z for which Fo = id,
F1(Z) c r-1([-1 2, ~)), and Ft|r-1([-1 2,~)) = id. This homotopy is also a
(v)-1(Stm1(03B1))-homotopy, for some integer ml. The homotopy Ft induces
(via the map u : Se ~ Z) a homotopy Gt : Se ~ Se for which Go = id,
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G1(Se) ~ Se[-1, ~), and Gt|Se[0, ~) = id. Also, Gt is a (vu)-1(Stm2(03B1))-
homotopy, for some integer m2. There is a natural retraction along mapp-
ing cylinder rays of Se[-1, ~) to Se[0, ~). If we follow G1 by this re-
traction we end up with a retraction r : Se ~ 5g[0, ~) that is (iîl7) (St-(a»-
homotopic to id rel Se [0, ~). ~

5. A splitting theorem

The purpose of this section is to establish a splitting theorem (Theorem
5.2 below) which is a key ingredient in the proof of the Approximation
Theorem which is given in Section 7. In Theorem 5.1 we first establish a
weaker version of Theorem 5.2 whose statement lacks many of the com-

plications of Theorem 5.2, but whose proof is substantially the same. The
reason for proceeding in this manner is to make the proof more readable.
We start by setting up the notation for Theorem 5.1. Later on we will set

up different notation for Theorem 5.2. Let Y be a compact polyhedron, let
p : Y ~ [0,3] be a PL map, and let Y be split as Y = Y1 ~ Y2, where Y1
= p-1([1, 3]) and Y2 = p-1([0, 2]). In Theorem 5.1 below we will in-
vestigate the following problem: Given a compact polyhedron X and a
p-1(03B4)-equivalence f : X ~ Y, when is there a "compatible" splitting of X?
One simple obstacle that we encounter to doing this is that X might not be
large enough to admit such a splitting, so in our statement below we allow
for a CE-PL expansion of X. Therefore what we obtain is really only a
stable splitting, but it sufnces for our purposes.

THEOREM 5.1: For every E &#x3E; 0 there exists a 03B4 &#x3E; 0 such that f X is a
compact polyhedron and f : X ~ Y is a p-1(03B4)-equivalence, then there exist
torsions

whose vanishing implies that X admits a stable splitting which is compatible
with the given splitting of Y That is, there exists a compact polyhedron X’, a
CE-PL map r : X’ ~ X, a map f’ : x’ -+ Y, and a splitting of X’, X’
= X l ~X2, such that f ’ is p-1(03B5)-homoto pic to fr and f’|: Xi ~ Yi is a

homotopy equivalence, for i = 0, 1, 2.

PROOF: We have divided the proof into several steps. In Steps 1 and II we
identify the torsions 03C41 and ’t2, and in Step III we construct our desired
splitting.
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Step I
It will be more convenient to first deal with i2. By enlarging Y if

necessary we may assume that X is a subpolyhedron of Y and we will
assume that f is the inclusion. For notation let Bt = p-1([0, t]) and
At = (pf)-1([0, t]), for each t. In this step we will define an element

i2 E Wh(p-1([1.7,2]) x Sl) whose vanishing implies that f|: A2 ~ B2 can
be extended to a homotopy equivalence 7: Â2 --+ B2 such that Â2 is formed
by attaching a compact polyhedron to A2 along (pf)-1([1.6, 2]) and such
that 1(Ã2 - A2) c p-1([1.6, 2]).

Since f is a p-1(03B4)-equivalence there exists a strong deformation re-
traction of Y onto X which is p-1(03B4’)-homotopic to id rel X, where 03B4’ is a

number whose size depends on 03B4. From this we get a PL homotopy
ht: B2 -+ B2 such that ho = id, hl(B2) lies in

and ht = id on X 2 for all t. Also pht : B2 -+ [0, 3] is a 03B4’-homotopy. Thus
Z 4 B2 is a homotopy domination rel A2 and we let e = h1 |Z:Z ~ Z,
which is a homotopy idempotent on Z.
Now form the mapping torus, Te, and note that 7§ contains A2 x S’ as a

naturally-identified subset. If

then it follows from the constructions of Section 4 that there is a u-1(03B3)-
equivalence H : 7§ -+ B2 X Sl for which H = id on A2 x si, where y is a
small number whose size depends on ô’. Let T-e be the (counter-clockwise)
mapping torus, which is defined in analogy with 7§ except that the rays of
the mapping cylinder are identified in a counter-clockwise direction rather
than in a clockwise direction. In analogy with H we obtain a u-1(03B3)-
equivalence H_ : 7-e ~ B2 x Sl which is the iden-

tity on A2 x S1. Composing one with an inverse of the other yields
H-1- H : Te ~ T-e, which is the identity on A2 x S1 and which is a

(uH_ )-1(603B3)-equivalence.
Let Z1 c Z be defined by

and note that e1 = e Z 1: Z1 ~ Z 1 is a homotopy idempotent on Z1 if ô’ is
sufficiently small. Also T, contains Tel, Te- contains T-e1, and the restriction
H-1-H| Te gives a homotopy equivalence of Te with T-e1. The Whitehead
torsion of this homotopy equivalence determines an element i2 of Wh(T-e1).
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The map H- : T-e ~ B2 x Sl clearly takes T-e1 into p-1([1.7,2]) x S1 pro-
vided that y is sufficiently small, and we call this map

It induces a homomorphism on Whitehead groups, 03B1*, and so our desired
i2 is defined to be

In order to finish this step all we have to do is show that if i2 = 0, then
: Ã2 -+ B2 can be constructed. Let

and let p: p-l([1.7, 2]) x Sl ~ T - be defined by fi = H-1-. (This is certain-
ly defined if y is small enough.) Then the maps

are homotopic, and so j*(03C4’2) = 0. But j*(03C4’2) is easily seen to be the
Whitehead torsion of the homotopy equivalence N-1- H|:T ~ T -, where

So h = H-1-H|:T ~ T- is a simple homotopy equivalence. Using
the Classification Theorem of [3] we have a homotopy of

h x idQ : T x Q ~ T - x Q to a homeomorphism k : T x Q - T - x Q.
We will have to lift this up to the level of mapping telescopes, so first some
more notation is needed.

Recall that the mapping telescope, Se, contains A2 x R as a naturally-
identified subset. If

 = p o proj : B2 x R ~ [o, 3],

then from Section 4 we have a û - ’(y)-equivalence H: Se -+ B2 x R so
that  = id on A2 x R. Similarly there is a -1(03B3)-equivalence
H - : S-e ~ B2 x R, where Se is the (inverse) mapping telescope which
covers the (counter-clockwise) mapping torus Te-. Composing one with
an inverse of the other yields a (-)-1(603B3)-equivalence -1-:
Se ~ S-e. We also have a commutative rectangle
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where 03BB is the covering map mentioned in Section 4 and Â - is its counter-
partfor S-e and Te- . If :03BB-1(T) ~ 03BB-1-(T-) is just a restriction of -1- ,
then we have a commutative rectangle

The homotopy h x idQ ~ k can be covered by a homotopy IÎ x idQ ~ ,
where it is easily seen that Ï must be a homeomorphism. Moreover it is
easily seen that this homotopy is bounded under the natural maps of T and
T - to R. Thus  x id rr k is a proper homotopy. We may assume that
(pf)-1(1.65) is a Z-set in (pf)-1([1.65,2]), so

it follows that (pf)-1(1.65) x S 1 is a Z-set in T and T - . Similarly
(pf)-1(1.65) x R is a Z-set in T and f-. By a relative version of Z-set
unknotting (Proposition 2.4 of [2]) or a relative version of the Clas-
sification Theorem of [3] we may assume that

This means that the homotopy h x id ~  can be extended via the iden-
tity to a proper homotopy -1- x idQ ~ , where  is a homeomorph-
ism of Se x Q onto S-4 x Q which is the identity on the complement of
T x Q. The map fi A2 factors into the composition

where i identifies Z with Z x {0} in Se. So all we have to do is extend i to a
homotopy equivalence 1: 2 - Se such that Z is formed by attaching a
compact polyhedron to Z along
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Choose n a large integer and let

which is a compact Q-manifold in Se x Q. It is easy to see that the

inclusion A  Se x Q is a homotopy equivalence. So all we have to do is
show how to extend Z’ 4 A to a homotopy equivalence in the pre-
scribed manner, where Z’ is just i(Z) x {point} c Se x Q. Let

which is a compact Q-manifold. Since A’ is triangulable and since

A’ n Z’ is a Z-set in A’, there is a compact polyhedron P in A’ which
contains A’ n Z’ as a compact subpolyhedron and for which there

is a strong deformation retraction of A’ onto P. This implies
thatZ’ u P  Z’ u A’ is a homotopy equivalence, and it is clear that

Z’ u A’ 4 A is a homotopy equivalence. Thus Z’ u P  A is a homotopy
equivalence as desired. This completes Step I.

Step II
In this step we deal with 03C41. Proceeding in analogy with Step 1 we

can find a torsion il E Wh(p-1([1, 1.3] x S’) whose vanishing implies
that f 1: X - À, , Y - È, can be extended to a homotopy equivalence
 : X - Å1 ~ Y - B1 such that X - Al is formed by attaching a com-
pact polyhedron to X - Å1 along (pf)-1([1. 1.4]) and such that

f(X - Å1 - (X - Ài)) lies in p-1([1,1.4]). The details are similar.

Step III
In this step we combine the results of Steps 1 and II to finish the proof

of our theorem. Let gt : Y ~ Y be a homotopy rel X for which go = id,
g1(Y) = X, and pgt is a l5’-homotopy. (See the first paragraph of Step I.)
Let Pi be the compact polyhedron of Step II which is attached to

X - Alto form
X - A1, and let P2 be the compact polyhedron of Step 1 which is attac
hed to A2 to form Â2. Define 1: X u P1 ~ P2 -+ Y by

Let D" = [-1,1]" and let X be identified with X  {0} in X x D". Then
g1:X ~ P1 ~ P2 --+ X x D" is a map which is the identity on X. If n is
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sufficiently large, then g1 can be approximated by a PL embedding
a : X u Pl u P2 ~ X x D" so that exlX = id. The polyhedron X’ and the
CE-PL map r : X’ ~ X that we are seeking are defined by

Next we define the splitting, X’ = Xi w X2. Let

So Xl and X2 are compact subpolyhedra of X’ for which X’ = Xi w X2,
and for 03B4’ sufficiently small we have Xo = X1 n X2 equal to

We are given a homotopy equivalence f : (X - Ài) w Pi - Yl from Step
II and we are given a homotopy equivalence 1: A2 U P2 ~ Y2 from Step
I. If 03B21:X1 ~ 03B1((X - Al) U Pl) is the map obtained by projecting (X
- Å1.45) x D" to X - Al,4,, then we obtain a map fl : Xi - Yl defined
by fi = f03B1-103B21. In a similar manner we obtain f2 = lex-lp2:X2 -+ Y2.

ASSERTION: fl is p-1(03B4")-homotopic to fr|X1, where 03B4" is a small
number whose size depends on 03B4’.

PROOF: We have

Thus

and so fr03B21 ~ f03B1-103B21. Since fr03B21 = fr|X1 we are done .

It follows by an analogous proof that f2 is p-1(03B4")-homotopic to
f’IX2. Moreover these homotopies f1 ~ fr|X1 and f2 ~ fr|X2 are

rel(A1.55 - Å1.45) x Dn. So we can homotop f r to f’:X’ ~ Y, where
f’ = fl on A1.55 x Dn and f’ = f2 on (X - Al.45) x D". Moreover this is
a p-1(03B4")-homotopy. To see that/’ X2 : X2 ~ Y2 is a homotopy equivalence
just observe that f’|X2 ~ f2, and f2 was constructed to be a homotopy
equivalence. Similarly f’| X1 : Xi - Yl is a homotopy equivalence. Finally
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to see that f’ Xo : Xo Yo is a homotopy equivalence just use Proposition
2.1 of [2] which tells how to sew together partial equivalences to obtain
global equivalences. This completes Step III. ·

REMARK: There is an additional useful fact which follows from the above

proof, but which does not appear in the above statement. If we let

03C0:[1,3] ~ [2,3] be the retraction which takes [1, 2] to {2}, then we can
construct f’ so that f’l: X, -+ Yl is a (03C0p)-1(03B5)-equivalence.
We now set up the notation for Theorem 5.2. Let Y, B and K be compact

polyhedra and let Y p B q [0,3] be PL maps such that q-1([1,2])
= K x [1,2] and q 1 K x [1,2] = proj : K x [1,2] ~ [1,2]. The splitting
B = B1 ~ B2, where B1 = q-1([1, 3]) and B2 = q-1([0, 2]), gives us a
splitting Y = Yl U Y2, where Y = p-1(Bi). In Theorem 5.2 we address the
following problem: Given a compact polyhedron X and a p-1(03B4)-equivalence
f : X ~ Y, when is there a "compatible" stable splitting of X? The essential
différence now is that the meaning of "compatible" is slightly more re-
strictive. Just as in Theorem 5.1 we are asking for a CE-PL map r : X’ ~ X,
a map f’ ~ Y, and a splitting X’ = X1 U X2 such that f’ ~ f r and
f’|: Xi ~ Yi is a homotopy equivalence, but now we have the additional
requirement that the homotopy f’ rr fr must be a p - ’(e)-homotopy, where
the E-control is how in B (rather than in [0, 3] as was the case in Theorem
5.1). Except for the notational changes the above proof works equally well
to deal with this requirement, so no further proof is necessary. (See Remark
1 below for some comments on the proof.)

THEOREM 5.2: For every a &#x3E; 0 there exists a l5 &#x3E; 0 such that if X is a
compact polyhedron and f : X ~ Y is a p-1(03B4)-equivalence, then there exist
compact Q-manifolds Pl, P2 and homotopy equivalences

which are obstructions to constructing a stable splitting of X which is

compatible with the given splitting of Y This means that if hl and h2 are
homotopic to homeomorphisms, then there exists a compact polyhedron X’, a
CE-PL map r : X’ ~ X, a map f’:X’ ~ Y, and a splitting of X’,
X’=X1 ~ X2, such that f ’ is p-1(03B5)-homoto pic to fr and f’|:Xi ~ Yi
is a homotopy equivalence, for i = 0, 1, 2.

REMARKS: 1. Before we completely dismiss the proof as a duplicate of
the proof of Theorem 5.1 we should at least point out how the obstructions
h1 and h2 arise. This is really the only difference, and for simplicity we only
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look at h1. Recall from Theorem 5.1 that a torsion element

03C41 ~ Wh(p-1([1,1.3]) x S’) was defined. In the notation of Theo-

rem 5.2 this becomes a torsion element in Wh(p- 1(K x [1,1.3]) x S1),
and if we multiply by Q this is represented by a homotopy equivalence hl of
a compact Q-manifold Pl to p-1(K x [1, 1.3]) x S 1 x Q so that h 1 is

homotopic to a homeomorphism if and only if 03C41 = 0 [3, Theorem 38.1].
2. The above statement seems to suggest that the size of ô depends on Y,

B and E, but the proof actually shows that it depends only on B and the size
of E.

3. It follows from the proof of Theorem 5.1 that the torsion element 03C41
can be chosen to be "supported" on p-1([1.1,1.2]) x S1. This means
that i 1 is represented by a PL homotopy equivalence g 1 : L -+ p - 1
([1,1.3]) x S 1 so that g 1 is a homotopy equivalence over p-1([1.1,1.2])
x S’ and a simple homotopy equivalence over the complement of

p-1(1.1,1.21) x S1. In the language of Theorem 5.2 this means that the
obstruction h 1 can be chosen so that

is clean, hl is a homotopy equivalence over p-1(K  (1.1, 1.2]) 
Sl x Q, and h 1 is a homeomorphism over the complement of p-1
(K x [1.1,1.2]) x S1 x Q. There is an analogous statement for h2 which
asserts that it can be chosen to be supported on p-1(K x [1.8,1.9]) x
si x Q. 
There is another somewhat similar way to further restrict the supports of

hi and h2 provided that we start out with more restrictions on f Specifi-
cally suppose that we are given a compact polyhedron W which is clean in
both X and Y, and suppose that W intersects each q-1([0, t]) transversally,
for t ~ [1, 2]. (Actually we only need this assumption for the various t that
arise in the proof of Theorem 5.2.) If f|:W ~ W is the identity, then the
obstruction h 1 can be chosen so that

is clean in Pl and hl is the identity on this set. Again there is an analo-
gous statement for h2.

4. We now make a remark which resembles the remark following the
proof of Theorem 5.1. Since q-1([1,2]) = K x [1, 2] there is a retraction
03C0:q-1([1,3])~q-1([2,3]) which takes each {x} x [1, 2] to {x} x {2}.
Also let u : p-1(K x [1,2]) x S1 x Q - K be the composition
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Given any y &#x3E; 0 we can choose ô &#x3E; 0 small enough so that the ob-
structions hl and h2 are u-’(y)-equivalences. Also if à is sufficiently small,
and in the statement of Theorem 5.2 we additionally assume that h 1 is

u -1 E -homotopic to a homeomorphism, then f’ 1 : X1 ~ Yi is addition-
ally a (03C0p)-1(03B5)-equivalence.

5. Finally we mention the following relative version. Suppose that we
are given a compact polyhedron W which is a PL collared subpolyhedron
of both X and Y such that W intersects each q -1([0, t]) transversally. If
f|:W ~ W is the identity, then the obstruction hl can be formulated so
that

is a Z-set in Pi and h 1 is the identity on this set. There is of course an

analogous statement for h2 asserting that h21 W2 = id. Moreover if hl and
h2 are homotopic to homeomorphisms rel Wl and W2, respectively, then
the splitting of Theorem 5.2 can be constructed so that r = id over W, f’
= id over W, and f’ rr f r rel W Also W (in X’) is transverse to Xl and Yl’

6. A controlled sum theorem

The purpose of this section is to establish a version of the Sum Theorem

for Whitehead torsion [4, p. 76] which will be needed in Section 7. More
specifically we will need a sum theorem with appro-

priate controls in a given parameter space, so the version of [4] does not
apply.
Our main result is Theorem 6.2 below, but first it will be convenient to

establish the following lemma which will be needed in its proof. For
notation let (X, A) be a compact ANR pair, let Y be a compact ANR, and
let f : A - Y be a map. The adjunction space, X u f Y, is the quotient space
X  Y/~, where - is the equivalence relation generated by x - f(x), for
all x ~ A. It is obtained by sewing X to Y along A via the map f. Observe
that any retraction r : X ~ A induces a retraction r f : X ~f Y - Y

LEMMA 6.1: Let (X, A) and Y be as above, let r : X ~ A be a retraction, let
a be an open cover of Y, and let f, g : A ~ Y be maps which are a-homotopic.
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Then there is a homeomorphism

for which the maps rf o proj and rg o proj 0 h of (X U f Y) x Q to Y are a-
homotopic.

PROOF: Assume that A c Q is a Z-set and define f’ : A - Y x Q by f’(a)
= (f(a), a). Form X ~f, ( Y x Q) and note that there exists a CE map s 1 of
Xuf,(Y x Q) onto X ~f Y obtained simply by collapsing out the Q-
factor. Since sl is CE there is a homeomorphism

which is close to s, x idQ. Also define g’ : A ~ Y x Q by g’(a) = (g(a), a),
form X ~g, (Y x Q), and let s2 be the CE map of X ~g, (Y x Q) to X u, Y
which corresponds to s 1. This gives us a homeomorphism

which is close to s2 x idQ.
The maps f’, g’ : A ~ Y  Q are Z-embeddings which are 03C0-1(03B1)-

homotopic, where = proj : Y x Q - Y By Z-set unknotting there exists a
homeomorphism u : Y x Q - Y x Q such, that uf’ - g’ and such that
u is 03C0-1(03B1)-homotopic to the identity. This induces a homeomorphism

Then our desired homeomorphism h is the composition

It is easy to see that rf o proj is a-homotopic to rf o proj 0 h provided that h1
is sufficiently close to si x id and h2 is sufficiently close to s2 x id. ·

We now set up some notation for our main result. Let X and Y be

compact ANRs for which X c Y and let p : Y ~ B be a map, where B is a

compact metric space. We are also given splittings,

so that Xi = X n Y, for each i.
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THEOREM 6.2: For every E &#x3E; 0 there exists a 03B4 &#x3E; 0 so that if each
X x Q  (Xu Y) x Q is (p o proj)-1(03B4)-homotopic to a homeomorphism,
then X  Q  Y  Q is (p o proj)-1(03B5)-homotopic to a homeomorphism.
Moreover ô depends only on B and e.

PROOF: For i = 0, 1, 2 let hi : (X u Y) x Q ~ X x Q be a homeomorph-
ism whose inverse is (p 0 proj)-1(03B4)-homotopic to inclusion. For the pair
(Y2, X2 ~ Yo) x Q let fl : (X2 ~ Yo) x Q ~ X x Q be defined by fi =
= hi |(X2 ~ Yo) x Q, thus giving the adjunction space

Similarly for the pair (Y2, X2 u Yo) x Q let fo : (X 2 u Yo) x Q ~ X x Q
be defined by fo = hol(X2 U Yo) x Q, thus giving

The maps fl and fo are homotopic, so by Lemma 6.1 there is a

homeomorphism

We may view Y x Q as ( Y2 x Q) ~id ((X ~ Y1) x Q), which is Y2 x Q
attached to (X ~ Yl) x Q along (X2 U Yo) x Q via the identity. The

homeomorphism h 1 therefore induces a homeomorphism

Similarly we view (X ~ Y2) x Q as Y2 x Q attached to (X u Yo) x Q along
(X2 ~ Yo) x Q via the identity, so the homeomorphism ho induces a
homeomorphism

The composition h, defined by
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is our desired homeomorphism, where 03BC-1 : X  Q  Q ~ X  Q and
i : Y x Q x Q - Y x Q are homeomorphisms which are close to pro-
jection onto the first two factors. It is easy to check that h is (p o proj) - ’(e)-
homotopic to inclusion. ·

REMARK: We have carefully chosen the notation for the above result so
that it is easy to prove, but there is a trivial modification of it which will be

more directly applicable in Section 7. For this modification let X and Y be
compact ANRs for which Y c X and let p : Y - B be a map, where B is a

compact metric space. Also let

be splittings so that Y = Y n Xi. With this new notation the above result
may be rephrased as follows: For every E &#x3E; 0 there exists a 03B4 &#x3E; 0 so that if
f : X ~ Y is a retraction for which each

is (p 0 proj) - 1( b)-homotopic to a homeomorphism, then f x idQ : X x
Q ~ Y x Q is (p o proj)-1(03B5)-homotopic to a homeomorphism. In Section
7 we have made choices so that the spaces X, Y and Xi u Y are all

Q-manifolds, thus the stabilizing factor Q can be dropped.

7. Proof of the approximation theorem

The purpose of this section is to prove the Approximation Theorem as
stated in Section 1. The following lemma is the first step, which is a routine
reduction of the case in which B is a compactum to the case in which B is a

polyhedron.

LEMMA 7.1: If the Approximation Theorem is true for B a compact poly-
hedron, then it is also true for B a finite-dimensional compactum.

PROOF: Let B be a compactum as given and let e &#x3E; 0 be given. Choose a
compact polyhedron B’ which contains B as a subspace. For convenience
assume that B and B’ have induced metrics as subspaces of some euclidean
space. For any given p : N ~ B we define p’ : N ~ B’ to be the composition
N p B  B’. The following observation will be useful.
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ASSERTION: If p is (03C4, 03BC)-nice and 203BB is a Lebesgue number for the open
cover of B by y-balls, then p’ is (i + 03BC + 03BB, Â)-nice.

PROOF: Choose any b’ E B’ and note that (p’)-1(S03B3(b’)) = p-l(s,(b’)
n B), for any y &#x3E; 0. So all we have to do is show that

is the 0-homomorphism. Note that diam (S03BB(b’) n B) ~ 2Â, thus there is a
b E B for which S03BB(b’) n B c S03BC(b). This gives us

so the inclusion (*) factors through the 0-homomorphism

If k’ is the integer of the Approximation Theorem for the polyhedron B’,
then we will show that the integer k for B is k = 3k’ - 2. So choose e &#x3E; 0

and let {03B4i}ki=1, f : M - N, and p : N - B be given for which p is (ôi, 03B4i+ 1)-
nice and f is a p - 1( bk)-equivalence. By the Assertion we can choose the ôi
so that p’ is (b1, b4)-nice, (b4, b7)-nice,..., (bk-3, 03B4k)-nice. Thus f : M - N is
a (p’)-1(03B4’k,)-equivalence and p’ is (03B4’i, 03B4’i + i )-nice, where {03B4’i}k’i= 1 is the set {03B41,
03B44, ..., 03B4k}. Since the Approximation Theorem is true for polyhedra we
have f (p’)-1(03B5-homotopic to a homeomorphism, and this implies that f
is p-1(03B5)-homotopic to a homeomorphism as desired.
By using a similar proof we see that if the Addendum is true for B a

compact polyhedron, then it is also true for B a finite-dimensional

compactum. ·

Thus we are left with the problem of proving the Approximation
Theorem for B a compact polyhedron. As indicated in Section 1 we will
induct on dim B, and in order to carry this out it will be necessary to prove a

stronger result. For this we will need the following definition. If N is a
compact Q-manifold and (Nl, N2) is a clean pair in N, then a map p : N - B
is said to be (e, b)-nice on (Nl, N2) if given any b E B, the inclusion-induced
homomorphism

is the 0-homomorphism, for any n. Here is the stronger result that we will
prove.
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RELATIVE APPROXIMATION THEOREM: Let B be a compact polyhedron.
For every E &#x3E; 0 there exists a decreasing set {03B4i}ki=1, 03B4i &#x3E; 0, so that if M,
N are compact Q-manifolds, Mk c M is clean, {Ni}ki=1 is a collection of
clean subsets of N so that each (Ni, Ni+ 1) is a clean pair, p : N -+ B is (03B4i,
c5i+l)-nice on (Ni, Ni+1), and f : M ~ N is a p-1(03B4k)-equivalence which
restricts to give a p-1(03B4k)-equivalence of Mk onto Nk and which restricts togive a homeomorphism of M - Mk onto N - Nk, then f is p-1(03B5)-
homotopic to a homeomorphism.

REMARK: For this relative version of the Approximation Theorem of
Section 1 there is no change in the statement of the Addendum. In fact
we will not give any details for the proof of the Addendum because it
will be implicit in the proof of the above result that the Addendum is
also being proved.

PROOF: We have arranged the proof in a series of steps.

Step I
To start off the induction we first treat the case dim B = 0. For this

case we will show that k = 2 sufnces. So choosing E &#x3E; 0 we seek num-
bers 03B41 &#x3E; c52 &#x3E; 0 so that if p : N ~ B is (03B41, c52)-nice on (N1, N2) and f is
a p-1(03B42)-equivalence for which f|:M2 ~ N2 is a p-1(03B42)-equivalence
and f|:M - M2 ~ N - 2 is a homeomorphism, then f is p -1(E)-
homotopic to a homeomorphism. Choose any 03B41  e which is less than
the minimum distance between any two distinct points of B. Then the
problem clearly reduces to the case B = {point}. So we are reduced to
considering a homotopy équivalence f : M - N for which f 1: M2 ~ N2 is
a homotopy equivalence and f 1 M - 2 ~ N - lV2 is a homeomorph-
ism. Also inclusion induces the 0-homomorphism, Wh(N2) ~ Wh(N,).
By the Sum Theorem for Whitehead torsion we see that the torsion of f,
03C4(f), lies in the image of Wh(N2) ~ Wh(Nl). Thus 03C4(f) = 0 and so f is
homotopic to a homeomorphism.

Step II
We now set up the basic notation that will be used for the inductive

step. Assume that the Relative Approximation Theorem is true over all
compact polyhedra of dimension n - 1. We will prove that the result is
true over a fixed compact polyhedron B of dimension n. For a given
E &#x3E; 0 we will show that there is a decreasing sequence {03B4i}ki=1 of positive
numbers so that if p:N ~ B is (03B4i, 03B4i+1)-nice and f is a p-1(03B4k)-
equivalence, then f is p-1(03B4)-homotopic to a homeomorphism. This will
be done in Steps III and IV below. Note that this only establishes the
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"absolute" version of the Relative Approximation Theorem over n-

dimensional polyhedra. For the relative version the proof is essentially
the same except notationally more complex. In Step V we make a few
comments about what has to be done to make the arguments of Steps
III and IV apply to the relative case.

Let 1 be the integer of the Relative Approximation Theorem over
(n - 1)-dimensional polyhedra. We will show that the integer k that we
are seeking can be taken to be k = 21 + 3. Here is a rough description of
the manner in which the ôi are chosen.

1. For our given 03B5 &#x3E; 0 if we choose the "03B5" of the Remark following

Theorem 6.2 to be 2 then 261 is chosen to be the corresponding "03B4."
2. A choice of 03B42 ~ 03B41 will do.
3. Then triangulate B so that the diameter of each n-simplex is  ô2

and let L be the (n - 1)-skeleton of B.
4. Now applying the inductive hypothesis over L, with 03B4’2 playing the

role of the given e, we choose {03B43, ..., 03B4l+2} to be the corresponding set
of 03B4’is whose existence is quaranteed by this hypothesis. (ô’ is defined

below.)
5. Similarly applying the inductive hypothesis over Sn-1, with 03B4’l+2/2

playing the role of the given E, we choose {03B4l+3, ..., 03B42l+2} to be the
corresponding set of 03B4’is. (03B4’l + 2 is defined below.)

6. Finally 03B42l+3 = Ôk is chosen small enough so that the obstructions
hl and h2 of Theorem 5.2 are defined.

In what follows we will assume that choices 1, 2 and 3 have been
made as described above. Choices 4, 5 and 6 require some further expla-
nation and will be dealt with in Steps III and IV. To simplify matters we
assume that B = Lu d ", where d" is the only n-cell. The proof is es-
sentially the same if B is the union of L and an aribtrary number of
n-cells. If a is the star of the barycenter of d" in the 2"d barycentric sub-
division of B, we may write B - 6 = Lu Sn- 1 x [0, 3], where

Sn-1 x {0} = Bd(6) and Sn-1  {3} = Bd(0394n) = Sn -1. For any fixed

met-

ric d on L choose a second metric on B so that

(1) the distance between any two points (xl, yi) and (x2, Y2) of

Sn-1 x [o, 3] is max {d(x1,x2),|y1 - y2|},
(2) the distance between any point x 1 of L and (x2,y2) of

Sn - 1x [o, 3] is max [d(xl, X2), 3 - Y21-
In all of our remaining calculations concerning 03B43, b4, ..., bk we will

use this second metric. We are justified in making this change of metric
because we are only interested in choosing small values of the bi.
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Step III
In this step we will be dealing with the choices of 03B4l+3, ..., Ôk, where it

is assumed that b3, ..., dl+2 have already been selected. The goal of this
step will be to split up M and N into pieces so that, in Step IV, the
inductive hypothesis can be applied to one of these pieces. We will also
have to use the inductive hypothesis to show that this splitting can be
carried out.

Consider the splitting of B, B = B, u B2, defined by

This induces a splitting of N, N = Nl uN2, where Ni = p-1(Bi). Of
course this requires Ni and N2 to be clean in N. In fact we lose no
generality in assuming that each p-1(03C3 ~ (Sn-1 x [0,r])) is clean in N,
for r ~ (0, 3). (We may make such assumptions by the Triangulation
Theorem for Q-manifold’s and the approximation of maps between poly-
hedra by PL maps.) We seek a splitting, M = Ml U M2, and a homo-
topy f ~ f’ so that f’|: Mi ~ Ni and f’|: Mi n M2 ~ Ni n N2 are homo-

topy equivalences. Also we want f ~ f’ to be a p-1(03B5 2) -homotopy

and we want f’|:M1 ~ N1 to be a (03C0p)-1(03B4’l+2)-equivalence, where :
B - à - L is the radially-defined retraction and 03B4’l+2 is a number whose
size depends on bZ+2.

If M and N were polyhedra, then the results of Section 5 could be
applied directly to the above splitting problem. However we can in-
directly use Section 5 by applying the Triangulation Theorem for Q-
manifolds as follows: Write M = X x Q and N = Y x Q, where X and
Y are compact polyhedra. This can be done so that there exists a splitt-
ing, Y = Yl U Y2, for which Y x Q = Ni. For a large integer m define
p : Y x Im - B by the composition

and define f : X x I m ~ Y x Im by the composition

Then 1 is still a fi - 1(03B4k)-equivalence, and f splits as desired, provided
that 1 splits.

Recall from Theorem 5.2 that we encounter two obstructions when
we attempt to carry out the above splitting. For convenience choose
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so that r1 = 3 - 03B4l+2 and s4 = 3-1 2·03B4l+2. If u:p-1(Sn-1 [0,3])
x S1 ~ Sn -1 is the composition

then these obstructions are represented by u-1(03B42l+2)-equivalences

where Pi and P2 are compact Q-manifolds. In order to formulate these
obstructions we must choose Ôk small with respect to 03B42l+2. By Theorem
5.2 (and Remark 4 following its statement) it sufhces to show that hl
and h2 are u-1(03B4l+2/2)-homotopic to homeomorphisms. In order to
carry out the construction of these homeomorphisms we will use the
inductive hypothesis, where 03B4’l+2/2 plays the role of e and {03B4l+3, ...,

03B42l+2} plays the role of {03B4i}. Because of the similarity of the two cases
we will only give the details for h 1.

All we have to do is exhibit a set {Ci}li=1, where Ci is a clean manifold
in p-1(Sn-1 x [r1,r4]) x S 1 so that (Ci, Ci+1) is a clean pair, u is

(03B4l+i+2, 03B4l+i+3)-nice on (Ci, Ci+1), and we must exhibit a clean Pl c Pi
for which h, 1: Pl ~ C, is a u-1(03B42l+2)-equivalence and for which we have
a homeomorphism

The construction of Pl and CI is an easy task. Set

and recall from Remark 3 following Theorem 5.2 that h 1 can be con-
structed so that our desired Pl exists. To obtain arbitrary Ci, 1  i ~ 1,
just let

where ai and Pi are chosen so that
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We have to make choices so that if b ~ Sn-1, then

is the 0-homomorphism, where Si + 1 is the 03B4l+i+3-neighborhood of b
and Si is the 03B4l+i+2-neighbohood of b. This is easily done by choosing
03B2l - 03B1l = 203B42l+2, and for each i choosing

Now to show that u is (03B4l+i+2, 03B4l+i+3)-nice on (Ci, Ci+1) choose b, Si,
and Si+1 as above. We must show that

is 0. But we clearly have

and this is all we need. This completes Step III.

Step IV
In this step we will put everything together to finish the proof of the

absolute version of the Relative Approximation Theorem. We are given
the splittings M = Ml U M2, N = Nl U N2, and the map f’ : M ~ N. All

we have to do is show that f’ is p-1(03B5 2) -homotopic to a homeomor-
phism. For i = 0,1, 2 let f = f’l: Mi - Ni. We may assume that N c M,
Ni = N n Mi, and each Ni is a Z-set in M,. Also, by using the homotopy
extension theorem with control, we can construct the map f’ to be a
retraction so that fl : Ml -+ N, is homotopic to idMl rel N, via a

(03C0pf1)-1(03B4l+2)-homotopy. This was the reason for using 03B4’l+2 above
when we first described f’B:Ml -+Nl.

Extend fi via the identity to f1|: Mi - Nl , where

and Ml = Ml u N1. f1 is still a (03C0p)-1(03B4l+2)-equivalence and N1 is a Q-
manifold because we have assumed that p-1(03C3 ~ (S" -1 x [0, r])) is clean.
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Also Mi is a Q-manifold because it is easily seen to be the union of
two compact Q-manifolds which meet in a Q-manifold that is a Z-set in
each side. Now let 03B4’2 be a number whose size depends on 03B42 and apply
the inductive hypothesis to Mi f1 N1 F L, where 03B4’2 plays the
role of the given E and {03B43, ..., 03B4l+2} plays the role of the {03B4i}. By using
an argument similar to that used in Step III above we get fi (03C0p)-1(03B4’2)-
homotopic to a homeomorphism. Since p-1(Sn-1  {3 - 03B43}) is a Z-set
in both Mi and N1, we can use Z-set unknotting to get f1(03C0p)-1(03B42)-
homotopic to a homeomorphism rel p-1(Sn-1  {3 - 03B43}). This was the
reason that 03B4’2 was used above.
Extend f via the identity to Ji: i ~ N, where Mi = Mi u N. Note

that all the i are Q-manifolds. It follows from the above paragraph
that Il is p-1(203B41)-homotopic to a homeomorphism because 03B42 ~ 03B41.
Since diam (L1n)  03B42 and p is (03B41, 03B42)-nice, it follows from ordinary
simple homotopy theory that 10 and 1 are p-1(2b1)-homotopic to
homeomorphisms. By the Remark following Theorem 6.2 we have

f p 2 -homotopic to a homeomorphism. This completes Step IV.

Step V
As indicated earlier, the above proof establishes only the "absolute"

version of the Relative Approximation Theorem. We now outline what
changes must be made in the above argument to make it work for the
relative case. The difference now is that we have the clean sets Mk c M
and Ni c N so that p is (ôi, 03B4i+ j)-nice on (Ni, Ni+ 1), f|: Mk -+ Nk is a
p-1(03B4k)-equivalence, and f|: M - Mk -+ N - Nk is a homeomorphism.
We can use this homeomorphism to make an identification between M
- Mk and N - Nk so that M - Mk = N - Nk and f = id over N - Nk.
Also if we set Mi = f-1(Ni), it is clean in M an we may assume that

fi: Mi -+ Ni is also a p-1(03B4k)-equivalence. Without loss of generality we
may assume that the various p-1(03C3 ~ (Sn - 1 x [0,r])) that we will en-
counter are clean and intersect all of the Ni transversally.
The first changes in the argument come in Step III. Instead of con-

sidering the full map f : M ~ N we only work with f 1 Ml+2 ~ Nl+2.
So our given splitting of NZ+2 is Nl+2 = N1 ~ N2, where Ni =

= p-1(Bi)~Nl+2 for i = 0,1, 2. We now seek a splitting, MZ+2=

=M1uM2, and a p -1 E -homotopy f|Ml+2 ~ f" so that each

f"|:Mi ~ Ni is a homotopy equivalence and f"|:M1 ~ N1 is a

(03C0p)- 1(03B4’l+2)-equivalence. To do this we first use the fact that f = id on
M - Mk to formulate the obstructions hl and h2 so that (additionally)
they are the identity over the complements of [p-1(Sn-1 x [r1, r4])
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~ N2l+2] x S’ and [p-1(Sn-1  [s1, s4]) ~ N2l+2]  S1, respectively.
This is accomplished by using Remark 3 following Theorem 5.2. Now
focusing on h1 we redefine Ci as

and the argument goes as in Step III to produce our desired splitting
f|Ml+2 ~ f". By Remark 5 following Theorem 5.2 this can be done so
that, additionally, f|Ml+2 ~ f " rel Bd(Ml+2). Thus we can extend f " via
the identity to f’ : M ~ N, and we now have f = f’ rel M - MZ+2’ This
completes the changes in Step III.
There are also changes in Step IV, but the only significant ones arise

in showing that fi is homotopic to a homeomorphism. Happily this is
again a repetition of the ideas sketched above, so no further explanation
is necessary. This completes Step V and the proof of the Relative
Approximation Theorem. ·

8. Proofs of the applications

As the title indicates we will establish Theorems 2.1-2.3 in this

section.

PROOF OF THEOREM 2.1: This is fairly simple compared with the proof
of Theorem 2.2. Using the Approximation Theorem we first choose

numbers {03B4i}ki=1 so that if f is a p-1(03B4k)-equivalence and p is (03B4i, l5i+l)-
nice, then f is p-1(03B5)-homotopic to a homeomorphism. We call such a
collection {03B4i}ki=1 desirable. Using the Addendum to the Approximation
Theorem, along with the fact that p is nice, we can choose another
desirable collection {03B41i}ki=1 such that l5i = 03B41 and p is (£5i, 03B412)-nice.
Repeating this we can choose another desirable collection {03B42i}ki=1 such
that ôf = £5i, 03B422 = 03B412, and p is (03B422, 03B423)-nice. Thus p is (03B42i, 03B42i+1)-nice for
i = 1 and 2. Iterating this procedure we can inductively select a

desirable

collection {03B4ki}i=1 such that p is (03B4ki, 03B4ki+1)-nice, for all i.
Before we begin the proof of Theorem 2.2 it will be convenient to

establish a lemma. All spaces in the following statement are ANRs.

LEMMA 8.1: Let B and 03B5 &#x3E; 0 be given. There exists a £5 &#x3E; 0 so that if
p : E ~ B is (03B4,1)-movable and q : é - B is a Hurewicz fibration for which
E  6 is a homotopy equivalence and q 1 E = p, then
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(1) any map ~:(Ik,~Ik) ~ (E, E) is q-1(03B5)-homotopic to 03C8 rel 03B4Ik so
that tfi(Ik) c E, for k = 0 and 1,

(2) any map ~:(I2,~I2) ~ (E,E) is q-1(03B5)-close to 03C8 so that

03C8(I2) c E and gl = ~ on ô12.

PROOF: We first treat the case k = 0. Choose any x e 8. We must find

a path in é from x to E so that the q-image of this path is close to q(x).
Let r : 6 - E be a retraction which is homotopic to id rel E. Let

’t: 8 -+ E be a homotopy rel E for which ro = id and ri = r. Define
F : I°  I  I ~ B by F(s, t) = qr,(x) and f : 10 ~ E by f(s) = r,(x). Note
that pf(s) = qr 1 (x) = F1(s). Thus there is a map F : 10 x I ~ E for which
Fi = f and for which d(pF, F)  ô. There is a path in 8 from x to
Fo(s) E E defined by r,(x) * F1-t(s). The q-image of this path is very close
to qrt(x) * q’l-t(X), and so by the homotopy lifting property we can
deform the path rt(x) *F1-t(s) rel the ends to a new path in 6 from x to
Fo(s) whose q-image has small diameter.
We now treat the case k = 1. Let ~:(I, ~I) ~ (E,E) be a map and

define F : I2 ~ B by F(s, t) = qrt(~(s)). If f : I ~ E is defined by f(s) =
= r(~(s)), then we have pf(_) = F( -,1). Choose P:12 -+ E for which Fl
= f, Ft(s) = 0(s) for se ôI, and d(pF, F)  ô. Our desired map gl : 12 ~ E
is given by 03C8 = Fo. As in the case k = 0 we can get our desired homo-
topy ~ ~ 03C8 rel aI. This completes the proof of part (1). The proof of part
(2) is similar. ·

PROOF oF THEOREM 2.2: We have divided the proof into three cases.
They are: B is a polyhedron, B is a Q-manifold, and B is an ANR.

I. B is a Polyhedron. Our strategy is to imitate the proof of Theorem
2.1, but in order to do so we will need the

ASSERTION: If b e Band Jl &#x3E; v &#x3E; 0 are numbers such that Sv(b) con-
tracts to b in S,(b), then 03B4 &#x3E; 0 can be chosen so that the (03B4,1)-movable
map p : N - B of Theorem 2.2 is (2p, v)-nice. Moreover, 03B4 depends only on
J1 and v.

PROOF: We have to show that

is the 0-homomorphism. Let q : é - B be a Hurewicz fibration for which
E  E is a homotopy equivalence and q | E = p. Because Sv(b) contracts
to b it follows that the fibration q: C -+ B is trivial over Sv(b). This in-
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duces a retraction r:q-1(Sv(b)) ~ q-1(b), which we identify with F.
Using Lemma 8.1 there exists a homomorphism
03B8:03C01(F) ~ 03C01p-1(S203BC(b)). Thus we get a homomorphism
03B8r*i* : 03C01(p-1(Sv(b))) ~ 03C01(p-1(S203BC(b))), where i is the inclusion

p-1(Sv(b))  q-1(Sv(b)). Once again using Lemma 8.1 it is easy to see

that 03B8r*i* = j*, where j is the inclusion p-1(Sv(b))  p-l(S2Jl(b)). (This is
the place where the fact that the contraction of S,(b) to b takes place in
S03BC(b) is invoked.) Now multiplying by T" and applying the Whitehead
group functor we conclude that

factors through Wh(F x T"), which is 0. ·

Now returning to the proof of the polyhedral case we start with a
desirable collection {03B4i}ki=1. Since the 03B4i can be chosen small we may
assume that each S03B4i+1(b) contracts to b in Sbi/2(b), for all b ~ B. By the
Assertion we may choose 03B4 &#x3E; 0 so that p is (03B4i, 03B4i+1)-nice, thus f is
p-1(03B5)-homotopic to a homeomorphism as desired. This completes the
polyhedral case.

II. B is a Q-Manifold. We are given a p-1(03B4)-equivalence f : M ~ N,
where p : N - B is (03B4,1)-movable. We can choose a factorization B
= Bl x Q, where B, is a polyhedron so that each {x} x Q has a small
diameter. Let q = proj : B ~ B1 and note that qp : N ~ B is still (03B4, 1)-
movable. The proof of this fact is straightforward (see the proof of
Assertion 1 in the proof of Theorem 1 of [2]). It is also easy to see that
the homotopy fibers of p and qp are the same, so we can apply the

polyhedral case to get f(qp)-l 2 -homotopic to a homeomorphism.
Thus f is p -1(8)-homotopic to a homeomorphism because the sets

{x} x Q have small diameter in B.

III. B is an ANR. We are given a p-1(03B4)-equivalence f : M ~ N,
where p : N ~ B is (03B4,1)-movable. Then f  id: M  Q ~ N  Q is a

( p x id)-1(03B4)-equivalence, where p x id : N x Q - B x Q is easily seen to
be (03B4,1)-movable. But B x Q is now a Q-manifold, so by the Q-manifold

case we have f x id (p x id)-1 E -homotopic to a homeomorphism
h : M  Q ~ N  Q. Let u : M  Q ~ M and v : N  Q ~ N be

homeomorphisms which are close to projections. Then vhu-1 : M ~ N is
a homeomorphism which is p-1(03B5)-close to f a
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PROOF oF THEOREM 2.3: To begin with we are given B and E &#x3E; 0. If k

is the integer of the Approximation Theorem for this data, then we will
show that our desired 1 may be taken to be 1 = 2k + 1. So let {03B4i}li=1
and p : X ~ B be given so that p is (03B4i, 03B4i+1)-nice and X is p-1(03B4l)-finitely
dominated, i.e., there is a compact polyhedron K and maps f : K ~ X,
g : X ~ K for which fg is p-1(03B4l)-homotopic to idx. We will show that if
the ôi are correctly chosen and 1 = 2k + 1, then X has p-1(03B5)-finite type.
Our proof is an easy modification of the proof of Theorem 5.1. So

define e = gf : K ~ K and as in the proof of Theorem 5.1 form the com-
mutative diagram

where the horizontal maps are homotopy equivalences and the vertical
maps are covering maps. If 03C0 = proj : X x Sl -+ X and q = pnH - :
Te- ~ B, then ô, can be chosen small enough so that h = H-1- H :

7§- Te- is a q-1(03B42k)-equivalence. Observe that for each b E B
the inclusion q-1(S03B4l+1(b))  q-1(S03B4i-1(b)) factors into the composition

provided that b2k is chosen small enough. If {03B4’i}ki=1 is the set {03B42, 03B44, ...,
03B42k}, then q : Te- ~ B is (03B4’i, 03B4’i+1)-nice. Applying the Approximation
Theorem there is (qoproj)-1(03B41)-homotopy of

to a homeomorphism k : 7§ x Q - 7g x Q. This is covered by a homo-
topy IÎ x idQ ~ , where 9 = -1 and k is a homeomorphism. For n a
large integer let

which is a compact Q-manifold. Write A = L x Q, where L is a compact
polyhedron. Then for m a large integer the composition
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is a p-1(03B5)-equivalence as desired.

REFERENCES

[1] T.A. CHAPMAN: Homotopy conditions which detect simple homotopy equivalences.
Pacific J. Math. 80 (1979) 13-46.

[2] T.A. CHAPMAN: Approximation results in Hilbert cube manifolds. Trans. A.M.S. (to
appear).

[3] T.A. CHAPMAN: Lectures on Hilbert cube manifolds. CBMS Regional Conf. Series in
Math. No. 28, 1976.

[4] M. COHEN: A course in simple-homotopy theory, Springer-Verlag, New York, 1970.
[5] D. CORAM and P. DUVALL: Approximate fibrations, preprint.
[6] STEVE FERRY: The homeomorphism group of a compact Hilbert cube manifold is an

ANR. Annals of Math. 106 (1977) 101-119.
[7] F. QUINN: Ends of maps, I, Annal. Math. 110 (1979) 275-331.
[8] L.C. SIEBENMANN: Infinite simple homotopy types, Indag. Math. 32 (1970) 479-495.

(Oblatum 20-XI-1980)

Department of Mathematics
University of Kentucky
Lexington, Kentucky 40506
U.S.A.


