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Abstract

The non-archimedean space F~(X) is a non-archimedean nuclear

space.

Introduction

The classical nuclear space F~(X), of infinitely differentiable functions
on X (X open subset of R) has been studied for many years. In the case
of functions f : X ~ K, where X is a subset of a non-archimedean (n.a.)
valued field K the definition and investigation of such spaces present
some problems which have only recently been overcome (see [4]).

In this paper we show that the n.a. space W"(X) as defined in [4]
is nuclear in the n.a. sense. We also pay attention to the case where

X = 7Lp (the p-adic integers). The paper starts with some additional in-
formation on compactoïd subsets of n.a. locally convex spaces, and a
n.a. version of the Ascoli theorem.

The following notions and notations will be used:

- K is a complete field with a (non trivial) n.a. valuation and X is a
subset of K (X ~ 4» without isolated points.

- W(X) is the space of continuous functions

f : X ~ K.

If X is compact then W(X) is a n.a. Banach space for the norm
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- If E is a n.a. locally convex space over K then UE is a fundamental
system of zero-neighborhoods in E and 19E is a family of n.a. semi-
norms determining the topology of E.

- For p ~ FE we denote by E, p the space E semi-normed by p, by Ep
the associated n.a. normed space, Ep = E,p/p-1(0) and by Êp its

completion.
By ~p,q we denote the canonical (continuous linear) mapping

- If A is a subset of E then

= K-convex hull of A.

§1. Preliminaries on compactoïd sets

1.1. DEFINITION: A subset B of a n.a. locally convex space E, 0/1 E is

called compactoïd if for every U E UE there exists a finite set S c E such
that B c C(S) + U.

1.2. PROPOSITION: Let E be a n.a. Banach space and F a closed subspace
of E. Suppose B is a subset of F which is compactoïd as a subset of E.
Then B is compactoïd in F.

PROOF: This follows from [6] Theorem 4.37 (a) =&#x3E; ~)).

1.3. LEMMA: Let E be a n.a. normed space and B a subset of E. Then B
is compactoïd in E f and only if B is compactoïd in Ê (the completion of
E).

PROOF: The "only if’ part is immediate from the definition. Suppose
now that B is compactoïd in Ê and let

Be Eo/1E(Be = B(0,03B5) = {x ~ E llxll ~ -J)

Then Bi (the closure of Be in Ê) is a zero-neighbourhood in Ê. Hence
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Choose Yl, Y2,.’.’ Yn E E such that

Take a E B. Then a can be written as

and b~BE03B5. Put b1 = 03A3ni=1 03BBi(xi - yi) + 5. Then

But bi = a - L7=1 ÂiYiEE. So ~b1~E = ~b1~E ~ 03B5, or b1 EB£.

Finally a = L7= 1 03BBiyi + b1, so B c C({y1,..., y.1) + B,,, which shows that
B is compactoïd in E.

1.4. PROPOSITION: Let E be a n.a. normed space, F a subspace of E and
E a subset of F.

Then B is compactoïd in F if and only if B is compactoïd in E.

PROOF: The "only if part is trivial
Suppose now that B is compactoïd in E.
Then B is compactoïd in Ê (1.3). Now F is closed in Ê and B c F. Hence
(1.2) B is compactoïd in F and therefore in F (1.3).

1.5. LEMMA: Let E, p be a n.a. semi-normed space and Ep the associated
normed space. Denote by n the canonical surjection 03C0: E, p ~ Ep and let B
be a subset of E.
Then B is compactoïd in E, p if and only if B is compactoïd in Ep.

PROOF: If B is compactoïd in E, p then 03C0(B) is compactoïd in E p by
the continuity of n.
Suppose now that 03C0(B) is compactoïd in Ep.
The unit ball in E p is given by 03C0(A) where
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Choose e &#x3E; 0, then there exist x1, x2, ..., xn ~ Ep (xi = n(xi» such that

For a E B we can write à = 03C0(a) as à= 03A3ni=1 03BBixi + 5, with lâil ~ 1,
i = 1, 2,..., n ; b~03C0(03B5A) or à = 03C0(03A3ni=1 03BBixi + b), b E EA, n(b) = b. Hence
p(a - Li= 1 03BBixi - b) = 0, which implies that a - Li= 1 03BBixi - b = CE EA
or a = 03A3ni=1 03BBixi + d, with d ~ 03B5A. Hence B ~ C({x1, x2, ..., xn}) + 03B5A.

1.6. PROPOSITION: Let E, YE be a n.a. locally convex space, F a sub-
space of E and B a subset of F.
Then B is compactoïd in F if and only if B is compactoïd in E.

PROOF: The "only if" part is trivial.
Suppose now that B is compactoïd in E. Then B is compactoïd in E, p
for all PEYE, and 03C0p(B) is compactoïd in Ep(Vp ~ E), where np:
E,p ~ Ep is the canonical surjection. (See (1.5)). Denote still by p the
restriction of p to F. Then Fp can be identified with a subspace of Ep.
Since 03C0p(B) c Fp, we have by (1.4) that 03C0p(B) is compactoïd in Fp. By
(1.5), B is compactoïd in F, p. Since this holds for all p ~ E, we conclude
that B is compactoïd in F.

1.7. PROPOSITION: Let (Ei)ic, be a family of n.a. normed spaces and let
Ai be a subset of Ei(i ~ I). Then A = niel Ai is compactoïd in E = ilie, Ei
if and only if Ai is compactoïd in Ei for all i El.

PROOF : If A is compactoïd in E then A1 is compactoïd in Ei by the
continuity of the projections. Denote by a¡¡i a fundamental system of

zero-neighbourhoods in Ei and put

Ui1,...,in Vi where Vi~Ui i~{i1,i2,...in}
t67

V = Ei elsewhere.

Then Ui1,...,in is a zero-neighbourhood in E. Now there exist

yij1, yij2,...,yijm E Eij (j = l, 2, ..., n) such that
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Then A c C(S) + Ui1,i2,...,in where S = {Xijk k = l, 2, ..., m; j = 1,2,...,n},
which shows that A is compactoïd in E.

1.8. THEOREM(Ascoli): Let X be a compact subset of K, and let A be
an equicontinuous, pointwise bounded subset of W(X).
Then A is compactoïd in the n.a. Banach space W(X), ~. ~~.

PROOF: Take s &#x3E; 0.

Then for all xeX, there exists an open neighbourhood Ux of x in X
such that |f(x) - f(y)|  03B5, ~y ~ Ux, Vf E A.
The family (Ux)x~X covers X and since X is compact there is a finite

subcover of X, say X c U Uxi.
i=1,2,...,n

Now A(xi) = {f(xi) f ~ A} is bounded and therefore compactoïd in K.
(i = 1,2,0...,n).
Hence there exists ai, a2, ..., am E K such that

Let ÇUXi be the characteristic function of Uxi and put £’ = 03B1ij03BEUxi E C(X),
i = 1,...,n; j = 1,...,m.
Let S = {fij i = 1,..., n ; j = 1,..., m}. We shall prove that

Take f ~ A and XEX.
Then x E Ux; for some i ~ {1, 2,..., n}. Now f(x) = f(xi) + U(x) - f(xi)],
where f(xi) can be written as f(xi) = 03A3mj=1 03BBij03B1ij + Jl with |03BBij|  1 and

|03BC| ~ 03B5.
Moreover f (x) - J(xi)1  s and oc) = fij(x). So |f(x) - Lj= 1 03BBijfij(x)| ~ s,
x ~ Uxi.
Finally, putting g(x) = f(x) - 03A3mj=1 03BBijfij(x), x E Uxi. We have g E F(X) and

So g ~ B03B5 and f(x) = 03A3mj=1 03BBijfij(x), x E X, which proves (1).
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§2. The spaces Fn(X) (X compact )

2.1. DEFINITIONS AND NOTATIONS (see [4]): Let X be a compact subset
of K. We put 16’(X) = C(X), Il.1100. For n ~ 1 let

For f : X ~ K define 03A6n(f) : ~n+1 X ~ K by induction as follows:
ç1 ° f = f and for n ~ 1:

~nf is called the nth difference quotient of f.

The function f is said to be n times continuously differentiable

(f ~ Fn(X)) if the function ~nf can (uniquely) be extended to a con-
tinuous function enf on Xnl 1.

2.2. THEOREM:

(i) C(X) ~ F1(X) ~ F2(X) ~ ... ([4] p. 78).
(ii) For every n the space Fn(X) is a n.a. Banach space for the norm

([4] p. 79).

2.3. DEFINITION: Let E and F be n.a. Banach spaces. A continuous
linear mapping T: E ~ F is called compact if the image T(BE), of the
unit ball in E, is compactoïd in F.

2.4. THEOREM: The canonical injections
Fn(X) ~ Fn-1 (X), n = 1,2,3,...,
are compact.

PROOF: Let A be the unit ball in Fn(X). We prove that A is

compactoïd in Fn-1(X).
For i = 0,1, ..., (n - 1) we consider the mapping T : Fn-1(X) ~
~ F(Xi+1) : f ~ ~if. Then:
(1) Ti(A) is pointwise bounded (i = 0,1, ..., (n - 1)).
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Indeed: for p ~ Xi+1 we have

(2) Ti(A) is equicontinuous (i = 0,1, ..., (n - 1))
Indeed:

We have ([4] p. 76)

So

Now

This gives

and for.all f E A.
By the definition of (Pi we finally obtain

from which (2) follows.
Applying (1.8) we conclude that Ti(A) is compactoïd in F(Xi+1),
i = 0, 1, ..., (n - 1).
By (1.7) we then have that the set Ili=o,l,...,n-l1;(A) is compactoïd in
F(X) x CC(X2) x ... x F(Xn) = E.
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We now define T : Fn-1 (X) ~ E by T(f) = (Tif)i=0,1,...,(n-1).
Then T(A) ~ 03A0i=0,1,...,(n-1) T (A), which implies that T(A) is com-

pactoïd in E.
Since each T is linear ([4] p. 76), T is linear as well. So T(Fn-1(X)) is a
subspace of E.
Since T(A) c T(Fn-1(X)) we have by (1.6) that T(A) is a compactoïd
subset of T(Fn-1(X)), with the topology induced by E.

The proof will be complete if we show that T(Fn(X)) and Fn-1(X) are
isometric. This is immediate from

§3. Nuclearity of F~(X) (X compact)

3.1. REMARK: According to the classical definition, a n.a. nuclear

space is defined starting from the notion of nuclear mapping between
n.a. Banach spaces.
The n.a. "translation" of the definition of a nuclear mapping reads:
(1) A linear mapping Tfrom a n.a. Banach space E into a n.a. Banach
space F is nuclear if there exist sequences (y,,) c F and (an) c E’ such

that lim~an~E, ~yn~F = 0 and T(x) = 03A3~n=1 an(x). yn, ~x~E.
n

Now it is proved in [6] (Theorem 4.40) that a continuous linear map-
ping T : E ~ F is compact (in the sense of (2.3)) if and only if it has

property (1).
Therefore we give the following definition of a n.a. nuclear space.

3.2. DEFINITION: A n.a. locally convex space E, YE is nuclear if for all
p ~ PE there exists q~PE, q &#x3E; p, such that the canonical mapping
~pq : Êq -+ Ê p is compact.

3.3. REMARK: N.a. nuclear spaces have been studied in [1] and [2]
under the condition that K is a spherically complete field. In these

papers they were called Schwartz spaces. We shall from now on use the
term "nuclear space" to point out that there is no restriction on K.

3.4. DEFINITION: The space W’(X) is defined by P~(X) = n rcn(X)
([4] p. 75]. A n.a. locally convex topology on P~(X) is defined by the
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sequence of n.a. norms

With this topology the space P~(X) is a n.a. Frechet space ([4] p. 119).

3.5. THEOREM : The space P~(X) is nuclear.

PROOF: For Pn = Il. lin we denote by En the n.a. normed space P~(X),
Pn = (P~(X))pn and by Ên its completion. We first describe Ên,
n = 1,2,... Since every Il.11 n is a n.a. norm, the spaces En are set-

theoretically equal to P~(X) and the topology on En is the n.a. norm
topology induced by Pn(X). Now W"(X) is complete ((2.2) ii)) and P~(X)
is dense in Pn(X), n = 1, 2,... ([4] p. 95). Consequently Ên = W"(X),
n = 1,2,... and both spaces are isometric for each n. For n = 1, 2, ...
the canonical mapping ~n,n-1 : Ên ~ Ên-1 is the canonical injection
Pn(X) ~ Pn-1(X). By (2.4) each mapping 9n,n-1 is compact. Hence

P~(X) is nuclear.

3.6. COROLLARIES: The results obtained in [1] and [2] for n.a.

Schwartz spaces (see (3.3)) obviously do not all remain true in our general
case. However some of them are still valid, either with the same proof
either replacing the word "c-compact" by the word "compactoïd" and ap-
plying the results obtained in §1 instead of the well-known properties of
c-compact sets.
In this way we obtain

(i) Every bounded subset of P~(X) is compactoïd.
Hence

(a) the topology ofW’(X) is not normable.
(b) if K is spherically complete, then P~(X) is reflexive.

(ii) Let E be any n.a. Banach space.
Then every continuous linear mapping from P~(X) to E is compact. (Le.
there exists a zero-neighbourhood in P~(X) whose image is compactoïd in
E).
(iii) P~(X) can be identified with a subspace of the space cô (countable
product of spaces co).
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§4. The space P~(Zp)

In this section we take K = Op and X = 7Lp (which is a compact subset
of 0,).

4.1. DEFINITION: The sequence space

s(K) = {(ak) ak E K and lim |ak|kn = 0, n = 0, 1, 2,...}
k

equipped with the topology given by the n.a. norms

II(ak)II p = sup lakl kn , n = 0, 1, 2,
k

will be called the space of rapidly decreasing sequences over K. (com-
pare with the "classical" definition)

4.2. PROPOSITION: The space s(K) is a n.a. nuclear Frechet space.

PROOF: s(K) is a n.a. Kôthe space corresponding to the matrix

(bnk) = (k n) (see [3] Def. 2.1). The result then follows from the criterium
for nuclearity of n.a. Kôthe sequence spaces. ([3], Prop. 3.5).

4.3. THEOREM: The space P~(Zp) is (linearly and topologically) isomor-
phic to the space s(Op).

PROOF: Let f E P~(Zp). Then f E P(Zp) and so f can be written in its
expansion with respect to the Mahler basis

The proof is based on the following results, proved in [5]:
Let f be written as (*), then

1°) f E ccn(7Lp) if and only if lim lakl |kn = 0
k

and

2°) the norms max IlcPjflloo (see 2.2) and |a0|vsup|ak|kn are equivalent.
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The desired result is now obtained by identifying f ~ P~(Zp) with the
sequence (ak) of coëfficients in its Mahler expansion.

§5. Nuclearity of P~(X) when X is not (necessarily) compact

5.1. DEFINITIONS: On the space Pn(X), defined as in (2.1), a n.a. locally
convex topology is defined as follows. (The notations are as in (2.1.)).
For JECCn(X) and B = X, B compact, let

and

Then every ~.~B,n is a n.a. semi-norm on Pn(X). We consider on rcn(x)
the n.a. locally convex topology determined by the family of n.a. semi-
norms.

{~.~B,n B compact subset of X}

On the space P~(X) = n rcn(x) a n.a. locally convex topology is then
n

determined by the family of n.a. semi-norms

{~.~B,n n = 0,1, 2, ... ; B compact subset of X}

5.2. LEMMA: Let E, F be n.a. normed spaces with completions Ê and F,
and let f : E ~ F be a compact mapping. Then the extension 1: Ê ~ F is
compact.

PROOF: Let B be the unit ball in E. Then BÊ is the unit ball in Ê. Now

1(B)Ê c (B) = f(B) and f(B) is compactoïd in F and hence in F. Its
closure f(B) is then still compactoïd in F and so is the subset (B).

5.3. LEMMA: Let f E rcn(x) and B a (compact) subset of X. Denote by fB
the restriction of f to B. Then (4)J)Bi + = ~i(fB) andf’ E rcn(B).

PROOF: This follows immediately from the definitions.
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5.4. THEOREM: The space P~(X) is nuclear.

PROOF: Put P~(X) = E. Further, for B c X, B compact, and

nE {0, 1, 2, ...} we put FB, n = {f E E ~f~B,n = 01. Then EB,n = E/FB, n is a
n.a. normed space, normed by

([f] is the equivalence class to which f belongs). For all n and all B, the
canonical mapping

~B,n : EB,n ~ EB,n-1 is defined by

~B,n([f]B,n) = MB,n-1

For the nuclearity of P~(X) it is now (see (3.2) and (5.2)) suiHcient to
prove that YB, ~n; ~B,n : EB, n ~ EB,n-1 is compact. Let [A] B, n be the unit
ball in EB,n. [A]B,n = {[f]B,n ~ EB,n~f~B,n ~ 1} and put (PB,.(IAIB,.) =
= [A]B,n-1. We have to prove that [A]B,n-1 is compactoïd in EB,n-1.
With the notations of (5.3) we have

Moreover, if [g]B,n-1 = [f]B,n-1, then

It follows that the next definition is meaningful. Define Ti : EB,n-1 ~
C(Bi+1), i = 0,1,...,(n - 1). By Ti([f]B,n-1) = ~ifB.
It can be shown, just as in the proof of proposition (2.4), that

Ti([A]B,n-1) is a compactoïd subset of P(Bi+ 1). The proof then proceeds
exactly as in (2.4).

5.5. REMARK: The corollaries (3.6) (i), (ii), (iii)) are still valid in this

general case. Corollary (3.6) (iv) has to be replaced by "C°°(X) can be
identified with a subset of cô, 7 some index set".

REFERENCES

[1] N. DE GRANDE-DE KIMPE: On spaces of operators between locally K-convex spaces.
Proc. Kon. Ned. Akad. van Wet. A75 (1972) 113-129.

[2] N. DE GRANDE-DE KIMPE: Structure theorems for locally K-convex spaces. Proc. Kon.
Ned. Akad. v. Wet. A80 (1977) 11-22.



309

[3] N. DE GRANDE-DE KIMPE: Non-archimedean Frechet spaces, generalizing spaces of
analytic functions. To appear in Proc. Kon. Ned. Akad. v. Wet (1982).

[4] W.H. SCHIKHOF: Non-archimedean Calculus Math. Inst. Katholieke Universiteit

Nijmegen, Report n° 7812 (1978).
[5] W.H. SCHIKHOF: Ultrametric Calculus, Cambridge University Press (to appear).
[6] A.C.M. VAN ROOIJ: Non-archimedean functional analysis. Marcel Dekker, New York

(1978).

(Oblatum 6-V-1982)

Departement Wiskunde
Vrije Universiteit Brussel
Pleinlaan 2 (F7)
1050 Brussel

Belgium


