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§1. Introduction

Suppose X is a compact Riemann surface of genus g ~ 0, S c X a
finite set, and that for each x~S there is given an integer
e(x) E {2, 3, ..., ~}. We use the notations

and

Classical uniformization-theory then tells us that for x &#x3E; 0 there exists a

discrete subgroup

(H is the upper halfplane) and a projection

which induces an isomorphism

such that for any z E H the stabilizer tz c r has order e(7c(z)), and such
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that the points of S~ correspond to the cusps of F. A proof of these facts
can be found in [2], Ch. IV. 9., for example. Furthermore r can be

generated by elements

where n is the number of elements of S, and the Ci’s correspond to
certain xi~S. The defining relations between these generators are:

Unfortunately this beautiful result does not tell us how to construct this
covering of X’, if for example X is given as a complex submanifold of
some projective space. Thus, it should be interesting to look for a more
concrete construction, especially since some open problems in algebraic
geometry and number-theory can be seen as problems in uniformiza-
tion-theory. For example the Weil-conjecture about elliptic curves over
Q asks for uniformizations with r contained in PSL(2, Z).
The approach of this paper is as follows: Suppose r can be lifted to a

subgroup r of SL(2, R). (This happens precisely if all the finite e(x) are
odd). The natural representation of r on R2 defines a locally constant
sheaf V on X - S, whose second exterior power is constant. r is then

conjugate in SL(2, C) to the monodromy-group of a connection on the
holomorphic vectorbundle = V 0, x. 03B5 can be extended to a vector-
bundle on X such that the connection has regular singular points in S.
Furthermore the singularities can be described.
We call a connection on S permissible if it fits into that description.

Up to a certain equivalence-relation the permissible connections form
an affine complex linear space of dimension 3g - 3 + n, and we want to
characterize the uniformizing connection among them. There is one fur-
ther property of this connection besides being permissible, namely that
its monodromy-group is conjugate in SL(2, C) to a subgroup of SL(2, R).
Unfortunately this does not determine it uniquely, contrary to some
people’s (and originally the author’s) belief. (See for example [6]). We
even conjecture that there always exist infinitely many such connections,
and we give some reasons for this conjecture.
More precisely we denote by REP(r, SL(2, M)) respectively

REP(r, SL(2, )) the spaces of representations of r in SL(2, R) respec-
tively SL(2, C), where the representations must satisfy certain additional
conditions which are fulfilled by the monodromy-representations of per-
missible connections. We thus obtain a mapping from the space of per-
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missible connections into REP(r, SL(2, )), the monodromy-mapping.
We show that REP(r, SL(2, )) is a complex manifold of dimension
6g - 6 + 2n near the image of a permissible connection, and that our
mapping is an immersion of complex manifolds there. Furthermore if
the permissible connection has real monodromy, so that its image is

contained in REP(r, SL(2, R)), REP(r, SL(2, R» is a real submanifold of
dimension 6g - 6 + 2n intersecting transversally the image of our

mapping. Finally if we form a universal family of our pairs (X, S), with
base a suitable Teichmüller-space T of dimension 3g - 3 + n, the per-
missible connections form a complex vectorbundle of rank 3g - 3 + n
over T.

The total space of this vectorbundle is a complex manifold of dimen-
sion 6g - 6 + 2n, and the monodromy-mapping is a local isomorphism
of this manifold into REP(r, SL(2, C)). The connections with real mono-
dromy form a real submanifold of dimension 6g - 6 + 2n such that the
projection onto T becomes a local isomorphism if we restrict it to this
real manifold. 1 hope, but cannot prove, that this local isomorphism is a
covering.

In any case we see that permissible connections with real monodromy
are isolated in the space of all permissible connections over a fixed X,
and that they survive under small deformations of X. If the projection
from the space of permissible connections onto the Teichmüller-space is
a covering we can construct connections with real monodromy on a
given special X by first constructing them on a X’ which is of the same
type as X, and then deforming X’ into X. There is a certain topological
invariant associated with a permissible connection with real mono-

dromy, and this invariant is fixed under deformations. Thus we should
be able to get infinitely many real connections on any X, by construct-
ing them on various X"s in such a way that these invariants are differ-
ent. We shall show examples of such constructions, which should make
it clear that the only real difficulty in this approach is the deformation-
process.
The topological invariant mentioned above is a decomposition of X

into certain pieces which makes X look locally like the double of a
Riemann-surface with boundary. If the permissible connection satisfies a
certain property we can even give a rough classification of these con-
nections, which shows that X must be related to some real curve, i.e., to
a one-dimensional complex algebraic manifold which can be defined
over R. A simple dimension-count in the various moduli-spaces shows
that this cannot happen for the general curve X. Unfortunately in con-
crete examples it usually seems to be impossible to verify this condition.
The paper is organized as follows: In the next three chapters we fix



226

notations and list usually well-known results about uniformization and
connections, real algebraic curves, and the spaces REP(r, SL(2, C»).
Often short proofs are given, since many results are not so easily ac-
cessible in the literature, or not in the generality we need.

After that we define uniformization-data and permissible connections.
We here generalize mildly some results of Gunning in [4], but the main
purpose of this part of the paper is a rephrasing of the classical theory in
a different terminology, better suited for our purposes, which 1 could
not find in the literature. For example it becomes rather clear why
quadratic differentials are important in uniformization-theory.

In any case 1 do not claim that this language was invented by myself,
nor that it constitutes an enormous progress.

In the next two chapters the reality-conditions come into play. We
first define the decomposition of X mentioned above, and use it to clas-
sify a certain subclass of connections with real monodromy. After that
we give an Eichler-Shimura theorem, and as consequence of that the
deformation-theory mentioned above.
As far as 1 know these results are new, and they partly verify and

partly show to be wrong some conjectures of Prof. I. Morrison. At the

end we show how to construct connections with real monodromy. The
structure theory of these connections tells us precisely how to do this.

1 conclude this introduction with some remarks of a more personal
nature: 1 am not a specialist of this field, and 1 ask the experts for their
pardon for the inconveniences caused by this fact. My interest in this
matter stems from my attempts to describe the uniformization-process,
which is analytic in its nature, in terms of algebraic geometry, for
example if X is given as a curve in some projective space. The permis-
sible connections have such a description, but we cannot say more, so
that 1 did not succeed with my original goals. Today 1 even think that
an algebraic-geometric description of the uniformizing connection is im-
possible, the main reason being that it does not depend holomorphically
on the moduli of the curve X. Nevertheless 1 hope that the reader finds
some interest in the by-products of my fruitless efforts.
The referee has pointed out to me that Prof. Mandelbaum has ob-

tained some results about ramified projective structures and the spaces
REP(r, SL(2, )). His results are in Trans. Amer. Math. Soc., vol. 163
(1972), 261-275, and vol. 183 (1973), 37-58; Math. Annalen vol. 214
(1975), 49-59.
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§2. Uniformization and connections

The following results are standard: (Compare [1], [2]). Let X be a
compact Riemann surface of genus g,

a function which takes the value one for almost all x E X,

If

is positive we can write as in the introduction

where H denotes the upper half-plane, and r c PSL(2, R) is a discrete
subgroup such that the mapping from H to X’ has the ramification
prescribed by e.
M* is the union of 0-Il and the set of fixed-points of non-trivial

parabolic elements of T, with the usual topology. If oo is such a cusp a
fundamental system of neighbourhoods of oo in H* is given by the
unions of oo itself and the sets {z ~ H|Im(z) &#x3E; c}, for c a positive
number. This picture is transformed to the other cusps by conjugating r
in PSL(2, R), and there is an isomorphism of topological spaces

r is uniquely determined up to conjugation in PSL(2, R) by X and the
function e, and from a canonical dissection of X we obtain generators

of r, where S = {x1, ..., xn}, and the Ci correspond to counter-clockwise
paths around xj.
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r is defined by the relations
(i) Cejj = 1, for xj~Sf, ej =e(xj)

(ii) A1B2A-11B-12 ... AgBgA;; 1 B-1gC1 C2 ... Cn = 1.
Following the introduction we ask whether there exists a subgroup
r c SL(2, R) mapping isomorphically to r under the projection from
SL(2, R) onto PSL(2, R). Such a lifting is obtained by choosing elements

A1...,Ag, B1,...,Bg, C1,...,Cn of SL(2,,R) projecting onto the corre-
sponding elements of r, and such that these elements fulfill the relations
(i) and (ii).

In any case these relations are fulfilled up to a sign, and the A, B, C’s
define a lifting if and only if -1 is not contained in the group they
generate. This implies that all finite ei’s are odd: For if ej = 2f, with an
integer f, the element Cfj has order two in SL(2, R) (relation (i)!) and thus
is equal to -1. Thus we have found a necessary condition for the
existence of a lifting, and this condition turns out to be also sufficient:

THEOREM 1: A lifting T exists if and only if all finite ej are odd.

Moreover any lifting can be obtained from a special one by
(a) Changing arbitrarily the signs of the A’s and B’s.
(b) Changing the signs of an even number of Cj’s, for xj~S~.

PROOF: The second part of the theorem is trivial, and we only have to
show the existence of a lifting, provided all the finite ej are odd. In this
case for xj~Sf there exists a unique element Cj projecting to Ci and
fulfilling relation (i). If S~ is not void we can fulfill relation (ii) by chang-
ing the sign of one Cj,XjESOO, if necessary. We therefore assume that
S~ = 0.

The C/s are now given by relation (i), and we show that for arbitrary
liftings A1, ..., Ag, B1,..., Bg of A1,...,Ag, B1, ..., Bg the group generated
by these liftings and the C’s does not contain -1. X is now a compact
Riemann surface, and its canonical bundle aTx is even degree 2g - 2, so
that there exists a theta-characteristic, that is a holomorphic linebundle
2 on X with

fil has a non-trivial meromorphic section. Its square corresponds under
the isomorphism above to a meromorphic differential on X which has
even order in any point of X. The pullback of this differential under the
projection of H onto X = 0393BH is a T-invariant meromorphic differential
on H which also has even order everywhere: The orders are increased by
the numbers ej - 1 which are even. We write this differential as f(z)dz,
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with f a meromorphic function on H having even orders. As 0-0 is

simply connected there exists a meromorphic function g on H with

f = g2.
The T-invariance of f(z)dz is equivalent to the following identity for

any element

Taking square-roots we see that g satisfies a relation

where

is a character.

By relation (i) the Cj lie in the kernel of e, and if - 1 is an element of r
the relation (ii) cannot be true, so that then

As all the factors on the right side are in the kernel of E, E( -1) is equal
to + 1, and the functional equation for g, applied to y = -1, reads

But f and g do not vanish, and we have the contradiction we were
looking for.

REMARK: Usually this sort of theorem is proved via connectedness of
a suitable Teichmüller-space. Theta characteristics are also used for this
purpose in [3].

Once we have chosen a particular lifting F or f we may distinguish
between regular and irregular cusps: For any xj~S~, the cusp z~P1(R)
defined by Ci projects onto xj, and Cj generates the stabilizer F, of z in
r. The eigen-values of Ci are equal and both have the value + 1 or -1,
and Cj is conjugate in SL(2, R) to
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(Ci is not conjugate to the inverse of one of the elements above, since it
corresponds to a path counter-clockwise around xj).

If the eigenvalues of Cj are equal to + 1 we call xj a regular cusp,
otherwise an irregular cusp. S~r respectively Sr denotes the set of regu-
lar respectively irregular cusps.
Of course the decomposition S~ = S~r ~ Sr depends on the choice of

the lifting r of f, and since we may change in sign an even number of
the C/s the only thing which is canonical is the parity of the number of
elements in S~r. We shall see later that this parity is always even, so that
there exist liftings with S~r = 0, but sometimes no liftings with Si = 0.
Thus in contrast to its name the case of a regular cusp is somehow

exceptional. We shall see other examples for this, and as a general rule it
can be said that the cusps in S~i behave like the limits of points of Sf, if
the ramification-index e approaches infinity.

For example it is not diiHcult to see that for xj~Sf the element Cj is
conjugate in SL(2, R) to

and hence also to

which converges for e(xj) = ej ~ oo to

We also have to deal with meromorphic connections. If 03B5 is a vector-
bundle (= locally free sheaf) on X we recall that a holomorphic con-
nection on 8 is a mapping of sheafs

satisfying
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for local sections f of X and g of 9. Such connections exist if and only if
every direct summand of 0 has degree zero (compare [11]).
Meromorphic connections are defined in the same way, with the only

difference that V(g) has only to be a meromorphic section of (ff ~X f x.
Meromorphic connections exist always , since g is free as a merom-
orphic bundle.

If g is a holomorphic section of tff near some point x E X, and V a
meromorphic connection on 6, the meromorphic part of V(g) is a well-
defined element of tff x ~X,x (M(KX)/KX)x, (M(KX) = sheaf of mero-
morphic differentials), which depends X,x-linearly on g. Thus V has a
meromorphic part in x which is an element of tffndl9x(tff)x
~X,x(M(KX)/KX)x, and which vanishes for almost all x ~ X.
The term of degree one in this meromorphic part defines a residue

Resx(V) E End(03B5(x), tff(x»,

where 9(x) = Ex ~X,x, C.
A meromorphic connection V is said to have a regular singular point

in x if its meromorphic part has at most a pole of first order. If

03BB, 03BB2, ..., 03BBr are the eigenvalues of Resx(V) it is then classical that the

monodromy-transformation for a small loop counter-clockwise around
x has eigenvalues exp( - 203C0i03BBj), 1 ~ j  r. In general holomorphic con-
nections, meromorphic connections and meromorphic connections with
regular singular points allow the usual operations: If g and 5’ have
such connections, there are canonical ones on E~0XF,Hom0x
(E,F), 039B03BDE etc. Furthermore if Y ~ X is a holomorphic mapping,
the pullback of any bundle with connection on X has a canonically
defined connection.

If L is a line-bundle on X with y02 (9x, fil has degree zero and
thus a holomorphic connection. This connection is defined up to a

global holomorphic differential form co, and changing it by co changes
the corresponding connection on y02 -= OX by 2co. Therefore S has a
unique holomorphic connection for which the isomorphism y02 (9x
is horizontal, if OX has the connection given by ordinary differentiation.
We call this connection the canonical connection on Y, and we know
that its monodromy is contained in {±1}.

§3. Real algebraic curves

Any Riemann surface may be considered as an algebraic curve de-
fined over C. Sometimes this algebraic variety is already definable over
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the real numbers. This happens precisely if there exist an antiholomor-
phic involution on the surface, and these involutions correspond
bijectively to the different real models of the curve.
The basix example here is the double of a Riemann surface with

boundary, which has a canonical real structure. The real points of this
real curve are the fixed-points of the involution, hence the points in the
boundary of our original Riemann surface.
Not every real curve is of this form, since for example there exist

curves X over R for which X(C) - X(R) is connected. (X(C), X(R)
denote the C-respectively R-valued points of a real algebraic curve X.)
We shall see that all counterexamples are of this form.

So let us assume that X is an irreducible nonsingular algebraic curve
which is defined over R. We identify X with the Riemann surface X(C),
together with the involution i of X(C) defined by complex conjugation.
X(R) c X(C) consists of the fixed-points of r, and it is a compact one-
dimensional real manifold, hence a union of circles. Let g be the genus
of X.

THEOREM 2:

(i) X(R) has at most g + 1 connected components. (Harnack’s
theorem).

(ii) X(C) - X(R) has at most two components, and exactly two if X(R)
has g + 1 (= maximal number) components.

(iii) X() - X(R) has two components if and only if X is the double of a
Riemann surface with boundary.

PROOF: We may assume that X(R) is not void. Following Prof. Geyer
we introduce the Picard-variety P and the Jacobian J of X. This are
algebraic groups defined over R, and P = J x Z as R-variety.
Any real algebraic line-bundle defines a continuous real linebundle on

X(R).
If this continuous bundle is trivial an easy argument à la Stone-

Weierstraß shows that our algebraic bundle has a real meromorphic
section which does not have poles or zeroes in X(R). It is then isomor-
phic to the real bundle defined by a divisor D on X with

and

support(D) c X(C) - X(R).

D is of the form
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with a divisor D1, and our original algebraic bundle is of the form

vit ~0X vltT:, where vit is an algebraic bundle defined over X(C), and vltT:
denotes the pullback under i of the bundle complex conjugate to vit.
Conversely any real bundle of the form vit ~OX M03C4 induces the trivial
continuous bundle on X(R).

Finally any continuous bundle on X(R) can be obtained this way, for
example by starting with the real algebraic bundle defined by a certain
divisor with support in X(R), which contains exactly one point of each
connected component of X(R) on which the continuous bundle is non-
trivial. 

As the continuous real linebundles on X(R) are classified by
H1(X(R), F2) (F2 = 7L127L) we have defined an isomorphism

H1(X(R), F 2) P(R)/(1 + 1)(P(C)) = J(R)/(1 + 1)(J(C)) e F2.

Let

1 operates on V and L, and:

If LI denotes the + -eigenspaces of i on L, the mapping induced by
multiplication with ni,

is easily seen to induce an isomorphism

(The calculation is easy, if one does not overlook the fact that because of
the factor 03C0i the L± are sent into the opposite eigenspaces on E)
We thus obtain an injection

with cokernel of dimension one over F2. As the domain of this injection
is a quotient of L+/2L+, and as L+ is a free abelian group of rank g,
H1(X(R), F2) has dimension at most g + 1, and assertion (i) follows. On
the other hand we have a commutative diagram
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As H1(X(R), Z) is invariant under i the upper horizontal mapping an-
nihilates L-, and we obtain a mapping

On the submodule (L+ + L-)/(L- + 2L) ~ L/(L- + 2L) this mapping is
easily seen to coincide with the injection defined before, so that the
lower horizontal mapping in the diagram above is either surjective, or
its cokernel has dimension one over F2.
On the other hand, if H2c(X) - X(R), F2) denotes the cohomology

with compact support of X(C) - X(R), this cokernel is isomorphic to
the kernel of the surjection of H2c(X) - X(R), F2) onto H2(X), F2) =
= 1F2. ·
As the dimension of H2c(X(C) - X(R), F2) is equal to the number of

connected components of X(C) - X(R) we see that this number is one
or two, and precisely two if the cokernel is not trivial. This happens for
example if X(R) has g + 1 components, since L/(L- + 2L) has dimension
g. This shows assertion (ii), and (iii) is trivial.

§4. Representation-spaces

Let X, S, e, r etc. have the meanings attributed to them in §2, with all
finite e(x) odd. Let HOM(T, SL(2, C)) denote the set of homomorphisms
of r in SL(2, C), and HOMp(r, SL(2, C)) the subset consisting of those
homomorphisms such that for j = 1,..., n the image of Ci is conjugate
to Cj itself. If F is the free group in the generators Al, ..., Ag, B1, ..., Bg,
C1, ..., en, and Z E F denotes the element

HOMp(r, SL(2, C)) has naturally the structure of a complex space: We
define a mapping from SL(2,C)2g+n to SL(2,C) x cn by sending a tupel
(X1, ..., Xg, Y1, ..., Yg, Z1, ..., Zn) onto
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If for xj ~ S we cali tj the number

HOMP(0393, SL(2, C)) is naturally an open subset of the fibre of this map-
ping over (1, t1, ... , tn), and inherits the complex structure from this fibre.

Any element p of HOMp(r, SL(2, C)) defines a representation of r on
C2. We denote by HOMP0P(0393, SL(2, C)) the open subset consisting of
those p’s for which C 2 is an irreducible T-module.

LEMMA: HOMP0P(0393, SL(2, C)) is a complex manifold of dimension

6g - 3 + 2n, and the complex tangent-space to this manifold can be iden-
tified with Z1P(0393, sl(2, C)), the set of parabolic crossed homomorphisms of r
into 51(2, C).
Here r operates via conjugation on W = 51(2, C), and a crossed homo-

morphism c is called parabolic if there exists elements w1, ..., wn~ W with

c(Ci) = p(Cj)Wj - wi.

PROOF: HOMP0P(0393, SL(2, C)) is an open subset of the fibre of a complex
mapping, and it is a complex manifold if this mapping is a submersion.
The tangential-space of SL(2, C)2g+n in a point p E HOMP0P(0393, SL(2, C))
can be identified with the set of crossed homomorphisms of F into W,
and the tangential-mapping can be identified with the natural mapping

If M denotes the manifold X - S, W defines a locally constant sheaf W
on M, and the cokernel of the mapping of Z’(F, W) into Z1({Z}, W) can
be identified with H2(M, W). As W is self-dual this is dual to

If r denotes the quotient of r by the normal subgroup generated by Z,
the kernel of the mapping
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is Zl(f, W), and we have to consider the mapping

For this let M = X - S as before, and choose for each XjESj a small
disk x ~ Ux c X. If B’(F, W) denotes the crossed homomorphisms of the
form p(y)w - w, for an element w E W, our mapping annihilates B1(, W),
and the induced mapping from

onto the direct sum of the H1({Cj}, W) may be identified with the

mapping

The cokernel of this mapping injects into Hc2(M, W), which is dual to

All in all we now know that our mapping is a submersion, that the
tangent-space of the fibre at a point p E HOM0P(0393, SL(2, C)) can be iden-
tified with Z§(f, W), and that the fibre has dimension 6g + 3n -
- 3 - n = 6g - 3 + 2n.

It remains to show that Z§(f, W) is equal to its subspace Z§(r, W).
For this we show that dim(HP(T, W)) = dim(Hp(r, W)), which can be
derived as follows: W defines a sheaf W on X - Soo, which is locally
constant on M = X - S, and induces there the locally constant sheaf W
defined above. HP(T, W) and H1P(, W) can be identified with Hp(X -
- Soo, W) and H1P(X - S, W), where HP stands for parabolic coho-
mology, which is the image of the cohomology with compact support in
the ordinary cohomology. It is a wellknown property of parabolic coho-
mology that H1P(X - Soo, W) and HP1P(X - S, W) coincide, and we are
through.

The group PGL(2,C) acts by conjugation on Hom(0393, SL(2, C)),
Homp(r, SL(2, C)), and Hom0P(0393, SL(2, C)), and the action on the last

space is proper and free. The quotient of Hom0P(0393,SL(2,C)) under
PGL(2, C) is called Rep’(F, SL(2, C)) (parabolic representations), and its
tangent-space at a representation p is canonically isomorphic to the
quotient ZI(F, W)/B1(0393, W) = H1P(0393, W), since B1(0393, W) is the tangent-
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space of the PGL(2, C)-orbit through p. Hence

THEOREM 3: Rep0P(0393, SL(2, C)) = Hom0P(0393, SL(2, C))/PGL(2, C) is nat-

urally a complex manifold of dimension 6g - 6 + 2n, whose tangent-
space in a point can be canonically identified with Hp(F, W),
where W = 51(2, C) is a r-module via the adjoint representation.
Hom0P(0393, SL(2, C)) is a principal PGL(2, C)-bundle over Rep0P(0393, SL(2, C)).

REMARK: If we consider absolutely irreducible real representations,
we get a real manifold Rep’(F, SL(2, R)) of dimension 6g - 6 + 2n which
is a submanifold of Rep’ F, SL(2, C)), since two real representations of r
with trivial commuting algebras are isomorphic if their complexifica-
tions are.

§5. Uniformization data and permissible connections

As before X denotes a compact Riemann surface of genus g,,If’x the
canonical bundle on X.

DEFINITION:

(i) A uniformization datum on X is a tuple D = (e, S~r, 2, (p), where e
is a function on X with values in {1, 3, ..., ~}, which is equal to one in
almost all points of X, such that the quantity x(D) = 2g - 2 + 03A3x~X(1
- 1/e(x)) is positive. S~r is a subset of even cardinality of S~ =

= e-1({~}). 2 is a linebundle on X. ~ is an isomorphism
gÙ2 p KX(S~r).

(ii) If M is a linebundle on X, together with an isomorphism M~2 =
(9x, the twist of D by M is the uniformization datum

(e, S~r, L ~ 0x M, ~1), where 91 is the obvious isomorphism derived
from (p:

Suppose D = (e, S~r L, ~) is a uniformization datum on X, and

a finite mapping of Riemann surfaces.
For any x E X f(x) denotes the ramification index of p in x, and we

further assume that f(x) divides e(p(x)) for all ~. The canonical
bundle of X is then isomorphic to
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DEFINITION: Under the assumptions above the pullback p*(D) =
= (, , , ) of D is the uniformization datum defined as follows:

() = e(p())/f(), for ~.
il = p*(2)(D), where D is the divisor D = 03A3~d(), the function

d defined by:

d() = (f(x) - 1)/2, for p()~S~r and f(x) odd,

d(x) = f(x)/2, for p() ~ ~r and f(x) even,

d() = 0, for p() ~ S~r.

~r consists of those  ~ X for which either p()~S~r, or p() ~
Si = S~ - S~r and f(x) is even.

ip is the obvious isomorphism derived from ~ by pullback:

: ~2 ~ p*(L)~2(2D) ~ p*(KX(S~r))(2D) ~ p*(f x)(2D +
+ p*(S~r)) ~ K(S~r).

REMARK: It is not quite obvious that S~r has even cardinality, but this
is a consequence of the existence of the isomorphism ip, since L~2 and
K have even degree.

Furthermore if n is the degree of the mapping p an easy calculation
gives the formula

Let us now fix a D = (e, So, .2, ~), and we look for extensions

These are classified by

where the precise nature of the last isomorphism will be explained
below.

DEFINITION:

(i) The uniformization-bundle belonging to D is the extension S

whose class is given by x(D)/2 E C.
(ii) A permissible connection on the uniformization bundle tff is a
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meromorphic connection V, with poles of first order in S
= e-1({3, 5, ..., oo 1) as only singularities, which satisfies the following
three conditions:

(a) The obvious isomorphism

is horizontal, if OX(S~r) has its natural connection defined by
differentiation.

(b) For any x ~ S the residue of the connection in x respects the line
L(x) c 9(x), and it is on this line equal to multiplication with
(1 - 1/e(x))/2, for x E S - S~r, 0, for x E S’

(c) The composition

is equal to the natural inclusion

REMARKS:

(i) If an extension 9 of L-1(S~r) by Y has a connection with pro-
perties (a), (b), (c), it is isomorphic to the uniformization-bundle: We
only sketch a proof. The extension .9 has a C’-section

The ~-derivation of r can be seen as a (0, 1)-form with values in

L) ~ KX, hence as a (1,1)-form. The class of 8 is

(1/2ni)’ (integral of this form over X).
On the other hand the composition

is a C~-connection, except for the fact that we have to add some cor-
rection terms in the points of S to compensate for the poles of V. These
correction-terms are determined by the residue of V in the points of S,
and can be read of from conditions (a) and (b).
The curvature of the C°°-connection thus obtained is computed by

applying the 7-operator. As e(r) takes its values in IR condition (c)
shows that the curvature form is equal to the form used above for the
computation of the class of 6, except for some correction-terms in the
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points of S. The (known) degree of L-1(S~r) being given by the integral
over this curvature form we derive the formula for the class of 00.

In the sequel we only need the fact that it is determined by conditions
(a), (b), (c), and not what its precise value is.

(ii) If we twist D with a bundle JI such that M~2 ~ OX the new g is
derived from the old one by tensoring with JI, and the permissible
connections on it correspond bijectively to the permissible connections
on the old one, via tensoring with the canonical connection on A7.

(iii) Permissible connections behave well under pullback: Assume that

is a mapping for which the pullback p*(D) = 0 can be defined. The
bundle p*(E)(D) (D = ¿xex d(x)x is the divisor used in the definition of
the pullback p*(D)) is an extension of

by

-1(~r) is naturally a subsheaf of -1(2D + p*(S~r)), and its preimage
in p*(E)(D) is an extension of the sort used in the definition of the

uniformization-bundle 8. Its class is easily computed to have the right
value, and we have obtained an inclusion

The pullback of a permissible connection on 0 induces a merom-
orphic connection on 1, and routine-calculations show that this con-
nection is permissible again.

DEFINITION: Two permissible connections are equivalent if they can
be obtained from each other by an automorphism of the extension

The automorphisms of this extension are given by the global sections of
Homox(L-1(S~r), L) ~ KX, and condition (c) implies that twisting a
permissible V with the automorphism belonging to a holomorphic one-
form 03C9 changes the restriction of V to Y by multiplication with cv.

Conversely condition (b) implies that for any two permissible connec-
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tions V and O’ their restrictions to 2 differ by such a form co. Thus by
replacing one of them by an equivalent one we may assume that they
coincide on 2. They then differ by a mapping from L-1(S~r)=E/L
into g ~OX KX(S), and condition (a) implies that this mapping has its
image contained in 2 ~OXKX(S).

Finally adding such a mapping to a permissible connection does not
affect permissibility, and the space of permissible connections up to
equivalence is a complex affine space under

the space of quadratic differentials with simple poles in S, of dimension
3g - 3 + n. Q plays a prominent role in the theory of Teichmüller-
spaces, and we shall see that its appearance here is connected to this.

As a motivation for all our definition we now show that the uni-

formization theorem provides us with a natural base-point of our space
of permissible connections.

For this we fix a uniformization datum D = (e, S~r, M, ~), define Sf as
the preimage of {3,5,...} by e, and So as the preimage of {~}. Accord-
ing to §2 we can find a discrete subgroup r c PSL(2, R) and a mapping
x from H to X - SOO, which induce an isomorphism

Theorem 1 says that we can lift r to a subgroup T c SL(2, R), and any
such lifting determines a decomposition SOO = S~r ~ st. The constant
sheaf C2 on H is SL(2, R)-homogeneous via the natural action of

SL(2, R) on C2, and its restriction to 11: - l(X - S) defines a locally con-
stant sheaf V on X - S, by taking the r-quotient. The line generated by
the section t(z, 1) of O2H is invariant under the SL(2, R)-action, and defines
a sub-linebundle IR of V 0c (9x-s. The square of IR is naturally isomor-
phic to Xlx, since sending t(z, 1)~2 to dz defines a SL(2, R)-invariant
isomorphism of the square of the line above with the canonical sheaf of
H. More generally this line is the restriction of the canonical subbundle
OP(-1) ~ O2P on P = P1(C), and the isomorphism comes from the

wellknown identity

Everything here is SL(2, C)-invariant, and the previous considerations
apply to any quotient of a domain -9 c P1(C) by a group r c SL(2, C),
which operates without fixed-points on D.
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As r is contained in SL(2, C) the second exterior power of the locally
constant sheaf V is constant, and the connection Vo on the holomorphic
bundle associated to V satisfies conditions (a) and (c) in the definition of
permissible connections: (a) is a clear if we use the isomorphism
039B2E ~ O0393BD coming from A2V = C for the identification of 81.P with
.P-1, and (c) results from the fact that the derivative of ’(z, 1) is t(1,0)· dz,
whose pairing with t(z, 1) is equal to dz, and that dz conversely corre-
sponds to ’(z, 1)~2. We thus obtain a permissible connection on X itself
if we find suitable extensions of the objects defined on X - S so far. For
this we analyse the behaviour of these objects near a point x E S, and
distinguish three cases depending on whether the point lies in Sf, S~r or
Si. The analysis will also apply to any quotient of a domain in P1(C) by
a Kleinian group which can be lifted to SL(2, C).

Case A: x ~ Sf
The basic example we have to consider is the quotient of the unit disk

D by the group To c SL(2, C) generated by the diagonal-matrix yo with
entries exp( ± 203C0i/e), where e is an odd number. For simplicity, we
denote exp(203C0i/e) by p.
The function 03B6 = z’ identifies 1;BD with D. If D denotes the punctured

disk sections of the bundle g over  can be identified with pairs of
functions

satisfying

and the connection Vo is given by

The functional equation is equivalent to a condition on the Laurent-
expansions of f and g: We have

with complex numbers ail’ b03BC, and the condition means
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To define an extension of E to D we have to give a basis of fff over 1fD.
For this we take the sections defined by

The second basis-element generates 2 over IÙ, and thus the extended
has an extension of 2 as subbundle, with E/L = L-1 on D. Also Vo
extends as a meromorphic connection with the required meromorphic
part in 0. Finally the generator ze-l. t(z, 1)~2 of y02 corresponds to
ze-1· dz = d’le, a generator of KD.

Case B: x ~ S~r
We have to consider the quotient  = 0393~BH of the upper halfplane

under the group 0393~ generated by the element

The sections of S over  are again given by pairs of functions t(f, g),
which now have to satisfy

and Vo is given by

where ( = exp(2niz) is a coordinate on D. The functional-equation is

equivalent to the existence of expansions

and we define the extension of 8 to D via its basis

The second element again generates an extension of 2, and its square
corresponds to dz = d03B6/203C0i03B6, which generates KD(0). The rest of the
necessary verifications is trivial as well.
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Case C: x ~ S~i
This is similar to case B, the difference being that the functional

equation of t( f, g) becomes

The extension of 8 is now locally generated by the elements

All in all we have constructed on X a linebundle 2 together with an
isomorphism L~2 ~ KX(S~r), an extension E of L-1(S~r) by 2 and a
connection Vo on satisfying the requirements of a permissible con-
nection. The tuple (e, S~r, 2, the isomorphism above) is then a uniformi-
zation datum on X, and we already have remarked that the properties
of Vo imply that the extension 6 is the corresponding uniformization-
bundle, with Vo a permissible connection. Finally Wx(SJ) has even
degree, so that S~r has even cardinality. What happens if we change the
lifting r of F?
Two liftings differ by a homomorphism of r into {± 1}. If we fix the

set S~r ~ S~ we restrict ourselves to homomorphisms which factor over
the surjection of F onto the fundamental group of X, and in general we
may obtain any subset of even cardinality in S~ as S~r.
The 22g homomorphisms of the fundamental group of X into {±1}

correspond to the 22g linebundles on X with trivial square, and chang-
ing the lifting F by such a homomorphism amounts to twisting the
uniformization datum defined above by the corresponding bundle, to-
gether with its canonical connection. We thus obtain all bundles 2 with
L~2 = 4x(SJ) exactly once, which means that our construction gives
us all uniformization data. We thus have shown:

THEOREM 4: The uniformization-theorem defines a unique permissible
connection Vofor any uniformization datum.

DEFINITION: Vo is the uniformizing connection of the uniformization
datum.

REMARK: If D is a uniformization datum on X, and p :  ~ X a finite
map such that the pullback p*(D) is defined, the projection x of H on
X = 0393BH factors through X, so that X is equal to BH with a subgroup
r ~ 0393 of finite index. From this one easily derives that the pullback of
the uniformizing connection for D is the uniformizing connection for
p*(D).



245

Conversely for any subgroup f c r of finite index D can be pulled
back to X = BH*, and thus many questions can be reduced to the
corresponding problems on X.
As there exist always normal subgroups of finite index in r which do

not contain elements of finite order or parabolic elements with eigen-
values -1 we may often assume that S is equal to S’
For any uniformization datum D = (e, S~r, L, ~) we now consider

arbitrary permissible connections V. As before we have X - Soo - 0393BH,
with the group r c SL(2, R) being the monodromy-group of the uni-
formizing connection Vo. Up to equivalence ~0 and V differ by a quad-
ratic differential q E 0393(X, K~2X(S)), and we write

Condition (b) in the definition of permissible connections implies that
for XjES the monodromy-transformations of V and Vo belonging to a
small loop around xj have the same eigenvalues. This means that for
x jE SI these transformations are conjugate in SL(2, C), so that the trans-
formation for V has finite order ei = e(xj), and that for x jE Soo the corre-
sponding V-monodromy is either equal to + 1, or conjugate to the ele-
ment Cj c- SL(2, R). That the first case does not occur will be the con-
sequence of proposition 5 below.

In any case V defines a locally constant sheaf on X - S, and as the
monodromy of this locally constant sheaf in the points of Sf has the
right order the pullback of this sheaf under the projection

extends to H, and is constant there.
On the other hand x*(é) is isomorphic to (9’ if we restrict it to

H - 03C0-1(Sf), with the pullback of the connection Vo given by ordinary
differentiation. If we write n*(q) as q(z) dz2 with a holomorphic function
q(z) on H - n - l(Sf) (and actually on H), the pullback of V is given by

We know that we can find a global horizontal basis of 2H|H - 03C0-1(Sf)
for this connection. The pullback of fil is then a sub-linebundle of the
free bundle of rank 2 on H - 03C0-1(Sf), and as these subbundles are
classified by P1(C) we obtain a holomorphic mapping
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If

is the monodromy-representation of V (it factors over the quotient f of
the fundamental group of X - S, because the 03C3(Cj) have order e(xj) for
xj~Sf) belonging to the global horizontal basis above, the T-invariance
of the pullback of IR implies the following functional equation, where
SL(2, C) acts by Moebius-transformations on P1(C):

If we change our global horizontal basis p is transformed by a
Moebius-transformation of P1(C), and C1 is changed by conjugating with
the corresponding matrix. If f z r is a subgroup of finite index the
mapping p remains the same for (X, D, V) as for the pullbacks of D and
V to 1 = BH*. If we choose f in such a way that it is torsion-free Sf
becomes void, and we thus see that p extends as a holomorphic mapp-
ing to H.

Finally from the explicit form of V given above an easy calculation
shows that we can recover q from p by the formula

where 0, denotes the Schwarzian derivative:

At also can be seen that the derivative d p/dz does not vanish on H. Our
theory thus fits into the classical Schwarzian differential equation, and
the following result is well known:

PROPOSITION 5: I + 1 1 is an element of T the mapping is given

in a suitable ~-horizontal basis by an expression

with a convergent Fourier-series on H.
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Furthermore the pullback of the triple (8,2, V) on H - n - ’(Sf) is

equal to the pullback by p of the triple consisting of the trivial bundle
(9’ on P = P1(C), its subbundle OP(20131), and the trivial connection given
by d/dz. Proposition 5 together with the fact that a(Cj) is conjugate to
Ci for XjES now easily implies that any point x E S has small neighbour-
hoods Ux, Vx in X, together with an isomorphism of Ux and Vx which
respects x, such that under this isomorphism the restriction of the triple
(é, L, V 0) to Ux - {x} can be identified to the restriction of (é, Y, V) to
Vx 2013 {x}. Local considerations then show that this identification

extends to Ux and Vx, and thus we have:

THEOREM 6: If V is any permissible connection, the triple (E, L, V) is

locally in X isomorphic to (é, 2, V 0)’

This theorem allows us to reduce all local questions to explicit cal-
culations. We give an example for this: Let IF c EndOX(E) denote the
endomorphisms of trace 0. V defines a connection on 57, and thus a
locally constant sheaf W on X - S, corresponding to the representation
of r on W = sl(2, C) derived from 03C3.

On X - S the de Rham-complex is a resolution of W:

There is a mapping from F to

where !!7 x = K-1X is the tangentbundle of X, and a subbundle of
F ~OX KX corresponding to the endomorphisms which annihilate 2.
This subbundle is isomorphic to

The subsheaf of F consisting of the elements sent into K~2X by d
becomes isomorphic to FX, and we obtain a resolution

(Compare [8], Ch. V.)
How can we extend this to X? Let j denote the inclusion of X - S

into X. The following result is purely local, and thus Theorem 6 reduces
us to some easy explicit calculations for the connection ~0:
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COROLLARY: The above resolution extends to an exact sequnce on X:

The degree of FX(- S) being equal to - (2g - 2 + n) ~ ~(D)  0, and
the cohomology of K~2X(S) being dual to the cohomology of FX(2013S),
we can compute the cohomology of j*(W). Here the H° is equal to the
03C3(0393)-invariants of W, and H1 is wellknown to be the parabolic coho-
mology of W. Hence: W has no u(F)-invariants, and there is an exact
sequence

THEOREM 7: Let V be a permissible connection belonging to the

uniformization-datum D = (e, S~r, 2, (p),

its monodromy-representation.
(i) U(Cj) is conjugate in SL(2, C) to Cj, for any xj~S.

(ii) 6(T) is Zariski-dense in SL(2, C).
(iii) The monodromy-representations define a holomorphic mapping

Q = {permissible connections modulo equivalence Rep0P(0393, SL(2, C)).
The differential of this mapping is equal to the inclusion Q  Hp(T, W) in
the exact sequence above.

PROOF: Part (i) has been previously shown, and for part (ii) we may
pass to a subgroup of finite index in r and assume that S = S~r, and
that the Zariski-closure of 03C3(0393) is a connected algebraic group. If this
group is different from SL(2, C) it is solvable, and there exists a F-inva-
riant subspace Wl c W, corresponding to a locally constant subsheaf
W 1 c W of dimension 1.

As the u(Cj) are unipotent and therefore annihilate Wl, W 1 extends
as a locally constant sheaf to X, and by the corollary to Theorem 6
this locally constant sheaf of rank 1 on X injects into the linebundle
FX( 2013S), of negative degree. This is a contradiction.

Part (iii) is rather trivial and left to the reader. We denote by
D ~ P1(C) the image of p.

THEOREM 8: Suppose D is different from P1(C).
(i) P’(C) - -9 has infinitely many points.

(ii) 6(T) c SL(2, C) is discrete.
(iii) If S~ is void p is the universal covering-mapping of -q.
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PROOF: Part (i) follows from the fact that P1(C) -D is stable under
03C3(0393), and that 03C3(0393) is Zariski-dense in SL(2, C) (Theorem 7 (ii)). For part
(ii) we may assume that the normalizer of D in SL(2, C) is not discrete
itself. In any case this normalizer is Zariski-dense in SL(2, C), and the
only D’s having this property are the transforms of the upper halfplane
under SL(2, C). In these cases the assertion will be shown in the next
chapter. In the last part we may pass to a finite covering of X and
assume that S is void. It is then proved by Gunning in [4], page 170.

REMARK: Gunning has also shown the first two assertions in case S is
void. 1 do not know what happens with part (iii) in general. In any case
it remains true for real monodromy.

§6. Connections with real monodromy

Let X, D = (e, S~r, L, ~), r, etc. have their previous meanings, and
suppose that V is a connection with real monodromy, in the following
sense:

DEFINITION: A permissible connection V has real monodromy if 03C3(0393)
is conjugate in SL(2, C) to a subgroup of SL(2, R).

REMARKS: By suitably adjusting V we may assume that

03C3(0393) c SL(2, R). After this we are still allowed to compose C1 with an

element from the normaliter of SL(2, R) in SL(2, C). SL(2, R) has index
two in this normaliter, and the normalizer is generated by it and the
diagonal matrix with entries + i and - i, which represents the mapping

For xj~S the conjugacy class of Cj in SL(2, C) splits into two classes in
SL(2, R) which are interchanged by the normalizer, namely the classes of
Cj and of its inverse. If 6 takes its values in SL(2, R) the elements C1( Cj)
are therefore conjugate either to Cj or to C j- 1.

We now fix p in such a way that C1 takes real values.

DEFINITION:

(i) U +, L/’ c H are the preimages of the upper resp. lower halfplane
by p.

(ii) L c 0-fl is the p-preimage of the real projective line P1(R).
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(iii) X’+, X’-, X ° are the images of U +, U -, L under the projection
onto X.

(iv) {Ui|i~I} denotes the set of connected components of 0-fl -

- L = U+ ~ U-, where I is an index set, I = I+ ~ I-, such that

i~I± ~ Ui~U±.

As the differential of p does not vanish L is a closed real analytic
submanifold of H, which is r-stable since 6(T) respects P1(R). If an

element z c- H lies over an xj~ Sf p(z) is one of the fixed-points of C1( Cj)
and does not lie on P1(R). The closure of X° therefore does not meet Sf.
It also avoids S°°: Suppose a point xj ~ S°° lies in the closure of Xo.

Transforming p and C1 with a suitable element from the normalizer of

SL(2, R), if necessary, we may assume that 03C3(Cj) and Cj are both equal

to thé element ± 0 1 . 
We claim that p has now the form given by Proposition 5: In any case

this is true after transformation with an element from SL(2, C). But the
functional equation for p implies that this element has to centralize Cj,
and is therefore upper-triangular with ± 1 in the diagonal.

If Im(z) is sufficiently large p(z) lies in the upper halfplane, and our
assertion follows.

All this shows that X° is a one-dimensional real analytic closed sub-
manifold of X, hence compact and isomorphic to a union of circles. Also
any point of S~ has a punctured neighbourhood totally contained in
X’ + or X’ -. We denote by X* the union of X’± and those x jE S’
which are contained in the closure of X’ ± .

If Vi ~ X± denotes the closure of Îf = rc(Ui), for an index i~I±, the Y
are the connected components of X - X °, and any arc in X ° separates
one component contained in X+ from one contained in X - . Thus X
looks like a crazy quilt, with the circles of X° as seams. The whole
picture remains unchanged if we compose p with an element from

SL(2,R), and X+ and X - are interchanged if we use an element from
the normalizer of SL(2,R) which is not contained in SL(2,R). On
(H~ - H) = P1(C) - P1(R) we have the hyperbolic metric given by
ds = |dw|/|Im(w)|. Pulling back by p leads to hyperbolic metrics on the
Ui, such that 03C1| Ui becomes a local isometry.

THEOREM 9:

(i) The above hyperbolic metrics on the Ui are complete. (Geodesics
may be extended indefinitely.)

(ii) p 1 us : Ui ~ + 0-fl is an isomorphism for any i E I.

(iii) nUi: Ui ~ i is the "universal cover of JIi, with ramification pre-
scribed by e". ( Ui is for g what H is for X.)
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(iv) If Fi 9 r denotes the stabilizer of Ui in r, then Fi is the group of
deck-transformations of the covering in (iii), and i = 0393BUi. Furthermore,
03C3|1 Fi is injective, and u(Fi) ce SL(2, R) is discrete.

(v) If £i = L(03C3(0393i)) ~ P1(C) denotes the limit-points of 03C3(0393i), p

extends to a 0393i-linear isomorphism 03C1 :  + H u (P1(1R) - Li). (This means
that we have a homeomorphism which is given locally by the restriction of
a power-series with non-zero first order term to its domain of definition, as
well as its inverse.)

(vi) Either D is equal to + H, or to P1(C) - n £i’ In the first case I
icI

has just one element, V is equivalent to the uniformizing connection Vo,
and p is a Moebius-transformation. In the second case I+ and I- are both
non-void.

(vii) p induces an unramified covering

PROOF:

(i) If a geodesic in Ui cannot be extended indefinitely its image in Vi
must approach the boundary of Vi, since it cannot stay in compact
subset of ei. We therefore have to show that any point in this boundary
has infinite distance from any point in the interior of i, for the (sin-
gular) metric induced on Vi.

For points in S~ we may assume that they correspond to the cusp o0
of r, and that p has the form of Proposition 5. p is then sufhciently close
to the identity so that near out point the metric looks very much like
the hyperbolic metric on X - S~, and we are through. On the other
hand since the derivative of p does not vanish, for points in X ° our
metric looks like the metric on (H ~ - H) near the real projective line,
and thus is complete there too.

(ii) 03C1| Ui is a local isometry of complete hyperbolic spaces, hence an
unramified covering.

(iii) 03C0|Ui has the prescribed ramification, and Ui is simply connected.
(iv) The first assertion is derived from the r-invariancc of the decom-

position H - L = U Ui, and the rest follows from the fact that 03C3(0393i) is
iEI

the group of deck-transformation for the covering

isomorphic to the covering in (iii).
(v) It is well known (compare [1], pgs. 44/45) that the mapping
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extends to a holomorphic ri-linear mapping

sending P’(R) - £i onto the boundary 17j n X’, which lifts to a holo-
morphic mapping

with Po K = id.
We are finished if the image of K is equal to ai. We already know that

Ui is contained in this image, which is ri-stable, and as i - Ui ~ L
maps onto 17, n X° is the quotient of Lli - Ui under the réaction.

This comes down to the fact that any 03B3~0393 with y(ai - Ui) ~ (Ui -
- Ui) ~ 0 is already contained in ri, and this assertion is correct since i

is the only element j ~ I±, of the same parity as i, such that Uj~(Ui -
- Ui) is not void.

(vi) If 7 has only one element this is a corollary to (ii), and of the
characterization of q in V = Vo + q via q = - 03B82(03C1)/2. If I has at least
two elements L is not void, and neither are I + and I -. The rest follows
from (v).

(vii) We assume that I has more than one element. It is already clear
from (ii) that p is a covering over H~ 2013 H. So take a w0~P1(R)
- U £i, and let K ~ P1(R) be a maximal open interval with Wo E K and

K~£i =0.
te7

Any element zo c- H with p(zo) = wo is contained in L, so that there
exist unique i~I+ and j ~ I- with z~Ui, z E aj.
We have seen in (v) that p -1: H - Ui and 03C1-1:-H~ Uj can be

extended to K, and (H u - H) u K being simply connected we obtain a
well-defined holomorphic mapping

with 03C1 o 03BA = id, K(wo) = zo.

Furthermore for different choices of z0~03C1-1(w0) the images of the
corresponding K’s are disjoint, and their union is ((H u - H) u K): If for
elements z0, z1 ~ 03C1-1(w0) a z ~ H is contained in the images of both the
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corresponding K’s, it is both times the image of w = p(z), and as two
sections of p are equal if they coincide at one point the corresponding
K’s are equal, with common value zo = z1 at wo. Conversely for any
z E H with w = p(z) E (H ~ - H) u K choose an i E 7 with z E lJi, and let zo
be the unique element of ai with p(zo) = wo. Then z is in the image of
the section corresponding to z0. This shows our assertion, or more pre-
cisely that p has a lot of sections. Part (vii) is a direct consequence of
this fact.

REMARKS:

(a) Part (iv) implies that any simply connected Vi contains at least two
elements from S: Otherwise 6(Ti) would be cyclic, generated by a para-
bolic or elliptic element. Furthermore 17j n Xo would consist of just one
arc. If Y is the other component of X - X ° bounded by this arc the
element in 03C3(0393j) belonging to this boundary-arc of V would be parabol-
ic or elliptic and V would be of the same type as Vi. But then X is equal
to P1(C) with S consisting of at most two points, and that is a

contradiction.

(b) Part (vi) finishes the proof of Theorem 8 (ii): If for an arbitrary
connection V the image -9 of p is equal to H, u(F) is contained in the
normalizer of D, hence in SL(2, R), and V has real monodromy. 6(T) is
then conjugate to r.

THEOREM 10: The following assertions are equivalent:
(a) D ~ P1(C).
(b) 2j £j, for all i, j E I.

They imply:
(i) p is the universal covering-mapping for D.

(ii) 03C3(0393i) hasfinite index in u(r), for any i~I.
(iii) Either -9 is simply connected, and then -9 = ±H, or -9 = P1(C)

- £i, for an arbitrary element i E I.

PROOF: We may assume that 7 has more than one element. As the £i
are non-void Theorem 9 (vi) shows that (b) implies (a). Conversely if (a)
is true P1(C) - D has at least three points. If 1 ~ 03B3 ~ 03C3(0393i) is a hyperbolic
or parabolic element there exists therefore a point p E P1(C) - D which
is not fixed by y, and the transforms u(y") (p) converge for n - ± oo to
the fixed-points of y. As P1(C) - D is closed it contains the closure of
the set of fixed-points of non-trivial hyperbolic or parabolic elements of
u(Fi), and it is well known that this set is equal to £i. Thus
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and (b) follows.
The assertions (i) and (iii) are now easy consequences of Theorem 9

(vii) and (vi), except for the fact that -9 is not simply connected. For (ii)
we use the fact that £i = P1(C) - D is 03C3(0393)-stable. The connected com-
ponents of P1(R) - £i consist of finitely many classes under 6(Ti)-
conjugation, each such class corresponding to an arc bounding Vi. As
03C3(0393) permutes these connected components it sufhces to proof that for
any such component its normalizer in 03C3(0393i) has finite index in its nor-
malizer in a(F).
The component is an open interval with endpoints a and b, and as

any element of SL(2, R) normalizing this interval permutes a and b we
are ready if we show that the intersection of 6(Ti) with the subgroup of
SL(2, R) fixing a and b has finite index in the intersection of 6(T) with
this subgroup.

But this subgroup is a real Lie-group isomorphic to R*, and its inter-
section with 6(Ti) is infinite because the quotient of our interval under
this intersection is the corresponding boundary-arc of Vi, and thus com-
pact. As 6(T) is discrete (Theorem 8 (ii)) we are finished.

If D would be simply connected P1(C) - D would be a real interval
whose endpoints are permuted by u(r), which contradicts the Zariski-
density of 6(T) in SL(2, C).

COROLLARY: If D ~ P1(C), each of the following conditions implies that
V is equivalent to ~0:

(i) !!fi is simply connected.
(ii) 03C3: 0393 ~ SL(2, R) is injective.

(iii) The fixed-points of the non-trivial hyperbolic and parabolic ele-
ments are dense in P1(R).

PROOF: (i) is clear from the previous two theorems, (ii) implies that
each Fi has finite index in T, and simple topological considerations then
show that 7 has only one element, and (iii) means that each £i is equal
to P1(R), so that -9 is one of the connected components of P1(C)
- P1(R).

The next result will provide us with examples of connections with real
monodromy different from ~0 which satisfy the conditions of Theorem
10.
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THEOREM 11: Let D = (e, S~r, L, ~) be a uniformization-datum on X.
1here exists on X a permissible connection with real monodromy such that
D ~ P1(C) ~ m, if and only if there exists a finite morphism of Riemann-
surfaces

with the following properties:
(i) Y has a real structure such that Y(C) - Y(R) has two connected

components.
(ii) There exists a real algebraic curve Y and a finite real morphism

such that (R) = q-1(Y(R)), and such that q can be inserted in a commu-
tative diagram of mappings of compact Riemann-surfaces

with:

(a) p unramified.
(b) q, q aré Galois-coverings, with 4 only ramified over the points of S,

and ramification- indices there equal to e(x) for x E Sf, and even for x E sr.
(c) S = p-’(T), for a subset T c Y(C) - Y(R) stable under complex

conjugation.

PROOF: If we have a connection V with real monodromy such that
D ~ P1(C), ± H, we denote by L1 the discrete group 6(T) c SL(2, C), and
choose a normal subgroup 3 g L1 of finite index which is torsion-free
and does not contain any parabolic element with trace - 2. It is well
known that Li B5:0 and J B5:0 may be imbedded with finite complements
into compact Riemann-surfaces Y and 1: such that p induces holo-
morphic mappings from X = 0393BH to Y and from 1 = BH to , where
f is the preimage of d under 03C3.

Together with the obvious projections from i to X and  to Y we

obtain a diagram as above, with the complex conjugation on Y and 
induced from the complex conjugation on 5:0.

For the converse we start with such a diagram. The hypotheses imply
that Y and  are doubles of Riemann surfaces with boundary V and 17,
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and that q is induced from a Galois-covering V- E We let T = q-1(T),
and remark that there exist discrete subgroups Â 5i L1 c SL(2, R) such
that

(a)  has finite index in L1, L1 contains -1, and {±1} is normal
in L1.

(b) V - (Y n T) = 0394BH,  - (V n T) = BH, with (V n T) respectively
( ~ T) corresponding to the cusps of L1 respectively d, as usual.

(c)  is torsion-free, and contains no parabolic elements of trace - 2.
If D denotes the complement in P1(C) of the limit-points of L1 or Li we
then know that

with the complex conjugation corresponding to complex conjugation on

This representation defines a uniformization-datum on , with the set
S being equal to t and consisting only of regular cusps. Its pullback
under p is nearly isomorphic to the pullback 0 = (ê, S~r, 2, ) of our
given datum D on X, except for the fact that the two £l’s may differ by
a line-bundle of order two. But this bundle becomes trivial if we pass to

a suitable larger covering of X which is unramified over X, and thus we
may assume that also the £f’s are equal. Finally we have on  a canon-

ical permissible connection with J as monodromy-group, and its pull-
back gives us a permissible connection V on X with monodromy-group
contained in J, hence real, and the mapping p belonging to V inserts
into a commutative diagram:

such that the second and third line are quotients of the upper line under
actions of groups which fit into a diagram
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Especially the map

is equivariant with respect to the morphism

Replacing V by an equivalent permissible connection we may assume
that  = i + q, with Vi the uniformizing connection on X, and q an
element of 0393(, K~2X()). If we show that q is invariant under the group
G = FIF of the covering q it can be seen without difficulty that V is the
pullback of a permissible connection V on X, whose monodromy is
contained in A, hence real. The G-invariance of q can be seen as follows:
The pullback of q on H is of the form q(z) dz2, with q(z) = - 03B82(03C1)/2. As
p(y(z)) = Q(y)(p(z)), for 03B3 ~ 0393, the well known properties of the

Schwarzian-derivative imply that

hence that q(z) dz2 is r-invariant.

REMARK: The proof shows that the connections with real mono-

dromy different from the uniformizing connection are classified by the
diagrams modulo a suitable equivalence relation.

Furthermore the theorem allows us to construct a lot of examples, the
simpliest being given by setting e equal to 1 everywhere, and choosing
for’X = X = Y =  a real Riemann surface such that X(C) - X(R) has
two components, for example such that X(R) has g + 1 connected

components.
On the other hand the theorem is not of so much use in practice since

it is very diiHcult to find manageable conditions which assure us that
D ~ P1(C), for a given connection.
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§7. Infinitesimal theory and estimates

We start again with a compact Riemann surface X and a uni-

formization-datum D = (e, S~r, 2, cp) on X. The permissible connections
up to equivalence may be identified with Q = r(X, K~2X(S)), with the
uniformizing connection as origin. The monodromy of a connection de-
fines a monodromy-mapping

THEOREM 12: The mapping mon has injective differential everywhere,
and it is transversal to the submanifold

PROOF: If V is a permissible connection corresponding to a represen-
tation C1 of F on SL(2, C), and on W = SI(2, C), we have already seen that
the differential d(mon) is given by the injection of Q into H1P(0393, W) in the
short exact sequence

We thus may assume that V has real monodromy, and have to show
that Q does not intersect the real subspace H1P(0393, sl(2, R)) of

H1P(0393, sl(2, C)).
Poincaré-duality induces a non-degenerate alternate form on

H1P(0393, W) derived from the symmetric form (A, B)~tr(AB) on W =
= sl(2, C), for which Q is a maximally isotropic subspace. We thus have
to show that for any non-zero q ~ Q the cup-product with the conjugate
class q does not vanish.
For this we write the pullback n*(q) on H as q(z) dz2. If we choose the

mapping p : H - P’(C) belonging to V such that C1 takes real values, the
class of q in H1P(T, W) = Hp (X - S, W) is represented by the T-invariant
W-valued (1, 0)-form

To form the cup-product with q we first have to find for each x ~ S W-
valued functions 03C8x defined and supported in a small punctured neigh-
bourhood of x whose derivative is equal to the form defined by the
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expression above, at least near x. That this is possible is a consequence
of Theorem 6 together with some easy direct calculations for the con-
nection Vo.
We then substract the sum of the derivatives of the t/lx from q, form

the product with the (0,1)-form defined by q, and integrate over X.
Some easy local estimates show that the integrals over the correction-
terms defined by the 03C8x converge and become zero, so that we have to
calculate the integral over a fundamental-domain of F in 0-fl of

and we know that this integral converges. Up to constant factors it is
equal to

which is strictly positive for q ~ 0. This finishes the proof of our
theorem.

COROLLARY: The connections with real monodromy form discrete

subset of Q.

For a more complete picture we have to deform X. Let T denote the
Teichmüller-space of marked Riemann surfaces of genus g, together
with n = (cardinality of S) points. There exists a universal family X over
T, together with the universal uniformizing connection Vo. The permis-
sible connections up to equivalence form a complex manifold over T,
isomorphic to the complex vectorbundle defined by the direct image of
the relative quadratic differentials on Et, with poles along F.
We denote this complex manifold by PB. It has complex dimension

6g - 6 + 2n, and its tangent-space in the permissible connection V on X
is an extension of H1(X, FX(-S)), the tangent-space of T, by Q =
= T(X, K~2X(S)). The monodromy-mappings define a global analytic
mapping

As the tangent-space H1P(0393, W) of Rep0P(0393, SL(2, C)) in the image of V by
mon is also an extension of H1(X, FX(-S)) by Q, and as the differential
d(man) induces the identity on Q, we obtain an endomorphism of
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H1(X, FX(-S)), and the next result says that this endomorphism is pre-
cisely what it should be:

THEOREM 13: The induced map on H1(X, FX(-S)) is the identity.

PROOF: Start with a local section s of the projection PL ~ T, which
defines a family of connections on Et, mQn 0 S is a mapping from T to
Rep’(F, SL(2, C) and we have to consider its differential.

Classes in H’(X, FX(- S)) are represented by Coo - ( -1,1)-forms 03BC
on X with zeroes in S. Such a p defines a deformation of the complex
structure on X, where for the deformed structure a C°°-function f is
holomorphic if Ó(f) + 03BC·~(f) = 0.

For a parameter t we may define a continuous family of deformations
Xt by calling f holomorphic on Xt if (f) + tJ.l8(f) = 0. This family cor-
responds to a small curve in T, whose tangent-vector in the origin is
given by the class represented by y in X1(X, FX(-S)), the tangent-space
of T.

By pullback via 03C0: H ~ X we get a family of complex structures on H,
defined by 03C0*(03BC) = 03BC(z) · (dildz). The family of permissible connections V
defines a family of C~-mappings

such that p(t, z) is holomorphic in the complex structure belonging to t,
i.e.

and such that p(t, z) satisfies a functional equation

with u(t, y) a Co -family of morphisms from r to SL(2, C). The derivative
of this family in t = 0 is essentially the image of the class defined by p in
H1(X, FX(-S)) by the differential of mon 0 s. The derivative is given by
the crossed homomorphism A E Zl(r, sl(2, C)) given by

A defines a class in Hp(F, W) = H1P(X - S, W). Its image in H1(X, FX
( - S)) is given as follows: For y et consider the (-1, 0)-form on H
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where ,&#x3E; denotes the natural SL(2, C)-invariant alternating form on
C2 : u, v&#x3E; = det(u, v). There exists a COO - ( - 1, O)-form t/J = 03C8(z) · dz-1
on 0-fl, with 03C8(z) holomorphic outside the inverse image by n of a com-
pact set in X - S, such that 03B3*(03C8) - 03C8 is for any 03B3 ~ F the (- 1,0)-form
defined above. This has to be interpreted as

The derivative 7(gi) is a 0393-invariant (-1,1)-form, hence defines such a
form on X which vanishes near the points of S. The cohomology-class
of this form in H1(X, FX( - S)) is independant of the choice of 03C8, and we
have to show that it is equal to the class defined by y. For this we may
assume that p vanishes near the points of S, since we may represent any
class in H1(X, FX(-S)) by such a (-1,1)-form. We claim that the
function

satisfies our conditions: In fact,

so that 03C8 is holomorphic near the preimages of the points of S, and its
7-derivative defines the same class as y. It remains to show the function-
al equation. This is done by taking the t-derivatives in

if we make use of the obvious formula

COROLLARY: mon: 9W --+ Rep0P(0393, SL(2, C)) is a local isomorphism.
RPB = mon-1(Rep0P(0393, SL(2, R») is a real submanifold of 9W of di-

mension 6g - 6 + 2n, whose projection onto T is a local diffeomorphism,
as well as the mapping induced by mon of RPB into Rep0P(0393, SL(2, R».

REMARK: Permissible connections with real monodromy can thus be
deformed together with X. Under such a deformation the topological
type of the decomposition of X into X +, X - and X ° does not change. It
would be nice if the real permissible connections with a given topologi-
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cal type of this decomposition were proper over T. The theory of univa-
lent mappings can be applied to the effect that the decompositions must
behave rather wild if this should not be the case, but otherwise 1 have

no convincing argument for this conjecture. Furthermore the considera-
tions above lead to a differential equation for a family of permissible
connections with real monodromy, which determines the extent to

which such a family does not depend holomorphically on its para-
meters. For the uniformizing connection this differential equation is due
to Ahlfors (Ann. Math. 74 (1961), 171-191). That such a family never
depends holomorphically on the parameters is also a consequence of the
fact that the tangentspace of RPB does not contain any complex line of
the tangentspace of 9W

To show that univalent mappings may be important for our problems
we finally sketch the proof of a result which says how much Vo is iso-
lated in the set of connections with real monodromy. For this we

remark that for such a permissible V X° is not void if and only if V is not
equivalent to Vo. Also for any quadratic differential q the absolute value
Iql can be seen as a positive definite (1, l)-form, which may be compared
to the hyperbolic metric ds2 on X - S, deduced from 03C0:H ~ X.

THEOREM 14: Let V = ~0 + q be a permissible connection with real

monodromy on X, with q ~ 0393(X, K~2X(S)). Then lql ~ 3/4’ds2 on X’.

PROOF: Choose a z0 ~ L = 03C0-1(X0) c H, and let i~I+, j~I- be the
indices with zo c- Îli, zo E j. If Lo c L denotes the connected component
of L containing zo, P maps Lo onto an interval in P’(R) which we may
assume to be the negative real axis. p then defines an isomorphism of
Ui u Uj u Lo with the complement of the positive real axis in P’(R). The
mapping

is then an univalent mapping from 0-U into H. The theory of univalent
mappings bounds the 02 of such a function, and this 02 is essentially the
sum of q and the 02 of the mapping w H w’, which is known. From this
we derive the theorem, and leave the details to the reader. (For univa-
lent mappings compare [9].)
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§8. Constructions and examples

We first want to show how to construct Riemann surfaces with per-
missible connections with real monodromy, and then demonstrate by
some examples that permissible connections can be described algebrai-
cally.

In fact our construction of permissible connections gives all such con-
nections with real monodromy, and it is accomplished by going back-
wards the steps of §6. For this let us start with a Riemann surface X and
a connection with real monodromy on X. We then have the decom-
position X = X+~X-~X0, and we may form a finite graph whose
vertices are the connected components of X - X ° and whose edges cor-
respond to the connected components of X°, such that the endpoints of
an edge are the connected components bounded by the corresponding
arc in X°. Furthermore we may associate to any vertex a sign + or -,
such that two vertices connected by an edge have different parity.

Conversely let us start with such a graph W. Let vert(e) and edge(g)
denote the vertices and edges of q;. We suppose that any p~vert(y) has
a parity ± as above, and that there corresponds to p a Riemann surface
with boundary Vp together with a function

which is equal to 1 for almost all x E Vp.
The boundary-components of Pp should correspond bijectively to the

edges of W with endpoint p, and furthermore Pp should be either an
annulus, or the number

should be positive.
Here gp is the genus of the double of Vp, or if Pp has no boundary, of

Yp itself.
Finally we suppose that not all the ~(Vp) vanish.
If we glue together the Vp along their boundaries as prescribed by le

we obtain at least topologically a compact Riemann surface X, provided
the graph was connected. On X the ep glue together to a function e, and
we suppose that we have given a subset S~r of even cardinality in
S~ = e-1({~}).
We want to show that the glueing can be done such that we get a

conformal structure on X, if we assume the following condition:
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For any edge a ~ edge(y) with endpoints p, q ~ vert(y), the intrinsic
lengths of the boundary-components of Vp and Vq corresponding to a
coincide.

The intrinsic length of such a component is essentially given by the
eigenvalues of the corresponding element in PSL(2, R), in the group of
deck-transformations belonging to the following covering of Vp by ± H:

There exists a discrete subgroup r p c PSL(2, R) with Vp =
= Vp - (Vp n S°°) isomorphic to 0393pB±H (sign according to the parity of
p), and such that the ramification is given by the function ep, as always.
The conditions on Vp imply that the element in T p corresponding to the
boundary-component belonging to a is hyperbolic, and the compatabili-
ty-condition means that it is conjugate in PSL(2, R) to the correspond-
ing element of Tq. If we define Ta to be the cyclic group Z we thus
obtain injections of Ta into fp and Tq conjugate under PSL(2, R), if we
choose orientations on the boundary-components of Vp and Vq belong-
ing to a which are compatable with the glueing in X.

So far X has been constructed as a topological space, and we can
define a ramified topological covering of X with the ramification defined
by the function e. The group r of deck-transformations is by topologi-
cal reasons isomorphic to the fundamental-group of the graph of groups
y, {0393p}, {0393a}, which is defined as follows ([10], Ch. 1, §5):
Choose a maximal subtree F ~ e. r is the quotient of the free pro-

duct of the groups Fp for p E vert(F) = vert(F), and copies of Z for each
a E edge(g) - edge(g), by the relations defined as follows:

For a ~ edge(F) the injections of Ta into T p and 0393q are equal, where p
and q are the end-points of a.
For a E edge(W) - edge(f7) the two injections are conjugate under the

generator 1 of the copy of Z belonging to a.
It is known that the group thus defined is independent of the choice

of f7, and that the groups r p inject into it.
We next define a homomorphism

such that the restriction of a to the groups Tp is given by conjugation
with an element from PSL(2, R):
We have to choose the conjugating elements in such a way that the

relations corresponding to the different edges a of W are fulfilled, and for
this we are still free to choose the images under C1 of the elements of r

corresponding to the edges not in F.
As 9- is a tree the relations for a ~ edge(f) can be fulfilled easily, say

by induction over the number of vertices of Yj, since the injections of Ta
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into the groups T p, Tq c PSL(2, R) belonging to the endpoints p, q of a
are conjugate. If a is not an edge of :T this is still true, and we can fulfill
the relation by taking an appropriate element of PSL(2, R) as the image
of the generator corresponding to a. The next step is the construction of
a simply connected complex manifold M on which r operates, such that
M realizes the topological ramified covering of X constructed above. X
will then become a compact Riemann surface, with the conformal

structure induced from M, and the projection of M onto X will be a
covering of the type consider in this paper.

Furthermore if g is the genus of X we will have the formula

and this is positive so that M must be isomorphic to the upper

halfplane.
For the construction of M we recall from [10] that there exists a tree

 on which r operates, such that 0393B is isomorphic to g, and such that
for any p E vert(g) or a E edge(g) r p respectively ra is the stabilizer of a fi
respectively à in the preimage of p or a. g is called the universal cover-
ing of g. M is constructed as follows:

For any fi E vert() we take a copy of + H, with the sign correspond-
ing to the parity of the image p of p in g. If à E edge() with endpoints fi
and q, projecting to p and q in g, and such that p has positive and q
negative parity, the copy of H corresponding to p and the copy of - 0-fl
corresponding to q are glued together along an interval of P1(R).
To define this interval we remark that the stabilizer F- of à is cyclic,

and that the image C under 6 of a generator of Fî is hyperbolic. One of
the intervals in P1(C) bounded by its fixed-points maps onto the

boundary-components belonging to a in ep = (0393)BH and q = ii(rq)B
- H. (That it is the same interval for p and q is a consequence of our
choice of the orientations of these boundary-arcs, namely that they are
compatable with the glueing.) We glue H and - H along this (open)
interval. It is elementary that this leads to a complex manifold M, and
as  is a tree M is simply connected. Finally r operates on M:

If fi E vert() and z E + H is an element of the corresponding copy of
± H, y sends z to the element 6(y)(z) in the copy corresponding to y(P).

It is clear that rBM is homeomorphic to X, and can be glued together
from the p. We already know that M is isomorphic to H. The in-
jections of + H into P1(C) define a mapping

with p(y(z)) = 6(y)(p(z)), for y E r, z E M.
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If we could lift à to a morphism of r into SL(2, R) such that for x E S’
or x E Sr = S~ - S~r the image of the corresponding element has the
right eigenvalues, the pullback by p of the constant sheaf C2 on P1(C)
= P, together with lPp( -1) c (9’, would define a permissible connection
on X with the given lifting of à as monodromy-mapping. Unfortunately
we cannot show this directly, and we use a trick: The lifting is a problem
only if S°° is void. Furthermore the conditions on the traces of parabolic
elements may be satisfied always since S~r has even cardinality. (Make
an argument similar to the remark on page 17.)
We thus may assume that X’ is compact. The obstruction to the lift-

ing problem lies in H2(r, Z/21) = H2(X, 7L12if), and there exists a finite
unramified Galois-covering X of X such that the obstruction vanishes
on X. 1 corresponds to a normal subgroup of finite index f 9 r, and
the vanishing of the obstruction on X means that we can lift the re-

striction of 6 to f.
We thus obtain a permissible connection on X, with the morphism p

being the p defined above on M éé H. As in the proof of Theorem 11 we
may assume that this connection is invariant under FIF since p is r-
linear, and then descend it to X.
We therefore obtain a permissible connection with real monodromy

on X whose monodromy-mapping is a lifting of 6. Furthermore our p is
equal to the p defined previously, and the decomposition of X - X °
into its components is the one given by the Yp.

This finishes our construction. It shows that up to trivial topological
restraints each decomposition of a Riemann-surface can be realized by a
permissible connection.
To conclude this paper we give some explicit descriptions of permis-

sible connections, to show that this is no problem at all:

Example 1: Let X = P1(C), with S = Sr consisting of r + 1 points,
r ~ 2. We suppose that one of those points is oo, and denote the others
by a,,..., are If x denotes the usual coordinate on X, dx defines an

isomorphism

so that Y = (9x(- ~) is the unique theta-characteristic. Let e1 be a
meromorphic section of Y regular on X - {~}, and with a simple pole
at oo, such that e~21 corresponds to dx under the isomorphism above.

If é denotes the uniformization-bundle e 1 forms part of a basis of é
on X - S, and a second basis-element e2 can be defined there by Vo(el)
= e2 - dx, where Vo is the uniformizing connection on X, or any con-
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nection coinciding with it on 2. (Every permissible V is equivalent to a
unique connection with this property.)

e2 is regular on X - S since ~0 is holomorphic there, and el n e2
corresponds to 1 under the isomorphism

As this isomorphism is horizontal V O(e2) must be of the form

P(x) ’ e, - dx, with P a rational function on X with poles only in S.
More information upon P can be obtained from a study of the sin-

gularities of Vo in S:
For example, in oo a local coordinate is given by z = 1/x, and é has a

local basis given by f, = z ’ el, f2 = (oo(fi) - f, - dz/(2z))/dz. (These are
regular sections, and f, A f2 corresponds to -1.) An easy calculation
shows that

e2 = fl/2 - Z’ f2, VO(e2) = f1 · dzl(4z) + (terms holomorphic in z).

Comparing this with the expression above we obtain that

Similar calculations in the aj lead to the conclusion that P(x) must have
the form

with Q a polynomial of degree r - 2, and leading term (r - 1)/4 · xr-1.
Conversely any such P defines a permissible connection V, coinciding
with Vo on 2. We thus can parametrize the permissible connections up
to equivalence by the coefficients of Q of degree  (r - 2). This are r - 2
parameters as it should be.

Usually it seems to be impossible to find the uniformizing connection
Vo, except in the case that there are so many automorphism of P1(C)
fixing oo, S such that Vo is uniquely determined by its property of being
invariant under these automorphisms. In this case the unique choice of
Q is

and we obtain a hypergeometric differential equation (compare [7]).
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Example 2: Let X be the elliptic curve defined by y2 = nJ= 1 (x - aj),
S = Sr being the unique point over x = oo. We may take fil = (9x as
theta-characteristic, with

given by the differential dx/y, and we obtain a basis el, e2 of the

uniformization-bundle 8 over X - S with

where P(x) is a polynomial of degree 1, with leading term -x/16. Again,
the symmetric choice of P is

and this gives us the uniformizing connection Vo in some special cases,
for examples for the curves

Of course this leads again to the hypergeometric function.

Example 3: Let X be the hyperelliptic curve y2 = 03A02g+1 j =1 (x - aj), of
genus g ~ 2, and choose S to be void. If p denotes the unique point of X
over x = oo we take

and we see that a permissible connection V is given for a suitable basis
e1,e2 of 6 on X - {p} by

where

with Q(x) is a polynomial in x of degree 2g - 1 with leading term
-g’(g - 1)/4.x2g-1, and R(x) has degree ~g - 2 in x.
The symmetric choice is
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and gives the uniformizing connection for the curves

Again we obtain a hypergeometric differential equation.
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