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Introduction and main results

Let G be a connected, simply connected Lie group. In a recent paper
we showed that if G is solvable and of type R (i.e. all its roots are purely
imaginary), then all characters of G are smooth, that is, they give rise to
distributions on the group ([19] Theorem 4.1.7, p. 239). In the special
case where G is nilpotent this result is due to Dixmier ([7]). If G is

semisimple the same result holds as shown by Harish-Chandra ([13])
(At this point we would like to remind the reader that when dealing
with solvable (or more general) Lie groups the notion of a character is
more complicated than e.g. for nilpotent or semisimple groups; this is
due to the fact that solvable Lie groups are not necessarily type 7 (for
characters in general, cf. e.g. [9] §6; for characters on connected Lie

groups, cf. [25])). The limits for the class of Lie groups for which such a
result (i.e. the smoothness of all characters) can hold was set by
Pukanszky ([26], [27], cf. also the paper [18] of Moore, Rosenberg): He
showed that if all normal representations (cf. [25]) are GCCR (cf. [27],
where this notion is defined; this can be rephrased by saying that the
normal representation has a densely defined character, cf. Lemma 1.2.1)
then G must be the direct product of a connected semisimple Lie group
and of a connected Lie group whose radical is cocompact and type R.
This implies in particular that groups for which all characters are

smooth must be of this form. One of the purposes of this paper is to

extend our result of smoothness of all characters to this largest possible
class of groups. Specifically we have:
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a visitor at the Department of Mathematics, University of California, Berkeley.
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THEOREM 1: Let G be a connected, simply connected Lie group. The
following conditions are equivalent:

(i) Any normal representation of G has a smooth character.
(ii) Any normal representation of G has a densely defined character (or,

equivalently, is GCCR, cf. Lemma 1.2.1).
(iii) Prim(G) is a Tl topological space.
(iv) G is the direct product of a connected, simply connected semisimple

Lie group and a connected, simply connected Lie group whose radical is
cocompact and type R.

The equivalence of (ii), (iii) and (iv) is due to Pukanszky ([26], [27]
Proposition 3). The equivalence of (iii) and (iv) was also proved by
Moore and Rosenberg ([18] Theorem 1); cf. also the papers of Moore

[1], Chap. V and Lipsman [15].
In [19] we also showed that for an arbitrary connected, simply con-

nected solvable Lie group it is possible to associate a semicentral distri-
bution to any normal representation of G ([19] Theorem 4.1.1, p. 232).
Our results in [19] were formulated by aid of the notion of a semichar-
acter, defined to be a certain relatively invariant weight on the group
C*-algebra. We said that a semicharacter is smooth if it gives rise to a
distribution on the group (in which case the distribution is a semicentral
distribution). The main purpose of this paper is to confine the class of
Lie groups for which all normal representations have a smooth semi-
character. Specifically we prove:

THEOREM 2: Let G be a connected, simply connected Lie group. The
following conditions are equivalent:

(i) Any normal representation of G has a smooth semicharacter.
(ii) Any normal representation of G has a densely defined semi-

character.

(iii) Any normal representation of G is either GCCR or is induced from
a normal GCCR representation of a connected, normal subgroup of codi-
mension one (or both).

(iv) G is the direct product of a connected, simply connected semisimple
Lie group and a connected, simply connected Lie group whose radical is
cocompact.

At this point it will be appropriate to mention the following new
feature arising by the introduction of semicentral distributions for the
description of representations of connected Lie groups: If v is a semicen-
tral distribution of positive type there is associated a representation Âv
to v (via the GNS-construction). Let us assume that this representation



187

is factorial. It is then a non-trivial problem whether the representation
Àv is normal and even whether 03BB03BD generates a semifinite factor. This,
however, we settled in the affirmative in a recent paper ([21]). More
precisely we showed that if f is a semicharacter on a connected Lie
group then the representation 03BBf associated to f (via the GNS-con-
struction) is actually normal. We can thus summarize the main features
of our results as follows: Starting out with a semicentral distribution of
positive type which is ’extremal’ (i.e. Àv is a factor representation) leads
us to a normal representation, and all normal representations can be
obtained in this fashion precisely if the group satisfies condition (iv) in
Theorem 2.

As it will be seen from Theorem 1, a connected, simply connected Lie
group G, fails to be GCCR if at least one of the following two pheno-
mena occurs: 1. the radical of G is not of type R or 2. G has non-

compact semisimple subgroup acting non-trivially on the radical.

From Theorem 2 it is seen that if we use the broader notion of a semi-

character only the phenomenon 2. cannot be effectively dealt with. This
makes us venture the following remark: If 03C0 is a normal representation
of a separable locally compact group and if 03C0 is not GCCR there seems
to be two distinct ways in which can fail to be so, and these are

classified according to whether or not there exists a continuous homo-
morphism x : G - Rt , such that 03C0 has a densely defined semicharacter
(we shall resist the temptation to call n SGCCR (= semi-GCCR) if such
a x exists).
For unexplained notation we refer to the notational conventions

adopted in [19] and [21].
1 would like to thank the Department of Mathematics, University of

California, Berkeley, where this work was performed, for its hospitality
during my stay in 1979/80.

1. Preliminaries

1.1. In this section we shall make a few remarks about smooth semi-

traces. This will be useful in the following.
Let G be a Lie group and let x : G ~ Rt be a continuous homomor-

phism. Recall that a x-semitrace f on G (cf. [19] Definition 2.1.5) is

called smooth if C~c(G) c m f and if ~ ~ f(~) : C~c(G) ~ C is a distribu-
tion on G ([19] Definition 2.3.4).
We have the following converse of [19] Proposition 2.3.5:

LEMMA 1.1.1: Let f be a smooth x-semitrace on G. Then there exists
m~N, such that Cm(G) c mi.
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PROOF: Since a distribution is locally of finite order there exists an

open neighborhood U of the identity in G, such that the restriction of f
to C~c(G, U) is continuous in the C’(G)-topology for some m E N. Let V
be an open, symmetric neighborhood of the identity in G, such that
Y2 c U. Let qJ E C’(G, V). There exists a sequence qJn E C~c(G, V), such
that qJn --+ 9 in the Cm(G)-topology. In particular ~n - ~m ~ 0 for m, n -
+ cc, in the Cm(G)-topology, and therefore (qJn - qJm)* * (qJn - ~m) ~ 0 in
the Cm(G)-topology, and this implies that f«9n - qJm)* * (9n - ~m)) ~ 0
for m, n - + oo, since the restriction of f to C~c(G, V) is continuous in
the Cm(G)-topology. But this shows that (jJn E nf/n0f c H f is a Cauchy-
sequence, hence in particular ~~n~2 = f(~*n * qJn) is convergent. But since
also ~n ~ 9 in C*(G) we have that f(~* * ç) ~ liminf f(~*n * ~n)  + oo,

and this shows that C’(G, V) c nf.
With m, V as above, let m’ E N, t/!, 03C80 E Cm(G, V) as in [19] Lemma

2.3.6, p. 206. From the formula in [19], p. 206, bottom, it then follows
that C2m’c(G) c m f. This proves the lemma.

Let now X be a Borel space and let p be a measure on X. Moreover,
let 03BE - f03BE, 03BE E X, be a family of x-semitraces on G, such that 03BE ~ f4(x) is
borel for all x ~ C*(G)+. Assume that there is given a x-semitrace f on
G, such that the formula

holds for all x ~ C*(G) +. We then have:

LEMMA 1.1.2: If f is smooth, then f03BE is smooth for almost all 03BE ~ X .

PROOF: Choose m ~ N, such that Cmc(G) c m f (Lemma 1.1.1) and
choose m’ ~ N and 03C80 ~ Cm(G) as in [19] Lemma 2.3.6., p. 206. Arguing
as in the proof of [19] Proposition 2.3.5, pp. 206-207 we find that f03BE is
smooth for those 03BE for which 03C8,03C80~nf03BE, and since clearly 03C8,03C80~nf03BE for
almost all j E X, we have proved the lemma.

Let N be a closed, normal subgroup of G and set ~ =

- ~ · (~G/N o cG/N)-1. Assume that f is a (G, ~)-semitrace on N (such that
in particular f is a semitrace on N with multiplier X 1 N, cf. [ 19] 2.1). The
induced semitrace  = indN~TGf is then well-defined ([19] Definition

2.1.2).  is a x-semitrace on G. With this notation we have:

PROPOSITION 1.1.3: If f is smooth, then  = indNiGf is smooth.

Moreover, 1«p) = f (~|N) for all 9 c- C ’ (G).
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PROOF: Since f is smooth there exists m~ N such that C’(G) c m f
(Lemma 1.1.1). In particular 1«p *~) = f(~* * qJIN) for ç E C’(G) ([21]
Proposition 2.1.3), and thus C’(G) c nf. It follows from [21] Proposit-
ion 2.3.5, p. 206 that 1 is smooth. Moreover, by polarisation we get that
(~) = f(~|N) for all (p E C’(G) * Cmc(G) ~ C’(G) (cf. [2], p. 252, top).
This proves the proposition.

1.2. Let G be a separable locally compact group. In [27], p. 40

Pukanszky defines what if means that a factor representation of G is
generalized completely continuous (GCCR). The following lemma
clarifies the situation:

LEMMA 1.2.1: A normal representation TC of G is GCCR if and only if it
has a densely defined character.

PROOF: Lest 91 = x(G)" and let 0 be a faithful, normal, semifinite trace
on 21. Then f = ~o03C0|C*(G)+ is a character for 03C0. In [27], p. 40 it was
shown that the linear span C(21) of the set of elements T ~21+, such that
~(I - EÂ)  + oo for all 03BB &#x3E; 0, where T = f ô ÀdEÂ is the spectral re-
solution of T, is a normclosed, two-sided ideal in 21. Now it is easily seen
that if T ~ m+~ , then T~C(21)+, and therefore iff (N) (normclosure) is con-
tained in C(21). Conversely, if TE C(W) +, it was shown loc. cit. that

T can be approximated with elements from m+~, and therefore m~(N)
C(çX). We have thus seen that 7r is GCCR if and only if

TC( C*( G») c m~(N). But this is equivalent to the character f being densely
defined ([21] Lemma 3.4.2).

2. Proof of Theorem 2, (i) ~ (ii)

This is trivial.

3. Proof of Theorem 2, (ii) ~ (iii)

Assume that (ii) is satisfied and that the normal representation x of G is
not GCCR. Let x : G ~ Rt be a continuous homomorphism and let

03C9 be a x-relatively invariant weight on N = x(G)", such that f
on 1 C*(G)+ is a densely defined x-semicharacter for n. In particular
x Q 1. It follows from [20] Theorem 6.2 that there exists a normal re-
presentation rco of Go = ker x, such that x is equivalent to indGo i G7ro.
Moreover there exists a character fo for xo, such that
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where f, is the (G, x)-character on Go with indGo i Gfl = f (cf. [21]
Theorem 3.3.1). Now since f is densely defined it follows that f, is

densely defined (cf. loc. cit.) and therefore fo is densely defined. But then
xo is GCCR (cf. 1.2). Since Go is a connected, normal subgroup of codi-
mension one we have proved that (ii) ~ (iii).

4. Proof of Theorem 2, (iii) ~ (iv)

Assume that the connected, simply connected Lie group G is not of
the form described in (iv). We shall exhibit a normal representation of G,
which does not have the property described in (iii).

4.1. For this it will sufHce to exhibit a connected, normal subgroup B of
G, such that G = G/B has an irreducible, normal representation iî with
the property that à is neither CCR nor is induced from a CCR-represen-
tation of a connected, normal subgroup of codimension one. In fact, if iî
is such a representation, define the representation 03C0 of G by 03C0(s) = (),
s = sB. Then 03C0 is an irreducible representation of G, which is normal,
but not CCR. Assume then that 03C0 is induced from a normal represen-
tation rco of the connected normal subgroup Go whose codimension is
one. Clearly 03C00 is irreducible, and the stabilizer of 03C00 in G is Go, since
otherwise 03C0 = indGo ~ Gp0 would not be irreducible. Now the restriction
of 03C0 to Go is equivalent to

(the notation explains itself) and this decomposition is central, since 03C00
is GCR and since the stabilizer of xo is Go. It follows from this that all
elements in B leaves 03C00 invariant (since 03C0(b) = I, b E B, and so 03C0(b) in-
duces the trivial automorphism in the von Neumann algebra generated
by the representation (*)). But then B c Go and we can define the re-
presentation no on Go = GOIB by 7To(.s) = 7r,(s), and we have n =
= indGo ~0 and Go is a connected, normal subgroup in G of codimen-
sion one. Therefore, by assumption, no is not CCR, and so 03C00 is not

CCR. This shows that it sufHces to exhibit a B as described.

4.2. The rest of Sect. 4 will inevitably have a lot in common with [1],
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pp. 171-174, [15], pp. 744-747, [18], pp. 208-211 and [27], pp. 43-45,
to which papers we at certain points refer for further details.

4.3. We first define some special groups which will be of interest in the
following.

Let S be a connected, simply connected, non-compact, (real) semi-
simple Lie group with Lie algebra s.

First, let 6 be a locally faithful (i.e. the differential du is faithful) irre-
ducible representation of S on Rn. We define the group Si(J) to be the
semidirect product Rn xsS, where S acts in Rn via 03C3. We define S2(u) to
be the semidirect product Rn s (S x R), where the direct product S x R
acts in Rn by (s, t)x = etu(s)x, SE G, t E R, x E Rn.

Let next 6 be a locally faithful, irreducible representation of S on C".
We define the group S3(U) to be the semidirect product C" x(S x C),
where the direct product S x C acts on Cn by (s, t)x = etu(s)x, s E S, t E C,
X E Cn. Finally we define S(a, y) for ,il ~ R to be the semidirect product
en x s (S x R), where the direct product S x R acts in C" by (s, t)x =

= e(03BC+i)t03C3(s)x, SES, t c- R, x E C".
The groups Sj(u), j = 1, 2, 3, S(6, ,u), ,u e R, are clearly connected, simply

connected Lie groups.
For the group G = S1(03C3) we define subgroups N = Rn s {0} and A =

= {e}, and for G = S2(03C3) we set N = Rn s({e} x {0}) and A =

= {0} s({e} x R). Similarly for the other special groups. In this

fashion, if G is one of the groups Sj(03C3), j = 1, 2, 3, 8(u, J.l), J.l E R, then N is
the nilradical of G and G = NAS. The radical R of G is AN.

We say that a Lie algebra has no semisimple direct factors, if its max-
imal semisimple ideal, which is a direct factor, is trivial (cf. [27], p. 43,
top).

LEMMA 4.3.1: If G is one of the groups Sj(a),j = 1, 2, 3, S(6,,u), y e R, we
have (g being the Lie algebra of G): (i) g has no semisimple direct factors,
(ii) the radical r of g is not cocompact, (iii) the nilradical tt is a minimal

proper ideal and (iv) the radical r has precisely one real root or precisely
two complex conjugate roots. Conversely, if G is a connected, simply con-
nected Lie group satisfying the properties (i)-(iv), then G is isomorphic to
one of the groups Sj(03C3), j = 1, 2, 3, S(,7, IÀ), 03BC ~R.

PROOF: The special groups clearly have the properties (i)-(iv). Assume
conversely that r has two complex conjugate roots (P = çi + i~2 and
ip = ~1 - i~2, such that ~1 and ~2 are linearly independent, and let us
show that G is isomorhpic to S3(u). The other cases are treated in a
fashion similar to this one. Let s be a Levi subalgebra in g and let S be
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the analytic subgroup corresponding to s. Since the representation
s ~ Ad(s) r is semisimple and since n is an invariant subspace under this
representation, there exists a supplementary subspace a to n in r, such
that a is Ad(s)-invariant. Since [r, s] c n it follows that [a, s] = 0. Since
n = ker ç = ker çi n ker 92 and since ~1 and ~2 are linearly indepen-
dent we have that dim a = 2. Pick X1, X2 ~a with ~j, Xk&#x3E; = 03B4jk, j, k
= 1, 2. Then set V = {Z ~ n|ad X(Z) = ~(X)Z for all X E rl. Then V is
a nonzero subspace in nc and it is invariant under G (since a and s
commute) and since n is a minimal ideal it follows that nc = V E9 V For
all Z E V we have in particular ad X1 (Z) = Z and ad X2(Z) = iZ, from
which ad ([Xl, X2]) = [ad Xl, ad X2] = 0. But then [Xl, X2] = 0. Let e1j
+ ie2j, j = 1, ..., p, be a basis in V. Then e1j, ej2, i = 1, ..., p, is a basis in n.
Define the map n ~ n by x 1 e i + ... + xne1n + y1e21 + ... + yne2n ~
(x1 + iy1, ..., xn + iyn) = (z1, ... , zn) = z. Identifying n with en in this
way we find Ad(exp(t1X1 + t2X2))z = eh +it2Z. Let 6 be the represen-
tation of S on n given by s ~ Ad(s)|n. Since  commutes with ad Xx2|n
and since ad X2 is multiplication by i on C", it follows that the represen-
tation  actually arises from a representation 03C3 on the complex vector
space C". The irreducibility and the local faithfulness of u are clear. We
have thus shown that G is isomorphic to S3(U).
For a proof of the following lemma, cf. [27], proof of lemma 23,

Ad (A) (b), pp. 43-44.

LEMMA 4.3.2: The groups Sj(03C3), j = 1, 2, 3, S(03C3, y), y E lÉ, are all type I.

LEMMA 4.3.3: None of the groups Sj(03C3), j = 1, 2, 3, S(6,,u), 03BC E R, have
the property (iii) in Theorem 2.

PROOF: Let G be one of the groups in question. Recall that G = NAS,
and set K = AS. Let s, be a subalgebra in 5, isomorphic to sl(2, R), and
let u’ be the representation contragredient to 6. Let f ~ n’, f ~ 0, and let
X ~ s1, X ~ 0, such that 6’(X)f = 03BBf, where is a negative real number.
Let then X be the character on N given by x(exp Y) = exp if, Y&#x3E;, Yen,
and let K. be the stabilizer of x in K. There exists a character 9 of
Gx = KxN, such that ~|K~ ~ 1 and such that (p 1 N = x. By Mackey-
theory x = indGx ~G~ is an irreducible representation of G. Now

(exp tX)~(exp(Y) = exp i03C3’(exp tX)f, Y) = exp i(e03BBtf, Y), and this
means that (exp tX)x corresponds to the functional e03BBtf, and therefore
(exp tX)~ ~ 1 for t ~ + oo. Since sK~s-1 = Ksx and since the stabilizer
of (exp tX)X is the same as that of x we see that exp tX normalizes K.
and that (exp tX)~ extends (exp tX)~ on N and that (exp tX)~|K~ ~ 1.
It follows that (exptX)~ ~ 1 for t ~ + 00. Let us then show that
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7T is not CCR (cf. the references mentioned in 4.2): We have

03C0 ~ (exptX)03C0 ~ indGx ~G(exptX)~ ~ indG~~G1. If ker rc was a maximal
ideal we would have that ker(indG~~G1) = ker n and thus ker(1|N)
= ker(nIN), which is false. We next show that 03C0 is not induced from a
CCR-representation of a connected subgroup of codimension one. So let
Go be such a subgroup and let 03C00 be an irreducible representation of Go,
such that 03C0 = indGo~G03C00. We have to show that 03C00 is not CCR. Since

SN c Go c G, Go is isomorphic to one of the groups Sj(u), j = 1, 2, 3,
with nilradicalisé SN, so SN is regularly imbedded in Go (cf. [27] proof
of Lemma 23 Ad (A) (b), pp. 43-44). Therefore we can assume without
loss of generality that 03C00 lives on the orbit Go ’ x in lV. There exists by
Mackey-theory a character ~1 on (GO),, such that ~1|N = x and such
that xo = ind(G)~~Go~1. But the 03C0 = ind(Go)~ ~G~1 which, by the irre-
ducibility of 7r, implies that (GO), = Gx and that ~1 = 9. We can then
argue precisely as above to show that 03C00 is not CCR. This ends the

proof of the lemma.

LEMMA 4.3.4: Assume that G is a connected, simply connected Lie group
not satisfying property (iv) in Theorem 2. Then G has a quotient isomor-
phic to one of groups. Sj(u), j = 1, 2, 3, S(03C3,03BC), 03BC E R.

PROOF: Imitating the procedure in [27] proof of Lemma 23, Ad (B)
(a), p. 45 and Ad (A) (a), p. 43 one can show that the Lie algebra g of G
has a quotient satisfying the properties (i)-(iv) in Lemma 4.3.1, and the
result then follows from this lemma.

It follows from Lemma 4.3.4 and Lemma 4.3.3 that if a connected,
simply connected Lie group G fails to satisfy property (iv) in Theorem 2,
then G has a connected, simply connected type 1 quotient not satisfying
the property (iii) in Theorem 2. Bearing in mind our remarks in 4.1 we
have then shown that G does not have property (iii) in Theorem 2. This
ends the proof of Theorem 2, (iii) ~ (iv).

5. Proof of Theorem 2, (iv) ~ (i)

We do this in several steps. It is a routine matter (using [13]) to
reduce to the case where G actually has cocompact radical.

5.1. So, let G be a connected, simply connected Lie group with Lie al-
gebra g whose radical is cocompact. We let r, b, n denote the radical, the
nilradical (= maximal nilpotent ideal) and the nilradicalisé (= [g, g]
+ g), respectively, and let R, H, N denote the corresponding closed, con-
nected, normal subgroups.
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5.2. By Ado’s theorem ([6] Théorème 5, p. 153) we can without loss of
generality assume that g is a Lie subalgebra of the Lie algebra gl(V) of
endomorphisms of some real finite dimensional space V, in such a
manner that the nilradical 4 of g consists of nilpotent endomorphisms.
But then 4 is algebraic ([6] Proposition 14, p. 123) and therefore also n
is algebraic ([10] 1.2. (ii) Lemma, p. 424 and [6] Proposition 19, p. 129).
Let g be the algebraic closure of g. Then [g, g] = [g, g] and r, 1), n are
ideals in g ([5] Théorème 13, p. 173). Let f be the radical of g. Then f is
algebraic, and, in fact, r is the algebraic closure of r ([6] Proposition 19,
p. 129). We can write f = a ~ m, where m is the ideal of nilpotent ele-
ments in f and where a is an algebraic abelian subalgebra of g ([6]
Proposition 20, p. 130). Also g =  ~ s and g = r (B s, where s is a Levi
subalgebra of g, and a and 5 can be chosen such that [a, s] = 0 ([6]
Proposition 5, p. 144). By [21], p. 477 b we can write a as a direct sum
of abelian, algebraic algebras t and f, such that all elements in t have

purely imaginary eigenvalues and such that all elements in f have real
eigenvalues.

Let 61 be the analytic subgroup of GL(V) corresponding to g. Gl is
the connected component of an algebraic group in GL(V); in particular
G 1 is closed. Let G be the universal covering group of 1. We then have
H c N c G c G, all as closed, normal subgroups, and [G, Û] = [G, G].
By [24] Theorem, p. 379 N and H are both regularly imbedded in G.

Let T, K and M be the analytic subgroups in G1 corresponding to t,
and m, respectively. T and K are the connected components of the id-
entity of algebraic groups, hence closed. T is clearly a compact, con-
nected Lie group and K is an abelian connected and simply connected
Lie group. Set e = f (D m. e is a solvable Lie subalgebra of § with real
roots. Set E = KM. E is a closed, connected, simply connected sub-
group in GL(V) with Lie algebra e (in fact, choosing a proper basis, e is
a subalgebra of the solvable Lie algebra of upper triangular matrices), so
E is an exponential, connected, simply connected solvable Lie algebra
with real roots.

5.3. Using the notation from above, let 03C0 ~  and set N(03C0) = {03C1 ~ |03C1|H
lives on the orbit N . 03C0}.

LEMMA 5.3.1: 9(n) is countable and indh i 17r is quasi-equivalent to

@p6N(7T)P’

PROOF: Let N03C0 be the stabilizer of 03C0 in N. For the first assertion it

suffices to show ([16] Theorem 8.1, p. 297) that the set of elements in N
whose restriction to H is a multiple of 03C0 is countable. But this is clear,



195

since this set can be identified with a subset of the dual of a certain

separable, compact group (namely an extension of N03C0/H by the circle
group, cf. [16]). That indHil7l is quasi-equivalent to ~03C1~(03C0)03C1 is con-

tained in [14] Lemma 4.2 (using [16] Theorem 8.1, p. 297).
Let 0 be a G-orbit in H. Set N(O) = {03C1~|03C1|H lives on O} Clearly

(O) is G-invariant.

LEMMA 5.3.2: The set of G-orbits in N contained in N( 0) is countable.

PROOF: First we observe that any element in N lives on an N-orbit in
H, since H is regularly imbedded in N (cf. 5.2). Then pick 7r e O. Clearly
each G-orbit in (O) contains at least one element from (03C0). The
lemma then follows from Lemma 5.3.1.

LEMMA 5.3.3: Each G-orbit 0 in fI carries a non-zero, positive, inva-
riant Radon measure.

PROOF: Let R be the analytic subgroup in G corresponding to r. Pick
TceO. First we show that 03C0 is a closed subgroup in G: Let

a: /03C0 ~ 0 be the map s ~ s03C0. Then a is a homeomorphism ([12]
Theorem 1, p. 124). Also, the R-orbit ·03C0 c O is locally closed (loc. cit.),
hence locally compact in the topology induced from H. But then also
03C0/03C0 is locally compact in the topology induced from /03C0, hence
03C0 is locally compact ([17] Theorem, p. 52). But then RGn is a closed
subgroup. We next observe that since [R, R] c H c 03C0 we have that
RGnlGn carries the structure of an abelian locally compact group, hence
it carries a non-zero, positive, invariant Radon measure v. Let then S be
the analytic subgroup corresponding to the Levi subalgebra 5. S is a

compact group. Define the map 8 : S x /03C0 ~ GIGn by 03B5 : (s, i) - (s, r) :
This map is clearly welldefined, surjective and continuous. Moreover it
is proper. In fact, if C is a compact subset of then 03B5-1(C) is closed
and contained in S x (SC n 03C0/03C0), which is compact since 03C0/03C0 is
closed in /03C0 (cf. above). It follows that 03B5-1(C) is compact. We have
thus proved that B is proper. Define then the measure p to be the image
of ds (S) v, where ds is a Haar measure on S. This y is easily seen to be a
non-zero, positive, invariant Radon measure on /03C0. This proves the
lemma.

LEMMA 5.3.4: Each G-orbit in  carries a non-zero, positive, invariant
Radon measure.
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PROOF: This is clear, since [G, G] c N c G p for all 03C1~, and therefore
/03C1 carries the structure of an abelian locally compact group.
For a G-orbit 0 in fi, ket vo be the (essentially unique) non-zero,

positive invariant Radon measure on 0 (Lemma 5.3.3.). We define the
equivalence class of representations II o of H by

(cf. [9] 8.6.3. Définition). Similarly, if (9 is a G-orbit in  we let vo denote

the (essentially unique) non-zero, positive, invariant Radon measure on
(9 (Lemma 5.3.4). We define the equivalence class of representations Po
of N by

(cf. loc. cit.).

LEMMA 5.3.5: indH ~N03A0O is quasi-equivalent to ~~ (O)P.

PROOF: Set X = GIG1t, y = /03C0N and Z = G1tNIG1t’ observing that
G1tN is a closed subgroup in G. Let dx be the invariant measure vo on X
and let dy be an invariant Radon measure on Y (existing since Y carries
the structure of an abelian locally compact group). But then also Z
carries an invariant measure dz, say, which can be normalized such that

(cf. [2], p. 95).
Let a: GIG1tN = Y - G be a Borel section with 03C3(03C0N) = e and let

03C31: G1tNIG1t = Z - G1tN be a Borel section with 03C31(03C0) = e and such
that 03C31(z)~N for all zeZ (this is possible since G1tNIG 1’-1 N/N03C0). Now
there is defined a Borel isomorphism Y x Z - X by (y, z) ~ c(y)z. We
can extend ul to GIG1t = X as a Borel section, also called 03C31, such that

03C31(x) = 03C3(y)03C31(z) if x = 03C3(y)z.
Having this setup we can describe lI o by
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on the Hilbert space sr Hx ds, where x ~ Hx is the constant field of
Hilbert spaces with Hx = H03C0 (here we identify /03C0 with 0). Therefore
indH ~N03A0O can be described by the direct integral

on the Hilbert space sr xdx ~ L2(X, dx, H), where  = indHrN1t and
where x ~ Hx is the constant field of Hilbert spaces with flx = Hn.
Define the unitary R on L2(X, dx, H) by RF(x) = (03C31(z))F(x), where
x = c(Y)z. Then RO(s)R-1F(x)=(03C31(z))(03C31(x))(s)(03C31(z)-1)F(x) =
(03C01(z)03C31(x)-1s03C31(x)03C31(z)-1)F(x) = (03C3(y))(s)F(x), where x = c(y)z. Now
identifying L2(X, dx, H) with L2(Y, dy, H) ~ L2(Z, dz, ) via the above
Borel isomorphism we see that O is quasi-equivalent to the

representation

Let then 03C1 ~ (03C0). We have G N ~ 03C1 and G N/Gp is abelian. Let
X = /03C1 and Z = G1tNIGp and let 1:Z ~ G1tIJ be a Borel section
with 03C31(03C0) = e. As above we define a Borel isomorphism
Y x Z ~ X : (y, z) ~ 03C3(y)z and extend alto X so that 03C31(x) = u(y)a 1 (z) if
x = 6(y)z. Also, there are invariant measures di, dz, such that dx on X
corresponds to dy Q dz on Y x Z via the above isomorphism.

Let us then observe that there exists a Borel function z ~ U. from Z
into the unitary group of H such that Uz(s)Uz-1 = 03C31(z)(s). To see
this we first note that since G 1t stabilizes the irreducible representation 03C0

of H there exists a Borel function t ~ v(t) from G1t into the unitary group
of H03C0, such that v(t)03C0(s)v(t)-1 = (t03C0)(s). But then there exists a Borel
function t ~ V(t) from G1t into the unitary group of H, such that

V(t)(s)V(t)-1 = (tii)(s). Next we find Borel functions a: G1tN --+ G1t
and b : G1tN --+ N, such that s = a(s)b(s), s ~ G1tN. The existence of such
functions a and b are easily verified using the existence of Borel

sections on coset spaces of closed subgroups. Define then finally
Uz = (b(03C31(z)))V(a(03C31(z))). Then z- - U. is a Borel function and it is

easily seen that Uz(s)Uz-1 = 03C31(z)(s) for z E Z, s E N.
Now arguing as above we find that
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is quasi-equivalent to

and comparing this to what we saw above we find that flo is quasi-
equivalent to

We then apply the above to a fixed element po E 9(n) and recall that 7r
is quasi-equivalent to ~03C1~(03C0)03C1 (Lemma 5.3.1), from which flo is quasi-
equivalent to

Letting o be the G-orbit through po we have that P,. is represented
bv

The conclusion of all this is then that O is quasi-equivalent to a
representation, which contains Pmo as a subrepresentation, and this is so
for all G-orbits Wo contained in N(O). Now taking a multiple of 110 we
then arrive at the following preliminary result: O is quasi-equivalent to
a representation which contains ~ ~ (O)P as a subrepresentation.
We then consider the other direction of the lemma. As we saw 170 is

quasi-equivalent to

which, by Lemma 5.3.3, is quasi-equivalent to

For a given C-orbit (9 c (O) and p ~ n N(71:) we also saw, with the
notation from above, that P, is described by
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Let us then observe that Z is countable. In fact, GpN acts as a trans-
formation group in 9(n), which is countable (lemma 5.3.1), and therefore
GpNIG1t = Z is countable. It follows that we can write the represen-
tation (*) as

The summand corresponding to z = Gp is ~~Y 03C3( y)03C1 dy from which we
conclude that ~~y 03C3(y)03C1dy is a subrepresentation of Pw. But then

~03C1~(03C0) 10 y u(y)p dy is equivalent to a subrepresentation of ~03C1~(03C0)PO(03C1),
where (9(p) is the G-orbit through p. Now clearly ~03C1~(03C0)PO(03C1) is quasi-
equivalent to ~~(O)P. We thus arrive at the following result:

~~ N(O)P() is quasi-equivalent to a representation which has a subrepre-
sentation quasiequivalent to iÎo. Comparing this with our previous result
we finally arrive at the conclusion that ~~(O)P is quasi-equivalent to
fi,. This proves the lemma.
Assume now that x :  ~ Rt is a continuous homomorphism with

kerx -:) N and that po is a non-zero, positive, x-relatively invariant
Radon measure on O. Then also each 6-orbit (9 in lV(O) carries a non-
zero, positive, relatively invariant Radon measure with multiplier x, ,uo,

say. Let fo be the (G, x)-character on H given by

(cf. [21] Proposition 5.1.4) and let fo be the (G, x)-character on N given
by

(cf. loc. cit.)

LEMMA 5.3.6: The (non-zero) measures 03BC and 03BCO can be normalized
such that
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PROOF: Set 10 = indHtNfo. Since 03BBfo is quasi-equivalent to Ho (cf.
above) we get that 03BBfo ~ Xfo = indH t NÀfo is quasi-equivalent to O
= indH ~N03A0O. Similarly 03BBf is quasi-equivalent to Pv and we then get
from Lemma 5.3.5. that 03BBO is quasi-equivalent to ~~ (O)03BBf. Let us
then observe that the latter decomposition is central. This follows from
the fact that the 03BBf’s are mutually disjoint, since they live on disjoint
subsets in N, and therefore they are mutually strongly disjoint (since H
is type I, cf. [11] Corollary 3.10, p. 102), and from [11] Theorem 4.3, p.
105. This also implies that Ây. and ~~(O)03BBf are in fact equivalent,
since they generate the von Neumann algebras U’o and ~~(O)Uf,
respectively, and these are on standard form (cf. [8] Theorem 6, p. 225).
Now Ufo carries the faithful, normal, semifinite trace 03C9o, and disinte-
grating this trace we obtain traces 03C903BF on U fo which are proportional to
03C9fo, and normalizing the «,,,’s properly we can assume that 03C90f = 03C90,
that is, that 03C9fo = ~~ (O)03C9f0. From this the lemma follows.

5.4. The purpose of this section is to prove the following lemma:

LEMMA 5.4.1: Let 0 be a G-orbit in H. 7here exists a continuous homo-
morphism x :  ~ R*+ with ker ~ ~ N and a non-zero, positive, x-relatively
invariant Radon measure 03BC on 0, such that the (G, x)-character f03BC on H
given by

(cf. [21] Proposition 5.1.4) is smooth.

PROOF: First we prove:

LEMMA 5.4.2: For each G-orbit Q in If there exists a continuous homo-
morphism x :  ~ R*+ with ker X :D N, such that Q carries a non-zero,
positive, tempered (cf. [19] Definition 3.3.6) x-relativel y invariant Radon
measure.

PROOF: Let f ~ 03A9. We first consider the E-orbit through f (cf. 5.2).
The space e = f (f) m is a solvable subalgebra of gl(V) consisting of ele-
ments with real eigenvalues and its image in gl(b) via the representation
X ~ ad X|h: e ~ gl(b) is a subalgebra of the same kind. Therefore there
exists a finite sequence 4il i = 0,..., m, of subspaces in 4 with
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such that dim bj/bj-1 = 1, j = 1, ..., m, and such that [e,1)j] c bj, j
= 0,1, ..., m. Let 1)t be the orthogonal subspace of bj in 1)’. We then
have the sequence

and we have dim1)t-l/1)t = 1 and sb~j c 1)t,j = 1, ... , m, s ~ E.
Let vj ~ b~j-1 B b~j, j = 1,..., m. From [19] p. 235 e. we then conclude

that there exists a subset {j1  ... jd} ~ {1, ...,m}, such that the E-
orbit 03A91 = Ef can be described by

where Fj are C°°-functions on the open subset D c IRd with Fjk(x) = xk
and such that Fj(x) only depends on xl, ..., xk, where k = max {r|jr ~ j}.
The map a : D ~ 03A91: x ~ 03A3mj= 1 Fj(x)vj is a homeomorphism between D
and Ql.

Let Âj:e ~ R be the homomorphisms with X vj = 03BBj(X)vj(modb~j),
and let Ai: E ~ Rt be the continuous homomorphism with Aj(exp X)
= exp 03BBj(X). 039Bj is identically one on M, since îj vanishes on m (because
m is a nilpotent ideal). Set 039B = 03A0dk = 1 039Bjk and let S be the analytic sub-
group corresponding to the Levi subalgebra s. Arguing like [19], p. 238
and using that s and a = t (D f commute (cf. 5.2) and that S is compact
we find that the measure

is a non-zero, positive, tempered, relatively invariant Radon measure on
Q with multiplier 039B:1 ~ R*+. Here A is an extension to G 1 of the A
defined above.

Lifting 039B to G and calling it x we have proved the lemma, since
clearly ker x n N.
We then turn to the proof of Lemma 5.4.1: Let 03C0 ~ O and let f ~ b’ be

an element in the orbit in b’ associated to 1t by the Kirillov theory. Let
03A9 be the G-orbit through f. Since G is the universal covering group of
the connected component of an algebraic group it follows that Q is

locally closed, and thus the map /f ~ Q : s ~ sf is a homeomorphism.
Arguing like in the proof of [19] Proposition 3.1.7, p. 218 one finds that
/f admits a non-zero, positive, invariant Radon measure. Using the
fact that also the orbit Rf is locally closed we can conclude, by an argu-
ment completely analogous to the one given in the proof of Lemma 3.3,
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that /f, and therefore Q, carries a non-zero positive, invariant Radon
measure dx, say. We set X = /f. Also we set Y = GIG1C and recall
that G1C = G fH. Y carries a non-zero, positive, invariant Radon measure
dy, say (Lemma 5.3.4). Finally, set Z = fH/f = 03C0/f. Z carries an
invariant measure dz, say, such that

for (p E L1(X, dx) ([2], p. 95).
Now let WY’ y e Y, be the H-orbit in b’ given by Wy = Hsf, where

y = sa,,. Wy is clearly a well-defined H-orbit, and as such it is closed in
b’. Let 03B2y be the measure on 03C9y given by

for 03C8 ~ K(wy). 03B2y is then a non-zero, positive, H-invariant Radon

measure. We then claim that if dz is normalized such that /3y is "canon-
ical" (i.e. the Kirillov character formula is valid with /3y as the invariant
measure on the orbit) for one y E Y, then it is "canonical" for all y E Y. In
fact, this is seen by an argument similar to the one used in the proof of
[19] Lemma 3.3.14, pp. 230-231.
By Lemma 5.4.2 there exists a continuous homomorphism x :  ~ R*+

with ker 03BB ~ N and a non-zero, positive, x-relatively invariant Radon
measure v on Q, such that v is tempered. Since Q carries an invariant
measure we have ker x n G f and thus ker x n G fN ::) G1t’ which shows
that 0 carries a non-zero, positive, x-relatively invariant Radon measure
j.,l, and this is given by

Let then m ~ N be chosen such that the Fourier transform of all func-
tions in C2mc(b) are v-integrable over 03A9 (this is possible, since v is tem-
pered). For ç E C’(G) we then get
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Here we have applied the Kirillov character formula (see e.g. [22]). It
follows from the above that Cmc(G) c nf03BC. But then f03BC is smooth by [19]
Proposition 2.3.5, p. 206. This ends the proof of Lemma 5.4.1.

5.5. Let us recall that we are dealing with a connected, simply con-
nected Lie group G with cocompact radical and with nilradicalisé N. In

particular we have the equivalence relation 03B5GN in N (cf. [21] Lemma
6.1.1 and [21] Sect. 5.1).

PROPOSITION 5.5.1: Let O be an orbit of 03B5GN in N. There exists a con-
tinuous homomorphism x : G ~ R*+ with ker / =3 N and a non-zero, positive
G-relatively invariant Radon measure v on 0, such that the multiplier of v
is x and such that the (G, x)-character f,, on N given by

(cf. [21] Proposition 5.1.4) is smooth.

PROOF: We use all the notation from the previous sections. The orbit
O is contained in a unique G-orbit (!) in lV and there is a well-defined G-
orbit Oo in Û, such that (9 c lV(Oo) (cf. 5.3). From Lemma 5.4.1 we get
that there exists a continuous homomorphism ~: ~ R*+ with

kerx n N and a non-zero, positive, x-relatively invariant Radon

measure y on 0, such that the (G,x)-character fil on H given by

is smooth. It follows from Proposition 1.1.3 that indH~Nf03BC is smooth,
and using Lemma 5.3.6 and Lemma 1.1.2 we then get that the (G, x)-
character fo is smooth. Here fw is the (G, x)-character associated to a
non-zero, positive, x-relatively invariant Radon measure 03BDo on (9, cf. 5.3.

Let then p E 0 be a fixed element and set G, = G.G. Then G, - p = O.
Moreover there e-xists a x G1-relatively invariant Radon measure v- on

G1/03C1, such that
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where ds is an invariant measure on GIGI, We then get

It then follows from Lemma 1.1.2 that f03BDo03C4GN(s-1) is smooth for almost
all , and therefore for all S, since 03C4GN(n-1) is an automorphism of C~c(G).
In particular fv is smooth and this proves the lemma.

5.6. In this section we shall derive a result which will be needed in the

final step of our proof of (iv) ~ (i). Actually we shall for later reference
consider a situation which is a little more general than actually needed.
We shall go back to the notation used in [21] Sect. 5. Specifically we
shall consider a separable, locally compact group M and closed, normal
subgroups M =* G ~ N of M, such that (i) N is type I, (ii) G/N is central
in M/N, (iii) N is regularly imbedded in M, (iv) G/N is central in M/N
and (v) [M, ] = [M, M].

Let 0 be an orbit of 03B5MN in lV (cf. loc. cit.) and let q : M ~ R*+ be a
continuous homomorphism. We assume that 0 carries a non-zero,

positive, il-relatively invariant Radon measure v. We form the (M, ~)-
trace fv on N given by

(cf. [21] Proposition 5.1.4).
Let F = F(O) be the group associated to 0 as in [21] Section 5.1 and

set ~ = ~ ·(~M/NocM/N)(~M/FocM/F)-1·

We then consider the induced trace 1, = indN f Ffv’ which is an (M, X)-
trace on F, cf. [21] Sect. 2.3. Now clearly 1, lives on 0 so by [21]
Proposition 5.1.4 !v has the form
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for some M-invariant, open subset e c X(O) (cf. [21] Sect. 5.1) and
some positive, x-relatively invariant Radon measure fi on dit.
We shall determine * and . To do this, let M1 be the group Ml x H

acting transitively in the locally compact Hausdorff subspace X(O) of F,
cf. [21] Sect. 5.1. We define a group of automorphisms a of J(1 on
C*(F) by a(m, p) = 03C4M1F (m)FN(p|F) (cf. [21] Sect. 1.3). This is possible
since the actions of 03C4M1F(m) and FN(p|F) commute. The automorphism
group a gives rise to an action of J( 1 on F by (m, p)p = po a(m, p)-1, and
the restriction of this action to X(O) is precisely the action considered
above. Now as showed in the proof of [21] Lemma 5.1.2 the measure v
is actually Ml-relatively invariant with a multiplier ~1: Ml -+ R*,
extending ri. Set X 1 = ~·(~M1/NocM1/N)(~M1/FocM1/F)-1 and extend ~1 to
M1 by the requirement that it is trivial on fI (and clearly the restriction
of x 1 to M is then x). It then follows from [21] Sect. 1.3 and Theorem
3.2.1 that Iv is relatively invariant under the automorphism group
(m, p) ~ a(m, p) with multiplier ~1. But then it follows in particular from
the proof of [21] Proposition 5.1.4 that e can be chosen to be M1-
invariant, hence * = X(O), since M1 acts transitively in X(O), and
therefore is a M1-relatively invariant Radon measure on X(O) with
multiplier ~1.

Let then p be a fixed element in X(0) and let (9 be the orbit of fil =
Ym through p, cf. [21] Sect. 5.1. Let J( be the closure of M(M1)03C1 in
M1, cf. loc. cit. We have (9 p and the stabilizer in M1 of the orbit
(9 is M. Finally let dm be an invariant measure on M1/M (existing since
[M1, M1] c M and therefore M1/M carries the structure of an abelian
locally compact group). With all these ingredients we then have:

LEMMA 5.6.1: The orbit (9 carries a non-zero, positive, x-relatively in-
variant Radon measure y, which can be normalized such that

(here fil is the (M, x)-trace associated to the measure j.,l, cf. [21] Proposi-
tion 5.1.4).

PROOF: As we saw above the measure  can be considered as a

Radon measure on M1/M03C1. From [3] it is then easily derived that
M/M03C1 carries a relatively invariant Radon measure with multiplier
~1|M, such that
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where  ~ 03BC is the dm-adequate (cf. [4]) family of Radon measures on
X(O) given by

Considering Il as a Radon measure on  we then get

and this proves the lemma.

5.7. We shall now end the proof of (iv) ~ (i). So let x be a normal repre-
sentation of G. The character of rc arise as indF~Gf03BC, where y is an

invariant measure on an orbit (9 of LGN in X(O), 0 being an orbit of 03B5GN
in lV ([21] Theorem 6.2.1). Assume then first that 0 carries a G-invariant
measure v, such that f03BD is smooth. Then indN ~ F fv = v is smooth by
proposition 1.1.3 and therefore, with the notation from Lemma 5.6.1,
f03BC o a(m-1) is smooth for almost all m (Lemma 1.1.2) and therefore for all
m. This shows that f03BC is smooth and therefore also indF ~ G f03BC is smooth
(Proposition 1.1.3). Therefore, in this special case x has actually a
smooth character.

Assume then that the invariant measure on 0 does not give rise to a
smooth G-character on N. Then there exists a continuous homomorph-
ism ~(~ 1) from G into Rt with ker x n N and a non-zero, positive, x-
relatively invariant Radon measure v on 0, such that fv is smooth

(Proposition 5.5.1). Set Go = ker x. Let us then observe that F =
= F(O) c Go. In fact, G1t c ker x for ’Tt E 0, since 0 admits a -invariant
measure (Lemma 5.3.4). From Proposition 1.1.3 we get that il=
= indn i Ff, is a smooth (G, x)-trace on F, and from Lemma 5.6.1 we get
that the orbit (9 carries a relatively invariant measure pi whose mutiplier
is x, and using Lemma 1.1.2 we get that fil! oa(m-1) is smooth for almost
all m, and therefore for all m. But this shows that fil! is smooth, and
therefore indF~Gf03BC1 is a smooth x-semicharacter (Proposition 1.1.3) and
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it is a semicharacter for 03C0 ([21] Proposition 5.3.1). This ends the proof
of Theorem 2, (iv) ~ (i)

6. Proof of Theorem 1

For the equivalence of (ii), (iii) and (iv), see [27] Proposition 3, p. 47.
Let us then assume that G satisfies condition (iv) in Theorem 1. We have
to prove that (i) is satisfied. As mentioned in the beginning of Sect. 5 it is
easy to reduce to the case where the radical of G is cocompact. Assume
that this is so. We then have the following analog of Proposition 5.5.1
(using the notation from loc. cit.):

PROPOSITION 6.1: Let 0 be an orbit of 9’ in  and let v be the non-

zero, positive, invariant measure on O. Then the (G,1)-character fv on N
given by

is smooth.

PROOF: Since the algebraic closure of a type R solvable Lie algebra of
endomorphisms in gl(V) is also solvable and type R, it follows that
Lemma 5.4.2 is valid with x - 1 when the radical of G is of type R, and
therefore Lemma 5.4.1 is valid with x - 1. And from this Proposition
6.1 follows in the same way as Proposition 5.5.1 follows from Lemma
5.4.1.

Theorem 1 now follows from Proposition 6.1 and the remarks made
in 5.7. This ends the proof of Theorem 1.
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