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THE NON RATIONALITY OF THE GENERIC ENRIQUES’
THREEFOLD

Luciana Picco Botta and Alessandro Verra

The Enriques threefold, i.e. the hypersurface of P* having as hyper-
plane sections the classical Enriques surfaces (i.c. the surfaces of degree 6
in P3, passing through the edges of a tetrahedron), was studied classi-
cally by several Authors.

Fano suggested that it was not unirational ([10] p. 94), but Roth
proved that it was unirational and, in order to prove the non-
rationality, he gave an argument involving the Severi torsion. This point
was in disagreement with Serre [12], where it is shown that a non sin-
gular unirational variety cannot have torsion. Tyrrel [13] pointed out
that Roth’s argument was not correct because of the existence of some
not ordinary singular points.

In this note we find, for a generic Enriques threefold ¥, a non singular
model ¥ containing an open set W, which is a conic bundle (in the sense
of [1]) over a suitable surface, with a complete non singular curve 4 of
genus 5 as curve of the degenarate conics. By analyzing V' — W explicit-
ly we prove, as in the case of standard conics bundles, that the Chow
group A%(V") is isomorphic to the Prym variety Prym(4/4).

At the end, since 4 has genus 5 and so is not included in th. 4.9 of [1],
we need some careful analysis about its halfcanonical series, to conclude
that Prym(4/4) is not a Jacobian of a curve and therefore V is not
rational.

In the complex projective space P* of homogeneous coordinates
(xo:%1:%5:%5:x,) we consider the irreducible generic hypersurface V of
equation:

(*) Lavoro eseguito nell'ambito del G.N.S.A.G.A. del CN.R.
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4 4
X1XX3X4{X5 + Xo '21 ax; + Zl b;x:x;}
i= i,j=

2
+ ¢1x3x3x3 + ¢,x3x3x% + ¢3x2x3x2 + cx2x3x3 = 0.

In particular, ¢; #0,i = 1,2,3,4.
It is known ([11] p. 44, [13] p. 897) that its generic hyperplane section
is an Enriques surface and that V gets the following singularities:
(i) six double planes =;; of equations x; = x; =0, 1 <i<j<4,
(i) four triple lines of equations X;=x;=x,=0,

1<i<j<k<4,
(iii) one quadruple point at 0(1,0,0,0,0) and other two non ordinary
quadruple points on each triple line.

It is also known that V is unirational ([10] p. 97).
In order to prove that V' is non rational, we consider the following
rational map:

QP xg:x1:x,:X5:%,) — — > P3(x:y:z:1)

given by
X!y:Z:t = XIX3ZX1X4ZX2X3Z)C2X4.

@ is not defined over the planes n,, and 754, moreover the image of ¢ is

the quadric surface Q < P3 of equation xt = yz.
LEMMA 1: For all geQ, let E, = ¢~ '(q) be the inverse image of q. The
Zariski closure of E, is a plane in P* passing through the point

0(1,0,0,0,0) and intersecting each plane n{, and m, along a line.
In other words, Q parametrizes the planes in P* cutting these two fixed

planes along a line.

ProOF: Let g = (%, 7,z,)eQ and peE,. Since p doesn’t belong to the
planes =, , and m5,, there exist only two hyperplanes passing through p

and containing one of them. Their equations are precisely:

*)

ax; — fx, =0

X3 —0x4 =0
where

af=t:y=z:x
and y:§ =j:x=t:z.

So the equations (*) define exactly the Zariski closure of E,
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It follows immediately:

LEMMA 2: The following (not linearly independent) equations in
P* x P?
Xt =yz
zx; —xx, =0
tx; —yx, =0
yx3—xx,=0
txy —zx, =0

define the Zariski closure I', of the graphe of ¢.

Note. T, can be obtained by blowing P* up along the ideal of the
planes 7, , and 7;,.

LEMMA 3: The equations of lemma 2, together with the following ones:
xHcax2 4 c,x2) + t3(cyx3 + c3xd)
+ xt(x2 + x, i; ax; + i 124::1 b;xx;) =0
YAesx3 + cx3) + 22(cax] + ¢1X3)
+ yz(x3 + x, i; a,x; + i,ji:I bixx;)) =0
define the strict transforma V' of Vin T,

Proor: Immediate.

REMARK: Let : V' — Q be the restriction to V' of the canonical pro-
jection. For the fibre 7~ '(g) of a point g€ Q we have three possibilities:

(1) if all coordinates of g are different from zero, n~'(q) is a (possibly
degenerate) conic. In fact it is the residual conic cut out on V by the
plane E,, apart from the two (double) lines lying on the plane n,, and
T34

In the above notations, if E, has equations

ax; — fx, =0
X3 —0x, =0
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(o, B, y, 0: fixed), on E, we may assume homogeneous coordinates v:u:r
such that, for a point peE,

Xo =10
x, = Pu
X, =au
X3 = Or
X4 =9r.

In this coordinate system the conic n~!(g) has equation:

aPyd{v? + v[(a; B + a,)u + (a36 + azy)r]
+ (118> + by 0B + byya®)u?
+ (b330% + b34d + basy?)r?
+ (b13B0 + b4y + byz00 + by aay)ur
+ (0?9282 + ¢, f2p%6%)r?
+ (c302 %% + 40 B?6%u? = 0.

(2) if exactly two coordinates are zero, then n~1(g) is a double line.
(3) if three coordinates are zero, n~'(q) = E,.

(2) and (3) follow immediately from the equations.

We want to prove that V is birationally equivalent to a conic bundle.

Let X =(1,0,0,0), Y =(0,1,0,0), Z =(0,0,1,0), T = (0,0,0, 1) be the
four points of the case (3), and blow Q up in these points, or, equiva-
lently, take the strict transform G of Q in the blowing up of P? along the
two lines of equations x =t =0 and y =z=0. So we realize G in
PYA:p) x PY(v:p) x P3(x:y:z:t) by the equations

Ax —ut =0
vy —pz=0
xt —yz =0.

If £:G — Q denotes the structure map, by base-change we obtain a
birational morphism &: [, =T » X G—T, and a structure map
7.l »— G

The strict transform ¥V of V' in [, has equations in
P! x P! x P3 x P*

Ax —ut=20
vy —pz=0 (**)
xt —yz=0
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zx; — XX, =0

tx, —yx, =0

yx3 —xx, =0 (*)
tx; —2zx4 =0

UA(cax3 + c;x2) 4+ AHcyx3 +c3xt) + ApF =0

02(c3x3 + ¢;x3) + vi(cyx? + ¢yx3) + voF =0

where

4 4
F=x2+x, Zl ax; + Y b;xix;.
&

iL,j=1

~.

It follows that #: ¥ — G is a “conic bundle” birationally equivalent

to V.
In fact, if ge G &(g) = X (or Y,Z, T) it follows from those equations

that 7~ 1(g) is still a conic, precisely, if &(g) = X, it is:

y=z=t=A=Xx, =X,
_ 2. 2 2. .2 2
= peax3 + vicgxy + vplxg + Xolayx; + azxs)

+ (by1x3 + byaxyx3 + b33x3)] =0

Nevertheless, we’ll see that V still gets some singularities.
First of all, we want to study the locus of the degenarate conics. We

have the following

PROPOSITION 1: The locus of the degenerate conics for #:V — G is

given by:
— a non singular curve A parametrizing the conics of rank 2,
— four lines (disjoint from A and not intersecting each other), para-

metrizing the double lines.

ProOF: At first we study n: V' - Q.
The condition for a conic n~!(q) in order to be degenerate is the

following:

a?f2y?6%{4[yd(by 1 B7 + b1 2B + by20?) + af(csy? + 40%)]
“[4B(b3307 + b34yd + basy®) + yd(c,0® + ¢28%)] + aByd(a, B + a,a)
(30 + agy)(by3BO + b1aBy + by3d + byuay) — aflasd + ayy)?
“[y0(b11B* + by + byp0?) + aflesy® + c40%)] — yd(a, f + a,0)?
“[0B(b330% + b34yd + basy®) + yd(c,0® + ¢, %)]

— afyd(by3B0 + byaBy + by3ad + bysay)’} = 0.
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Therefore the curve of the degenerate conics on Q is given by:

(i) four lines, parametrizing the double lines

z=t=0 (for a = 0)
x=y=0 (for p=0)
y=t=0 (fory =0)
x=z=0 (for 6 =0)

(ii) the curve C < Q of type (4,4) of equations

xt—yz=0
4[(by1xy + byyxt + byyzt + c3yt + c4X2)
X (b33xZ + byaXt + bayyt + 12t + c3xy)]
+ xt(a,azx + a a4y + a,a5z + a,aut)
X (byax + b4y + bysz + biat)
— (@3xz + 2asa,xt + aZyt)
X (by1Xy + byyxt + byyzt 4+ c3yt + c4x2)
— (a?xy + 2a,a,xt + a3zt)
X (b33xZ + b3aXxt + bagyt + 12t + c3xY)
— xt(by3% + b1ay + ba3z + byut)’ =0

C is the complete intersection of Q and a quartic surface R.

A simple direct computation shows that X,Y,Z T are ordinary
double points of C, and C is not tangent to the four foundamental lines
lying on Q.

Moreover, we may see that =~ !(q) has rank 2, Vge C — {X, Y, Z, T} (it
follows from considerations on the minors of order 2 in the discriminant
of 771(q)). Hence C must be non singular in q (cf. [1] prop. 1.2).

Therefore, for a generic V, the strict transform 4 of C in the blowing
up ¢: G — Q is non singular and doesn’t intersect the strict transform of
the four foundamental lines of Q.

Now, in order to examine the singularities of ¥, we denote by H the
section of I, with x, = 0.

H is birationally equivalent to the hyperplane H of P* of equation x,
= 0. By projecting from the point 0(1,0,0,0,0), we obtain a rational
map n:V — H, which is 2 — 1 outside the double planes of V. By base-
change we get a fibre-diagram
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",
",

=%
e— T

where the vertical arrows are birational morphisms.

LEMMA 4: The ramification locus R; of if has equations on v
4
Au2xo + Y ax)=0
i=1

4
vp2xo + Y, ax;) =0
i=1

ProoF: The restriction of # to k, = #~'(g) = E, coincides with the
projection of k, on the “line at infinity” of E,. So we get the ramification
points of 7|, by intersecting k, with the polar line of 0 to k,, or, equiva-
lently, with the polar hyperplane of 0 to the quadric hypersurfaces ob-
tained by fixing the coordinates of g in the equations (**) of V.

In this way we find exactly the required equations.

COROLLARY: R; is the union of the following sections of V:
Va{i=v=0}=4,,
Va{i=p=0}=4,,
Va{p=v=0}=4,
Va{u=p=0}=4,
4
Vﬁ {2x0 + Z a,-xi} = B
i=1

PROPOSITION 2: A;; (i,j = A, 14,v, p) is a smooth quadric surface. B is a
smooth Enriques surface.

ProoF: 1) Let’s consider, for example, A,,. Its equations in
P! x P! x P? x P* are given by:

A=v=t=z=Xx,=Xx3=x,=0
so they determine a smooth surface isomorphic to P! x P!

A ={t=2=0} x {x, =x3=x, =0}
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2) B is an Enriques surface.

In fact the ramification divisor of the map #n:V ——H has
equation, in the coordinates (x, : X, : X3 : x,), the discriminant of the poli-
nomial of degree two in x, defining V in P4, ie.

LJ=

4 4
x1x2x3x4[x1x2x3x4(.zl aixi)2 -4 21 bijxixj) - 4clx§x§xi
=

— 4, x3x3x% — deyx2xixd — 4ex3x3x3] = 0.

The expression contained in the square brackets is the canonical
equation of an Enriques surface in P3, which is birationally equivalent
to B by means of 7.

It is possible to verify on the equations that the blowing up defining V'
induces a desingularization of this Enriques surface, but we can also
observe directly that 7|z: B — G is a double covering with ramification
divisor

R.=(4,, + A;.p + A”v + AM,)'B + A4

where 7(4") = 4 is the irreducible smooth curve of G studied in prop. 1.
So A4,,- B = L), is a line of equations

4
A=v=t=z=x,=Xx3=Xx,=2%o+ 9, a;x;=0
i=1

and
f(L,,) = Ly, = {t = z = 0}

is a foundamental line on G parametrizing the conics of rank 1. It fol-
lows that R; is a (reducible) smooth curve, and therefore B is non
singular.

PRrOPOSITION 3: V is non singular, except for four couples of lines con-
tained in A,,, A;,, A,,, A,,, having equations

= (x3 + a;xox; + by ;x2) =0

= (x2 + azxox; + b33x3) =0
3= (X5 4 4%X0X4 + baax3) =0
4 = (3 + ayxoxy + byyx2) = 0.

X
X,
X
=X

Moreover all these points are ordinary double points.
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ProoF: Let D = A, + A;, + Ay, + Ay, Then ij: V—D——H — D
is a double covering with smooth ramification locus, therefore it is non
singular and all singular points of V are necessarily belonging to D.

It suffices to consider one of the connected components of D, for
example A,,, and to argue locally. So, taking the open set
UcP!xP!xP3xP* where p=p=x=x,=1 and assuming
affine coordinates (4, v, y, z, t, x{, X,, X3, X4), We easily see that the
tangent space at any point p=(0, 0, y,0, 0, X, 0, 0, 0)eA4,,nU to
V A U is given by the following (not linearly independent) equations:

t —yz=0
A—t =0
v —z =0

zZXy —x, =0
tx, —yx, =0
yx3—x4 =0
Al+ax; +b,x3)=0
(1 + a;%, + by x3)=0

Since dim Ty , > 3, at most six of them are linearly independent. Two
different cases are possible:

) 1+ax;+b,;x3+#0

Then A =v =t =2z = x, = yx3 — x4 = 0 are six independent equations,
so dim Ty, , = 3 and V'is non singular at p.

2) 1 + alil + bux% = 0.

In this case the last two equations are identically zero, and the first six
are related by the (unique) relation

Xi(t — yz) = (tX, — Px;) — YX12 — X3)

(Note that x; # 0). So dim Ty , = 4.

To determine the tangent cone at p to V, we assume as local para-
meters at p to I, (which is a non singular four-dimensional variety), for
example, v,x5,) =y — y,x; = x; — X; and we obtain a term of lower
degree of the kind

Av? + Bvxy + Cvxy + c;x3 =0 (**%)
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where

A = ¢, X7 + %P + a,%,5 + by X1y
B = al + 2b11£1
C = a3 + a4)7 + b13g1 + b14_}7f1

It is a quadric cone over the conic (***) with discriminant
H = CZ(al + 2b11.)21)2

(remember that ¢, # 0). For a generic V,H # 0, so p is an ordinary
double point. It is immediate to see that from H = 0 it follows that the
solutions of the equation 2) (and so either the two corresponding lines
on V and the two quadruple points on the line x, = x3 = x, = 0 on V)
coincide.

COROLLARY: A non singular model for V is given by the strict transform
V' of V in the blowing up of I, along these eight singular lines.

ProoF: It can be done directly in the above local coordinates. In
particular, for each line blown up we get an exceptional quadric.

REMARK: In conclusion, we have got a non singular model V', of Vv
and a map f = #': ¥ — G whose fibres are:

i) a non singular conic if g¢ 4 U {L;;}

ii) two different lines if ge 4

iii) a double line and two conics if g€ L;;.

Therefore the inverse image Y of the four foundamental lines L;isa
union of quadrics (the A4;;’s and the exceptional ones).

W = V' — Y is isomorphic to ¥ — U 4;;, so that it is a non singular
conic bundle over G — U L;;.

A is the complete non singular curve of degenerate conics of the
bundle.

We can construct in a standard way (see [1] 1.5) a double covering
g:4 — A such that every point te 4 parametrizes one of the two lines
contained in the conic k. Let us call this line L(f) and look to it as an
element of C*(W). By similar arguments as in [1] 3.1, and considering
also [1] 3.1.9 one can prove the following

ProposITION 4: The map t— L(t) extends to a surjective homo-
morphism
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@:J(A) > AXW)
whose kernel is q*J(A). Taking the quotient, we obtain an isomorphism

Y: P = Prym(4/4) — AX(W).
COROLLARY: P ——— AXV").

PrOOF: Let ¥ be the desingularization of Y. We have the exact
sequence

ANY) - AX (V) > A2(W) -0

P

and A'(Y) = 0 since Y is the union of quadric surfaces. We observe that
this is a group isomorphism.

PROPOSITION 5: P is the algebraic representative of A*(V') (cfr. [1] def.
3.2.3.), and the principal polarization 3 of P is the incidence polarization
relative to X ([1] def. 3.4.2.).

Proor: It can be shown by the same arguments as [1] Prop. 3.3 and
[1] Prop. 3.5.

LEMMA 5: Let C be a canonical curve in P* which is a complete inter-
section:

(1) C has a half-canonical g} if and only if C is contained in a quadric
U of rank three;

(2) the unique ruling of two-planes of U cuts out the half-canonical g}
on C.

PrOOF: (1) Let us suppose that C has a half-canonical g}; if D is an
effective divisor belonging to the g} then, by Riemann—-Roch Theorem
and the hypothesis 2D ~ K, it follows

ho(D)=2 = ho(K — D).

Since K is cut out by the hyperplane sections, ho(K — D) = 2 means
that SuppD = n where = is a two-plane; now we can take another
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effective divisor D’ which is linearly equivalent to D and, without loss of
generality, we can assume Supp D n Supp D’ = @ (if not C will have a g}
and will not be a complete intersection). Let n' be the two-plane con-
taining Supp D’:since D + D’ ~ K it follows that = U n’ is contained in
an hyperplane H of P* and that &, n’ intersect along a line u. Moreover
there is only one net of quadric surfaces in H passing through
Supp D u Supp D', so that they are sections by H of the quadric hyper-
surfaces through C. Since L n’ belongs to the net, there is a quadric
hypersurface U containing Cunu 7.

U is singular because it contains some 2-plane, then its rank may be
equal to 3 or 4. If U had rank 4 then U will be a cone over a quadric
surface S in 3. In this case n will be a plane through the vertex of the
cone and a line | of S; then D will be cut out on C by the two-planes
through the vertex of U and a line in the same ruling of /; which is
absurd since 7’ belongs clearly to the other ruling of two-planes of U.
Then U must have rank 3 and its singular locus has to be the line
u=nnNm.

Viceversa and (2) follow easily by the above arguments.

LEMMA 6: Let V be a generic Enriques’ threefold, then a canonical model
of A4 is the complete intersection in P* of three quadric hypersurfaces
01,0,,05 where Q;,Q, have rank 3 and Q5 is generic.

Proor: We considered a singular model C of 4 given by the follow-
ing equations in P3 (x:y:z:t), (see Prop. 1):
xt—zy=0
Fu(x,y,2,t) = 4-[(b11Xy + byyxt + by,zt + c3yt + c4x2)
X (b33XZ 4 basxt + byt + 2t + c,xy)]
+ xt-[(a1a4y + a2032)(b13x + b14y + b3z + by4t)
— (b14y + b232)"] + zy[(a,a3x + azayt)
X (by3x + biay + bysz + bagt) — (byax + byat)?]
— 2(by3x + byat)(b1ay + bysz)xt — (a3xz + 2asa,xt + ajyt)
X (b11Xxy + byoxt + by,zt + 3yt + c4x2)
— (aixy + 2a,a,xt + a3zt)

X (b33XZ + byaxt + byayt + ¢zt + c3xy) = 0.

C is of type (4,4) in the quadric surface Q = {xt — yz =0} and has
four ordinary double points: X(1:0:0:0), Y(0:1:0:0), Z(0:0:1:0),
T(0:0:0:1). The linear system of quadric surfaces in 3 containing the
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four double points and distinct from Q cuts out on C the canonical
system. Moreover it defines a rational morphism

&: P> —— P

which desingularizes C and embeds it canonically in P*. Indeed the
equations of @ can be defined by setting

Ug = XY, Uy = XZ, Uy =xt, Usz =yt, U4=Zt

where (ug:u, :u,:u;:u,) are projective coordinates in P*. Then the strict
transform of Q is the intersection of the two quadric hypersurfaces of
rank three:

.2 _ ) =
Qiu; —uguy =0,  Qyiu; —uyu; =0.

Moreover the quartic form F,(x, y,z,t) can also be written as a quadra-
tic form F(xy, xz, xt, yt, zt) in xy, xz, xt, yt, zt. It follows immediately that
the strict transform A4’ of C in P* has equations:

u2 —uguy =ut —ugu, =0
F(uo, ul’ U2, u3, u4) = 0

where F(ug,uq,u,,us,u,) is a quadratic form.

Then the affine space of the coefficients of the equation of ¥ maps
on the affine space of the coefficients of a quadratic form
FeClug,uy,uy,u3,u,]. One can compute directly that this map is of
maximal rank and surjective.

From this fact we can argue that A’ is the complete intersection of P*
of Q,,Q, and a third generic quadratic hypersurface Q5. In particular A4’
is smooth and canonically embedded in P*,

COROLLARY 3: Let V be a generic Enriques’ threefold:

(i) 4 is not hyperelliptic, trigonal, nor elliptic-hyperelliptic,

(ii) 4 has two half-canonical g}’s L,, L,;

(iii) A4 does not contain a half-canonical divisor N such that N + L,
(i=1,2), ho(N) # 0, ho(N) even.

ProoF: (i) follows from the proof of the above lemma and from the
fact that Q, is generic. (ii) follows from Lemma 5. Now we show (iii): by
(i) and Lemma 6 4 is the base locus of a net X of quadric hypersurfaces
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containing the 2 quadrics Q,, Q, of rank 3. Moreover, being Q, generic,
Z is generic in the family of nets as above, so that X does not contain a
third quadric of rank 3 different from Q,, @,. Then, by Lemma 5, 4
cannot carry a half-canonical divisor N with ho(N) =2 and N + L;. In
the end, if ho(N) =4, 4 will be clearly elliptic or rational which is
absurd.

ReMARK: By the corollary above 4 is generic among the curves of
genus 5 having 2 and only 2 half-canonical g}’s. Thinking of 4 as a
singular curve of type (4,4) in the quadric Q (see Prop. 1) these gi’s
arise by intersection with the two rulings of lines in Q.

Let us consider now the étale double covering of 4:
q:4—-4

(see the remark before Prop. 4); we will compute the semiperiod giving
such a covering.

We have seen (see the remark before Prop. 1) that there is a birational
morphism of V with a (singular) conic bundle V on the surface G. G is
the blowing up

e:G-Q

of the quadric surface Q = {xt — yz = 0} in the four fundamental points
of P3(x:y:z:t). Let #: ¥ — G be the map fibering V in conics; Vg€ G the
conic 7~ (g) is obtained, via the birational morphism from V to V, from
a conic K, in V contained in a 2-plane E, meeting both the 2-plane
Ty, = {x; = x5 =0}, 134 = {x3 = x, = 0} along a line (Lemma 1).

LEMMA 7: The locus in G:
{9e G/K,n(E,nn,,) is exactly one point}

is given by:

(1) a non singular elliptic curve V < G which is the strict transform, via
e:G — Q, of a quartic elliptic curve in Q passing through the four funda-
mental points of ¢~ ;

(ii) two rational curves l,, I, which are the strict transforms of the lines

{y =t =0}, {x = z = 0} belonging to the same ruling in Q.

ProoF: The equation of a conic K, = E, = {ax; — fx, = yx; — 0x,4
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=0} = P* is given in the remark following Lemma 3. The coefficients of
such a equation depend on (x: ) x (y:0), the projective coordinates on
E, are (u:v:r) and the line E; N 7, is given by setting u = 0. It turns out
easily that, if K, satisfies the required condition, then (x:f) x (y:9) an-
nihilates the following equation:

(2By*6?) - [aP(asd + a,y)* — 4aP(b330” + b34y6 + byyy?)
— 4(c 028 + c,B76)] = 0.

With the same notations of Lemma 1 we have a:f=t:y=2z:x;
y:0 = y:x =t:z so that the set of zeroes of the second factor of the
above equation becomes the locus in P3(x:y:z:1):

xt—yz=0
(a3 — 4b33)xz + (af — 4baa)ty
+ 2(aza, — 2bs,)xt — 4cqtz — 4c,xy = 0.

If V is generic this is clearly a smooth quartic elliptic curve in Q, passing
through the four fundamental points of P3, that is through the funda-
mental points of ¢~ !; this shows (i). To show (ii) we observe that the
fibers of @ on [,(I,) are double lines (see Prop. 1) and that these dou-
ble lines arise, by the birational morphism quoted above, from the line
{x3 = x4 = x; = 0}({x3 = x4 = x, = 0}) counted twice. This one meets
7y, twice in the point (1:0:0:0:0) and this shows (ii); moreover it is
clear from the geometric situation that the locus we are considering
cannot have other components.

LemMA 8: We have on G:

@) (V,)=(V,15)=0

(ii) 4 and V does not meet along the four exceptional divisors of G
(iii) (4,V) = 8 and, for every pe ANV, i(p;4AnV)=2.

ProOF: &(4), &V), (), &l,) pass all through the four fundamental
points of ¢~ !; since V is generic it is clear from the equation of &V)
written in Lemma 7 that &(l,), &(,) are not tangent to &V); in the same
way one can also see that, for every fundamental point O, the tangent
line in O to &V) cannot be a component of the tangent cone to &4) in 0.
This shows (i) and (ii). Now we have on Q:(¢(4),&V)) = 16; moreover
&(V) meets the four singular points of &(4) and these are also the funda-
mental ones for ¢~ 1. Then, by (ii), (4,V) = 8.
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Another direct computation shows that i(p;4 "V) =2 for every
peAnV.
Let us consider now the double covering:

f:G-G

branched over Vul,uly:G is smooth since Vul,ul, is smooth.
Moreover the open set G — (I, ul,) parametrizes the couples (g, x)
where ge G and xeK,nmy,. It follows that f~'(4) parametrizes the
lines being components of the degenerate conics K, of rank 2. Then
f7(4) is a (singular) model of A. Indeed f () is singular exactly in
the four points of the set £~ 1(4 n V): this can be obtained, with a local
computation, by observing that, for every such a point x, i(f(x); 4 "' V)
= 2 and V belongs to the branch locus of f.
Clearly we have the commutative diagram:

A—2-54
vl
14

where v is the normalization morphism.

Let us call L, a divisor on 4 belonging to the halfcanonical g} cut out
on &4) by the lines of Q not in the ruling of &(,); let us call L, a divisor
in the other half-canonical gi of 4, (see corollary 3), we have the
following

S~ 14

PROPOSITION 6: If {p1,p2,P3,P4} = 4NV and D =p; + p, + p3 + ps
on A then

n=D—-L,
is the semiperiod giving the étale double covering q: 4 — A.

ProoF: On G we have V ~ 2l; + I, + I}, where [, is the (global) trans-
form of a line of Q not in the ruling of &(l,).

Then O,V —-2l, -1, —15)~0,2D —2L,) = O, so that y =D — L,
is a semiperiod.

Observe now that G is a (smooth) rational surface: let m be the trans-
form of ageneric line e&(m) ~ &(l,); since (m,V +1, +1,) =2 then
f:f~Y(m)—mis a double covering of P! branched on two points. It fol-
lows that G carries a pencil of rational curves so that, by Noether’s
theorem, it is a rational surface.
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Since V + [, + I, is the branch locus of f it turns out that

27HV) = L — ) ~ f*Q2ly) ~ 21*(y)
and, since Pic G has no torsion (being G rational),
FTUV =L =)~ f*y).
By setting A, = f~(4) we have:
03,(f 'V~ 1, — L) — f*(l)) = 03,
that is:
03 = O5(v*f*(D — L,)) = Oz(g*n).

Then g*y is trivial on 4: this happens if and only if g: 4 — 4 is given by
7.

REMARK: 5 + L, — L,: since 2D is cut out on &4) by an elliptic curve
of type (2,2) on @, it follows that Supp D cannot be contained in a line
of Q, so that D 4+ L,. This shows also that # cannot be trivial.

COROLLARY 4: § ~ D' — L, where 2D’ is cut out on A by a smooth
elliptic curve V' parametrizing the conics K, of rank >2 such that
K, N msy, is exactly one point.

Proor: Exactly as to show n ~ D — L;: it suffices to substitute n,,
with 73, and [,,I, with the corresponding rational curves I,,l, strict
transforms of the lines {z =t = 0}, {x = y = 0}.

COROLLARY 5: If V is generic, on A there is no effective even theta
characteristic N such that ho(N + n) is even.
Moreover ho(L; + n) = 1.

ProoF: If V is generic on 4 there are only two effective even theta
characteristics: namely L,,L,, (see Corollary 3). Since n~ D —
— L, ~ D' — L, it follows that L; + n is effective so that ho(L; + ) # 0.
Now we cannot have ho(L; + n) > 2 unless 4 is elliptic or rational
which is absurd, nor ho(L;+ n) =2 since L, + n + L,. Then ho(L;
+n)=1
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PROPOSITION 7: A generic Enriques’ threefold V is not rational.

PROOF: Let us consider the étale double covering q: 4 — A: the Prym
variety associated to g is an abelian variety P with principal polariza-
tion 9. Moreover P is the algebraic representant of A%(¥’) and 3 is the
incidence polarization (see Prop. 5). Then, by [1] Prop. 4.6, it suffices to
show that (P, 9) as a principally polarized abelian variety, is not isomor-
phic to a product of jacobians of curves.

To get this result we observe that, by Corollary 3, 4 cannot be hyper-
elliptic, trigonal nor elliptic-hyperelliptic. Moreover 4 has 2 and only 2
even effective theta characteristics: L, L,. By Proposition 6 and Corol-
lary 4 g is given by y ~ D — L; ~ D' — L,; and by Corollary 5 4 cannot
carry an even effective theta characteristic N such that ho(N + #) is
even. Then it follows from [6] Theorem 7 (d) pag. 344 that (P, $) cannot
be a jacobian nor a product of jacobians of curves.
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