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The Enriques threefold, i.e. the hypersurface of P4 having as hyper-
plane sections the classical Enriques surfaces (i.e. the surfaces of degree 6
in P3, passing through the edges of a tetrahedron), was studied classi-
cally by several Authors.
Fano suggested that it was not unirational ([10] p. 94), but Roth

proved that it was unirational and, in order to prove the non-

rationality, he gave an argument involving the Severi torsion. This point
was in disagreement with Serre [12], where it is shown that a non sin-
gular unirational variety cannot have torsion. Tyrrel [13] pointed out
that Roth’s argument was not correct because of the existence of some
not ordinary singular points.

In this note we find, for a generic Enriques threefold E a non singular
model ’ containing an open set W, which is a conic bundle (in the sense
of [1]) over a suitable surface, with a complete non singular curve A of
genus 5 as curve of the degenarate conics. By analyzing ’ - W explicit-
ly we prove, as in the case of standard conics bundles, that the Chow
group A2(’) is isomorphic to the Prym variety Prym(,jld).
At the end, since A has genus 5 and so is not included in th. 4.9 of [1],

we need some careful analysis about its halfcanonical series, to conclude
that Prym(À/4) is not a Jacobian of a curve and therefore V is not
rational.

In the complex projective space P4 of homogeneous coordinates
(xo : xl : x2 : X 3: x4) we consider the irreducible generic hypersurface V of
equation:

(*) Lavoro eseguito nell’ambito del G.N.S.A.G.A. del C.N.R.

0010-437X/83/02/0167-18$0.20
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In particular, ci ~ 0, i = 1, 2, 3, 4.
It is known ([11] p. 44, [13] p. 897) that its generic hyperplane section

is an Enriques surface and that V gets the following singularities:
(i) six double planes 03C0ij of equations xi = xi = 0, 1 ~ i  j ~ 4,
(ii) four triple lines of equations xi = Xi = Xk = 0,
1 ~ i  j  k ~ 4,

(iii) one quadruple point at 0(1,0,0,0,0) and other two non ordinary
quadruple points on each triple line.

It is also known that V is unirational ([10] p. 97).
In order to prove that V is non rational, we consider the following

rational map:

given by

qJ is not defined over the planes 03C012 and 1t34, moreover the image of ~ is
the quadric surface Q ~ p3 of equation xt = yz.

LEMMA 1: For all q E Q, let Eq = 9 -’(q) be the inverse image of q. The
Zariski closure of Eq is a plane in p4 passing through the point
0(1,0,0,0,0) and intersecting each plane 7rl2 and 1t34 along a line.

I n other words, Q parametrizes the planes in p4 cutting these two fixed
planes along a line.

PROOF: Let q = (x, , z, t) E Q and p E Eq. Since p doesn’t belong to the
planes 1t12 and TG34, there exist only two hyperplanes passing through p
and containing one of them. Their equations are precisely:

where

and

So the equations (*) define exactly the Zariski closure of Eq.
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It follows immediately:

LEMMA 2: The following (not linearly independent) equations in

P4  P3

define the Zariski closure 0393~ of the graphe of ~.

Note. 0393~ can be obtained by blowing p4 up along the ideal of the
planes 7112 and 1r34’

LEMMA 3: The equations of lemma 2, together with the following ones:

define the strict transforma V’ of V in r qJ’

PROOF: Immediate.

REMARK: Let 03C0: V’ ~ Q be the restriction to V’ of the canonical pro-
jection. For the fibre 03C0-1(q) of a point q~Q we have three possibilities:

(1) if all coordinates of q are different from zero, n-l(q) is a (possibly
degenerate) conic. In fact it is the residual conic cut out on V by the
plane Eq, apart from the two (double) lines lying on the plane 03C012 and

n34’
In the above notations, if Eq has equations
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(oc, 03B2, y, ô: fixed), on Eq we may assume homogeneous coordinates v : u : r

such that, for a point p E Eq

In this coordinate system the conic 03C0-1(q) has equation:

(2) if exactly two coordinates are zero, then 03C0-1(q) is a double line.
(3) if three coordinates are zero, 03C0-1(q) = Eq*

(2) and (3) follow immediately from the equations.
We want to prove that V is birationally equivalent to a conic bundle.
Let X = (1,0,0,0), Y = (0,1,0,0), Z = (0,0,1,0), T = (0,0,0,1) be the

four points of the case (3), and blow Q up in these points, or, equiva-
lently, take the strict transform G of Q in the blowing up of P3 along the
two lines of equations x = t = 0 and y = z = 0. So we realize G in
P1(03BB:03BC)  P1(03BD:03C1)  P3(x:y:z:t) by the equations

If 8 : G ~ Q denotes the structure map, by base-change we obtain a
birational morphism :~ = 0393~  G ~ 0393~ and a structure map

:~ ~ G.
The strict transform  of V’ in ~ has equations in

P1  pl X P3  X p4
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where

It follows that à :  ~ G is a "conic bundle" birationally equivalent
to K

In fact, if g E G e(g) = X (or Y, Z, T) it follows from those equations
that -1(g) is still a conic, precisely, if e(g) = X, it is:

Nevertheless, we’ll see that  still gets some singularities.
First of all, we want to study the locus of the degenarate conics. We

have the following

PROPOSITION 1: The locus of the degenerate conics for fi:  ~ G is

given by:
- a non singular curve L1 parametrizing the conics of rank 2,
- four lines (disjoint from L1 and not intersecting each other), para-

metrizing the double lines.

PROOF: At first we study 03C0: V’ ~ Q.
The condition for a conic n-l(q) in order to be degenerate is the

following:
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Therefore the curve of the degenerate conics on Q is given by:

(i) four lines, parametrizing the double lines

(ii) the curve C ~ Q of type (4,4) of equations

C is the complete intersection of Q and a quartic surface R.
A simple direct computation shows that X, Y, Z, T are ordinary

double points of C, and C is not tangent to the four foundamental lines
lying on Q.

Moreover, we may see that 03C0-1(q) has rank 2, dq E C - {X, Y, Z, T} (it
follows from considerations on the minors of order 2 in the discriminant

of 03C0-1(q)). Hence C must be non singular in q (cf. [1] prop. 1.2).
Therefore, for a generic V, the strict transform L1 of C in the blowing

up 8 : G ~ Q is non singular and doesn’t intersect the strict transform of
the four foundamental lines of Q.

Now, in order to examine the singularities of V we denote by fi the
section of ~ with xo = 0.

fi is birationally equivalent to the hyperplane H of P4 of equation xo
= 0. By projecting from the point 0(1,0,0,0, ), we obtain a rational
map ~: V~H, which is 2 - 1 outside the double planes of K By base-
change we get a fibre-diagram
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where the vertical arrows are birational morphisms.

LEMMA 4: The ramification locus Rn of  has equations on V

PROOF: The restriction of q to kg = -1(g) ~ E. coincides with the
projection of k. on the "line at infinity" of E.. So we get the ramification
points of |kg by intersecting k. with the polar line of 0 to kg, or, equiva-
lently, with the polar hyperplane of 0 to the quadric hypersurfaces ob-
tained by fixing the coordinates of g in the equations (**) of 17.

In this way we find exactly the required equations.

COROLLARY: Rn is the union of the following sections of t7:

PROPOSITION 2: Aji (i, j = 03BB, y, v, p) is a smooth quadric surface. B is a
smooth Enriques surface.

PROOF: 1) Let’s consider, for example, A03BB03BD. Its equations in
P1  P1  P3 x P4 are given by:

so they determine a smooth surface isomorphic to P1  P1:
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2) B is an Enriques surface.

In fact the ramification divisor of the map q: V ~ H has

equation, in the coordinates (xi : x2 : ~3 : x4), the discriminant of the poli-
nomial of degree two in xo defining V in P4, i.e.

The expression contained in the square brackets is the canonical

equation of an Enriques surface in P3, which is birationally equivalent
to B by means of 11.

It is possible to verify on the equations that the blowing up defining
induces a desingularization of this Enriques surface, but we can also
observe directly that 7c 1 B : B ~ G is a double covering with ramification
divisor

where (0394’) = L1 is the irreducible smooth curve of G studied in prop. 1.

So A03BB03BD · B = L’, is a line of equations

and

is a foundamental line on G parametrizing the conics of rank 1. It fol-
lows that Rn is a (reducible) smooth curve, and therefore B is non

singular.

PROPOSITION 3: V is non singular, except for four couples of lines con-
tained in AÀ,, AÂ,, Au," A,P, having equations

Moreover all these points are ordinary double points.
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PROOF: Let D = A03BB03BD + A03BB03C1 + A03BC03BD + A03BC03C1. Then : - D ~  - D
is a double covering with smooth ramification locus, therefore it is non
singular and all singular points of V are necessarily belonging to D.

It sufnces to consider one of the connected components of D, for

example A03BB03BD, and to argue locally. So, taking the open set

U ~ P1  P1  P3 x p4 where 03BC = 03C1 = x = x0 = 1 and assuming
affine coordinates (À, v, y, z, t, Xl, x2, X3, x4), we easily see that the
tangent space at any point p = (0, 0, , 0, 0, xl, 0, 0, 0) E A;.v n U to
 n U is given by the following (not linearly independent) equations:

Since dim T,p ~ 3, at most six of them are linearly independent. Two
different cases are possible:

Then 03BB = 03BD = t = z = x2 = x3 - X4 = 0 are six independent equations,
so dim Tÿ, p = 3 and Fis non singular at p.

In this case the last two equations are identically zero, and the first six
are related by the (unique) relation

(Note that 1 ~ 0). So dim T,p = 4.
To determine the tangent cone at p to 17, we assume as local para-

meters at p to f lp (which is a non singular four-dimensional variety), for
example, 03BD, x3, y’ = y - y, x’1 = x 1 - x1 and we obtain a term of lower
degree of the kind
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where

It is a quadric cone over the conic (***) with discriminant

(remember that c2 ~ 0). For a generic V,H ~ 0, so p is an ordinary
double point. It is immediate to see that from H = 0 it follows that the
solutions of the equation 2) (and so either the two corresponding lines
on 17 and the two quadruple points on the line X2 = X3 = X4 = 0 on V)
coincide.

COROLLARY: A non singular model for V is given by the strict transform
’ of  in the blowing up of ~ along these eight singular lines.

PROOF: It can be done directly in the above local coordinates. In
particular, for each line blown up we get an exceptional quadric.

REMARK: In conclusion, we have got a non singular model v’, of V
and a map f = 7T’ : ’ ~ G whose fibres are:

i) a non singular conic if g ~ 0394 ~ {Lij}
ii) two different lines if g ~ ~
iii) a double line and two conics if g E Lij.

Therefore the inverse image 1 of the four foundamental lines Lii is a
union of quadrics (the Aij’s and the exceptional ones).
W = V’ - 1 is isomorphic to  - ~ Aij, so that it is a non singular

conic bundle over G - ~ Lg.
L1 is the complete non singular curve of degenerate conics of the

bundle.

We can construct in a standard way (see [1] 1.5) a double covering
q : à - 4 such that every point t E d parametrizes one of the two lines
contained in the conic kq(t). Let us call this line L(t) and look to it as an
element of C2(W). By similar arguments as in [1] 3.1, and considering
also [1] 3.1.9 one can prove the following

PROPOSITION 4: The map t H L(t) extends to a surjective homo-

morphism
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whose kernel is q*J(~). Taking the quotient, we obtain an isomorphism

COROLLARY: P --=---+ A2(V’).

PROOF: Let Y be the desingularization of . We have the exact

sequence

and A1(Y) = 0 since  is the union of quadric surfaces. We observe that
this is a group isomorphism.

PROPOSITION 5: P is the algebraic representative of A 2(V’) (cfr. [1] def.
3.2.3.), and the principal polarization ~ of P is the incidence polarization
relative to X ([1] def. 3.4.2.).

PROOF: It can be shown by the same arguments as [1] Prop. 3.3 and
[1] Prop. 3.5.

LEMMA 5: Let C be a canonical curve in p4 which is a complete inter-
section :

(1) C has a half-canonical g14 if and only f C is contained in a quadric
U of rank three;

(2) the unique ruling of two-planes of U cuts out the half-canonical g14
on C.

PROOF: (1) Let us suppose that C has a half-canonical g’; if D is an
effective divisor belonging to the g14 then, by Riemann-Roch Theorem
and the hypothesis 2D - K, it follows

Since K is cut out by the hyperplane sections, h o (K - D) = 2 means
that Supp D ~ 03C0 where is a two-plane; now we can take another
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effective divisor D’ which is linearly equivalent to D and, without loss of
generality, we can assume Supp D n Supp D’ = J (if not C will have a g13
and will not be a complete intersection). Let 03C0’ be the two-plane con-
taining Supp D’ : since D + D’ ~ K it follows that 7r u n’ is contained in
an hyperplane H of P4 and that 03C0, 03C0’ intersect along a line u. Moreover
there is only one net of quadric surfaces in H passing through
Supp D u Supp D’, so that they are sections by H of the quadric hyper-
surfaces through C. Since 7r u 03C0’ belongs to the net, there is a quadric
hypersurface U containing C ~ 03C0 ~ 03C0’.
U is singular because it contains some 2-plane, then its rank may be

equal to 3 or 4. If U had rank 4 then U will be a cone over a quadric
surface S in P3. In this case 03C0 will be a plane through the vertex of the
cone and a line 1 of S; then D will be cut out on C by the two-planes
through the vertex of U and a line in the same ruling of 1; which is
absurd since n’ belongs clearly to the other ruling of two-planes of U.
Then U must have rank 3 and its singular locus has to be the line
u = n r-) n’.

Viceversa and (2) follow easily by the above arguments.

LEMMA 6: Let V be a generic Enriques’ threefold, then a canonical model
of d is the complete intersection in p4 of three quadric hypersurfaces
Qi, Q2, Q3 where Qi, Q2 have rank 3 and Q3 is generic.

PROOF: We considered a singular model C of L1 given by the follow-
ing equations in P3 (x : y : z : t), (see Prop. 1):

C is of type (4,4) in the quadric surface Q = {xt - yz = 01 and has
four ordinary double points: X(1:0:0:0), Y(0 :1 :0 :0), Z(0:0:1:0),
71(0:0:0:1). The linear system of quadric surfaces in P3 containing the
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four double points and distinct from Q cuts out on C the canonical
system. Moreover it defines a rational morphism

which desingularizes C and embeds it canonically in p4. Indeed the
equations of 0 can be defined by setting

where (u0: u1: u2: u3: u4) are projective coordinates in P4. Then the strict
transform of Q is the intersection of the two quadric hypersurfaces of
rank three:

Moreover the quartic form F4(x, y, z, t) can also be written as a quadra-
tic form F(xy, xz, xt, yt, zt) in xy, xz, xt, yt, zt. It follows immediately that
the strict transform L1’ of C in P4 has equations:

where F(u0, u1, u2, u3, u4) is a quadratic form.
Then the affine space of the coefficients of the equation of V maps

on the affine space of the coefficients of a quadratic form

F~C[u0,u1,u2,u3,u4]. One can compute directly that this map is of
maximal rank and surjective.
From this fact we can argue that 4’ ils the complete intersection of p4

of Q 1, Q2 and a third generic quadratic hypersurface Q 3 . In particular A’
is smooth and canonically embedded in p4.

COROLLARY 3: Let V be a generic Enriques’ threefold:
(i) A is not hyperelliptic, trigonal, nor elliptic-hyperelliptic;
(ii) A has two half-canonical g14’s Ll, L2;
(iii) A does not contain a half-canonical divisor N such that N + Li,
(i = 1, 2), h 0 (N) :0 0, h 0 (N) even.

PROOF: (i) follows from the proof of the above lemma and from the
fact that Q3 is generic. (ii) follows from Lemma 5. Now we show (iii): by
(i) and Lemma 6 A is the base locus of a net 1 of quadric hypersurfaces
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containing the 2 quadrics Q1, Q2 of rank 3. Moreover, being Q3 generic,
1 is generic in the family of nets as above, so that 1 does not contain a
third quadric of rank 3 different from Q1, Q2. Then, by Lemma 5, A
cannot carry a half-canonical divisor N with ho(N) = 2 and N ~ Li. In
the end, if h o (N) = 4, A will be clearly elliptic or rational which is

absurd.

REMARK: By the corollary above A is generic among the curves of
genus 5 having 2 and only 2 half-canonical gl’s. Thinking of A as a
singular curve of type (4,4) in the quadric Q (see Prop. 1) these gl’s
arise by intersection with the two rulings of lines in Q.

Let us consider now the étale double covering of d :

(see the remark before Prop. 4); we will compute the semiperiod giving
such a covering.
We have seen (see the remark before Prop. 1) that there is a birational

morphism of V with a (singular) conic bundle 17 on the surface G. G is
the blowing up

of the quadric surface Q = {xt - yz = 01 in the four fundamental points
of P3(x: y : z : t). Let 7T :  ~ G be the map fibering  in conics; Vg E G the
conic -1(g) is obtained, via the birational morphism from to Éi from
a conic Kg in V contained in a 2-plane E,, meeting both the 2-plane
03C012 = {x1 = X2 = 0}, n34 = {x3 = x4 = 01 along a line (Lemma 1).

LEMMA 7: The locus in G:

is given by:
(i) a non singular elliptic curve ~ ~ G which is the strict transform, via

03B5 : G ~ Q, of a quartic elliptic curve in Q passing through the four funda-
mental points of B - 1 ;

(ii) two rational curves 12, l2 which are the strict transforms of the lines
{y = t = 01, {x = z = 01 belonging to the same ruling in Q.

PROOF: The equation of a conic Kg c Eg = (03B1x1 - f3X2 = YX3 - ÔX4
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= 01 c P4 is given in the remark following Lemma 3. The coefficients of
such a equation depend on (a : fl) x (y : ô), the projective coordinates on

E. are (u : v : r) and the line E. n 03C012 is given by setting u = 0. It turns out
easily that, if Kg satisfies the required condition, then (a : 03B2) x (y : b) an-
nihilates the following equation:

With the same notations of Lemma 1 we have 03B1 : 03B2 = t : y = z : x;
03B3 : 03B4 = y : x = t : z so that the set of zeroes of the second factor of the
above equation becomes the locus in P3(x : y : z : t):

If V is generic this is clearly a smooth quartic elliptic curve in Q, passing
through the four fundamental points of p3, that is through the funda-
mental points of B -1; this shows (i). To show (ii) we observe that the
fibers of iî on l2(l’2) are double lines (see Prop. 1) and that these dou-
ble lines arise, by the birational morphism quoted above, from the line

{x3 = x4 = xl = 0}({x3 = X4 = X2 = 01) counted twice. This one meets
03C012 twice in the point (1:0:0:0:0) and this shows (ii); moreover it is

clear from the geometric situation that the locus we are considering
cannot have other components.

LEMMA 8: We have on G:

(i)(~,l2) = (~,l2) = 0
(ii) 4 and V does not meet along the four exceptional divisors of G
(iii) (J, V) = 8 and, for every p E A n V, i(p; A n V) = 2.

PROOF: e(A), g(V), B(l2), e(l’) 2 pass all through the four fundamental
points of B -1; since V is generic it is clear from the equation of e(V)
written in Lemma 7 that B(l2), 03B5(l’2) are not tangent to e(V); in the same
way one can also see that, for every fundamental point 0, the tangent
line in 0 to e(V) cannot be a component of the tangent cone to e(A) in 0.
This shows (i) and (ii). Now we have on Q : (03B5(~), E(~)) = 16; moreover
e(V) meets the four singular points of e(A) and these are also the funda-
mental ones for 03B5-1. Then, by (ii), (~,~) = 8.
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Another direct computation shows that i(p;~ n V) = 2 for every

p ~ 4 ~ ~.
Let us consider now the double covering:

branched over ~~l2 ~ l’2 :  is smooth since V u 12 ~ 12 is smooth.

Moreover the open set G - (1, u l’) parametrizes the couples (g, x)
where g ~ G and x~Kg~03C012. It follows that f-1(~) parametrizes the
lines being components of the degenerate conics Kg of rank 2. Then

f-1(~) is a (singular) model of J. Indeed f-1(~) is singular exactly in
the four points of the set f-1(~ ~ V): this can be obtained, with a local
computation, by observing that, for every such a point x, i( f (x); A n V)
= 2 and V belongs to the branch locus of f.
Clearly we have the commutative diagram:

where v is the normalization morphism.
Let us call Li a divisor on L1 belonging to the halfcanonical g14 cut out

on 03B5(~) by the lines of Q not in the ruling of B(l2); let us call L2 a divisor
in the other half-canonical g14 of L1, (see corollary 3), we have the
following

PROPOSITION 6: If {p1, p2, p3, p4} = 1 m V and D = pi + p2 + P3 + P4
on L1 then

is the semiperiod giving the étale double covering q :  ~ ~.

PROOF: On G we have ~ ~ 211 + l2 + 1; where l1 is the (global) trans-
form of a line of Q not in the ruling of B(12)’

Then O~(~ - 2l1 - l2 - 1;) ~ O~(2D - 2L1) ~ O~ so that ~ = D - L1
is a semiperiod.

Observe now that G is a (smooth) rational surface: let m be the trans-
form of ageneric line 03B5(m) ~ 8(12); since (m, V + l2 + l’2) = 2 then

f : f-1(m) ~ m is a double covering of pl branched on two points. It fol-
lows that G carries a pencil of rational curves so that, by Noether’s
theorem, it is a rational surface.
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Since V + l2 + "2 is the branch locus of f it turns out that

and, since Pic 6 has no torsion (being G rational),

By setting Â, = f-1(~) we have:

that is:

Then q*~ is trivial on J: this happens if and only if q : À - 4 is given by
il-

REMARK: ~ ~ L 1 - L2 : since 2D is cut out on 03B5(~) by an elliptic curve
of type (2,2) on Q, it follows that Supp D cannot be contained in a line
of Q, so that D ~ Li. This shows also that q cannot be trivial.

COROLLARY 4: ~ ~ D’ - L2 where 2D’ is cut out on L1 by a smooth
elliptic curve ~’ parametrizing the conics Kg of rank ~ 2 such that

Kg n 03C034 is exactly one point.

PROOF: Exactly as to show il - D - L 1: it suffices to substitute 03C012
with 1t34 and l2, l2 with the corresponding rational curves l1, l’2 strict
transforms of the lines {z = t = 01, {x = y = 01.

COROLLARY 5 : If V is generic, on L1 there is no effective even theta
characteristic N such that ho (N + ri) is even.
Moreover ho (Li + ~) = 1.

PROOF: If V is generic on L1 there are only two effective even theta
characteristics: namely LI, L2, (see Corollary 3). Since j7 - D -
- Li - D’ - L2 it follows that Li + ri is effective so that ho(Li + ~) ~ 0.
Now we cannot have ho (Li + ~) &#x3E; 2 unless A is elliptic or rational
which is absurd, nor ho(L’i + ri) = 2 since L, + n ~ L2. Then ho (Li
+ ~) = 1.
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PROPOSITION 7: A generic Enriques’ threefold V is not rational.

PROOF: Let us consider the étale double covering q :  ~ L1: the Prym
variety associated to q is an abelian variety P with principal polariza-
tion S. Moreover P is the algebraic representant of A2(’) and S is the
incidence polarization (see Prop. 5). Then, by [1] Prop. 4.6, it suiHccs to
show that (P,,9) as a principally polarized abelian variety, is not isomor-
phic to a product of jacobians of curves.

To get this result we observe that, by Corollary 3, L1 cannot be hyper-
elliptic, trigonal nor elliptic-hyperelliptic. Moreover L1 has 2 and only 2
even effective theta characteristics: Ll, L2. By Proposition 6 and Corol-
lary 4 q is given by q - D - L1 ~ D’ - L2 ; and by Corollary 5 L1 cannot
carry an even effective theta characteristic N such that ho(N + ri) is
even. Then it follows from [6] Theorem 7 (d) pag. 344 that (P,,9) cannot
be a jacobian nor a product of jacobians of curves.
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