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1. Introduction

Let G be the Hilbert modular group for a totally real number field K
of degree n. Thus, G = PSL2(o), where o is the ring of integers for K.
(We allow the case n = 1, with K = Q and o = Z). By means of the n
distinct embeddings of K into the real numbers R, G acts on H", where
H denotes the complex upper half plane; see [7] for details. A holo-
morphic function f:Hn ~ C is called a modular form of weight 2k if:

Here J(g, z) is the Jacobian of the transformation g at z - i.e., if g is

represented by a matrix (a b c d and if z = z1,... zn), then

where, for x in K, x(i) denotes the image of x by the ith embedding of K
in R. (If n = 1, we also must assume that f is "holomorphic at the
cusp"). We set

(MG)k = complex vector space of modular forms of weight 2k,

Thus MG is a (finitely generated) algebra over C.
* Research supported by grants from the National Science Foundation.
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PROBLEM 1: For a given number field K determine the structure of the
ring of modular forms MG.

When n = 1 (K = Q), it is a classical result that MG is a polynomial
ring:

where Ei is an Eisenstein series of weight 2i (i = 2, 3). When n = 2, only
some scattered results have been obtained. We adopt the following
notation: if K is a real quadratic number field of discriminant D, we
write M(D) instead of MG. The following rings M(D) have been deter-
mined [5], [8], [9]:

Here the X’s and Y’s are generators and the R’s are relations, with

weight twice the subscript. These rings are all examples of "complete
intersection" rings, see Section 5 for definition. On the other hand van
der Geer [4] has determined the ring M(24), and this turns out not to be
a complete intersection (see Section 6). As a step towards Problem 1, we
ask: for which discriminants D is the ring M(D) a complete intersection?
Our result is:

THEOREM 1: If D ~ 12, then M(D) is a complete intersection ring if, and
only if, D = 5, 8 or 13.

REMARK: From the results in Section 6 it seems likely that M(12) is
also a complete intersection. Specifically, we have:

CONJECTURE 1: M(12) = C[Xl, X2, X3, Y3, X4]/(R’6, R’8).

Suppose now that r is a subgroup of G (n arbitrary). We then have
the notion of a modular form for r - simply require that (1.1) holds only
for all y E 0393 - and hence we obtain the algebra of modular forms Mr. In
particular suppose that r is the principal congruence subgroup as-

sociated to a proper ideal 21 in o. (See §7). Such a subgroup is torsion
free provided 2I2 ~ (2) or (3). If K is a real quadratic number field of
discriminant D, we write M(D, 21) for Mr. Hirzebruch [8] has proved
that the ring M(5, (2)) is a complete intersection: specifically,
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where deg Xi = 2, deg S = 4, deg T = 8.
Our result is

THEOREM 2: Let K be a real quadratic number field of discriminant D,
and let 21 be a proper ideal in o with 212 ~ (2) or (3). If (D, 21) ~ (8, (2)),
then M(D, 21) is a complete intersection ring if, and only if, (D, 21) = (5, (2)).

REMARK: It seems likely that M(8, (2)) is also a complete intersection
ring, with structure as follows:

CONJECTURE 2:

where deg Xi = 2, deg R = 4.

These two theorems suggest that we look for weaker structures than

complete intersections for the rings Mr. For example, every complete
intersection ring is Gorenstein and every Gorenstein ring is Cohen-

Macaulay. (We are using the definitions in [12]). It is not known

whether or not MG (or more generally, Mr) is always Cohen-Macaulay.
When n = 2, we have the following result. (In general we will say that a
subgroup r of a modular group G is of modular type if either r = G or
r is a torsion free subgroup of finite index).

THEOREM 3: Let T be a subgroup of modular type for a real quadratic
number field. If Mr is Cohen-Macaulay, then it is also Gorenstein.

We now consider Problem 1 for totally real cubic number fields, i.e.,
n = 3. Our result here is:

THEOREM 4: Let r be a subgroup of modular type for a totally real
cubic number field. Then, the ring Mr is never Gorenstein.

As indicated above this shows, in particular, that Mr is never a

complete intersection ring.
The paper is organized as follows. In §2 we describe the formula of

Shimizu, which gives the dimension of the space of "cusp" forms. Using
this, in §3 we construct a rational function 03BC0393(t) for each group r. We
define the notion of a "palindromic function" in §4 and give there the
proofs of Theorems 3 and 4, using properties of 03BC0393(t).) Finally, we dis-
cuss complete intersection rings in §5, give the proof of Theorem 1 in §6
and that of Theorem 2 in §7.
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2. The Formula of Shimizu

The results of the preceding section are proved by studying the pro-
perties of a certain rational function 03BC0393(t) associated with the ring Mr.
This function is defined using results of Shimizu, which we now explain.
With each graded, finitely generated algebra A over the complex

numbers we associate a formal power series (the "Hilbert series") by:

where A = 03A3~i=0 Ai. Since A is finitely generated, a(t) is in fact a rational
function, i.e., an element of Q(t) (see [1]). Thus with each subgroup T of
modular type we associate, in a canonical way, a rational function 03BC0393(t),
taking A = Mr. To calculate J.lr(t) we must know the integers
dimC(M0393)k, k ~ 1. These follow from the work of Shimizu [11], for
k &#x3E; 1, and Freitag [3], k = 1.
The vector space (M0393)k contains a subspace (Cr)k, the space of "cusp

forms" of weight 2k (see [11]). In fact,

where h denotes the number of "cusps" of r. By Shimizu ([ 11 ], Theorem
11) we have:

(2.2) Let K be a totally real number field of degree n, and let r be a
subgroup of modular type, with [G : r] = e. Then, for k ~ 2,

Here ’K is the Dedekind zeta function of K, while w is a rational number
(see below) arising from the cusps of r. The remaining terms in (2.2)
come from the fixed points of T. With each fixed point x we associate an
(n + l)-tuple, r, of positive integers (called a type): r = (r; q1,..., qn). Here
r is the order of the isotropy group, 0393x, at x, while (q1, ... , qn) describe
the representation of the (cyclic) group 0393x on C", relative to a choice of
generator. We say that a type is "proper" if q 1 = 1 and 0  qi  r, for
i &#x3E; 1. We show in §2 of [14] that with each fixed point of r we can
associate a unique proper type. Two fixed points x and x’ are called
"equivalent" if there is y in r such that x’ = yx. The number of equiva-
lence classes of fixed points for r is finite; moreover, equivalent fixed
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points have the same proper type. We set

a(i) = number of equivalence classes of fixed points with
proper type T.

Finally, for k ~ 0, we define (see [6], [11] and [15]):

In (2.2) the summation is over the finite set of proper types i with

a(03C4) ~ 0. Note that:

(2.4) If r is torsion free, then a(1) = 0 for all i.

Also, as noted by Shimizu [11]:

(2.5) If K has a unit of negative norm (e.g., if n odd), then w = 0.

In §1 we are concerned only with n = 2 and 3; thus, by (2.5) we need
only calculate the number w for n = 2. For this we define the arithmetic
genus of r, X(F).

Let Yr = H"IF, the quotient space of Hn by r. By Blumenthal and
Maass, one can compactify Yr by adding on h points so that the result-
ing compact space, 0393, is a projective variety (h = number of cusps of F).
Let Zr be a non-singular model for ir. Since any two such models are
birationally equivalent and since the arithmetic genus x is a birational
invariant, we obtain an invariant that depends only upon r if we set:

By Freitag [3] and Hammond ([6], page 41), using the fact that
pg + 1 = x, we obtain:

(2.6) Let r be a subgroup of modular type for a real quadratic number
field K. Then,

We stress that (2.6) holds whether or not K has a unit of negative norm.
For k ~ 0 set
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Combining (2.2) and (2.6) we obtain:

(2.7) Let r be a subgroup of modular type for a real quadratic field K,
with [G : r] = e. Then, for k ~ 2,

For n = 2 and 3 we now give explicit calculations of the (rational)
numbers Yk(T) and Cok(r), for all proper types that occur. We start with
n = 2; for k ~ 0 define integers 03B4k, 03B5k by the generating functions:

Using the results of Prestel [10], we prove:

(2.9) THEOREM: For real quadratic numbers fields there are eight proper
types of fixed points for the modular group. For each such proper type the
value of OJk(t) is as follows:

We precede the proof with the following simple result.

(2.10) LEMMA: If the number Yk(t) is constant for all k, then 03C9k(03C4) = 0, all
k. In particular, if T = (r ; 1, r - 1), then (Ok(r) = 0, all k.

This follows at once from (2.3) and the definition of cvk(i).

Proof of (2.9): Prestel shows ([10], page 207) that the eight proper types
given in (2.9) are the only ones that occur for real quadratic fields. By
Lemma (2.10) 03C9k(03C4) = 0, for c = (2; 1, 1), (3;1, 2), (4 ; 1,3) and (6;1, 5). By
(2.3), yk(4;1,1) = 1/16 (all k), and so again by (2.10), 03C9k(4; 1, 1) = 0. By
(2.3), for k - 0, 1 mod 3, yk(3;1,1) = 1/9; while if k --- 2 mod 3, 03B3k(3;1,1)
= - 2/9. This gives the value indicated above for 03C9k(3; 1, 1). Similarly,
we find that 03B3k(5;1,2) = 03B3k(5; 1, 3); and that for k --- 0, 1 mod 5, 03B3k(5; 1, 2)
= 1/5; if k - 2, 4 mod 5, 03B3k(5; 1, 2) = - 1/5; and if k --- 3 mod 5, 03B3k(5; 1, 2)
= 0. Thus we obtain the values indicated for 03C9k(5; 1, 2) and 03C9k(5; 1, 3);
this completes the proof.
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We now prove the analogous result for n = 3; of course, by (2.5), we
now work directly with the Yk(T)’s. For k ~ 0 define integers Ok, 03C8k, Ok
and 03BEk by:

Note that in the second, third and fourth functions (1 - t) is common to
numerator and denominator.

Our result is:

(2.12) THEOREM: For totally real cubic number fields seven proper types
of fixed points occur for the modular group. For each such proper type the
value of Yk( -r) is given as follows: -

The fact that only these seven types occur (up to an equivalence re-
lation) is proved in [14], §2. For each type the value of yk is then a
standard calculation and is left to the reader. For the case r = 9 it is

useful to note that if ( is a 9th root of unity then 03B66 + 03B63 + 1 = 0. Also, if
discriminant K &#x3E; 81, only the first three types occur, see [16].

Using (2.9) and (2.12) we rewrite (2.2) and (2.7). Suppose that K is a
real quadratic field with discriminant D; define a number sD by:

Also, if r is any subgroup of modular type (n arbitrary), we set, for
r ~ 2,

(2.14) a,(F) = number of equivalence classes of fixed points x of r, with
lfxl = r.
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For n = 2 the numbers ar have been calculated by Prestel [10], and for
n = 3 by Weisser [16].

Let bk and Bk be the integers defined in (2.8). We prove:

(2.15) THEOREM: Let K be a real quadratic number field with discriminant
D and r a subgroup of modular type, with [G : r] = e. Then, for k ~ 2,

PROOF: By (2.9) we see that the only proper types we need consider in
(2.7) are (3; 1, 1), (5; 1, 2) and (5 ; 1,3). By [9], page 207, we find that:

Thus the theorem follows from (2.7) and (2.9).

REMARK: If D &#x3E; 5, then a5(T) = 0, while if r is torsion free a3(r) =
= a5(0393) = 0.

We now rewrite (2.2) using Theorem (2.12). Let Ok, 03C8k, Ok and 03BEk be
the integers defined in (2.11). We prove:

(2.16) THEOREM: Let r be a subgroup of modular type for a totally real
cubic number field K. Then, for k ~ 2,

Here a, = ar(r) and e = [G : r].
The proof follows at once from (2.2), together with (2.12) and the

frequencies with which the various types occur, as shown in Theorem
(2.11) of [ 14].

3. Rational Functions

We now use the results of §2, especially Theorems (2.15) and (2.16), to
calculate explicitly the rational function J.lr(t) associated to the ring of
modular forms M.. After some preliminary remarks we do out in detail
the case n = 2; the proofs for n = 3 are quite similar and so are only
sketched.
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We study 03BC0393(t) by means of an analogous function derived from the
cusp forms. For this define

where we set (Cr)o = C. Thus, by (2.1), we have:

where, h = number of cusps for r. Thus C1r(t) is also a rational function;
we first calculate this, and then obtain pr(t) by (3.1).

Notice that in (2.2) (and its variants in §2), we are not given dim(C0393)1.
For this we need a result of Freitag [3].

(3.2) Let r be a subgroup of modular type for a totally real number field of
degree n. Then,

We now have all the facts necessary to calculate C1r(t). We begin with
a useful observation.

(3.3) LEMMA: Let oc(t) = El k = 0 Ak t’ be a formal power series with rational
coefficients. Suppose there is a polynomial f(t) in Q[t], of degree m, and a
positive integer N such that

Then,

where g(t), h(t) E Q [t], with deg g = m, deg h = N - 1.

The proof is standard and is left to the reader.

THE CASE n = 2. We begin by assuming that D &#x3E; 5; the case D = 5 is
handled below.

(3.4) THEOREM: Let K be a real quadratic number field with discriminant
D, and let j.,lG( t) be the rational function given by the Hilbert series for the
ring of Hilbert modular forms MG. Suppose that D &#x3E; 5. Then,
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where

Here x = X(G), h = class number of K, s = s, (see (2.13)).

PROOF: We begin with the more general situation of a subgroup r of
modular type, with [G:0393] = e. By (2.15), (2.8) and (3.3) we see that C1r(t)
has the following form (we use here the fact that as = 0, since D &#x3E; 5):

where deg g = 2, deg h = 1 and b is a constant. Putting everything over
a common denominator we find that

But by (2.15) and (3.2) we know the terms through degree 6 on the left
hand side of (3.6). If we set Si = dim(C0393)i, we find:

Here x = X(I), s = sD, a3 = a3(T) and’ = (K(- 1). Multiplying through
by (1 - t)2(1 - t3), in (3.6), and solving for f(t), we obtain:

where
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Taking e = 1 (i.e., r = G) in (3.7) and adding on the term ht(1 - t)-1,
see (3.1), we obtain (3.4). Notice that (3.7) continues to hold when r is
torsion free, even for D = 5, since in this case we also have a5 = 0 (as
well as a3 = 0).

Sippose now that r = G and D = 5. We now must adjust (3.5) by
adding on a term ct2(2 + t + 2t2)/(1 - t5), where c is a constant, see (2.8)
and (2.15). Thus, (3.6) changes to:

But by (2.15) we can calculate the numbers Si for 0 ~ i ~ 10. We find:
SO = 1; SI = S2 = 0; S3 = ’S4 = 1; S5 = 2; S6 = 87 = 3; S8 = 4; Sg = 5;
S10 = 7. Solving for f(t) and adding on the term t(1 - t)-1 (h = 1, for
D = 5), we obtain:

(3.8) ADDENDUM: Let K be the real quadratic field with discriminant 5,
and let G be the Hilbert modular group for K. Then,

Suppose now that r is a torsion free subgroup of G, with index e. As
noted above (3.7) continues to hold in this case by taking a3 = 0. One
readily checks that, in this case, the polynomial f(t) in (3.7) factors over
the integers, with 1 + t + t2 as a factor. Since this is also a factor of the
denominator polynomial given in (3.6), we have the following result.

(3.9) COROLLARY: Let K be a real quadratic number field and r a torsion
free subgroup of the Hilbert modular group. Then,

THE CASE n = 3. We begin by assuming that discriminant K ( = D) is
greater than 81.

(3.10) THEOREM: Let K be a totally real cubic number field with discrimi-
nant &#x3E; 81. Then,

where
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Here ar = ar(G), h = class number of K and X = x(G).

PROOF: Suppose that r is a subgroup of modular type, with [G : r] =
= e. We assume that a7(0393) = a9(r) = 0; e.g., either take e &#x3E; 1 or D &#x3E; 81

(see [16]). Then, using the functions given in (2.11), together with (2.16)
and (3.3), we obtain:

We compute the left hand side of (3.11) through degree 8 by (2.1): if we
set Sk = dim(C0393)k, k ~ 0, then

where x = -03BEK(-1), y = a2/4 and z = a3/3.
Solving for f(t) = 03A381 Aiti, we find:

If we now take e = 1 (r = G) and add on the term ht(1 - t) -1, we
obtain 03BCG(t) as given in (3.10). This completes the proof.

By the same method one also computes 03BCG(t) when D = 49 or 81. The
results are as follows; we omit the details.

(3.14) ADDENDUM: Let K be the totally real cubic number field with dis-
criminant D:
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(i) If D = 49, then

(ii) If D = 81, then:

When K is a Galois cubic number field the coefficients B1, ... , B4 are
readily calculated using the tables in [16]. We illustrate this below for
Galois fields of small discriminant.

(3.15) TABLE: Coefficients Bl,..., B4 for 03BCG(t)

Suppose finally that r is a torsion free subgroup of G, with finite
index e, K a totally real cubic number field. Then ar = 0, all r, and so

x = x(r) = 1 4e03BEK(-1). Thus, in (3.13), we find:

Therefore the polynomial f(t) in (3.11) factors into

where Co = C4 = 1, Cl = C3 = -(~ + 4), C2 = 6 - 22x.
Consequently, we obtain:

(3.16) COROLLARY: Let r be a torsion free subgroup of G, as above. Set
x = ~(0393), h = number of cusps for r. Then,



152

where

We give three examples below: in each case r is the principal con-
gruence subgroup (see §7) associated to a prime ideal p. (See [14], (1.7)
for details.)

(3.17) TABLE: Coefficients B, and B2 for 03BC0393(t)

4. Palindromic Functions

Let f(t) be an element of the rational functional field Q(t). We will say
that f is Palindromic (a P-function) if, for some integer e, tef(t-1) = f(t).
Similarly, we call f a Q-function if f( - t) is a P-function. Finally, an R-
function is one that is either P or Q.

The following facts are immediate consequences of the definitions.

(4.1) If f(t) and g(t) are R-functions, then so is f·g(t).

(The multiplication rule is: P. P = Q - Q = P, P. Q = Q).

(4.2) If f(t) is an R-function then so is Ilf(t), with the same value of R.

If an R-function is in fact a polynomial (in Q[t] or Z[t]), we call it an
R-polynomial. We now consider factorization of such polynomials.
Define an integer, + 1, as follows:

(4.3) LEMMA: Let f(t) be an R-polynomial of odd degree. Then,

where g(t) is a P-polynomial.
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The proof follows at once from the definitions and (4.1), (4.2).

(4.4) LEMMA: Suppose that f(t) is a P-polynomial of even degree such that
e (= ± 1) is a root. Then,

where g(t) is a P-polynomial.

PROOF: Since B is a root of f(t), f(t) = (1 - Bt)h(t), where h(t) is an R-
polynomial with ER = - 8. Thus, by (4.3),

which proves the lemma.

We use these ideas to prove the theorems in §1. With each subgroup
r of modular type (n = 2,3) we associate’ a polynomial with integer
coefficients, 03B20393(t), as follows:

(4.5) 03B20393(t) is the polynomial in the numerator of J.lr(t), as given in (3.4),
(3.8), (3.9), (3.10), (3.14) and (3.16).

Thus, in the notation of §3,

where r is 6 in (3.4), 10 in (3.8), 4 in (3.9), 8 in (3.10), 14 in (3.14) and 5 in
(3.16).
We now prove Theorems 3 and 4. Let r be a subgroup of modular

type, as above. By [12], page 481, and by the results of §3 it follows that
the algebra Mr has Krull dimension n + 1, n = 2, 3. Therefore, by [13],
page 71, we obtain:

(4.6) Let r be a subgroup of modular type for a totally real number field of
degree 2 or 3. If the ring Mr is Gorenstein, then 03B20393(t) is a P-poly-
nomial. Conversely, if Mr is Cohen-Macaulay and 03B20393(t) is a P-poly-
nomial, then Mr is Gorenstein.

PROOF OF THEOREM 3: By (3.4), (3.8) and (3.9), 03B20393(t) is always a P-
polynomial, and so Theorem 3 follows at once from (4.6).
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PROOF OF THEOREM 4: Since h is always a positive integer, it follows
from (3.10), (3.14) and (3.16) that 03B20393(t) is never a P-polynomial. Thus, by
(4.6), Mr is never Gorenstein.

5. Complète Intersections

Let R be a graded Noetherian algebra. We say that a sequence
01,..., Or of elements of R is a regular sequence, if each 03B8i is homog-
eneous of positive degree and 03B8i is not a zero-divisor modulo

(03B81,..., 03B8i-1) for i = 1,..., r. We say that a graded algebra A (over C) is a
complete intersection if

where 03B81, ..., 03B8r is a regular sequence (see [13]).
By Stanley ([12], p. 505) we have:

(5.2) Suppose that A is a complete intersection, as above, with deg Xi = di
and deg 03B8j = ej. Then,

For the rest of the paper we suppose that K is a real quadratic
number field of discriminant D and that T is a subgroup of modular
type for K. Let 03B20393(t) be the polynomial in Z[t] defined in (4.5). Thus, by
§3:

(5.3) If r = G and D &#x3E; 5, then deg 03B20393 = 6; if r = G and D = 5, deg
= 10; finally, if F :0 G, deg 03B20393 = 4.

Note that in all three cases the denominator of ,ur(t) has the form
given in (5.2). Thus, by (5.2), we have the following important fact, the
key to proving Theorems 1 and 2.

(5.4) PROPOSITION: Let F be a subgroup of modular type for the real
quadratic number, field K. If Mr is a complete intersection ring, then 03B20393(t)
factors completely into a product of cyclotomic polynomials.

In the next section we use (5.4) to prove Theorem 1, while in §7 we use
it to prove Theorem 2.
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6. Proof of Theorem 1

For this section we take r = G (n = 2), and if discriminant K = D, we
write PD(t) for Pr(t) and j.,lD(t) for j.,lr(t). By (5.4) we will prove Theorem 1
in the "only if" direction by showing:

(6.1) PROPOSITION: If D &#x3E; 13, then the polynomial 03B2D(t) does not factor
into a product of cyclotomic polynomials.

The proof proceeds in two steps. We first show that if 03B2D(t) factors
into cyclotomic polynomials, then 13  D  41. And we then show, by
explicit calculation, that for the 9 values of D in this interval, 03B2D(t) does
not so factor.

The proof hinges on the following two elementary facts. Let

where the Bi’s are given in (3.4). Set a3 = a3(G), ( = (K(- 1), and s = sD.

(6.2) PROPOSITION:

The proof follows at once from (3.4). We now use the specific cal-
culation of ( given by Siegel (see [7], page 192):

where 03C31(m) is the sum of the divisors of m. Since 03C31(m) ~ 1 + m, one
readily shows:

(6.4) LEMMA: Let K be a real quadratic field with discriminant D.
(i) Suppose that D - 1 mod 4, and let r be the largest integer such that

D &#x3E; 4r(r - 1) + 1. Then,
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(ii) Suppose that D = 4d, with d ~ 2, 3 mod 4; let r be the largest in-
teger such that d &#x3E; 4r2. Then,

REMARK: The lower bound can be achieved, e.g. D = 5, 13, 29, 53.

By the lemma, and the table on page 200 of [7], we have:

(6.5) COROLLARY:
(i) If D &#x3E; 37, 203BEK(-1) ~ 7/3.

(ii) If D &#x3E; 57, 2(K( -1) &#x3E; 8/3.
(iii) If D &#x3E; 153, 2(K(- 1) &#x3E; 32/3.

We now prove, using (6.2) and (6.5):

(6.6) PROPOSITION: If the polynomial 03B2D(t) factors into a product of cy-
clotomic polynomials, then D ::::; 41.

We begin by showing that 03BB1 (= 1 - t) does not divide 03B2D(t) and that
if 03BB2 ( = 1 + t) divides 03B2D(t), then D ~ 41. Suppose 03BB1 divides 03B2D(t), i.e.,
03B2D(1) = 0. Then, B3 + 2(B1 + B2 + 1) = 0, which implies by (6.2) that
203BE = 0. But this is impossible, and so 03BB1  03B2D(t). Suppose then that
,121 PD(t), i.e., that PD(- 1) = 0. Thus, B3 = 2(B2 - B, + 1), and so by
(6.2) we obtain:

But a3 is a positive integer (it is a multiple of a class number), and so:

Since 03B2D(t) is a P-polynomial (see (3.4)), (03BB2)2 divides 03B2D, by (4.4).
Suppose then that PD(t) = (1 + t)2~, where 0 factors into cyclotomic
polynomials. (See list below.) If 0 is cyclotomic of degree 4, then the
coefficients (B1, B2) of 03B2D(t) can only have the following values: (3, 4),
(2, 1), (1, 0) or (2, 0). By (6.8), only the pair (1, 0) is possible - but then by
(6.7) and (6.5), D ~ 37.
On the other hand, suppose that 0 = (deg 2) x (deg 2), so that
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where a, b = 0, ± 1, 2, with a ~ b. Then,

and so by (6.8), a + b ~ ab. Thus, there are only four possibilities for the
pair (a, b):

By (6.5), in the third and fourth cases above we again have D ~ 37. Thus
to complete our analysis of the possible factor (03BB2)2, we need only show
that 2( = 32/3 or 8/3 is not possible if D &#x3E; 41. (Note that for D = 41,
203BE = 8/3). By page 200 of [7] and by (6.5), we see that if 2( = 8/3 and
D &#x3E; 41, then D ~ 57 and D - 1 mod 4. The only possibilities are D = 53
or 57, and for these one easily checks, by (6.3), that 203BE ~ 8/3. Similarly, if
203B6 = 32/3, then D ~ 1 mod 4 and D ~ 153. Using (6.3), one readily
shows that D ~ 97. One now simply checks the 15 cases, 97 ~ D  153,
D ~ 1 mod 4, and finds that for D in this range, 203B6 ~ 32/3. Thus, we
have shown:

(6.9) If f3D(t) factors into cyclotomic polynomials, with 03BB2 a factor, then
D ~ 41 and the coefficients (B1, B2) of f3D(t) must be one of the fol-
lowing : (1, 0), (1, 1), (0, 0).

We now prove (6.6) under the supposition that 03B2D(t) factors into a
product of cyclotomic polynomials with degree greater than one. For
convenience we list below all such polynomials.

(6.10) TABLE: Cyclotomic polynomials
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Suppose first that 03B2D(t) is simply a cyclotomic polynomial of degree 6.
By taking the coefficients BI, B2 and B3 for the four polynomials above
and inserting these into (6.2), one finds that 203B6  7/3, and so by (6.5),
D ~ 41, as stated in (6.6).
We suppose next that 03B2D(t) is a product of a cyclotomic polynomial of

degree two and one of degree four. We list below, using (6.10), the possi-
ble values of Bl, B2 and B3 that could then arise.

(6.11) TABLE: Values of (Bl, B2, B3) if 03B2D(t) = (degree 2) x (degree 4)

The first triple, (2, 3, 3), when substituted into (6.2), gives a3 = 0, which is
impossible. On the other hand, for the remaining triples we clearly have
B3 + 2(Bi + B2 + 1)  14, and so by (6.2), 2(  7/3. Thus, by (6.5),
D  41, as claimed.
To complete the proof of (6.6) we are left with showing that if 03B2D(t)

factors into a product of three cyclotomic polynomials, each of degree
two, then D  41. Again we list below the values of B1, B2 and B3 that
can occur.

(6.12) TABLE: Values of (B1, B2, B3) if 03B2D(t) = (degree 2) x (degree 2)
x (degree 2)

Note that for the first two triples - (3, 6, 7) and (2,4,4) - we obtain, by
(6.2), a3 = 0, which is impossible. On the other hand, for the remaining
eight triples we obtain as above (by (6.2)), 2(  7/3, and so D  41 as
required.

This completes the proof of Proposition (6.6).
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Thus to prove Theorem 1 in the "only if" direction, we are left with
showing that if 13  D ~ 41, then 03B2D(t) does not factor into a product of
cyclotomic polynomials. We list below the coefficients Bl, B2, B3 that
occur, for 13  D  41. The data on the left hand side of the Table

comes from [7], pages 200 and 239, and [2], page 422.

(6.13) TABLE: Coefficients of PD(t), for 13  D ::::; 41.

Here we have used (3.4) to calculate the Bi’s.
In the proof of (6.6) we showed that 03BB1  03B2D(t) and that if À21 |03B2D(t),

then (B1, B2) = ( 1, 0), (1, 1) or (0, 0). Since these values do not occur in
the above Table, we see that neither 03BB1 nor 03BB2 divides 03B2D(t). Also, by
comparing (6.10) and (6.13) we find that 03B2D(t) is not a cyclotomic poly-
nomial of degree 6. The remaining possibility is that PD(t) factors into a
product of a cyclotomic polynomial of degree 2 and one of degree 4 or
two others of degree 2. However, by comparing (6.13) with (6.11) and
(6.12) we find that neither of these factorizations occurs. This completes
the proof of Proposition (6.1) which, in turn, proves Theorem 1 in the
"only if" direction.
To complete the proof of Theorem 1 we now show that for D = 5, 8

and 13, M(D) is a complete intersection ring. This is clear when D = 5
and 8 since, by (1.2), these rings have only a single relation. One can
verify directly that M(13) is a complete intersection, using the specific
calculations given in [5]. This completes the proof of Theorem 1.

We complete the section by giving the evidence for Conjecture 1. For
this we need the rational function J.l12(t).

(6.14) PROPOSITION:
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Note that this is the correct rational function for M(12) to have the
structure given in Conjecture 1.

PROOF: As in (6.8) we give the Bi’s for 03BC12(t), along with the data
necessary for the computation.

We find that 03BC12(t) = 03BB6. 03BB8 · (1 - t)-2(1 - t3)-1. Multiplying through by
03BB1 · 03BB2 · 03BB3 · (1 - t4) we obtain the form of 03BC12(t) given in (6.14).

7. Proof of Theorem 2

Let r be a torsion free, normal subgroup of the modular group for a
real quadratic field K. As in (4.5), set 03B20393(t) = 1 + B 1 t + B2 t2 + B1t3 + t4,
where by (3.9),

Here x = x(F), h = number of cusps for 0393 and 03B6 = (K(- 1). To show that
Mr is not a complete intersection ring it sufHces (by (5.4)) to show that
03B20393(t) cannot be factored into a product of cyclotomic polynomials.

Set E = 2B 1 + B2 + 2. By (7.1) and (2.6) we have:

Since e and are both positive, so is E. We prove:

(7.3) LEMMA: If all units in K have positive norm and if the discriminant
of K is ~ 29, then E ~ 0 mod 4. If K has a unit of negative norm, then
E - 0 mod 8.

PROOF: Since G has torsion of order 2 and 3, and since T is torsion
free and normal, we must have e = 0 mod 6, say e = 6f. Suppose now
that K has no unit of negative norm and that D  29. By [2], page 422,
we see that D = 12, 21, 24 or 28; and so by page 200 of [7], 2( = N/3,
where 1 ~ N ~ 4. Thus, E = 4e03B6 = 4fN ~ 0 mod 4. On the other hand if
K has a unit of negative norm, then by (2.5), w = 0. Hence, by (7.2),
E = 8x ~ 0 mod 8, since x is an integer. This completes the proof.
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To prove Theorem 2 we will show:

(7.4) PROPOSITION: Pr(t) factors into a product of cyclotomic polynomials
if, and only if, (D, 21) = 5, (2)) or (8, (2)).

We devote the rest of the section to the proof. Note first that (1 - t)
does not divide 03B20393(t). For if 03B20393(1) = 0, then E = 0, which is impossible as
noted above. Also, 03B20393(t) cannot be a cyclotomic polynomial of degree 4.
For by (6.10) we see that the integer E for these polynomials has the
value 5, 2 or 1. We note below that this implies D  29, and hence (7.3)
would give a contradiction.

Suppose then that

where a, b = 0, + 1, 2, a ~ b. For each such pair (a, b),

and so E  16. By (7.2), 2( = E12e = E/12f ~ 4/3. Thus by (6.5) and
page 200 of [7], we have D  29, as required above. Using (7.3), we see
that if flr(t) factors as in (7.5), then E = 4, 8, 12 or 16. Also, for D ~ 29,
2( = 1/15, 1/6, 1/3, 2/3, 1 or 4/3. Since e = E/403B6 by (7.2), and since
e = 0 mod 6, we find that

noting that E ~ 0 mod 8, when 2( = 1/15 or 1/6.
In fact we will show:

(7.7) LEMMA: If 03B20393(t) factors as in (7.5), with r a torsion free principal
congruence subgroup, then e (the index of r in G) is one of 6, 12, 48 or 60.

We give the proof shortly. Using (7.7), the values of E given above (4,
8, 12, 16), and the fact that 203B6 = E/2e, we list below all possible pairs
(e, D) that can arise, with D ~ 29 and 03B20393(t) factoring as in (7.5). If K has
a unit of negative norm (D = 5, 8, 13, 17), we also list the value of

x (= E/8) and the number of cusps, h ( = Bi + 4 - x); see (7.1) and (7.2).
For the calculation of h note that if E = 16, then B, = 4 (with B2 = 6),
while if E = 8, then B1 = B2 = 2.
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Now let 21 be a proper ideal in o ( = ring of integers in K), and set

f acts effectively on H2 provided - 1 e f, i.e., 2 ~ 21. We define

Thus r is a normal subgroup of G, which we call the principal con-
gruence subgroup associated to M (see [4], §1). Moreover, r is torsion
free provided

For the rest of the section we will take r to be the principal congruence
subgroup associated to a proper ideal 21 satisfying (7.9).
We now take up the proof of (7.4) with r as above. In passing, we

prove (7.7).

PROOF OF (7.4): The key to the proof is the fact that the index e can be
computed from the ideal W (see [4], §1). Namely,

where N( ) denotes the norm and where the product is over all prime
ideals p dividing 21. The number c is given by:
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Similarly we can calculate h, the number of cusps of r ([4], §1):

where u denotes the index in the group of all units of the subgroup of
those units congruent to 1 mod 21. (We use here the fact that for those
fields given in table (7.8), the class number is 1).
From now on assume that 03B20393(t) factors as in (7.5). We consider sep-

arately the two cases c = 2 and c = 1. Suppose first that c = -1 i.e. 2 ~ 21.
Thus, 2 does not divide N(21). It follows readily from (7.10) that if

N(21) ~ 7, then e &#x3E; 120. Thus by (7.6), N(21) = 3 or 5; in either case, 21 is
then prime. By (7.10), if N(21) = 3 then e = 12, and so by (7.8), D = 12,
13, 17 or 21. If D = 12 or 21 then 3|D and so (3) = 212; but this is ruled
out by (7.9). Suppose then that D = 13 or 17; by (7.8) we then have
h = 5 or 6, and so by (7.12), u = 12/3h = 4/h, which is impossible. Thus,
N(21) ~ 3. If N(21) = 5, then e = 60 and so D = 5 and h = 5. Thus by
(7.12), u = 60/5 ’ 5, which again is impossible. Thus, if 03B20393(t) factors as in
(7.5), we must have c ~ 2.

Suppose then that c = 1; i.e., 2 is in 21. We distinguish four cases: (i)
21·21’ = (2), N(21) = 2, 91 e 21’; (ii) 91 = (2) = p · p’, p ~ p’; (iii) 21 =

(2) = p 2; (iv) N = (2), 21 prime.
In case (i), since W is prime, e = 6 by (7.10). Thus, D = 12, 17, 21, 24,

28. When D is even, (2) = p2, which contradicts the assumption made in
(i). Also, if D = 21, then by [2], page 236, 2 remains prime, again a
contradiction. Finally, if D = 17, then h = 5, and so by (7.12) we have
u = 3/5, which is impossible. Thus case (i) is ruled out.

In case (ii), N(21) = 4 and so e = 36. Since this value of e does not
occur in (7.6), case (ii) is also not possible.

Consider then case (iii): again N(21) = 4, and we find e = 48, which by
(7.8) implies that D = 8. Thus (D, 21) = (8, (2)), one of the two cases given
in (7.4).

Finally, in case (iv), since W is prime and N(21) = 4, we obtain e = 60,
and so D = 5. Consequently, we obtain the other example mentioned in
(7.4), (5, (2)).
To complete the proof of (7.4), and hence of Theorem 2, we are left

with showing that if (D,9Î) = (5, (2)) or (8, (2)), then 03B20393(t) does factor as
given in (7.5). Before proving this, we note that the only values of e
found using (7.10) (in the list of possible values given in (7.6)) are 6, 12,
48 and 60, which proves (7.7).
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Suppose then that D = 5 and 91 = (2). Since D - 5 mod 8, 21 is prime
([2], page 236). Thus by (7.10), with c = 1, e = 60. By (7.2), since

2(K( -1) = 1/15, x = 1. Finally one readily computes that u = 3, and
so by (7.12)

Therefore, by (3.9), B, = B2 = 2, and so

Similarly, if D = 8 and N = (2), we obtain: e = 48, u = 2, h = 6 and X
= 2. Thus, B1 = 4 and B2 = 6, which gives:

Thus (7.4) is proved and hence Theorem 2. Note that for (D, N) =
(5, (2)) the function pr obtained above agrees with (1.3); moreover, if

(D, 9t) = (8, (2)), pr is consistent with Conjecture 2.
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