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Abstract

We estimate the volume ratio of lpn ~n lrn, 1 ~ p, r ~ ~, unitary
operator ideals and symmetric spaces. We also study the structure of the
n-dimensional James space. 
We consider the volume of unit balls in finite dimensional Banach

spaces and an invariant of such spaces, the volume ratio.

We start with giving estimations for the volume of unit balls. In par-
ticular, for spaces with 1-unconditional bases we get simple formulas.
These formulas are extended in a natural way to spaces without 1-un-

conditional bases. Then, we estimate the volume ratio of 1-symmetric
spaces and of lpn ~03C0 lrn, 1  p, r ~ oo, a problem posed in [11]. We get in
an easy way estimations for the volume ratio of the n-dimensional

James space Jn. We also show that the Banach-Mazur distance of Jn
and 1; is at most of the order log n and that the ké-constant of Jn [8] is
uniformly bounded.
Other aspects concerning volumes of unit balls are considered in [12].

0. Preliminaries

In this paper we estimate volumes of unit balls of the space Rn pro-
vided with various norms. The measure is the usual Lebesgue measure.
Since we always consider the Rn it is also clear what we understand by
the natural identity between two spaces.
We denote the unit ball of a Banach space E by BE and the unit

sphere in 1; by Sn-1. The volume ratio of a space E is given by
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where e is an ellipsoid. By Xn we denote the volumes of the unit balls in
1;. The Banach-Mazur distance of two Banach spaces E and F is de-
fined by

is isomorphism}

One has

By CE we understand the unitary operator ideal with the norm in-
duced by the symmetric space E. If E = 1P we write Cp.
The 8-tensor product is the tensor product with the smallest tensor

norm and the n-tensor product that with the biggest tensor norm. We
say that {ei}ni=1 is a C-unconditional basis of E if

for all ai E R, ei = + 1, i = 1,..., n, and that it is C-symmetric if

for all a; E R, gi = ± 1, i = 1,..., n and all permutations n of ( 1 , ... , n) .
The dual basis is denoted by {e*i}ni=1. If the indices are too awkward

we write e(i) instead of ei.
The n-dimensional James space is Rn with the norm

where the sup is taken over all strictly increasing sequences.
The volume of the Euclidean unit ball is
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1. Basic estimâtes for volumes of unit balls

We introduce here estimates for the volumes of unit balls. We start

with the case of E having an unconditional basis. It is possible to es-
timate the volume in terms of certain vectors. The existence of these

vectors were proved in [4], [7].

LEMMA 1.1: Let {ei}ni=1 be an 1-unconditional basis of E. Then there is
a sequence {si}ni=1 of real numbers such that

LEMMA 1.2: Let {ei}ni=1 be an 1-unconditional basis of E. For every se-
quence si, ti, i = 1,..., n such that siti = 1 /n and

we have

REMARK: If {ei}ni=1 is a 1-symmetric basis si can be taken as

~03A3nk=1ek~-1 for all i.

PROOF: First we prove the right hand inequality. Obviously BE
contains

Therefore we get

On the other hand BE is contained in



396

since III7= ± tie*i~ = 1. Thus

In the case that we have to deal with spaces that don’t have "nice"

unconditional bases we will need a different formula.

LEMMA 1.3: Let Jl be the Haar measure on Sn-1. Then we have for
every unit ball B in IRn.

where ~ ~ is the norm with respect to B.

The proof is elementary.

LEMMA 1.4: Let T, i = 1,...,N be isometries of the n-dimensional

Euclidean space and Il any norm on Rn with unit ball B. Moreover, let

with unit ball BT . Then we have

vol (BT ) ~ vol(B).

PROOF: By Lemma 1.3 and T-1i being isometries in 1; we have

Therefore we get

By triangle inequality we get
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Using now the inequality N2 ~ (If= 1 ai)(03A3Ni=1a-1i) we get

Now we apply Lemma 1.3 again. Il

LEMMA 1.5: Let B be the unit ball of E and {ei}ni=1 a normalized basis of
E. Suppose {si}ni=1 is a sequence of real numbers such that

Then we have

PROOF: We apply Lemma 1.4 and choose as isometries diagonal
operators.

So we have by Lemma 1.4 for the norm

with the unit ball Bunc that

Now we use the same argument as in the proof of Lemma 1.2.
We shall also need a result due to Santalô [9].

LEMMA 1.6: Let B be an unit ball in Rn. Then we have
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2. Volume ratio for symmetric spaces and unitary operator ideals

PROPOSITION 2.1: Let {ei}ni=1 be a 1-symmetric basis of E and

id E L(1’, E) be the natural identity id((ai)ni=1) = L:7= ai ei. Then we have

where c &#x3E; 0 is an universal number.

The right hand side inequality can also be found in [11].

PROOF: By Lemma 1.2 we get

since we can choose Si = ~03A3ni=1 ei~-1, i = 1,...,n. By John’s theorem [5]
the ellipsoid of maximal volume must be unique. Considering the

symmetries of the unit ball we conclude that the ellipsoid of maximal
volume must be a multiple of the unit ball in 1;. The factor is given by
~id~-1. ~

PROPOSITION 2.2: Let CE be the unitary operator ideal generated by the
symmetric space E. Then we have

where c &#x3E; 0 is an absolute number.

The right hand inequality was proved in [11]. The next lemma can be
found in [2].

LEMMA 2.3: Let 1111p, q denote the norm in lpn ~03B5 lqn. Suppose that

1 ~ q ~ p and
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Then there are numbers Cp,q &#x3E; 0 such that

LEMMA 2.4: There is an absolute number c &#x3E; 0 such that

PROOF: The right hand inequality of (i) follows from

The left hand inequality in (ii) follows from BC2 c nBc1. The left hand
inequality in (i) follows from Lemma 1.5 and Lemma 2.3. The right hand
inequality in (ii) follows from (i) and Lemma 1.6. D

PROOF OF PROPOSITION 2.2: The proof is essentially a repetition of the
proof of Proposition 2.1. The ellipsoid of maximal volume B contained
in BcE is for reasons of symmetry a multiple of the unit ball of the
Hilbert-Schmidt operators C2.
The factor is IIIdll -1 where Id E L(C2, CE) is the natural identity. In

fact, we have Il Id = ~id~ were id ~ L(l2n, E) is the natural identity. There-
fore we have

And for the volume of BCE we get

Indeed, we have

We apply Lemma 2.4 and get (2.2). Now, the proposition follows from
(2.1), (2.2) and Proposition 2.1. D
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3. Volume ratio for tensors of 1= and lrn

We get here a complete description of the volume ratio for n-tensor
products of espaces. It turns out that the volume ratio of the tensor
product is small provided the volume ratio of the factors is already
small. Moreover, we even obtain small volume ratio in certain tensor

products of factors with large volume ratio.

THEOREM 3.1: Up to a constant vr(lrn @ 03C0 lsn) is equal to

The case r = 2 and 1 ~ s ~ 2 can be found in [11].

For the proof of Theorem 3.1 we require several lemmas.

LEMMA 3.2: Let Bp, q be the unit ball in ln ~s ln and B*p,q its dual unit

ball. Then there are numbers Cp,q &#x3E; 0 such that

(i) C-1p,q n-03B2(p,q) ~ vol(Bp,q)1/n2 ~ C n-P(p,q)
(ii) c- 1 np(p, q) - 2 ~ vol(B*p, q)1 /n2 ~ Cp,q nP(p, q) - 2

where 03B2(p, q) are as given in Lemma 2.3.

PROOF: The left hand inequality of (i) is an immediate consequence of
Lemma 1.5 and 2.3. The right hand inequality of (ii) follows from the left
hand inequality of (i) and Lemma 1.6. The right hand inequality of (i)
follows from the left hand inequality of (ii) and Lemma 1.6. The left

hand inequality of (ii) is deduced from

where the norm is the one in 1£’ ~03C0 lq’n. Indeed, the left hand inequality of



401

(ii) follows from (3.1) since we find a cube of a sufficient magnitude in
the unit ball.

We verify (3.1). Clearly,

Now we apply Corollary 4 and Proposition 7 of [10]. 0

So far we have estimated the volume of the unit balls in lrn ~03C0 ln. Now
we provide the necessary estimates to see what the volume of the ellips-
oid of maximal volume is.

First of all we need an estimate that is due to Hardy and Littlewood
[3].

LEMMA 3.3: Suppose 

Then we have for p and q with

for some absolute number c &#x3E; 0.

LEMMA 3.4: Let id E L(lP (D, ln, 1;2) be the natural identity. Then we have
for
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PROOF: The left hand inequality in (i) is obvious. The right hand ineq-
uality follows from Lemma 3.3. The left hand side inequalities in (ii) and
(iii) follow by considering the matrix

The right hand inequality of (ii) follows from

The right hand inequality of (iii) follows from (i). Since 1/p
+ 1/q ~ 3/2 there are  and 4 with  ~ p,  ~ q and 1/p + 1/4 = 3/2.
Thus we get by (i)

The left hand inequality of (iv) follows from Lemma 2.3. The right
hand side inequality is simple to prove

Now, Theorem 3.1 follows from Lemma 3.2 (ii) and 3.4.

4. The n-dimensional James space

We study here the structure of the n-dimensional James space Jn. It
was proved in [6] that the unconditional basis constant of Jn tends to
infinity with n.
We prove that the distance d(l;, Jn) is at most of order log n. Therefore

the same holds for the volume ratio of Jn and the dual J,*. But, in fact,
we prove that the volume ratio of Jn and Jn* are uniformly bounded.
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The examples studied before usually give that vr (E) vr (E*) is of the
order of d(E, l2n). The arguments for estimating vr(Jn) and vr(J*n) are
simple and quite different from those used before. We also get that
ké(Jn) is uniformly bounded. This invariant was studied in [8].

PROPOSITION 4.1: There is an absolute number C such that

d(Jn, l2n) ~ C log n

PROPOSITION 4.2: There is an absolute number C such that

vr(Jn) ~ C and vr(J:) ~ C

PROPOSITION 4.3: There is an absolute number C such that

Ké(Jn) ~ C

PROOF OF PROPOSITION 4.2: Let {ei}ni=1 dénote the usual unit vector
basis in Jn and

We have for all

and

(4.1) is obvious. The right hand inequality of (4.2) follows by triangle
inequality and the left hand inequality by choosing the sequence p, = i, i
= 1,...,n.
Now we observe that the map A -1 with A(ej) = 03A3ji=1 ei maps the unit

ball of Jn with respect to the basis {fj}nj=1, say B f, onto the unit ball
with respect to {ei}ni=1, say Be. Since det(A) = 1 we have

vol (Be) = vol (Bf)

By (4.1) and (4.2) we conclude that for some c &#x3E; 0 we have
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By this and (4.1) we get vr(Jn)  C’. The arguments for Jn are by
duality the same. 0

Now we are going to prove Proposition 4.1. Proposition 4.3 will be a
consequence of the construction in the proof of Proposition 4.1. We
shall give essentially a proof for the case when the dimension of Jn is a
power of 2, n = 2m. Thus we define

where k = 1, ..., m, i = 1, ..., n2-k and {e(l)}nl=1 denotes the usual unit
vector basis in Jn. This basis induces an isomorphism between ln and 1;
and will give Proposition 4.1.

LEMMA 4.4: Let {fki}i,k be as defined in (4.3). Then we have

for all k = 1, ... , m.

LEMMA 4.5: Let {fki}i,k be as defined in (4.3) and let Pl ~ L(Jn, Jn) with

for 1 = 1, ... , m + 1. Then we have

Clearly Proposition 4.1 follows from Lemma 4.4 and 4.5. The proof of
Lemma 4.4 is immediate. For the proof of Lemma 4.5 we need the fol-
lowing sublemma.

SUBLEMMA 4.6: Let {fki}i,k be as defined in (4.3). We have for all (ai)ni=1
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for

PROOF: (i) is immediately clear since the blocks fki, i = 1,...,n2-k, are
disjoint and e(2ki0 - 2k-1) appears just in the block fki0.

Concerning the second equality in (i) we just have to observe that
e(2kio) does not appear in any of the blocks fki, i = 1,...,n2-k.
We prove now (ii). Assume the first expression is not zero. Then there

is an i E N such that

or

Since 1 &#x3E; k we have that 2l-ki0 - 2l-1-k is a natural number. But
there is no natural number in the interval pi - 1 + 2-k, i1 - 1 2]. The
same argument holds for the second equality.
Now we prove (iii). Clearly, it is enough to prove that

holds for i E N if and only if

holds for i ~ N. Indeed, if there is no i ~ N fulfilling (4.4) or (4.5) then
both are not fulfilled and therefore both expressions in (iii) are zero. If
there is an i E N fulfilling (4.4) or (4.5) then (4.4) and (4.5) are satisfied
and consequently both expressions in (iii) are equal to the same ai.

Obviously it is enough to prove that the right hand inequality of (4.4)
implies that of (4.5) and the left hand inequality of (4.5) implies that of
(4.4).
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We start with the right hand inequalities. We have that

If 2l-ki0 ~ i - 1 2 nothing is left to prove. If 2‘ - kio &#x3E; i - 2 then 2l-ki0
- 2l-k ~ i - 2 since i0, i ~ N and 1  k. But this contradicts (4.6). Now
we consider the left hand side inequalities. We have

Clearly, we must have i - 1  21-kio. But this implies

since i, io ~ N and l  k. D

PROOF oF LEMMA 4.5: In view of Lemma 4.4 it is enough to prove

for all 1 = 1,..., m + 1. According to Sublemma 4.6 we choose a se-

quence p1  ... p03B1, 03B1 ~ N. If l ~ {1,...,m} we put

If l = m + 1 we put simply p, = n. Applying this sequence to the de-
finition of the norm (0.1) and using Sublemma 4.6 gives the estimation.

D

PROOF oF PROPOSITION 4.3: As pointed out in [8] we have to find a
basis {xi}ni=1 such that

for all changes of signs. In fact, we have for the basis (4.3).
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The left hand inequality follows from Lemma 4.4 and 4.5.

The right hand inequality follows from Lemma 4.4.

For the dual basis {fk*i}i,k we get analogous estimates to (4.7). Indeed,
by dualization Lemma 4.4 and 4.5 are also valid for the dual basis.
Thus we get the result for dimensions n that are powers of 2. The case

of other dimensions is treated in an analogous way. 0
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