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§1. Statement

Let (Q, p) be a probability space, X c 03A9 measurable, and let co

= (03BE1, 03BE2,...) be an infinite sequence of points (not necessarily distinct)
of Q. We write ZX(t) for the number of ÇiEX, 1 sis t, and we define a
discrepancy function

Dx(t) = ZX(t) - t03BC(X) (1.1)

Our object will be the following result, conjectured by R. Tijdeman and
G. Wagner with an unspecified constant.

THEOREM A: Let A1,..., An ce Q, measurable. Then there exists a se-
quence OJ so that

ID Ai(t)1 s 1000n 1/2 In (n + 1) (1.2)

for 1 sis n and all positive integers t.

It has been shown (see §2) that Theorem A holds with the RHS of
(1.2) replaced by n + 1. Thus Theorem A holds for all n ~ 1000 and we
shall assume (often tacitly) n &#x3E; 1000 throughout this paper. The const-
ant "1000" in (1.2) might easily be improved but we do not attempt to
do so in this paper.
The author wishes to thank Robert Tijdeman for bringing this pro-

blem to his attention, for correspondence and conversations, and for his
aid in the preparation of this paper.

0010-437X/82090365-28$00.20/0
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§2. Discussion and outline

We start with a trivial example. Let 03A9 = {H, T}, 03BC({H}) = 03BC({T}) = 1,
n = 2, A, = {H}, A2 = {T}. The "best" sequence is then 03C9

= {H, T, H, T, H, T,...}, continuing periodically. For this 03C9 |DAi(t)| s -2L
always. Note that if (J) is a "ranndom sequence" then, with probability
one, DA1(t) will be unbounded.

In some special cases much better bounds than provided by Theorem
A can be given.

(i) Suppose A1,..., An are pairwise disjoint.
It was proven by Tijdeman [5] (see also Meijer [2] and Tijdeman

[6]) that there exists a sequence (J) so that |DAi(t)| ~ 1 for 1 sis n and

ail positive integers t. Using this result and the reduction of §3 one can
show immediately that Theorem A holds with the RHS replaced by n
+ 1.

(ii) Suppose A ~ A2 ~ ... e An.
This case corresponds to the classical situation of uniform distribut-

ion on a real interval [0, 1) by identifying Ai with [0, JI(Aj»’ It follows
from Theorem 2 of Tijdeman and Voorhoeve [7] that there exists a

sequence 03C9 so that D t  log(2n) for 1 ~ i ~ n and all positive in-

tegers t and from Corollary 2 of that paper that this result can be im-
proved only by a constant factor.

(iii) Suppose each of the 2" sets BI B2... Bn with Bj ~ {Aj, ABAj} is

non-empty. For each i ~ {1,...,n) define a sequence (J)(i) = {03BE(i)k}~k=1 in A
by 03BE(i)k ~ Ai if and only if [k03BC(Ai) + 1J &#x3E; [(k - I)ii(Ai) + 1 2]. Define (J)

= {03BEk}~k= 1 such that 03BEk E Ai if and only if 03BE(i)k E Ai for all i and k. It is clear

that such a sequence (J) can be constructed and it is easy to see that

|DAi(t)|  1 2 for 1 ~ i ~ n and all t.

Theorem A is proven through a series of reductions. Theorems 1 (§5),
2 (§7), 3 (§8) and 4 (§9) are successive reductions and, in a more formal
presentation, would be presented in reverse order. In §4 a stronger ver-
sion of Theorem A is proven with certain added assumptions. Here
many of the basic ideas of the full proof are presented in simpler form.
The paper is divided into thirteen sections as follows:

§ 1 Statement

§2 Discussion and Outline
§3 Reduction to n + 1 points
§4 Proof when no pi is extremely small
§5 Reduction to History
§6 A Relevant Game
§7 Reduction to Bunched Sets



367

§8 Hyperbolic Cosine
§9 Background Function

§10 Benchmark Lemmas
§ 11 Local Placement
§12 Final Steps
§13 Lower Bounds

The proof of two inequalities is placed in an Appendix.

§3. Réduction to n + 1 points

where

Set mi = m(Ai), 1 ~ i ~ n and p = (,ul, ..., 03BCn) E R". Then p is the weighted
average, or integral, of the P(x) and so 03BC is in the convex hull of the

points P(x). By Caratheodory’s Theorem there exist n + 1 of these

points, which we may call 1,..., n + 1 without loss of generality, and
non-negative p1,...,pn+1 with sum unity so that

If we set f2* = {1,...n + 1} with 03BC({i}) = Pi and Ai = Ai n Q* then
03BC*(A*i) = 03A3n+1j=1 pj03B5i(j) = 03BCi = Jl(AJ for 1 ~ i ~ n. A sequence 03C9* in Q*

that satisfies (1.2) for A*1,...,A*n, 03A9* 03BC* will also satisfy it for

A1,...,An,03A9,03BC since

This gives a reduction. Henceforth we will assume 03A9 = {1,...,n+1}
where p((1)) = pi.
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§4. Proof when no pi is extremely small

We here prove Theorem A under the additional hypothesis that all
pi ~ 1/100n. The proof of this result contains basic ideas that are un-
fortunately somewhat disguised in the full proof.

REMARK: If we are given, in the original formulation of §1, that

03BC1,...,03BCn are not small - say even that pi = ... = JIn = i - we cannot
deduce, without further information, that the p, defined in §3 will not be
small.

Fix p1,...,pn+1 with sum unity and A1,...,An ~ {1,...,n + 1}. Let t
be an arbitrary, but fixed, positive integer. We first show that we can
make all |DAi(t)| small. For 1 sis n + 1 set

where {x} represents the fractional part of x. (Observe that if all 03B8i = 0,
i.e. all pi t are integral, we may simply let co contain exactly pi t i’s for

each i and then every set would have zero discrepancy at t. When 03B8i ~ 0
we shall decide whether to place [pit] or [pi t] i’s.) For 1 ~ i ~ n + 1 let
-ci be independent random variables with

Then E[SX] = 0. We require a result from probability theory (see
Appendix). For every a &#x3E; 0,

We set

so that this probability is less than 1/(n + 1). The disjunction of the n + 1
events "|SX| &#x3E; 03B1" for X = A1,...,An and X = 03A9 = {1,...,n + 1} has

probability less than unity. With positive probability all these events are
false. That is: there exist E 1, ... , 03B5n + 1 E {0, 1} such that
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Set

so that 1 b  a, b E Z. If b &#x3E; 0 change precisely b of the Bi = 1 to Bi = 0. If
b  0 change precisely |b| of the -j = 0 to ei = 1. Let B1 represent the
new ei. Then

and for X = A1..., An

Now we set

for 1 ~ i ~ n + 1.
We have found a1,...,an+1 so that

each ai equals either

and such that if cv has precisely ai i’s in the first t symbols then

REMARK: Results very similar to those given above have been shown
by Beck and Fiala [1], Spencer [4] and others.
We call the above procedure establishing a benchmark at t. It would

be pleasant to simply say that we may establish a benchmark at every t
and these determine the sequence. There is a problem of consistency.
Let benchmarks at t, t’ with t  t’ require ai, ai appearances of symbol i.
If ai &#x3E; a’ the benchmarks are inconsistent. Avoiding this problem is the
heart of this paper.
Now assume all pi &#x3E; 1/100n. (We have not yet used this fact.) We

establish benchmarks at t = 0, 100n, 200n, 300n, ... satisfying (4.11),
(4.12). If t, t’ are consecutive benchmarks then t’ - t = 100n and hence
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This and (4.11) imply a’i ~ ai. Set

At this point we introduce the Reduction Principle. It says, roughly,
that having established two consecutive benchmarks at t, t’ with num-
bers ai, a’i, mi as defined above it then suffices to find a sequence on (t, t’]
which is "smooth" relative to the problem of placing mi i’s.
More precisely: Let a sequence co be given. For u ~ (t, t’] and X c Q

let

Z*(u) be the number of 03BEi E X with t  i ~ u,

We think of D*(u) as the relative discrepancy at u of event X, given the
task of placing mi i’s in (t, t’]. Write u as a convex combination of t, t’

An algebra calculation shows

(Observe that the check (4.17) it suffices to consider X = {i}.). The
Reduction Principle is (4.17). It says that the discrepancy may be found
by interpolating the discrepancies at the benchmarks and adding the
relative discrepancy. Hence, suppose at consecutive benchmarks t, t’ all
IDx(t)1 ~ K and all IDx(t’)1 ~ K. Suppose in the sequence in (t, t’] all

relative discrepancies have IDÍ(u)1 s L. Then allIDx(u)1 s K + L. (By all
we mean X = A1,..., A".)
The placement between benchmarks is given by the following result.

Let a set of n + 1 symbols {1,...,n + 1}, n subsets A1,...,An ~ }1,...,n
+ 1} and non-negative integers m1,..., mn with tni + ... +mn = M be

given. Let m = (ç 1,.", ÇM) be a sequence of length M consisting of pre-
cisely mi i’s. Set
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For set

LOCAL PLACEMENT THEOREM: Under the above definitions there exists
(ù so that

forallu, 1 sus M and for all X = A1,...,An.

PROOF: Consider a random placement of the symbols. That is, take a
deck of M cards consisting of mi cards of each symbol i and perform a
random shuffle to give 03C9. Then Zx(u) has a hypergeometric distribution
- given a deck of M cards of which Mpx are marked, Zx(u) is the

number of marked cards picked when u cards are selected without
replacement.

(B denotes the Binomial Distribution) since the RHS represents the
equivalent selection with replacement. Applying (4.4) (with all 0; = px)

We set

so that

This implies that there exists an Q) = (03BE1,...,03BEM) consisting of precisely
mi i’s such that ID Ai(u)1 s a for u = 1,..., M and i = 1,..., n. This proves
the theorem.

We apply the Local Placement Theorem with M = 100n, (4.12) for
establishing benchmarks, and the Reduction Principle to hold things
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together. The result is that there exists an co such that all |DX(u)|, X
= A1,...,An, 1 ~ u  oo are bounded by

which is of the order [n ln n]1/2. Note this result is stronger than (1.2) by
a factor of order [ln n]1/2.

§5. Réduction to history

There are certain technical diiHculties in finding a sequence that we
avoid by changing to a continuous problem. A history co on a set Q

= {1,...,n + 1} is a family of pairs (i, t) where i E Q, t ~ R+ and the t’s are
distinct. For i E Q, t E R we let

Zi(t) be the number of (i, s) E OJ with s s t. (5.1)

Let p 1, ... , pn + 1 be fixed non-negative reals. We set

NOTATION: Il.11 represents the max norm. That is

Let a1,..., an+1 ~ Rn+1 be fixed with Ilaili ~ 1 for all i. We set

THEOREM 1: Under the above conditions there exists a history úJ so that

for all t E R + .

We now show that Theorem A follows from Theorem 1. By the re-
duction of §3 we may consider Q = {1,...,n + 1} with p((1)) = pi. We
are given A1,...,An c 03A9 and we set An+1 = S2 = {1,..., n + 1}. For i ~ 03A9
set
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where

For these p1,..., p" + 1, a 1, ... , an+1 we apply Theorem 1 to find (J) satisfy-
ing (5.4). Given a history cv we may define a sequence cv* given by
ordering the points (03BEi, 03BEi) ~ 03C9 in increasing order of t and setting 03C9*

= (03BE1, 03BE2,...).
Now we unravel the meaning of (5.4). The i-th coordinate of D(t) is

the discrepancy of Ai at t. That is,

where Zx(t) is the number of appearances, in 03C9, of symbols i E X in the
interval (0, t]. Let tl, t2,... be the times for appearances in Co, in ascend-
ing order. Applying (5.6) with the additional set An+1 = Q shows that

for all positive integers m - i.e. the History and Sequence are nearly
together. Thus for the sequence 03C9*

for all i, 1 ~ i ~ n and all positive integers m and thus (1.2) is satisfied.
Henceforth, we restrict our attention to Theorem 1. Observe that we

shall prove Theorem 1 for arbitrary non-negative p1,...,pn+1 and arbit-
rary a1,...,an+1 ~ Rn+1 with ~ai~ ~ 1.

It is convenient to replace "n + 1" by "n". Thus: we are given n &#x3E; 999,
p1,...,pn &#x3E; 0, a1,...,an ~ Rn with ~ais 1 for i = 1,..., n and we shall
find a history cv = {(03BE, t)} with 03BE ~ 03A9 and distinct t E R + such that

for all t.
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§6. A relevant game

In this section we discuss a game which is interesting by itself and will
provide insight for our proof.
The game is zero-sum and has two players, Pointer and Pusher.

Vectors a1,...,ar ~ Rn with ~ai~ ~ 1 are predetermined and known to
both players. There are r moves. There is a vector SE R" which changes
value during the game - we let si denote its value after i moves. Initially
so = 0. On the i-th move first Pointer selects ei = + 1 or -1. Then

Pusher selects wi, 0 ~ wi ~ 1. Set si = si-1 + wi03B5iai. The payoff to
Pusher is ~sr~, the value of Ilsll at the end of the game.

REMARK: Similar games have been examined by this author [3].
We now give a strategy for Pointer that holds Pusher to a modest

payoff. For x= (xl, ..., Xn) E R" set

where is a constant to be determined later.

Let x, a E R with Jal ~ 1. Then

Now let x, a ~ Rn with ~a~ ~ 1. Summing (6.2) over the coordinates

By a second derivative calculation, F is convex. Thus if y is on a line
interval with endpoints X, z

Properties (6.4), (6.5) are critical in applications. We remark that the use
of hyperbolic cosines is not new and is well known in the theory of
suboptimal martingales. In our applications we think of F(x) as an ana-
lytic approximation to exp[03BB~x~]/2.

Pointer’s strategy is to select e, so as to minimize F(si- 1 + ejai). By
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(6.4) he may select ei so that F(Si-1 + eiâ7i) S F(si-1)exp(03BB/2). By (6.5)
regardless of Pusher’s choice of wi,

Since F(d) = n,

at the end of the game.
We require one more property of F.

or, in more convenient form

Applying (6.9) to (6.7),

Pointer’s strategy depends on the choice of 03BB. It is now clear to select

so as to minimize the RHS of (6.10). With this the payoff to Pusher is
at most

What does this game have to do with the problem at hand? Suppose
we are given r symbols 1,...,r with associated vectors a1,...,arERn,
Ilaïll ~ ~ 1 and associated non-negative reals p1,...,pr. (This is the situat-
ion in §5, Theorem 1 except that now the number of symbols r might
not equal the dimension n.) We wish to find a history co so that the
discrepancy vector.

(analogous to (5.3)) remains small in the ~.metric. Assume further that
each pi is "much larger" than the preceding pi-1. (For example, pi
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= exp(exp(10i)).) We will use our game to outline a construction of a
history 03C9.

Suppose symbols 1,..., i - 1 have already been placed such that

~si-1(t)~ is small for all t, where

Now we wish to place symbols i such that IDi(t)1 ~ 1 and ~si(t)~ is small
for all t. We use the strategy of Pointer. Since Pi is much larger than
pi-1, the function si-1(t) is nearly constant on intervals of lengths much
larger than 1/pi. Suppose si-1(t) is nearly constant around to and we
have to place a symbol i near to in order to keep ))§(t))) small around to.
We have for such t

Our strategy is to select 03B5i ~ {-1, +1} so as to minimize F(si-1(t0)
+ tiai). If ei = + 1, then we keep Di(t) non-negative by waiting until Di(t)
becomes 1 before placing symbol i. If ei = -1, then we keep D,(t) non-
positive by placing symbol i as soon as D,(t) becomes 0. (Of course, one
has to meld these local strategies into a global history for i, but we do
not claim a full proof here.) Formula (6.12) suggests that we can obtain

at all times t. When, as in §5, r = n, we have

which is better than (1.2) by a factor of order (ln n)1/2.

§7. Bunched sets

In §4 and §6 we have proven (albeit in outline form) that Theorem 1
holds if the p, are either fairly close together or quite spread apart. In
both cases a result of c(n ln n)I/2 was achieved, as opposed to the
cnl/2ln n claimed in (1.2). The additional factor of (ln n)1/2 will enter in
splitting an arbitrary set of pi into sets of the above two manageable
types.



377

We split R + into [500 In n] sets by setting

for 0 ~ i  [500 ln n]. Each Ci is the union of intervals of the form

[p, 1.1p) where consecutive intervals [p, 1.1 p), [q, 1.1q) have

A set pl, ..., pr is called bunched if all p’s lie in a common Ci. A bunched
set is split into sets p1,...,ps lying in a common interval [p, 1.1p) - these
sets we call bunches. Any arbitrary set of p’s splits into [500 ln n]
bunched sets.

Let symbols 1,..., r be given, r  n, with corresponding a1,...,ar ~ Rn
with Ilail! ~ 1 and corresponding positive p1,...,pr. Given a history 03C9 we

set (in the notation of §5)

THEOREM 2: Using the notation of the above paragraph, assume that
p1,...,pr is bunched. Then there exists a history 03C9 so that

for all t.

Assume Theorem 2 is known. In Theorem 1 we are given arbitrary
p1,...,pn. We split these into v bunched sets of sizes r1,...,rv where

03A3vi=1 ri = n. For each bunched set Theorem 2 gives a history cvi on these
symbols. Superimposing these histories gives a history OJ with IID(t)11
bounded by

(We required, in §5, that the values t in a history cv be distinct and

superimposing histories coi may cause W to violate that condition. The
Pushing Lemma of §12, or a continuity argument, shows that given coi
satisfying (7.4) we may prescribe intervals around each t with (A, t) E Wi
so that if the symbols A are allowed to move arbitrarily in their re-
spective intervals the inequality (7.4) remains valid. We adjust coi to w1,
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still satisfying (7.4) and with no common values of t, and superimpose
the 03C9*i.) We have

the maximum being achieved when r, = ... = rv = n/v. Thus

yielding Theorem 1.

Hence forth we concentrate on proving Theorem 2.

REMARK: The splitting of the p’s into v bunched sets has a "cost" of
v1/2. Our attempts to remove this factor of (ln n)1/2 have not been
successful.

§8. Hyperbolic cosine

Motivated by the remarks of §6 we reintroduce the hyperbolic cosine
function. For x = (xi, ..., xn) ~ Rn we set

We shall use the following four properties of F:
If y is on a line segment with endpoints X, z then



379

Properties (8.2) and (8.4) were previously given as (6.5) and (6.9).
Property (8.5) follows by summing over coordinates the inequality

To show the central property, (8.3), we begin with the inequality (see
Appendix)

valid for 0 ~ 0 ~ 1 and jal ~ 1. Summing over coordinates we derive

from which (8.3) follows. Observe that (8.3) serves as a generalization of
(6.4). At one point in our proof we shall need a slight generalization of
(8.3). If v, a ~ Rn, 0 ~ 03B8 ~ 1, ~a~ ~ X then

Now we make a further reduction:

THEOREM 3: Under the conditions of Theorem 2 there exists úJ so that
forall t &#x3E; 0

where F is given by (8.1) and

Given this result, Theorem 2 follows immediately by applying (8.4) to
(8.10). In fact, we shall show Theorem 3 for any 03BB ~ n-4 and in all but
one step of the proof 03BB may be an arbitrary positive real. Henceforth, we
concentrate on proving Theorem 3.

§9. Background function

We find the history OJ desired in Theorem 3 in stages. Split p1,...,pr
(which we recall is bunched) into bunches, in increasing order of p (i.e.
rarest symbols first). At each stage we determine the entire history of all
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symbols in that bunch. (In §6 each bunch consisted of a single symbol.)
The symbols previously placed (which we will call the old symbols) have
a history cvo and a discrepancy function Do(t). Now we need find a
history m of the next bunch (which we call the new symbols) and a
discrepancy function D(t). The combined history, the union of coo and m,
has discrepancy function Do(t) + D(t). We shall show the following:

THEOREM 4: Let s  n. Let s symbols 1,..., s be given with associated
p1,...,ps and 81,...,asERn, liai ~ ~ 1. Assume p1,...,ps ~ [p, 1.1 p). Assume
for a disjoint set (possibly empty) of symbols that a history OJo and a
corresponding discrepancy function Do(t) are given. Let K be such that

for all t. Assume that the appearances of these old symbols are at least 51p
apart. Then there exists a history úJ on symbols 1,..., s so that

for all t and the symbols in the combined history are at least n - -5/p apart.

Assume Theorem 4 and let us be given a bunched set of symbols. We
initially have Do(t) = 0 so that K = F(0) = n. The adding of s symbols
to the history increases the upper bound on F(Do(t)) by a factor of at
most exp(1403BB2s). When all r symbols have been placed F(Do(t)) will be
bounded by n exp(1403BB2r) as desired. We must also check the distances
between appearances. A history cvo will have appearances at least

n 5/Pmax apart where Pmax is the maximal p,, for the old symbols. In the
next bunch of symbols all pi E [p, 1.1 p) where p ~ Pmaxn40 by (7.2). Thus
certainly the appearances in coo are at least 5/p apart so that we may
apply Theorem 4 and so Theorem 3 follows. Henceforth we concentrate
on proving Theorem 4.

REMARK: The considerations of distance between appearances are

technically bothersome and an intuitive explanation may help. Let us
say a symbol with corresponding p has time span p -1. That is, the

symbol should occur once in time p -1. The old symbols have enormous
time spans relative to the time spans of the new symbols. In an interval
with length the new time span (or five times that) we require that one
never has two appearances of old symbols.

In proving Theorem 4 we need certain facts about D0(t), which we
will refer to as the Background Function. The function Do(t) is right-
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continuous with discontinuities only at appearances of symbols. If

(i, t) ~ 03C90 then D0(t) = D0(t-) + ai. (Here f(t-) = limx~tf(x)). If no

(i, t) E ccy for t’  t  t" then DO(t) is linear on [t’, t"). In particular, if t
= 03B1t’ + (1 - 03B1)t" with 0 ~ 03B1  1 then

§10. Benchmark lemmas

To prove Theorem 4 we are guided by the arguments of §4, with Il. ~
replaced by F. We begin by establishing benchmarks. In the next lemma
we think of v = Do(t) and Oi as the fractional part of pit.

BENCHMARK LEMMA: Let vERn, a1,...,as ~ Rn, ~ai~ ~ 1. Let

0 ~ 03B81,...,0s  1. There exist 03B51,...,03B5s ~ {0, 1} so that setting

we have

PROOF: For s = 1 this is precisely (8.3). The proof for all s follows by
induction.

REMARK: We may think of the Benchmark Lemma probabilistically.
If the 03B5i are independent random variables with values 0, 1 and expectat-
ion oi then F(w) is a random variable whose expectation is at most

F(v) exp(03BB2s/8).
When t is a discontinuity of Do, an appearance of an old symbol,

there is a special problem. The solution is given in the next lemma
where we think of v = Do(t-) and v + b = Do(t).

DOUBLE BENCHMARK LEMMA: Let v ~ Rn, b E R", 11h11 s 1, F(v) ~ K, F(V
+b) ~ K. Let a1,...,as ~ Rn, ~ai~ ~ 1. Let 0 ~ 03B81,...,03B8s  1. Then there

exist 03B51,...,03B5s ~ {0, 1} so that,

where w is given by (10.1).
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PROOF: By induction it suffices to prove the Double Benchmark

Lemma for s = 1, with a single 0, e, a.

Figure: Double Benchmark Lemma

Let us say x is small if F(x) ~ K exp(03BB2/2). By (8.3) either v - 8a or v
+ (1 - 8Ja is small and either v - 8â + b or v + (1 - 8)3 + b is small.
Our only problem would be if two diagonal points, say v - 8a and v
+ (1 - 03B8)a + b were not small. Set z = v + 8b. By (8.2), F(z) ~ K. These
two points are the values of 5 + (e - 6)(â + b) with e = 0, 1. Since lia
+ b~ ~ ~a~ + Ilbll ~ 2 we may apply (8.9) to show that one of the two
points is indeed small.
We assume the hypotheses of Theorem 4. We first establish, using the

Double Benchmark Lemma, a benchmark at each occurrence t of an old

point. If ei = 1 then we set Zi(t) = [pit] + 1 and if 8; = 0 then we set
Zi(t) = [pi t]. Then

and

for every new symbol i. Furthermore, if two consecutive occurrences

t’, t" are more than 101p apart we use the Benchmark Lemma to place
benchmarks at points t’ + i(5/p), i positive integral and t’ + (i
+ 1)(51p)  t", so that the distance between consecutive benchmarks is
not smaller than 51p and not larger than 10/p. (If there are no old sym-
bols then benchmarks are placed at i(5/p), i = 1, 2, 3,...) Each new
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benchmark t also satisfies (10.4) and (10.5). Since consecutive

benchmarks t’, t" are at least 5/p apart the benchmarks are consistent,
for if t" ~ t’ + 5/p and p ~ p’ then, by (10.5)

On the other hand, if t’ and t" are consecutive benchmarks then, since
t"  t’ + 10/p, Pi s I.Ip and (10.5),

§ 11. Local placement

In this section we show how to find "local" histories co such that the

discrepancy vector D(t) is small in the sense that F(D(t) + Do(t)) is

small. We begin with the simplest case.
Let a single symbol A be given with associated vector a ~ Rn, ~a~ ~ 1.

Consider a history (J) on [0, 1] in which symbol A appears exactly once.
We set

Let v, w ~ Rn with F(v) s K and F(w) ~ K and let

LEMMA 11.1: With the above conditions there exists a history úJ so that

for all t E [0, 1] and A appears in the open interval (0, 1).

PROOF: Set

so that F(t) = F-(t) if A does not appear in [0, t] and otherwise F(t)
= F+(t). Let t ~ [0, 1]. By (8.2), F[D0(t)] ~ K. By (8.3), either



384

F-(t)  K eÀ2/8 or F+(t)  K eÀ2/8. At t = 0 F’ has this property, at t
= 1 F+ has this property. Since both F’ and F+ are continuous there
exists t0 ~ (0, 1) so that both F-(t0)  K e03BB2/8 and F+(t0)  K e03BB2/8.
Define (J) by placing A at to. By (8.2), for t E [0, to]

and for t ~ [t0, 1]

so the Lemma is proven.
Let q = 2d symbols 1, ..., q be given with associated vectors

a1,...,aq ~ Rn, ~ai~ s 1. Consider a history 03C9 on [0, 1] in which each
symbol appears exactly once. Set, for 1 ~ i ~ q

and

Let v, w E Rn with F(v) ~ K, F(w) ~ K and let

LEMMA 11.2: With the above conditions there exists a history OJ so that

for all t E [0, 1] and each interval (ilq, (i + 1)1q), i = 0, 1,..., q - 1 contains
precisely one symbol.

PROOF: We use induction on d. The case d = 0 was shown (in a
strengthened form) in the preceding Lemma.
By the Benchmark Lemma we may find 03B51,...,03B5q/2 ~ {0, 1} so that,

setting
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we have

(As liai - ai+q/2~ ~ 2 we apply (8.9).) We split the symbol set {1,...,q}
into two sets L, R as follows. If Bi = 1 place i E L, i + q/2 E R; if 03B5i = 0

place i E R, i + q/2 E L. (We have established a benchmark at t = 2. The
elements i, i + q/2 were paired to insure |L| = IRI = q/2.)

For all t ~ [0, 1 2],

where

(This is the Reduction Principle.) By induction there is a history (O on
[0, 1 2] with symbol set L such that for all t ~ [0, 1 2]

and for every integer i with 0 ~ i  ql2 the interval (ilq, (i + 1)lq) con-
tains precisely one element. There is a similar history for symbols R on
h’, 1], completing the proof of the Lemma.
Three simple steps significantly strengthen Lemma 11.2 and place us

in position for our final assault. First, given an arbitrary number q of
symbols we may add "dummy" symbols, each with associated vector 0,
until reaching q’ = 2d symbols where q’  2q. Second, if a symbol i is

supposed to appear ni times we may replace it with ni symbols, each
with the same associated vectors as the original symbol, each to appear
once. Third, the interval [0, 1] may be replaced by an arbitrary interval
[t’, t"] by a linear transformation. Combining these gives the following
result.

Let s symbols 1,..., s be given with associated vectors a1,...,as ~ Rn,
~ai~ ~ 1 and associated "multiplicities" n1,..., ns’ Set N = 03A3si=1 ni. Given
a history Q) on these symbols on [t’, t"] in which symbol i appears exact-
ly ni times set
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Let v, w E R" with F(v) ~ K, F(w) s K and let

LEMMA 11.3: With the above conditions there exists a history OJ so that

for all t E [t’, t"] and we may split [t’, t"] into disjoint intervals, each of
length at least (t" - t’)/2N so that each interval has at most one ap-
pearance of a symbol.

§12. Final steps

At the end of §10 we had constructed a system of consistent

benchmarks, at most 101p apart, with

for each benchmark to. Let t’, t" be consecutive benchmarks. Set

By (10.7), all ni ~ 12 hence N s 12s. Let

Then (and this is the Reduction Principle)

where

and D*(t) is the discrepancy function defined (as D(t)) by (11.16). Hence,
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by (12.1) and Lemma 11.3, there exists a history co on [t’, t") so that

for all t E [t’, t"). As t’, t" were arbitrary consecutive benchmarks, (12.6)
holds for all t ~ 0.

To complete the proof we modify co so that all symbols are at least
n-5/p apart. From Lemma 11.3 each new symbol lies in an interval of
length at least (t" - t’)/2N not containing any other symbols. Since t"
- t’ ~ 5/p and N ~ 12s ~ 12n these intervals are at least (as n ~ 999)
4n-5/p apart. Note, however, that two symbols may be arbitrarily close
together if they lay on the extreme right and extreme left sides of adja-
cent intervals. The following Lemma enables us to push such "kissing"
pairs apart by brute force.

PUSHING LEMMA: Let a history 03C9 on s symbols, s s n be given. Let p be
an upper bound for the associated pi. Suppose K is an upper bound on
F(D(t)) for all t. Let a symbol appear at to and no symbol appear in (to, to
+ el. Let co* be the altered history given by moving this appearance from
to to to + e and let D*(t) denote the altered D(t). Then

for all to S t  to + 03B5 and D*(t) = D(t) for all other t E R +.

PROOF: The second part is clear. Let t = to + b where 0 ~ 03B4  e.

Then

so

and so

We use, for the first and only time, property (8.5) to complete the proof.
The Pushing Lemma also holds if the symbol is moved from to to to

- s. Returning to our history w we move any new symbol that is within
n-5/p of the edge of its interval a distance e = n-5/p toward the center
of its interval. In the new history co* all symbols (new and old) are at
least n-5/p apart. We have increased F by at most a factor of
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exp(03BBp ~ n) = exp(03BBn-4). For the first and only time we use the actual
value of 03BB given by (8.11). Actually, we need only that is not "extreme-
ly small" - more precisely, 03BB ~ n-4. Then 03BB2 ~ 03BBn-4 and so the "non-
kissing" m* has

completing the proof of Theorem 4 and hence completing the proof of
Theorem A.

§13. Lower bounds

In this section we return to the original formulation of §1 and show
that the result (1.2) is best possible up to a factor of (ln n). The tech-
niques are well known.
A square matrix H = (hij) of order n is called a Hadamard matrix if

all entries hij = ± 1 and if the row vectors ri = (hi1, ..., hin) E R" are

mutually orthogonal. We call H normalized if r = 1 = (1,...,1).
Let a normalized Hadamard matrix H of even order n be given. Let

03A9 = {1,...,n} and set p(( j)) = n-1 for all j ~ 03A9. For 2 sis n set

Let m = (03BE1, 03BE2,...) be an arbitrary sequence of points from Q. We shall
show that

for some i, 2 sis n.
Fix m and for each j E S2 let (suppressing the value t = n/2)

Zi be the number of i with 1 ~ i ~ n/2 and 03BEi = j (13.3)

Since Zj is integral, |Dj| ~ 1 2 and therefore

Since the Di are discrepancies D·1 = 0. The vectors r2,...,rn form an
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orthogonal basis for the hyperspace of Rn perpendicular to 1. Hence

The entries of all ri are all ± 1 so alllril2 = n. Thus

and therefore

for some i, 2 ~ i ~ n. We observe that

and (13.2) immediately follows.
Let TIJ(n) be the minimal value so that Theorem A holds with this

value as the RHS of (1.2). We have shown that if a normalized Hadam-
ard matrix of order n exists then

Such matrices are known to exist for many n, in particular all n of the
form 4s12t. These orders n are thus asymptotically dense in the weak
sense that for all B &#x3E; 0 if m is sufhciently large there exists such an order
between m and m(1 + e). We combine Theorem A and the Lower Bound
with a single asymptotic statement:

Appendix

We give here proofs of inequalities (8.7) and (4.4).

LEMMA: For all reals 03B1, 03B2 with |03B1|  1
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PROOF: This is immediate if a = + 1 or a = -1 or if |03B2| ~ 100. If the
Lemma were false the function

would assume a negative global minimum in the interior of the

rectangle

Setting partial derivatives equal zero we find

and thus Tanh fi = fi which implies fi = 0. But f(a, 0) = 0 for all a, hence
the Lemma is true.

THEOREM: For all reals 8, a, À, v with 0 S 0 S 1 and lai ~ 1

PROOF: Expressing Cosh a = (e03B1 + e-03B1)/2 the LHS becomes

and so it suffices to show

Transforming 0 to 1 - 0 switches the above equations, so it suffices to
show the first one. It suffices to show this equation for a = 1, i.e.,

as we may then set = À’ a. Setting 0 = (1 + a)/2 and À/2 = 03B2 this re-
duces to the Lemma above.

For 1 ~ i ~ s let ai be independent random variables with
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where 0 ~ 03B8i ~ 1. Set Y = 03B5i - 03B8i and that

For all reals (here E represents Expected Value)

as shown above. Since the Y are independent,

and thus, for every a &#x3E; 0

Similarly

so that

Setting 03BB = 4a/s (so as to minimize the above expression)

When
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