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AN INVERSION FORMULA FOR WEIGHTED ORBITAL
INTEGRALS

Rebecca A. Herb*

§1. Introduction

Let G be a reductive Lie group satisfying Harish—Chandra’s basic
assumptions. Let 4 be the split component of a parabolic subgroup of G
and T a Cartan subgroup of G with A = T. Write T = T, Ty where T; is
compact and Ty is split. Then for he T, the set of regular elements of T,
and fe C*(G), Arthur defines in [1c] a weighted integral of f over the
orbit of h by

ri(h) = J SOx 7 thx)v (x)dx (L.D)
TR\G

where v, is a certain weight function corresponding to A defined on
Cs(A\G and dx is a G-invariant measure on the quotient. When A4
= {1}, r{¥}(h) is the ordinary orbital integral.

Arthur proves that the distributions r(h): f —r#(h), feC2(G), are
tempered, that is, extend continuously to f e %(G), the Schwartz space of
G, and have many properties analogous to those of ordinary orbital
integrals. Such weighted orbital integrals occur in the Selberg trace for-
mula for the case of non-compact quotient, and thus it is important to
compute their Fourier transforms as tempered distributions [see
1a,d,5].

In the case that f is a matrix coefficient for a discrete series represen-
tation of class w and with character 8, Arthur proves that

rf(h) = &(T, A)(—1)"<0,,, f>0,,(h) 1.2)
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where p is the dimension of A and &T,4) is 1 if A= Tg and is 0
otherwise. This gives the Fourier inversion formula for r#(h) restricted to
the space °%(G) of cusp forms on G. It also shows that the weighted
orbital integrals, like ordinary orbital integrals, have important con-
nections with the harmonic analysis on G.

In the case that A = {1}, (1.2) is a well-known theorem of Harish—-
Chandra. In order to motivate the results of this paper, it is useful to
review other results of Harish-Chandra on orbital integrals. Thus let P
= MA,N be a cuspidal parabolic subgroup of G. For w an equivalence
class of discrete series representations of M and ve %, the real dual of
the Lie algebra of 4, let 0, , be the corresponding unitary character
induced from P. Let W)= {seNg(4,)/Cs(4,), sw=w}. For
aeCP(F), let f= ¢, be a wave packet corresponding to w. Then
Harish—Chandra proves that if he T' where T is a Cartan subgroup of G
with dim Ty > dim A4;, then

ry(h) =e(T, A)[W)] ™" J {Op,v, 500, (W) dv. (1.3)

Here &(T, A,) is 1 if dim Ty = dim A, and is O otherwise [2c].

Let ¥ ,,(G) denote the subspace of ¥(G) spanned by wave packets
coming from some parabolic P with split component 4,. Then we see
from (1.3) that for fe%,,(G) and he T, if dim 4; < dim Tg, r(h) = 0,
while if dim Ty = dim A,, r¢(h) is possibly non-zero but still is given by a
simple formula. When dim A; > dim T, the formula for r;(h) becomes
much more complicated (see [3b]).

Returning to the case of weighted orbital integrals, if A = Tg, then the
distribution r4(h), he T, is non-trivial on the space of cusp forms. Thus
in this case we expect that for fe % 4,(G), dim A, > 0, the Fourier inver-
sion formula for r4(h) will be complicated. However, if 4 ¢ Ty, so that
rf(h) = 0 for all f€°%(G), it is reasonable to expect that ri(h), f€% 4,(G),
may be given by a relatively simple formula for A4, of sufficiently small
dimension. This is indeed the case.

Thus let P = MA;N be a cuspidal parabolic subgroup of G with
dim A; < dim T — dim A. Let w be an equivalence class of discrete
series representations of M. For ae CX(%), let f = ¢, be a wave packet
corresponding to w. We will define a “weighted character” 84 , on T’ so
that

ri(h) =T, 4, A)(— 1P [Ww)] j Ou, > f 05, (R)dv (14
F
where &(T; A, A,) is 1 if dim Tz = dim 4 + dim 4, and is 0 otherwise.
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Note that (1.4) shows that restricted to €4,(G), dim 4; < dim Ty
— dim A, r4(h) is invariant as a distribution. However, r4(h) is not an
invariant distribution on %(G). Thus when fe%,,(G), dim 4; > dim Ty
— dim 4, we can expect the problem of computing r#(h) to become
much more difficult.

In section §2 we review the basic definitions and results of Arthur on
weighted orbital integrals and of Harish-Chandra on wave packets
which will be needed to prove (1.4). In section §3 we define the
“weighted characters” 64 , which appear in (1.4) and show that they
retain many of the basic properties of the ordinary characters 6, ,. In
section §4 we study distribution-valued functions on T’ of the type that
occur in (1.4), and in §5 we give the proof of (1.4).

§2. Background material

Let G be a reductive Lie group with Lie algebra g. Let K be a max-
imal compact subgroup of G and 0 the corresponding Cartan invol-
ution. Let B be a real symmetric bilinear form on g. We will assume that
(G, K, 0, B) satisfy the general assumptions of Harish—-Chandra in [2b]
and that Haar measures are normalized as in [2b].

Subgroups of G will be denoted by capital letters and the associated
subalgebras by the corresponding lower case German letters. The com-
plexification of any Lie subalgebra b of g will be denoted b. All Cartan
subgroups T of G will be assumed to be f-stable. We will write T" for
the set of regular elements of T and decompose T = T;T; where T;
= T K and Ty is a vector subgroup of T with Lie algebra t; contained
in the —1 eigenspace for 6. We will write Ng(T) for the normalizer of T
in G, T, for the center of T, and W(G, T) for N4(T)/Ty. @ = P(gc, tc) will
denote the set of roots of g with respect to tc, @z and @, the subsets of
@ taking real and pure imaginary values on t respectively. @, denotes
the complement in @ of &z U @,. For each ye & there is y” e §. such

that for all H et, y°(H) = m The real dual of t will be denoted by t*,
the complex dual by t§. We will identify elements of t; and t¥ via the
bilinear form B. W = W(gc, tc) denotes the Weyl group corresponding
to @. For any f e ®, s;e W denotes the reflection corresponding to f and
¢, the character of T corresponding to f.

For the convenience of the reader we will review some definitions and
lemmas of Arthur. The reader is referred to [1c] for details. Let 4 be a
special vector subgroup of G, that is a split component of a parabolic
subgroup of G as defined in [1c,§1] and # an A-orthogonal set. Corre-
sponding to %, Arthur defines a weight function v(x:%), x € G, which is
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left-invariant by Cg(A), the centralizer in G of A. Let ¥ denote the uni-
versal envelopping algebra of g¢, and for any X € %, let co(X) denote the
constant term of X. Let %, be the set of elements in ¥ invariant under
the adjoint action of A. For Xe%, we will write Dy for the right-
invariant differential operator associated to X.

Let T be a Cartan subgroup of G with 4 = T. Then for all he T,
feCX(G), and X €% 4, Arthur defines

rh:%:X),f> = S(x ™ thx)Dyv(x : %) dx 2.1
Tr\G
where dx is a G-invariant measure on the quotient.
Let 3 denote the centralizer of t; in g and Z(t) the centralizer of 3 in
K. Let &} be a set of positive roots for (3,1). Let:

A,(h) = |det(l — Ad(h™")g,|'?,  heT:

AH) = [] (P2 — g BI2)  Het;
ped;

A H) = A,(H)A,((expH), (eZ{),Het.
For {eZ(t), Het'({) = {Het:{exp He T'}, and fe CX(G), define

RTACH:¥:X)=<R(H:%:X),f) =
= A H){rCexpH: ¥ :X), f>. (22

LEmMMA 2.3 (Arthur). Let (e Z(t). For each Het'({) the distribution
R({,H:% : X) is tempered. For every fe%(G), the function R/({, H:% : X)
is infinitely differentiable for H e t'({).

Let & denote the center of ¢4, S(tc) the symmetric algebra on t¢, I(t¢)
the set of Weyl group invariants in S(i¢), and y =y,, the Harish-
Chandra isomorphism from &% onto I(tfc). Arthur defines ideals
G0 =G )c... of 9, s0 that |JGr) =94, GNGAr) S GAr

r=0
+7), >0, Dy(x:¥)=0if Xe% (p+1), p=dim 4, and ¢cy(X) =0
if Xe% (1)

LEMMA 2.4 (Arthur): For any z€ % there are elements {X;:1 <i<r} in
94 (1) and differential operators {0;:1 <i<r} on t({) so that for every
(e Z(t), Het(), X%, and fc%(G),

R.;((,H:%:X)— Ry((,H;09(2):%:X) = i; Ry, H;0;:%:XX,).
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Fix {eZ(t) and Be Pg(l) = {Be Pr:&p(0) = 1}. Let t) = {Het:p(H)
=0}, a; = anty, and Ay = exp(ay). Let Hyet be dual to 28/<{p, B> and
let Xz and Yzeg be root vectors for B satisfying [ Xy, ;] = Hp, Y =
—0Xj;. Then t; = tf,? + R(X; — Yp) is a Cartan subalgebra of g and we
denote the corresponding Cartan subgroup by T, Let A = exp(
—mi/4ad(X; + Yy)) be the associated Cayley transform. Let ng(A)
denote the cosine of the angle in t; between f and a. If Het'((), set
15(H) = ng(A)|Hpl log|ePH/? — e~ PHV2| and define

SACH:Y:X) = R(L H:Y:X) + 15 HRT((, H: Y 5: X) (2.5)

where %, is an Ag-orthogonal set depending on #. Let t3(0) = {Het}
¢ lexpH) # 1 for any ae®, a # +p}. For Hyet((), write S(Hy)*
= lim S(H, + tHp).

t>0*

LEMMA 2.6 (Arthur): Let ueS(t), f€%(G). Then for Hyetg((),
SHC, Ho; 0u: ¥ : X)* — SH{, Ho;0u:¥:X)™ = ny(A)lim RF»4#((, H, +
60—-0

+ 0(X; — Yp); 0A(sgu — u): % 5: X) where the limits all exist uniformly for
H, in compacta of t3(().

LEMMA 2.7 (Arthur): Let ueS(tc), f€%(G). Then for Hyet3((),

lim RT#4%((, Hy + 6(X} — Y;);0Au:%,: X) —

00"+

lim R7#4%((, Hy + 0(X; — Yp); 0Au:%,:X) =

-0~

—mi|Hy| lim R 4#({, Ho + tHpy; 0u: ¥ : X)
t—0

where the limits all exist uniformly for H, in compacta of t(().

Lemma 2.7 gives boundary conditions for R, across any hyperplane
determined by a singular imaginary root. It follows easily from the
proof of 2.6 (Theorem 6.1 of [1c]) and facts about ordinary orbital in-
tegrals that if B is a compact root of (g,1) and H,et satisfies e#H? = 1,
& ((exp Hy) # 1 for any ae ®, a # +f, then R({, H: % : X) extends to a
smooth function around H = H,,.

For Het'((), let m(H) = min{|1 — ¢ ((expH) !|:a€® and of, # 0}.
Let L({ exp H) = |log m(H)|.

LEMMA 2.8: Given any ueS(tc) there is a continuous seminorm v on
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%(G) so that for all fe€(G) and H et'({),
IRAC, Hy 0u:% - X)| < v(f)(1 + L({ exp H))".

ProoF: In the case that u = 1, this result is a special case of Corollary
7.4 of [1c]. For general ueS(t¢) it can be obtained by using the argu-
ment of Arthur in Lemma 8.1 of [1c]. |

We now turn to results of Harish-Chandra on wave packets which
can be found in [2c, §20]. Let P = M AN be a cuspidal parabolic sub-
group of G. Let ¢,(M) denote the set of equivalence classes of irreducible
unitary square-integrable representations of M. Let €,(M) denote the
closed subspace of €(M) spanned by K,,-finite matrix coefficients of w
where Ky = Kn M. For any ve # = af, let n,, , be the tempered uni-
tary representation of G induced from v ® ¢ ® 1 on P. Let 6,, , and 6,,
denote the characters of r,, , and w considered as functions on G’ and
M’ respectively. For fe%(G), write

<0m,v’f> = J f(x)ga,,v(x) dx.

For wee,(M), Yy €€,(M), e CX(F), and x € G, define

O x) = f a(VEP: Y :v:x)u(w:v)dv (2.9)
F

where E(P:y:v) is the Eisenstein integral defined in [2b] and p(w:v)dv
is the Plancherel measure corresponding to =, ,, ve #. Then ¢, € 4(G) is
called a wave packet for wee,(M), and a — ¢, is a continuous mapping
from CX(&) into %(G). Extend a, to a Cartan subalgebra h = b, + a, of
g with h; = m. Let Aeib} correspond to the infinitesimal character of .
For gel(hc), let p(q) be the polynomial function on & given by p(q:v)
= g(A + iv), ve #. Then if geI(h¢) and z = 44 (9)€ Z, then

ZQy = (pp(q)a' (210)

Finally, for w and y fixed as above, there is a constant ¢ so that for all
0eCX(F), ve F,

oo 0> = ) ofsv). 2.11)

seW(w)
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§3. Weighted characters

Let A, B be subspaces of a Euclidean vector space with dim A
= dim B = m. Let {vy,...,0,} and {wy,...,w,} be orthonormal bases of
B and A respectively. Define ¢(B, A) = |det X| where X is the m xm
matrix with entries x;; = {v;, w;»>. Then ¢(B, A) = ¢(4, B) is independent
of the choices of orthonormal bases and is equal to the volume of a unit
cube in B projected onto A.

For any vector v # 0, let n,(A) be the cosine of the angle between v
and A and A,, B, be the subspaces of 4, B respectively which are or-
thogonal to v.

LEmMMA 3.1: IfveB, v # 0, then ¢(B, A) = n,(A)c(B,, 4,).

ProoF: Pick an orthonormal basis for B so that v; = v/|v|. Let v, be
the projection of v onto A. If v, = 0, then n,(A4) = 0 and (v, w) = 0 for
all we A so that c(A4, B) = 0. Assume v, # 0. Choose an orthonormal
basis for 4 with w, = v,/|lv,|l. Then {vy,w,) = n,(4) and {v,,w;> =0
for j>2. Thus c(A4, B) = n,(A)|det X*| where X* = ({v;,w;)), 2 <1,
j < m is the matrix corresponding to 4, and B,. |

We will now use the constants ¢(B, A) to define the weighted charac-
ters which appears in (1.4).

Let P= MA;N be a cuspidal parabolic subgroup of G. Write L
= MA,;. Let wee,(M) and ve F = af. For T a Cartan subgroup of G,
let H,,...,H, be a complete set of representatives for distinct L-
conjugacy classes of Cartan subgroups of L for which H; = x;Tx; !,
x;€G, 1 <i<k. For he T, write h; = x;hx; * € H;. Then

00,s() = A5 (h)™* i > A5 (wh)(6, ® e™)wh)  (3.2)

1 weW(L,H:)\W(G,H;)

where A4S, A% are the functions 4, defined on Tand H;, 1 <i <k, in §2
when T and H; are considered as Cartan subgroups of G and L re-
spectively. Note that if no conjugate of T lies in L, then 6, ,=0on T".

Now let 4 be a special vector subgroup of G with 4 = T and dim Ty
=dim A + dim A,. For he T’ define x,,...,x, and hy,..., h, as above.
For 1 <i <k and we W(G, H;), ad x; 'w™ !4, < Ty and is independent
of the representative of the coset W(L, H;)w chosen. Define B,, to be the
orthogonal complement in Ty of ad x; 'w ™ !'4,. (We consider Ty as a
Euclidean vector space via the exponential map isomorphism with tg.)
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Then B,, is a subspace of T, with dim B,, = dim A. Define

04 (=SS Y c(Bu AL (kYO ® Ywhy).

i=1weW(L,H:)\W(G,H;)
(3.3)

Note that 64 , is not an invariant function on G'. It is easy to check
from the definition that in fact, if he T’ and y e G, then

05.(h) = 058 (yhy ™). (34)
For { e Z(t) and H et'({), define

(im.v(g’ H) = Z(c, H)ow.v(C eXp H) and
&2 (. H) = A(, H)04 ({ exp H).

Assume for simplicity that T < L. (Because of (3.4) this leads to no
loss of generality) Let t,=tnm and write &, H) =
= A,(H)A%( exp H)0,,(( exp H) for H et),({). Let Aet} ¢ correspond to
the infinitesimal character of w. That is, 4 is a regular element of t¥; ¢ so
that &,((, H; 8q) = q(A)®,((, H) for all gel(ty. ¢) and Hetj(l). Fix
{eZ(t) and let Q) = {Het:B(H) # 0 for all fe Pg(()}.

LEMMA 3.5: For any connected component F of () there are constants
c(F), se W = W(gc, tc), so that for all HEF,

8, H) = ). c(F)exp(s(A + iv)(H))

seW

and

&5 (L H) = Y c(F)c(B,, A)exp(s(A + iv)(H)).

seW

Here c(F) =0 unless sA, = Tg, and in this case B, is the orthogonal
complement in Ty of sA,. Further, if e ®r({) and F, syF are adjacent
chambers of Q({), then c(F) = cy(spF) unless B|s,, = 0.

Proor: Fix HeF and let h = {exp H. Define x,,...,x, as in (3.2). Let
W be a set of representatives for the cosets WL, H)\W(G, H;), 1 <i <k.
Then using (3.2) and (3.3),

k

8, . H) =

13

E(W)(‘i;m ® eiv)(W(:ia wH;)

1weW;
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and

FACH) = Y, T k(B AYB, © Yol wH)

where {; = x;{x; !, H; = ad x;(H), 1 <i <k, and &w) = 4,(H)™'4,(wH))
= +1 depends on the choices of positive systems of imaginary roots
which have been made, but not on H. Fix 1 < i < k, and write | for the
Lie algebra of H,. Write W,; = WMim, t ¢). Then there is y e M¢ so that
Ad y(t¢) = be. Using the theory of characters on M, for every we W, and
o € W), there are uniquely determined constants c,(i, w) depending only
on the component of t'(i, w) = {H et: f(H) # 0 for all f e Pg({) such that
BIAd x; 'w™ 'a, # 0} containing F so that

(B, ® ™MW wH) = 3 (i, w)exp(s(i, wio(4 + iv)(H))

ceWwm

where s(i, w)e W represents the action of Adx; 'w™ ' Ady on t¢ and so
satisfies s(i,w)4; = Adx; 'w 14, = Tz. Note that for all ceW,,,
s(i,w)gA; = s(i, w)A,, so that B, = By; . for all o€ W,,. Further, one
can check that any se W can be written in at most one way as s
= s(i,w)a, 1 <i < k, we W,, 6 € W,,. Thus we can write &,, , and &4 , as
claimed in the lemma where ¢(F) = 0 if s is not of the form s = s(i, w)o
for some 1 <i<k, weW, and o€ W,,, and if s = s(i, w)o, then c,(F)
= e(w)c,(i, w). If Be Pg({), F, szF are adjacent chambers of Q({), and
Blsa, # 0, s = s(i, w)o, then F and s;4F lie in the same component of t'(i, w)
so that c(F) = c,(s4F). O
An immediate consequence of (3.5) is

&4 (L, H;d9) = q(4 + iv)®4 (¢, H) for all Het'({), qeI(tc). (3.6)

LEMMA 3.7: Given any ueS(tc), there exist constants c, r so that
|84, ,(C H; 0u)| < c(1 + |Hg|) for all H = H; + Hget'().

ProOOF: By results of Harish—Chandra [2b], such an estimate is valid
for 43w_v(c, H). This implies that ¢ (F) = 0 for any se W for which Re(s(4
+ iv))(H) > 0 for any HeF. Using (3.5), then, the estimate holds for
6:). V(C’ H)' D

Now fix e @g({), and use the notation of (2.6). Let Q, be a relatively
compact open subset of t3({).
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LeMMA 3.8: For all ueS(te), Hy€ Q,,

52,\7({’ HO; au)+ - 62,\7((’ HO’ au)_ =
= ny(A) lim B22,(C, Ho + 60X — ) 0A(u — s,)
6-0

where the limits exist uniformly for Hy € Q,.

PRrOOF: Let F and szF be components of Q() with Hye F ns,F and
H, + tHzeF for t>0 and sufficiently small. Write ¢, = ¢,(F), ¢,
= c4(sgF), se W. Using (3.5),

&5 (L Ho;0u)* = 3 [cfe(By, Auls(A + v)) +

seWo

+ € (B s, A)spu(s(2 + iv))] exp(s(A + iv)(H,))

where W, is a set of coset representatives for {I,sz}\W. If B|,, =0 so
that T; < L, we can use (3.5) directly to obtain a similar expression for
d~5,‘f,f’von T;. However, for the general case we must combine (3.5) and
(3.4) to see that there are constants d;, s€ W, such that for all H in an

open subset of t; containing H,, $45,((,H)= Y dc(B,, As)exp(As(4
seW

+ iv(H)) where d, = 0 unless s4; < (Ty)g and in that case B, is the or-
thogonal complement in (Tj)g of sA,. (If no conjugate of Ty is contained
in L, then of course d; = 0 for all se W) From work of Hirai [4] and the
observations of Arthur in [1c, Thm. 9.1] it is known that &,, , is cont-
inuous at H, and that

6w,v(C’ HO’ aH[ll)+ - 6m,v(C, HO; aHé)_ =
=21im &, ((, Ho + 6(X; — Y;); 0AH]).
-0

Thus we see that for all se W,

() ¢ + ¢ — s —c;, = 0 and that
(“) cs+ - C;‘;s —¢ + cs‘ﬂs = 2(ds - dsgs)'
By considering separately the cases that szu = u and sgu = —u, ue S(tc),

it will be enough to prove that for all se W,
(iii) (¢ — ¢;)e(Bs, A) + (c;:js — ¢5,5)c(By,s, A) = 0 and that
(lV) (cs+ - C;)C(Bs, A) - (%;s - Cs;s)c(Bs;;s’ A) =
= 2nﬁ(A)(ds - dsgs)c(Bss Aﬂ)
Suppose first that sA; & Tg. Then also sgsd; & Ty as sgTg = T,
so that ¢t =ci,=d;=d,,,=0. If sA; € T and f|,, #0, then

sps 8BS
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sA; & (Ty)g, and again the same is true of sgs, so that o =c;,
+

Cops = Csyso and dg =d,,, = 0. Finally, suppose that s4; < Ty and B,

= 0. Then sgsA; = sA; so that B; = B,,. Also exp(H}p)e B, so that using

(3.1), ¢(B,, A) = ng(A)c((B,)g, Ag). But since Bl,,, = 0, (B,)s = B,. Thus (iii)
B B> B 1 (]

and (iv) are satisfied in all cases. O

§4. Distribution-valued functions on t

In [1c], to prove (1.2) Arthur shows that for a fixed matrix coefficient
f of the discrete series representation n and for fixed { € Z(t),

W(H) = A, H)[r{(C exp H) — o(T, A~ 1)P€0,, / 30,( exp H)]

is a smooth function of H et'({) which is an eigenfunction of dq for all
geI(te), extends to a continuously differentiable function in a neighbor-
hood of any H, e t3((), Be Pg((), and is of moderate growth. Then using
techniques of Harish—Chandra he shows that any such function must be
Zero.

In our situation, in order to obtain a differential equation for dq,
geI(tc), we must consider functions ¥ not only of H et'({), but also of
the a € CX(&) which are used to form the wave packets f = ¢,. In this
section we will give sufficient conditions on such a function Y(H:a) to
guarantee that yy = 0. Then in §5 we will prove (1.4) by showing that

Y(H:a) = 4, H)[";u(é exp H) — &(T, 4, A, )(— 1) [WMw)] ™!

J (B,,v> 92204, ,( exp H) dV]
F

satisfies these conditions.

For simplicity we assume that T = L. We also assume that T is not a
fundamental Cartan subgroup of L. Fix { e Z(t) and A et} ¢ correspond-
ing to the infinitesimal character of some we¢,(M). Let V be a subspace
of # and U < V any open subset of V. For geI(tc), let p(q) be the
polynomial on U given by p(q:v) = q(A + iv), ve U. For veS(t) and
se W, let p(v) be the polynomial on U given by py(v:v) = v(s(A + iv)),
veU.Let p; =% s.0: 5

Define E(U) to be the complex vector space consisting of all functions
Y on t'({) x CX(U) satisfying:

(4.1) for each ae C2(U), Y(H : a) = e?™ ™ ({ exp H) where f, is a smooth
function on T’;
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(4.2) for each gqel(ty). Y(H;0q:o) = y(H:p(qa) for all Het'(]),
ae CE(U);

(4.3) for each Be ®r((), Hoet3({), Y(H : «) extends to a smooth function
in a neighborhood of H, for all e CX(U);

(4.4) for all ae CP(U), Y(H:a) extends to a C® function on Q; =t,
+ {Hetg:f(H) # 0 for any fe ® with f,, # 0};

(4.5) for each fixed Het'({), ueS(tc), a—Y(H; du:a) defines a distribut-
ion on U. Further, for any ue S(t¢) there is a continuous seminorm
pon C?(U) and a constant r so that

[W(H; 0u:a)| < p(a)(1 + L exp H)P(1 + |Hgl)" for all
H = H, + Hget/((), e C2(U).

We are of course primarily interested in showing that E(#) = {0}.
However, in order to do this, it is necessary to use the various spaces
E(U) defined above: Note that when U = U’ are open subsets of V, then
for € E(U"), the restriction of ¢ to t'({) x CX(U) is an element of E(U).
For S a subalgebra of S(t¢), se W, and U = V= & as above, define
E(U:s:S)={yeEWU):y(H;dv:a) = Yy(H:pv)x) for all veS, Het'((),
ae C2(U)}. When S = S(t¢), we write E(U :s:S(t¢)) = E(U :s).

LEMMA 4.6: Let U be an open subset of a subspace V of &. Let
Y e E(U :s) for some se W and let Q be a convex open subset of t on which
¥ extends to a smooth function and such that L{{exp H) is bounded on
compact subsets of Q. Then there is a fixed distribution T on U so that
Y(H :a) = Tlexp(p(H))a) for all He Q, a e CX(U).

PrROOF: Let P be a fixed point in Q and fix ae C®(U). For any H,e Q,
let H= Hy,— P. Then since Q is convex, P +tHeQ, 0 <t <1, and
using Taylor’s theorem, for any g > 0 there is a 0 < 7 < 1 with

=1 y(P;0H" : o) + Y(P + tH;0H?: a)

V(Ho:a) = ,ZO r! q!
=y (P: (.,;z p—iﬂ) oz) + W(P + tH : p(H)Y/q!%).

Using (4.5) and the assumption that L({ exp H) is bounded on compact
subsets of Q, there is a constant C so that for all ¢ >0, |Y(P
+ tH : p(H)%)|/q! < Cu(ap,(H)/q") where p is a continuous seminorm
on C®(U). But as q goes to oo, ap,(H)Y/q! converges to zero and
aY 28 p(H)/r! converges to aexppyH) in CX(U) so that y(H,:a)
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= (P :exp(p,(H))a). Thus if we let T{ax) = Y(P : exp(— p,(P))x), we see that
Y(H, : a) = T(exp(ps(Ho)))- g

As before, U is an open subset of a subspace V of &#. Via duality, we
think of V also as a subspace of tx.

LEMMA 4.7: Let se€ W with sV < tg. Then E(U :s) = {0}.

PrOOF: Since A€ty ¢ corresponds to the infinitesimal character of
some € &,(M), we know that (4, 8> # 0 for every fe @y, = {fe P: |,
= 0}. Suppose that si|,, = 0. Then using [3a] sA is also regular with
respect to @,,. We have assumed that T is not a fundamental Cartan
subgroup of L and that P is a cuspidal parabolic subgroup of G. Thus
&, contains real roots so that si|;,, . # 0. Since tg = a; @ ty, g, We see
in any case that si|,, # 0. But considered as an element of t§, Aeitf + t}
= {uet¥:p|, takes pure imaginary values and pu|,, takes real values}.
Since this real subspace of t§ is stable under W, si takes real values on
tz-

Let t, be the orthogonal complement of sV in tz. For all Het,,
ps(H:v) = s(A + iv)(H) = sA(H) is independent of ve V. Since si|, # 0
and si|, = 0, we can choose H, et, with sA(H,) # 0 and B(H,) # 0 for
every fe®g(() for which B, #0. Let t, = {Het:{H,H,)» =0}. Fix
H, et, so that for teR, H, + tH, et'({) for all but finitely many values

of t, and so that H, + tH,e (] t3({) whenever H; + tH, ¢t(0).
BeBRO

Fix Be®g({) and toeR with Hy = H, + toH,et)((). Let Y e E(U:s).
By (4.6) there are distributions T* so that for ¢ > 0 and small enough
that H, + tH,et((); W(Ho £ tH,:a) = T*(aexppy(H, +tH,) =
= ct(a)exp(ty + tNsA(H,)) where for all «aeC2(U), c*(a)=
= T*(xexp p,(H,)). By the continuity of ¥ at H,, c¢*(a) = ¢ () for all
aeCX(U).

Since we can do this for any value of t, with H, + t,H, ¢ t'({), we see
that for any ae CX(U) there is a constant c(x) so that Y(H, + tH,:a)
= c(o) e**™2 for all teR. But since si(H,) is real-valued and non-zero,
this contradicts the growth condition on y unless c¢(«) = 0. For fixed H,
as above, the set of points H, + tH, with teR and H, et satisfying the
above hypotheses is dense in t'({). Thus Y(H:a) =0 for all Het'({),
ae C2(U). O

For V a subspace of &#, let &, = {fe®:{(B,v) =0 for all ve V}. Let
V' ={veV:{(B,v) #0 for all e P\ P, }.

1 EMMA 4.8: Let se W with sV & tg. Then for all ve V', sv|,, # 0.
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Proor: Fix se W and assume that sv|,, = 0 for some veV'. Then
v,svety = {uet*:ul, =0}. Let W, = {s;eW:s;tg =tg}. Then for
every fePr U &y, 5, W, Also if ye @, with (y,y?) = 0, then 5,57 W,.
As in [3a] it is easy to see that there is s, € W, so that v, s;sv are sep-
arated only by hyperplanes corresponding to roots ye®d, with
{y,y’> > 0. Thus there are y,,...,y,€ P, so that {(y,y7> >0, 1 <i<k,
and v = s,,...s,,s,5v. But since ve V’, this implies that s, ...s, s;sV =V
and sV =s;'s,,...s, V. For 1 <i<k, {y;,y/> > 0 implies that y, — ¢
= B;e ®; so that y; = yp + B;/2 for some ypetk. Thus s, ...5, VeV
+ Y% Ry, ctpg+ Y, RB;. But for s;,eW;, s;'(tg + Yi-1RB) Sty
+ Yo, RB. Thus sV < tg + Y 4.0, RPB. Since sV & tg, there is fed,
with Bl # 0. Thus s~ 1fe ®\®P, so that {B,sv)> # 0 since ve V. This
contradicts the assumption that sv|,, = 0. O

LEMMA 4.9: Suppose se W with sV & tg. Then for any open subset U of
V', E(U :s) = {0}.

Proor: Define Q, as in (4.4). Clearly L({ exp H) is bounded for H in
compact subsets of Q; since for fe @ with |, # 0, £, exp H) # 1 for all
HeQ;. Let F be a connected component of Q;. Then by (4.6), for
VYeEU:s) there is a distribution T on U so that y(H:a)
= T(aexpp,(H)) for all HeF, aeCXU). By (4.1) YH:a)
= eP!™)f (Lexp H) for some smooth function f, defined on T’. Let
HyeL = {Het,:exp(H/2) = 1}. Then for all HeF, H + HyeF and
Y(H:o) = Yy(H + Hy:a) so that T{exp p,(HX1 — exp p,(Hy))x) = 0. Since
exp(—p(H)) e C*(U), this implies that for all xe C*(U) and Hye L, T((1
— exp py(Ho))o) = 0.

Because s4 takes pure imaginary values on t; and siv, ve U, takes real
values on t;, exp(p,(Hy)) = 1 only if sv(H,) = 0. Fix v,e U. Since voe V",
svoli, # 0 by (4.8). Since L spans t,, there is Hy € L with svy(H,) # 0. Let
U, = {ve U:sv(H,) # 0}. Then U, is an open neighborhood of v, in U
and (1 — exp p,(H,)) ' € C*(U,), so that for any a e C*(U) with support
contained in Uy, T(«) = 0. Thus v, is not in the support of T and since
vo€ U was arbitrary, T = 0. 0

For a subspace V of & and se W, let
W(sV) = {we W:ws(A + iv) = s(A + iv) for all ve V} = {we W:wsl = si
and wsv=sv for all veV} and S(sV)= {veS(tc):wv=0v for all
weW(sV)}.

LEMMA 4.10: For U any open subset of V' and for all seW,
E(U:s:S(sV)) = {0}.
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Proor: We will show that E(U:s:S(sv)) € E(U:s) which is zero by
(4.7) and (4.9).

Let t, = {Hetc:sAH) =0 and sv(H) =0 for all veV}. Clearly for
ve S(ty), if v has no constant term, then py(v:v) = v(s(4 + iv)) = 0 for all
ve U so that p(v) = 0 as an element of C*(U). Let t, = C(sA) ® C(sV).
Then t, is the orthogonal complement in t; of t, so that S(tc) =
S(to) ® S(ty) and S(t;) = S(s¥V). Thus to show that E(U:s:S(sV)) < E(U:s)
it is enough to show that for all ve S(t,), Y € E(U :s5: S(sV)),

Y(H,0v:a) = Y(H :pv)a) for all H et'(), a e CX(U). *

Let I(ty) = {veS(ty): wv = v for all we W(sV)}. W(sV) is the pointwise
stabilizer in W of t; so that W(sV) is generated by reflections in roots
which vanish on t;, that is roots lying in t,. Thus using a standard
argument of Harish—Chandra [2a], there are u,,..., u, € S(t,), 4; homog-
eneous of degree d;, 1 <i <k, so that each veS(t;) can be written as
v = Y%, uq; for some q,,...,q,€l(ty).

Let d = max{d,,...,d;}. Suppose veS(t,) is homogeneous of degree
¢ >d. Then each q; is homogeneous of degree £/ —d; >0 so that
P(g) =0, 1<i<k, and pyv)=73%pu)pq)=0. Thus for
any YeEWU:s:SsV)), aeCPU), and Het()), yY(H;dv:a)=
= Y ¥= 1 W(H; 0u;: p(q:)a) = 0 = Y(H : p,(v)a).

Now let vy € S(ty) be homogeneous of degree k, 1 < k < d, and assume
inductively that for ve S(t,) homogeneous of degree greater than k and
VeEU:s:S(sV)), property (*) holds. For yeE(U:s:S(sV)), define
vo by voW(H:a) = Y(H;0vy:a) for Het'()), aeCP(U). Clearly
voY € E(U :5:S(sV)). Further, if veS(t,) is homogeneous of degree
> 1, then voY(H;0v:a) = Y(H;0(vvg):a) = Y(H:pvvg)a) = 0 =
vo¥(H : py(v)) by the induction hypothesis. If ve S(t,) is constant, ve I(t,)
so that also in this case v and voy satisfy (*). Thus vo € E(U:s) so
that vy = 0; that is, Y(H;0vy:a) = 0 = Y(H : py(vo)x) for all Het'({),
o€ CP(U). Thus for any v, e S(t,), v, homogeneous of degree > 1, and
VeEWU:s:S(sV)), ¥ and v, satisfy (*). Again, since (*) always holds for
terms of degree 0, we are done. O

Let U be an open subset of &#. For ye E(U) and ueS(t¢c), define
uy(H :a) = Y(H; 0u:a). For each feC®(U), y € E(U), define fy(H:o)
= Y(H : fo). Clearly the above give algebra actions of S(tc) and C*(U)
on E(U) which commute. Thus Y(U) = C*(U) ® S(t¢) acts on E(U). For
y=Yi1/i®ueYU) and seW, define sy =Y., f; ® su; and define
ps(y) to be the C* function on U given by p,(y:v) = Y ¥_, fi(v)p(u;:v),
veU. Define Y,(U)={yeY(U):p(y)=0 for all seW}, Y'(U)
= C*(U)® I(tc), and Y3(U) = Y,(U)n YH(U).
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LEMMA 41 1: Yo(U) = {Zf= 1 vi.Vi : Ui (S S(tc), yi (3 )IOI(U)}.

Proor: We know from [2a] that there are homogeneous elements
Uy,...,u,€8(tc), w=[W], so that each ue S(tc) can be written uniquely
as u = Y 1 uq; where q;el(te), 1 <i<w. Write W= {s,,...,s,} and
P, =Di» 1 <i<w. Fix veUn %' Then {s(A + iv):se W} is a set of w
distinct points in t&. Thus there are polynomials v,,...,v,€S(t¢c) so that
piv;:v) = v(siA + V) =9, 1<i, j<w. For 1<j<w, write v;
=Y W_, g where g el(te), 1 <k<w. Then for 1 <i, j<w, J;
= p(v;:v) = 0= 1 P(qy;: V)P 1 v). Thus if A, is the w x w matrix with
entries a;;(v) = pi(u;:v), 1 <i, j < w, we see that A, is invertible so that
det 4, # 0.

Now let y =Y., f; ® v; denote an arbitrary element of Yo(U). For
1 <i<k, write v; =) ", q;u; where g;;€I(tc) and u; are as above,
l<j<w. Then we can writt y=),,u;y; where y;
=)¥ 1/i®q;;eY(U) for 1 <j < w. Since ye Yy(U), for all 1 <i<w,
veU, p(y:v) =Y 7-, p(yj:v)pi(u;:v) = 0. Now since for each ve U n F’
the matrix A, is non-singular, this implies that for ve U n &', p(y;:v)
=0,1<j<w.ButUn# isdensein U so that p(y;:v)=0,1<j<w,
for all ve U. O

LEMMA 4.12: For all ye Yo(U), y € EU), yy = 0.

PRrROOF: By (4.11) it is enough to show that yy = 0 for all ye YI(U).
Write y = Y., f; ® q; where g;eI(tc), 1 <i < k. Then for all Het'({),
xeCR(U), yW(H:e) =Y W(H;0q;:fir) = Yi- WH:plg)fi) =
Y(H :p(y)e) = 0. g

Let vope #. Let @, = {Be®:{B,vo) =0}, V={veF :{(B,v) =0 for
all fe ®,}. Then voe V'. For se W, define W(sV) and S(sV) as in (4.10).
Note that for se W, ve S(sV), sV and p,(v) depend only on the coset of s
in WW(V).

LEMMA 4.13: There is a neighborhood U of v, in & so that E(U)
= ZSeW/W(V) E(U .S S(S V))

PRrOOF: Let sy =1, s4,...,5, be a set of representatives for the cosets
W(V)\W. For 0 <i <k, write p; for p,. Let Hyetc be dual to 4 + iv,.
Then for 1 <i<k, since voeV’, p(Hy:vo) # Po(Hy:ve). Let U be a
neighborhood of v, in % for which p(H,:v) # po(H,:v) for all ve U,
1 <i<k Then

_ k. Hy — pi(Hp)
Y= l:ll Po(Ho) — pi(Hy) ©

1

Y(U)



[17] Weighted orbital integrals 349

and wy, = y, for all we W(V). For any we W(V),

1ifi=0
—_— _1 = o —4
Pws(¥1) = ps; (W™ 'y1) = pi(y1) {0 fl<i<k
Thus
_f1if seW(V)
Psyy) = {0 if s¢ W(V).

Now for any s, te W,

1if setW(V)

ps(ty1) = pi-1,(y1) = {0 if s¢tW(V).

Thus for

y= 2 syeY(U),py)= Y plsy)=1
seW/W (V) seW/W ()

so that yW =y for all YyeEWU). But for seW and veS(sV), (v

— ps(V))sy,) € Yo(U) so that for all Y€ E(U), sy,y e E(U:s:S(sV)). Thus

¥ = cewmwa)Sy1¥ gives the required decomposition. O

Note that (4.13) and (4.10) do not combine to imply that every voe &
has a neighborhood U in & so that E(U) = {0}. This is because in the
statement of (4.10) the set U is an open subset of V', not of #, and
unless voe %', V is a proper subspace of %.

Suppose voe F'. Then @, =0, V = &, and for all se W, W(sV) = {1},
S(sV) = S(tc). In the proof of (4.13) we could have picked the neighbor-
hood U of vy in & small enough so that U = &’. Thus using (4.7) and
(4.9), E(U) = Y ;. E(U :5) = {0}. This shows that for any y € E(¥') and
ae CX(#') with support contained in U, Y(H:a) =0 for all Het'({).
That is, v, is not in the support of the distribution Y(H) for all H et'({).
But voe %' was arbitrary so that y(H) = 0 for all Het'({). Thus E(¥")
= {0}.

That is, for all Y e E(#) and H et'({), the support of the distribution
Y(H) is contained in the singular set #° = {veF :v¢ F'} which is a
finite union of hyperplanes V; = {ve % :{f,v) =0} for some fe,
Bla, # 0. For U an open subset of %, V a subspace of #, se W, and S a
subalgebra of S(t¢), write E(U:U n V:s:S) = {y € E(U :s:S): for all H e t'({),
suppY(H) = U nV}. We will also write E(U:U V) for the analog-
ous subset of E(U). We have seen above that E(F) = E(F :%°)

=40, E(F : V), &, = {Be D:f],, # 0}.
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We now need to recall a classical theorem about distributions on R”
which are supported on a subspace. Let U be an open subset of R", V a
subspace with UnV #0. We identify V with R*x {0} for some
0 <k < n. For peC2(U), let e C2(U n V) denote the restriction of ¢
to U N V. For any distribution T on U n V there is a distribution T on
U given by T(p) = T(¢), pe C*(U). Clearly if D is any differential
operator on U and T is any distribution on Un ¥, then (DT)¢)
= T(D*¢) gives a distribution on U supported on UnV. Let Q
={qy>---»qn-1):9:€N, 1 <i<n—k}. For geQ a multi-index, let D?
denote the corresponding differential operator on U with respect to the
R" ¥ variables transverse to ¥ = R* x {0}.

THEOREM 4.14 [6]: Let T be a distribution on U, supported on U n V.
Then for every q€Q there is a unique distribution T, on U NV so that T
=Y, D*T,. Further, the sum is locally finite.

Now suppose U is an open subset of &, V is a subspace of # which
has non-trivial intersection with U, and ¢ € E(U:U n V). Then using
(4.14), for each H et'({) and g€ Q there is a unique distribution y,(H) on
U NV so that y(H) = Y, D*,(H). For each Het'(), the sum is locally
finite. But in fact, using the full strength of (4.5), if Q is a relatively
compact open subset of U, there is an N > 0 so that for every Het'({)
and ae CX(Q),

Y(H: o) = ; (— 1)y (H : D%ar). (4.15)
lgl<N

Further, since for any fe C*(U n V) and ge Q we can find ae CX(U)
with D% = B, D¥a = 0, ¢’ # g, it is easy to see that each ¥, must satisfy
conditions (4.1), (4.3), (4.4), and (4.5) as a function on t'({) x C2(U n V).

LEMMA 4.16: Suppose U is an open subset of & and V is a subspace of
& so that UnV < V. Then E(U:U N V:s:S(sV)) = {0} for all se W.

PrOOF: Suppose Y eE(U:Un V:s:S(sV)). Assume ¥ # 0. We will
show this produces a contradiction. Fix vy € U n V such that v, is in the
support of y(H) for some Het'({). Let Q be a relatively compact neigh-
borhood of vy in U. For Het'({) and a e CX(R2) decompose Y(H :a) as in
(4.15) where N is chosen as small as possible. Then there is a geQ so
that |g| = N and ,(H) is non-trivial on C?(Q2n V) for some H et'({).

Let se Wand ve S(sV). For Be CX(Q2 n V) choose ae C°(£2) so that D%
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= B.D%a =0, ¢’ # q. Then since € E(U :s:S(sV)), for any ve S(sV),

o (H; 30 B) = (— D\(H :00:0) = (— DY (H: p,(0)o) =
(=1 3 (=1 H DT 0k) = (H (o))

Thus the restriction of ¥, to t'({)x CX(Q2nV) is an element of
E@QnNV:s:8(sV)). Thus Y (H:p) =0 for all e C(2n V), Het'({) by
(4.10). This contradicts the assumption that y, is non-trivial on
Cr2(QnV). O

For V a subspace of &, define &, and V' as before and let %,
={veZF :{B,v) #0 for BeP\P,}. Then F} is an open subset of F
and #,"V=V'.When V=%,%, =% and when V = {0}, ¥, = Z.

THEOREM 4.17: E(F) = {0}.

We will show that E(¥)= {0} by using downward induction on
dim V to prove that E(#;) = {0} for all ¥. We have already established
this for V = #. The statement for V = {0} will give the theorem.

Let V be a subspace of # with dimV < dim %. We can assume in-
ductively that for subspaces V; with dim V; > dim V, E(%#,,) = {0}. Thus
E(&Fy) = E(F:V'). For voe V' there is a neighborhood U of vy in #, so
that EU:UnV) =Y wwa EU:UnV:s:S(sV)) by (4.13). But since
UnVcV, by (416), EU:UnV:s:S(sV)) = {0} for all seW. Thus
EU:UnV)=EU)={0}. Thus for any yeE%,), Het(),
vo ¢ supp Y(H). Since this is true for all voe V' and supp y(H) < V', = 0.

§5. Proof of the main theorem

Let P = MA,N be a cuspidal parabolic subgroup of G. For w € &,(M)
and ve # = af, let 0, , be the character of the corresponding induced
representation and let

P x) = J‘ a(V)E(P: Y :v:x)u(w:v)dv, xeG,
F

be a wave packet where ¥ is a K,-finite matrix coefficient for v on M
and o€ CX(F). Let W(w) = {se Ng(A,)/MA; :s0 = w}.

Let A be a special vector subgroup of G of dimension p and % be an
A-orthogonal set. Let X €%, and let cy(X) be its constant term. Let T
= T,Tg be a O-stable Cartan subgroup of G which contains A and sat-
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isfies dim Ty > dim A + dim A,. Let &T, A, 4,) be 1 if dim T; = dim A
+ dim A, and be zero otherwise. When &(T, 4, 4;) = 1 let 64 , be the
weighted character defined in (3.3). Let f = ¢,, 1€ CX(F).

THEOREM 5.1: For any he T,
re(h:¥:X) =T A, Ay)co(X)— D [W(w)] " J (Oop,vs f 200, (R)dv.

Proor: For the first part of the proof we will repeat the argument
used by Arthur in Theorem 9.1 of [1c].

Suppose p=0. Then ¥4,=% and for all Xe¥%, ryh:%:X)
= ¢o(X) _\'TR\G f(x"'hx)d% and the result follows by results of Harish—-
Chandra in §24 of [2c] summarized here as (1.3).

Let p > 0 and assume inductively that the theorem is true for any T
and 4 with dim 4 < p. Fix X€%,(r), r > 0. If r > p then Dyv(x:%) =0
and co(X) = 0. Thus we can assume inductively that the theorem is true
for Xe%,(r),r >r.

Fix (e Z(t). For Het'({), ae CX(F), write

Y(H:a) = A, H) {r%(c expH:%:X) —
co(X)e(T; 4, A N(— 1P [W(w)] ™" Jf B, vs 9205 (C exp H)d"}-

We must show that € E(¥) so that y(H:a) = 0.

We may as well assume that T < L. Since p =dim A4 > 0, T is not
fundamental. We know that for each a e C*(£), r, (h:% : X) and 02 ,(h)
are smooth functions of heT’. Further, for h={_expHeT,
h—e P®ALH) = [[peor (1 — E-p(h)A.(h) is a smooth function on
T'. Thus  is a function on t'({) x CX(£) satisfying (4.1).

Let ze % and let q = y(z)eI(tc). Then by (3.6), 5$,V(C, H;0q) = q(4
+ iv)if,,v(c, H) where Aet¥; ¢ corresponds to weg,(M). Also {0, ,,zf)
= q(A + iv)<{8,,,,f>. Further, because of the induction hypothesis on r
and (2.4), R,({,H;09:% :X) = R,;({,H:%:X) since for all X;e%,(1),
XX;e9,(r + 1) so that by the induction hypothesis R ({,H:%:XX))
= 0. Now since f = @, zf = @, by (2.10). Combining the above ob-
servations we see that Y satisfies (4.2).

Fix e @g({). Then

SHLH:%:X)=Ry((,H:%:X) + 15(H R} 45, H: ¥ : X).
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If ng(A) =0, then t4(H)=0. If ng(4)#0, then dimA; <p so by
the induction hypothesis the theorem holds for R}4%. But dim T, >
dim A + dim A; > dim A; + dim A; so that &T:A4z:A4,) = 0. Thus in
any case SH(,H:%:X) = R({,H:%:X), so that using (2.6), for any
Hoetg(O, ueSte), Ry(, Ho;0u:%:X)* — RU{,Hpou:%:X)~ =
—ng(A)limgy_, o RF#45((, Hy + 0(Xp — Yp); 0(A(u — sgu)): % 42 X) where the
limits exist uniformly for H, in compacta of t3({). Again, either ny(4) = 0
or else the theorem can be applied to Rf# 4. Combining this with (3.8)
we see that for any Hyet({), ueS(te), Y(Hp;du:a)™ = Y(Hy; du: o)~
where the limits exist uniformly on compacta of t3({). Thus we see that ¥
satisfies (4.3).

Using (2.8) and the fact that « — ¢, is a continuous mapping of
CX(#) into ¥(G) we see that R, satisfies the growth condition (4.5).
Using (2.11) and (3.5), for any ueS(tc), {5 <0, 0> ((, H;0u)dv is a
finite sum of terms of the form

I(H :a) = ¢ c(F)c(B,: A)es* ™ J a(tv)py(u:v) e dy
5

where te W(w), se {(we W:wA, < Tg}, F is the connected component of
€({) containing H, and py(u) is the polynomial on & given by py(u:v)
= u(s(4 + iv)). Since s4; < T, sv(H) is real for all H et. Further, by (3.7),
¢(F) = 0 unless Re sA(H) < O for all He #. Thus there are a constant C
and a continuous seminorm u on CX(%) so that

|I(H:o)) < CJ lotv)ps(u: v)|dv < Ca) for all a € C2(F),
F

H et'({). Thus ¢ satisfies (4.5).

To finish the theorem we must know that for every aeCP(F),
H — y(H : o) extends to a C*® function on Q; =t; + {Hetg: f(H) # 0 for
any fe® with |, # 0}. Note that for HeQ; and fe ®, if {4l exp H)
= 1, then fe®; and B(H)e2niZ. Because of (3.5), it is enough to show
that R, f = ¢,, extends smoothly to Q;. To prove this we need another
induction.

Suppose that Tis a Cartan subgroup of G with dim T, maximal. Then
every imaginary root of (g,t) is compact so that, using the remarks fol-
lowing (2.7),  extends to a C® function about any semi-regular point in
Q,. Since ¥ and all its derivatives are bounded in a neighborhood of any
singular point of @, it follows from the usual argument that y extends
to a C® function on ,. Thus in this case YyeE(¥) = {0} and the
theorem is proved.
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Assume now that T is a Cartan subgroup of G with dimty =k not
maximal, and assume that the theorem is true for Cartan subgroups T
of G with dimfy > k. For all such T with 4 < Ty, R4 =0 since
dim Ty > dim Ty > dim A + dim 4,.

Let  be any singular imaginary root of (g,t). Then using (2.7), the
jump of any derivative of RT°# across the hyperplane f(H) = 0 is a mult-
iple of RT4 for a Cartan subgroup T of G with dim Ty = dim Ty + 1.
Thus by the induction hypothesis the jump is zero. The formula for the
jump of Ry({, H: X :%) across a hyperplane of the form B(H) = 2nin can
also be obtained by (2.7) by using a possibly different {, so again we see
that R, extends smoothly to a neighborhood of any semi-regular point
of Q,, and hence to Q,. Thus y satisfies (4.4) and is zero.
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