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§1. Introduction

We deal with the diophantine equation

in integers x, y. Let R(n, c) denote the number of residue classes z(mod c)
satisfying z" = 1(mod c). We shall derive upper bounds for the number
of solutions of (1) in terms of R(n, c).

THEOREM 1 : The number of solutions of

in positive integers x, y with (x, y) = 1 is bounded above by

If c has many prime divisors one of which is large, we can derive a
better result from the following theorem.

THEOREM 2: The number of solutions of
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in integers x, y, z with x &#x3E; 0, y &#x3E; 0, (x, y) = 1, 0  Izl S d2n/5 -1 is bounded
above by

To avoid confusion, we agree that by solutions of (2), respectively (3),
we shall always mean solutions in integers x, y, respectively x, y, z with
x &#x3E; 0, y &#x3E; 0, (x, y) = 1, z ~ 0.

It is possible to give a simple upper bound for R(n, c). For fixed n,

R(n, m) is a multiplicative function of m. Let m = 2k°m’, where ko is a

non-negative integer, m’ = pk11, pk22,...,pktt for distinct odd primes
Pl, p2, ..., pt and positive integers k1, k2,..., kt. Then

We denote Euler’s totient-function by 0 and the number of prime div-
isors of m by 03C9(m). Then we have R(n, pkii) = (n, ~(pkii)) for i ~ {1, 2,...,t}.
Hence R(n, m’) divides

Further we have R(n,2kO) = 1 if k0 ~ {0, 1} and R(n,2kO) = (n,2)(n,2kO-2)
if k0 ~ 2. Hence R(n,2kO) divides ((n, 2)n, ~(2ko)). Together with (4) this
implies that R(n, m) divides ((n, m, 2)nW(m), 0(m». Substituting this into

theorem 1 and 2 we obtain:

COROLLARY 1 : (i) (2) has at most 2n03C9(c) + 6 solutions,
(ii) (3) has at most 4n03C9(d) + 3 solutions with Izl S d2n/5 - 1

As a consequence of corollary 1, (ii) we obtain

COROLLARY 2: Put CI = c/(c, [a, b]), where [a, b] denotes the positive
lem of a and b. Suppose there is a prime power P dividing CI such that
Pn ~ ci/2. Then (2) has at most 4n + 3 solutions.

If (a, c) = (b, c) = 1 then corollary 2 follows at once from corollary
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1, (ii), by putting d = P, Izl = cld. The following lemma, which will be
proved in §2, shows that the assumption that (a, c) = (b, c) = 1 is no

restriction.

LEMMA 1: Let a, b, c, n be integers with the same meaning as in (2) and
let cl be defined as in corollary 2. There are non-zero integers aI’ b1 with
(a 1, ci) = (b1, c1) = 1, having the same signs as a, b respectively, such that
the number of solutions of (2) does not exceed the number of solutions of
lalxn - b 1 yn = cl in positive integers x, y with (x, y) = 1.

Note that lemma 1 shows, together with the inequality
R(n, CI) S R(n, c) that we may assume that (a, c) = (b, c) = 1 in the proof
of theorem 1.

Let R ~ 1 be some constant. Any pair (xo, yo) such that (xo, yo) is a
solution of (2) or (xo, yo, zo) is a solution of (3) for a suitable value of zo
with Izo 1 s R, satisfies both a diophantine inequality

and a congruence equation

where C ~ 1 is a real number and a, b, mare integers with a &#x3E; 0, b ~ 0,
m &#x3E; 0, (a, m) = (b, m) = 1. We obtain (2) by taking C = m = c and (3) by
taking C = dR, m = d. By congruence considerations we shall estimate
the number of pairs (x, y) satisfying both (5) and (6) for which

max(ax", |byn|) is "small". By an approximation method we shall show
that (5) cannot have many "large" solutions.

THEOREM 3: Let Mm An be given by the following table:

Then the number of solutions of (5) with max(axn, |byn|) ~ MnCAn is at

most 3 if n = 3 and at most 1 if n ~ 4.

The main tools in the proof of theorem 3 are hypergeometric funct-
ions. Using properties of these functions, Siegel [6] showed that (5) has



292

at most one solution if

where npln denotes the product over all primes dividing n. Hyyrô ([3],
Satz 1, p. 11) generalized Siegel’s result in the following way: there are
constants 60 = 03C30(n) ~ (0, 1], Co = Co(n, ab) &#x3E; 0 with the following pro-
perty : for any pair of real numbers 03C3, C with 03C30 ~ 03C3 ~ 1, C &#x3E; 0 such

that 6 = ao, C &#x3E; Co do not hold simultaneously, the diophantine
equation

laxn - byn| = z (a, b, n ~ N, n ~ 3)

has at most one solution in integers x, y, z with x ~ 1, y ~ 1, (x, y) = 1,
z  C max(ax", byn)l-a and max(axn , by") &#x3E; G = G(n, u, C, ab). By choos-
ing 6 = 1 for those values of n for which 6o(n)  1, i.e. n ~ 4, Hyyrô
derives a corollary from his general result (cf. [3], Satz 5, p. 30) which
does not differ much from our theorem 3. For n E {4, 51 our result is

slightly better and for n ~ 8 theorem 3 gives bounds which are worse
than the bounds given by Hyyrô but more convenient for our purposes.
Although our method of proof is similar to that of Hyyrô, we shall give
the complete proof of theorem 3 for convenience of the reader.

It is also possible to estimate the number of solutions in terms of c
and not in terms of a, b, n:

COROLLARY 3: Let 03B5 &#x3E; 0. The number of solutions of (1) in integers x, y
is bounded above by c(8)lclt, where C(e) is a constant depending only on e
and not on a, b, c, n.

This corollary will be proved in §6. By a result of Baker [1] on lower
bounds for linear forms in logarithms, (1) is only solvable in integers x, y
with |xy| ~ 2 if n is less then some constant depending on a, b, c which
can be given explicitly. Using this fact in combination with corollary 3,
we obtain

THEOREM 4: Let c &#x3E; 0. The number of solutions of

axz - byZ = c (a, b, c integers with abc ~ 0) (7)

in integers x, y, z with |xy| ~ 2 and z ~ 3 is bounded above by

D(8) log M(loglog M)2|c|03B5,

where M = max(3, lai, |b|) and D(E) is a constant depending only on E.
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§2. Lemmas and special cases

In this section we shall prove some auxiliary results for the proofs of
theorems 1, 2 and 3. We shall also deal with some special cases of these
theorems. First of all, we shall prove lemma 1.

PROOF OF LEMMA 1: We may assume that (a, b) = 1 for otherwise put
d = (a, b), a = da’, b = db’, c = dc’. Then

and the number of solutions of (2) does not change if a, b, c are replaced
by a’, b’, c’ respectively. Hence it suffices to prove the lemma with a’, b’, c’
instead of a, b, c.

Let (xo, yo) be a solution of (2). Put f, = (a, c), f2 = (b, c). From (a, b)
= 1 and (xo, yo) = 1 it follows easily that (a, y") = fI’ (b, xô) = f2,
(axô, byô) =:;: (a, yô)(b, xô) = fi fi = (ab, c). Let Fl, F2 be the smallest

positive integers such that f1|Fn1, f2|Fn2. Then F11yo, F2 I xo. Put a1

= aFn2/f1f2, b 1 = bFn1/f1f2. Then a1, b1 are non-zero integers having the
same signs as a, b respectively such that (a1, c1) = (b1, c1) = 1.
Furthermore, every solution (xo, yo) of |axn - byn| = c corresponds to a
solution (xoIF2’ YoIF1) of |a1xn - b1ynl = c1. Hence the number of solut-
ions of (2) is at most equal to the number of solutions of |a1xn - b1ynl
= c1 in positive integers x, y with (x, y) = 1 which proves our lemma. 0

As we have noticed before, we may assume that (a, c) = (b, c) = 1 in

the proof of theorem 1. We shall distinguish between the cases b &#x3E; 0

and b  0. There we use the fact that the numbers aI, b1 1 mentioned in
lemma 1 have the same signs as a, b respectively.

In the sequel the constants a, b, c, d, m, n, C will have the same mean-
ing as in (2), (3), (5), (6). For convenience we repeat the conditions which
must be imposed on these constants.

a, b, c, d, m, n ~ Z, C ~ R, a &#x3E; 0, b:o 0, c &#x3E; 0, d &#x3E; 0, m &#x3E; 0, n &#x3E; 3, C &#x3E; 1, 
(8)

(a, c) = (b, c) = 1 in (2), (a, d) = (b, d) = 1 in (3), (a, m) = (b, m) = 1 in (6).

Further we define the set

On S(m) we define the following congruence relation: (xl, yi) and (x2, Y2)
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are congruent mod m if x1y2 ~ X2YI (mod m), i.e. if XllYl ~ X2lY2
(mod m). We denote this by (x1,y1) ~ (X2, y2) (mod m).

LEMMA 2: The solutions of (6) belong to at most R(n, m) congruence
classes mod m.

PROOF: Let (xo, yo) be a fixed solution of (6). Then (xo, yo) E S(m) and
since also (a, m) = (b, m) = 1 we have

Let (x, y) be an arbitrary solution of (6). Then

This shows that the number of congruence classes of solutions of (6) is
at most equal to the number of solutions of the congruence equation
z" - 1 (mod m) in residue classes z(mod m), i.e. R(n, m).
We put w(x) = ax" for every positive integer x, and w(x, y)

= max(axn, Ibynl) for every pair of positive integers x, y.

LEMMA 3: Let (xl, YI)’ (X2, Y2) be pairs satisfying both (5) and (6) such
that (xl, YI) ~ (x2, Y2)(mod m) and w(x2) ~ W(Xl)-

If ab = 1 then w(x2) ~ m"12C and if ab =1= 1 then w(x2) ~ mnlc.

PROOF: We have ax1 - by1 = rl, ax2 - by2 = r2, Irll s C, Ir21 s C. On
solving b from this system of linear equations, we obtain

Since x2y1, x1y2 are positive integers with |x1y2 - x2y1| ~ m we have

Ix2Yi - xn1yn2| ~ mn, hence

For b &#x3E; 0 we have Ir2w(xl) - r1w(x2)| ~ C(W(x1) + w(x2)) ~ 2Cw(x2),
hence
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If b  0 then both ri and r2 are positive and we even have

hence

Since ab ~ 1 for b  0, this proves our lemma.

LEMMA 4: If (x, y) is a solution of (5), then

PROOF: The lemma is trivial if b  0. If a = b = 1, we may assume
that x &#x3E; y. Then we have

Hence it suffices to show that xn - (x - 1)n &#x3E; 21-1/nxn-1 for all

x ~ 2, n &#x3E; 3. The function f(z) = (z" - (z - 1)n)z-n+1 has the derivative
(z" - (z - 1)n - n(z - 1)n-1)z-n. For all z &#x3E; 1 this derivative is positive,
hence f(z) is increasing. This implies that

for all x ~ 2, n ~ 3. But from this fact our lemma follows immediately,
since

for all n ~ 3. 0

We see that theorem 3 is valid if ab ~ 1. We shall now prove theorem
1 and theorem 2 in this case.

LEMMA 5: If ab s 1, then (2) has at most R(n, c) solutions.

PROOF: Since (a, c) = (b, c) = 1 by (8), it suffices to show that (2) has at
most one solution in each congruence class mod c, i.e. that for any two
distinct solutions (x1, y1), (x2, Y2) of (2) we have (x1, y1) ~ (x2, y2)
(mod c).



296

Suppose to the contrary that (2) has two congruent solutions mod c,
(x1, y1), (x2, Y2) say, ordered such that w(x1) ~ w(x2). Then it follows

from lemma 3, applying it with m = C = c, that w(x2) ~ cn-1 if b  0

and w(x2) ~ cn-1/2 if a = b = 1. But this is contradictory to lemma 4
since en - 1 ~ c, cn-1/2 ~ cn/(n-1)/2 for all c ~ 1, n w 3. D

LEMMA 6: (i) If b  0, then (3) has at most R(n, d) solutions for which
|z| ~ dn/2-1.

(ii) If a = b = 1, then (3) has at most R(n, d) solutions for which

PROOF: By (8) we have (a, d) = (b, d) = 1, hence it suffices to show that
(3) has at most one solution in each congruence class mod d, i.e. that for
any two distinct solutions (Xl,Yl,ZI), (x2, y2, z2) of (3) satisfying the con-
ditions imposed on z in lemma 6, we have (x1, y1) ~ (X2, y2) (mod d).

Just as in the proof of lemma 5 we suppose that there is a congruence
class mod d containing at least two solutions, (XI,YI,ZI), (X2’Y2,Z2) say,
ordered such that w(x2) ~ w(xl). We apply lemma 3 with C = dn/2 if

b  0, C = dn(n-1)/(2n-1) if a = b = 1 and m = d. Then we have

w(x2) ~ dn/2 if b  0 and w(x2) ~ dn2/(2n-1)/2 if a = b = 1. But this con-
tradicts lemma 4 for d ~ 1, n ~ 3. D

Note that lemma 6 proves theorem 2 when ab ~ 1, since 2n/5
- 1 ~ n/2 - 1 and 2n/5 - 1 S (n2 - 3n + 1)/(2n - 1) for all n ~ 3. Thus
we proved theorems 1, 2 and 3 for ab ~ 1, so we may assume that
ab ~ 2.

LEMMA 7: Let 03B2, f be constants, fi &#x3E; 1, f ~ 1. Put v = n -1,
x = (n - 1)/2.

(i) If (x, y) is a solution of (5) for which w(x) ~ 03B2C, then

(ii) If (xl, YI), (X2, Y2) are two solutions of (5) with lXlY2 - x2y1| ~ f,
w(x2) ~ w(x1) ~ PC, then

PROOF: (i) We have
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Using the inequality of the arithmetic and the geometric mean, it

follows that

hence

Since axn/byn s 03B2/(03B2 - 1) this implies that

(ii) We have by (i)

by ab ~ 2. Hence

§3. Proof of Theorem 3

In this section we shall use the same notations as in §2. Thus a, b, n, C
are constants with the same meaning as in (5) and in particular n ~ 3,
C ~ 1. Further we shall assume that ab ~ 2 which is no restriction by
lemma 4.
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In fact we shall prove slightly more than theorem 3. Put

We shall show that the number of solutions of (5) for which

is at most 3 if n = 3 and at most 1 if n ~ 4. This implies theorem 3. For
if n ~ 7 we have 03BCn  Mn, an ~ An. If n ~ 8 we may assume that (5) has
at most one solution for which w(x, y) ~ 03BCdC03B1d where d is the smallest
divisor of n with d ~ 7. Then d is a prime or d ~ {8, 9, 10, 12, 15, 25}. For
n ~ 7 we have ,u" = (4Tnn)1/(n-2), since n/(n - 2) ~ (n/2 + 1)/(n - 3) and
2/(n - 2) ~ 3/2(n - 3). If d is a prime with d ~ 7 then

This function is decreasing for d 2 7, hence 03BCd/d ~ P7/7  8.4. For all

other values of d given above it is easy to check that also JIdld  8.4.

Hence

for all n ~ 8. For all n ~ 8 we have also

It is clear that this implies theorem 3.
The following lemma is fundamental in the proof of theorem 3. It is

due to Siegel [6]. Our proof is simpler than his.

LEMMA 8: Let r ~ N. Put



299

Then the polynomials Gr(x), Hr(x) have the following properties:
(i) Gr(x), Hr(x) have integral coefficients,

(ii) 0  Gr(x)  sr for x ~ (0, 1), (12)
(iii) 0  Gr(x) - (1 - x)’H,(x)  trx2r+l for XE(O, 1), (13)
(iv) Gr+ 1 (x)Hr(x) -1= Gr(x)Hr+ 1 (x) for x E (0, 1). (14)

PROOF: The hypergeometric series F(a, 03B2, y, x) is defined by

where the series truncates after the last term of which the coefficient has

non-zero numerator. 03B1, 03B2, 03B3 should be such that the coefficients in the
series do not have a denominator which is equal to 0. We have

if y(x) = F(a, 03B2, y, x). By computing the constant terms and the quotients
of two consecutive coefficients of Gr(10- x), Hr(1- x) respectively, one
can verify easily that

where

First of all we prove (i). It suffices to show that

is a p-adic integer for all primes p and for all m with 0 ~ m ~ r. Note
that

for some integer d(m), hence Q(m) is a p-adic integer for all primes p

dividing n. For the primes p not dividing n, r + v and r v are p-
adic integers, so Q(m) is also p-adically integral for these primes p.
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By equating the coefficients of xr in the identity in power series

(1 + x)2r = (1 + x)r+v(1 + x)r-v we obtain

hence

This implies (ii), for by the fact that Gr(1- x) has positive coefficients,
we have

for all x ~ (0, 1).
To prove (iii) and (iv), we infer from (15) and (16) that the three funct-

ions G,(x), (1 - x)VHr(x) and x2r+1Fr(x), where Fr(x) = F( - v + r + 1,
r + 1, 2r + 2, x), satisfy the differential equation

This implies that G,(x), (1 - x)’H,(x) and x2r + 1 Fr(x) are linearly de-
pendent, hence there are constants pr, 03C3r, ir, not all equal to 0, such that

It follows from (17), by taking x = 0, that p, + 03C3r = 0. Since F,(x) is
not identically equal to 0, the coefficients p,, (J rare both non-zero.
Hence there is a constant cvr such that

Put Ur(x) = G,(x) - (1 - x)VHr(x). Then Ur(1) = Gr(1) = tr &#x3E; 0, hence
Ur(x) assumes a positive value for some x ~ (0, 1). But since F,(x) has
positive coefficients and converges for all x ~ (0, 1), we have Wr &#x3E; 0.

Hence, by (18), Ur(x)x-2r-l increases monotonically on (0, 1). It follows
that

for all x ~ (0, 1) which is equivalent to (iii).
To prove (iv) we eliminate (1 - x)’’ from
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It follows that

for a power series C,(x). But the degree of the left-hand side of (19) is at
most 2r + 1, hence C,(x) is a constant. Since Gr(1)Hr+1(1) ~ Gr+1(1)Hr(1)
this constant is nonzero. This implies (iv). D

We make the following assumptions.

(i) If n = 3 then (5) has at least four solutions satisfying (11). 
(20)j (1) If n = 3 then (5) has at least two solutions satisfying (11). (20))

(ii) .Î - 4 then (5) has at least two solutions satisfying (11).
(20)

We shall show that (20), (i) and (20), (ii) are impossible.

LEMMA 9: Let (Xl, Yl), (x2, Y2) be distinct solutions of (5), satisfying (11)
and ordered such that w(x1, y1) ~ W(X2, y,). Then W(Xl) ~ W(X2)-

PROOF: Suppose that W(X2)  w(x1 ). Then we have

W(X2)~ W(X2, Y2) - C ~ W(X2, Y2) - Can ~ (1 -03BCn 1)W(X2, y2) ~ (JIn - l)C.

Applying (10) with 03B2=03BCn,20131, f=1, we obtain, by 03BCn ~ 3,

for all n ~ 3. Hence

a contradiction.
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If n ~ 4, let (xi, yl), (x2, Y2) be two solutions of (5) such that

w(x2, y2) ~ w(x1, y1) ~ 03BCnC03B1n, if n = 3 let (x1, y1), (x2, y2), (x3, y3), (x4, y4)
be four solutions of (5) such that w(x2, y2) ~ w(x4, y4) ~
~ w(x3, y3) ~ w(x1, y1) ~ Jl3C(l3. We may assume that w(x1, y1) = w(x1).
By lemma 9 we have w(x2) ~ w(x1) if n ~ 4 and w(x2) ~ w(x4) ~
~ w(x3) ~ w(x1) if n = 3. We apply (10) thrice if n = 3 and once if n ~ 4.
We take f = 1 and since w(x1) ~ JlnC(ln we may take p = Jln’ Put

Then

LEMMA 10: If Vr ~ 0, then

PROOF: Since

we have by (9), (12), (13) and the fact that z ~ C/w1,

Now V is a fraction with denominator dividing

hence

Since ab ~ 2, this proves lemma 10.

We shall show that it is possible to choose r in such a way that
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which gives the desired contradiction with (22). Note that (23) is equiva-
lent to

Let 1 be the integer defined by

1 is well-defined since the sequence skw1 increases monotonically to in-
finity as k tends to infinity. It is clear that (23) is equivalent to r ~ 1.

We choose r = l if Vr ~ 0 and r = 1 - 1 otherwise. We shall prove that
l ~ 1 if n ~ 4, that l ~ 3 if n = 3 and that VI =1= 0 for n ~ 4. This implies
that r is a positive integer with r ~ 2 if n = 3 and r  1. Hence (23) holds
and by (14), we have Vr ~ 0.

PROOF: It suffices to show that

Since s, = 2n and s3 = 1620, this is equivalent to

It follows from (21) that it suffices to prove that

This is equivalent to

Since 2(03BCn/(03BCn - 1))1/2  3 for n ~ 4, whence
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whereas

this follows immediately from w1 ~ 03BCnC03B1n.

PROOF: Since Jln &#x3E; n for n ~ 4, we may assume that z  v. Suppose
V, = 0, i.e.

Since (X2, Y2) = 1 and since G1(z) &#x3E; 0 there is a positive integer d such
that

This implies

hence

and therefore

We now estimate d". Define u, ho, wo such that u = (h, w1), h = uho, w,
= uwo . Then d" divides
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Using the facts that (wo, ho) = 1 and that (a1, a2, a3, a4) divides

(aI’ a3)(al, a4)(a2, a3)(a2, a4) for all positive integers a,, a2, a3, a4 we see
that d" divides

Hence dn divides un+1(2(n - 1))nhn0. Since h = uho, we conclude that d"
divides (2(n - 1))nhn+1. Substituting this into (26), we obtain

In the proof of lemma 8 we saw that

for a power series Ki(z) with positive coefficients. We find, by expanding
Ul(z) in a Taylor series, that for n ~ 4

Furthermore we have, by 0  z  v,

Hence

A combination with (27) yields that

hence

for n ~ 4. This contradiction proves lemma 12. 0

As we have noticed before, the proof of theorem 3 is complete if we
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have shown that (24) holds. Therefore we need

LEMMA

PROOF:

hence

If r = 1 we have

If r ~ 2, we use the fact that (nr, r!) = 03A0p|npsp, where

Hence

We use also that for all positive integers k.

This gives
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since

Now we prove (24). By (25) and 1 s r + 1, we have

Using this inequality and lemma 13, we obtain

If n ~ 4, R is equal to

while if n = 3, R equals

Since r ~ 1 if n ~ 4, r ~ 2 if n = 3’and w1 ~ 03BCnC03B1n, R does not exceed
1 - v for any n ~ 3. This shows (24). D

§4. Proof of Theorem 1

Let a, b, c, n be constants with the same meaning as in (2), i.e. we have
a, b, c, n ~ Z, a &#x3E; 0, b ~ 0, c &#x3E; 0, n ~ 3. Further by lemma 1 and lemma 5
we may assume that ab ~ 2, (a, c) = (b, c) = 1. We may also assume that
a/b ~ (ulv)n for all u, v ~ N for otherwise a and b would be n-th powers
which could be absorbed by x, y respectively. We may also restrict our-
selves to the case c ~ 2. For we have, by combining some old results:

LEMMA 14: If c = 1, then (2) has at most 2 solutions.

Suppose c = 1. By considering units in the cubic field Q«alb)I/3),
Nagel [5] showed that (2) has at most one solution if n = 3. Ljunggren
[4] showed by an investigation of the units of the field Q((a/b)1/4), that
(2) has at most two solutions if n = 4. Finally, Domar [2] showed
lemma 14 for n ~ 5 by refining some estimates of Siegel in [6]. Note
that for n ~ 5, lemma 14 is an easy consequence of theorem 3. For by
applying this theorem with C = 1 and using that 2n  M n  3n if
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n ~ {5, 6} while 1  Mn  2" if n ~ 7, we see that (2) has at most one
solution with max(x, y) ~ 3 if n E {5, 6} and max(x, y) ~ 2 if n ~ 7. It fol-
lows immediately that (2) has at most two solutions if n ~ 7. If ne {5, 61
at most one of the pairs (1, 1), (2, 1), (1, 2) can be a solution of (2) since
no system consisting of two of the linear equations a - b = + 1, 2"a - b
= ± 1, a - 2"b = ± 1 has integral solutions a, b. This shows that lemma
14 holds for n ~ {5, 61. D

Now we shall prove theorem 1 for c ~ 2. It follows from lemma 2 and

lemma 3, by putting C = m = c, that (2) has at most R(n, c) solutions for
which w(x)  c" -1. If n = 3 each congruence class mod c contains at
most two solutions for which w(x)  27c4/8, whence (2) has at most
2R(3, c) solutions for which w(x)  27c4/8. For suppose (xl, YI)’ (X2, Y2),
(X3, Y3) are solutions of (2) in the same congruence class, ordered such
that w(x1) ~ w(x2) ~ w(x3). Then by lemma 3, with m = C = c, we have
w(x2) ~ C2 and by (10) with f = C = c, fl = 2, we have

a contradiction.

It follows from theorem 3 that the number of solutions of (2) for
which w(x) ~ MncAn is at most 1 if n ~ 4 and at most 3 if n = 3. Hence

we have only to estimate the number of solutions of (2) with

cn-1 ~ w(x)  MncAn if n ~ 4 and 27c4/8 S w(x)  M3cA3 if n = 3.
If cn-1 ~ MNCA,, then (2) has at most R(n, c) + 1 solutions. This is the

case if n = 5, c ~ 220, or n = 6, c ~ 9, or n ~ 7, c ~ 3, since clearly
3n-1 ~ 8·4n x 32·4 for all n ~ 8. If n ~ 7, c = 2, then MNCA,,  3 n. Hence,
by theorem 3, (2) has at most one solution with max(x, y) ~ 3 in this
case. But at most one of the pairs (1,1), (2, 1), (1, 2) can be a solution of
(2), since no system consisting of two of the linear equations a - b =
± 2, 2na - b = + 2, a - 2 nb = + 2 has integral solutions a, b. Hence (2)
has at most 2 solutions if c = 2, n ~ 7 and this proves theorem 1

completely for n ~ 7.
In the remaining cases, i.e. n ~ {5, 6}, Cn - 1  MncAn and nE {3, 4}, we

have to show that (2) has at most one solution if n ~ {5, 6} and at most
two solutions if n = 4 for which c" -1 ~ w(x)  MncAn, and at most three
solutions for which 27c4/8 ~ w(x)  M3 CA3 if n = 3. We use the follow-
ing lemma which will also be used in the proof of theorem 2.

LEMMA 15: Put R(n) = (23/2(2-3/2n)n)1/(n-2). Let C be the constant ap-
pearing in (5) and let A, B be constants such that
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B &#x3E; A &#x3E; max(2C, R(n)-1Cn/(n-2)).

Let r be the smallest positive integer not smaller than

Then (5) has at most r solutions for which A ~ w(x)  B.

PROOF: Let (x1, y1), (x2, y2),...,(xr, yr) be solutions of (5) such that
A ~ w(x1) ~ w(x2) ~ ... S w(xr)  B. We apply (10) with 03B2 = 2, f = 1. If
A is much larger than 2C we could have chosen a larger value for fi but
that does not improve our final results. For convenience, we put

Then we have for

hence

This implies that

hence

and therefore

which implies lemma 15.
We apply lemma 15 with C = c, A = c" -1 if n ~ {4, 5, 6} but A

= 27c4/8 if n = 3, while B = MncAn. If n E {4, 5, 61 we have
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If n ~ {5, 6} then S  1, since c ~ 2 and

(n - 1)(log R(n) + (n - 1 - nl(n - 2)) log c) &#x3E;

~ (n - 1) log R(n) + ((n - 1)(n - 1 - nl(n - 2» - An + nl(n - 2)) log 2 +

+ (A" - nl(n - 2) log c) ~ 10g(R(n)Mn + (A" - n/(n - 2)) log c .

If n = 4 then S  2, since R(n) = 27/4, Mn = 1449, n - 1 - nl(n - 2) = 1,
An - n/(n - 2) = 3, and

Finally, if n = 3 we have

since 23 x 6 log(3/2) &#x3E; 3 log(3/2) + log 1.71 + 7 log 10. By lemma 15, this
proves theorem 1 completely. D

§5. Proof of Theorem 2

Let a, b, d, n be constants with the same meaning as in (3), i.e. we have
a, b, d, n ~ Z, a &#x3E; 0, b ~ 0, d &#x3E; 0, n ~ 3, (a, d) = (b, d) = 1. Further put Co
= d2n/5. By lemma 6 we may assume that ab ~ 2. We may also assume
that (3) has solutions with |z| ~ 2 for otherwise we would have the same

equation as (2), with d instead of c. Hence min(d2n/5-1, d) ~ 2, whence
min(C2n/5-10, C0) ~ 22n/5. This implies that C0 ~ 4 for all n ~ 3.

LEMMA 16: Define for every positive integer k:

Then (3) has at most kR(n, d) solutions for which Izl  d2n/5-1 and

w(x)  f(k).

PROOF: Suppose (xo, yo, zo), (xl, YI’ Z 1),,, ., (Xk, Yk, Zk) are solutions of

(3) such that the pairs (xo, yo), (x1, y1),..., (Xk, Yk) are pairwise congruent
mod d, that |zi| ~ dn/5-1 for i ~ {0, 1,...,k} and ordered such that

w(x0) ~ W(Xl) ~ ... ~ w(xk). By lemma 3 with C = Co, m = d, we have
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By (10) with fl = 2, f = d, C = Co, we have for i ~ {1, 2, ...,k - 1}:

Hence, similar as in the proof of lemma 15:

Therefore,

It follows that (3) has at most k congruent solutions mod d with
Izi ~ d2n/5-1, w(x)  f(k), which proves the lemma. ~

Put kn = 1 if n ~ 7, kn = 2 if n ~ {4, 5, 6}, kn = 3 if n = 3. By lemma 16
and theorem 3, it suflices to show that the number of solutions of (3) for
which |z| ~ Co/d and f(kn) ~ w(x)  MnCg" is at most 1 if n ~ 8, at most
2 if n = 7, 0 if n ~ {5, 6}, at most 1 if n = 4 and at most 3 if n = 3.

Therefore we shall apply lemma 15 with C = Co, A = f(kn) and B
= MnCAn0.

If n ~ 7 we have A = f(1) = CÕ/2, hence

If n ~ 8, then S  1, since

If n = 7, then S  2, since

while if n = 4 we have
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since 32 x (7/4) log 2 &#x3E; (7/4) log 2 + log 1449. Finally, if n = 3 we have A
= f(3) = (3/2)9C9/20, hence

since 23 x 12 log(3/2) &#x3E; 3 log(3/2) + log 1.71 + 7 log 10. By lemma 15, this
completes the proof of theorem 2. D

§6. Proof of Theorem 4

In this section e will denote an arbitrary positive number, PI’ 03B22, ...
will denote positive absolute constants and Pl(À1, À2,..., 1 Âl),
P2(À1, Â2, - - -, Âs), ... will denote positive constants depending on the

parameters 03BB1, 03BB2,...,03BBs. As was announced in §1, we shall first prove
corollary 3, that is that the equation

has at most Pl(8)lcl£ solutions in integers x, y.
Firstly, we notice that it is sufficient to show that (1) has at most

P2(B)lcl£ solutions in integers x, y with (x, y) = 1. For suppose this has
been proved. Let (xo, yo) be a solutions of (1) with (xo, yo) = d. Then
(xo/d, yo/d) is a solution of

in integers x, y with (x, y) = 1. Hence there are at most P2(BI2)lcl£/2 of
such pairs (xo, yo) and this implies corollary 3, since the number of div-
isors of c, whence the number of possibilities for d, does not exceed
p3(e)lcl£/2.

It is now clear that it suffices to show that the number of solutions of

in integers x, y with x &#x3E; 0, y &#x3E; 0, (x, y) = 1 does not exceed P4(B)C£. By
corollary 1, (2) has at most 2n03C9(c) + 6 solutions. If n is large compared
with c this is not sharp enough to prove corollary 3. Therefore we shall
give an upper bound for the number of solutions of (2) which is better
for large values of n.
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By theorem 3, the number of solutions of (2) for which

max(x, y) &#x3E;_ (MncAn)1/n is at most 1 if n ~ 4 and at most 3 if n = 3. But

we have M1/nn  03B25, An S P6 and it is clear that the number of solutions
of (2) for which max(x, y) s P scP6/n does not exceed 03B27c03B26/n. Hence (2) has
at most fi8c 06/n solutions.

Put no = [03B2603B5-1] + 1. Then (2) has at most 03B28c03B5 solutions for n ~ no,
while for n  no the number of solutions of (2) does not exceed

since 03C9(c) ~ 03B210 log c·(loglog 3c)-1 for all positive integers c. This

proves corollary 3 completely. 0

Now we shall prove theorem 4, that is that the equation

has at most PI3(B) ’log M(loglog M)2lclf solutions in integers x, y, z with
|xy| ~ 2, z ~ 3, where M = max(3, lai, Ibl). Theorem 4 is a consequence of

LEMMA 17: If (x, y, z) is a solution of (7) with lxyl ~ 2, z ~ 3, then

For let z be an integer satisfying (28) with z ~ 3. Then the number of
pairs (x, y) with x ~ Z, y E Z, |xy| ~ 2 such that (x, y, z) is a solution of (7)
is by corollary 3 at most 03B21(03B5/2)·|c|03B5/2, while the number of integers z
satisfying (28) is at most

In the proof of lemma 17 we shall use the following result of Baker.
For the proof we refer to [1].

LEMMA 18: Let 71, Y2,’’’’ Yr be non-zero algebraic numbers of degrees at
most do, let b1, b2, ..., br be rational integers such that Ibil s B, B ~ 2.
Suppose YI’ 03B32,..., yr have heights not exceeding AI, A2,..., Ar respective-
ly, Ai ~ 3 if i ~ {1, 2,..., r - 1}, Ar ~ 2. Put
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Then either F = 0 or

PROOF OF LEMMA 17: Let (x, y, z) be a solution of (7). We put mo
= max(Ixl, lyl). For all positive real numbers ( =1 1 we have |03B6-1| ~ 1/2
or |03B6 - 1| ~ Ilog 03B6|/2 &#x3E; 0. Hence we have

or

Now we apply lemma 18 with do = 1, r = 2, yl = |b/a|, Y2 = lylxl, b1
= 1, b2 = z. Then A1 ~ M, A2 ~ m0, B = z ~ 3, hence

Since U  1, it follows that

By interchanging a and b, x and y, we may also conclude that

But since

we have, by (29) and (30),

hence

We assume that whence Then
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This implies that

hence

This proves lemma 17.
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