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Let X c Pnk be a projectively normal curve over an algebraically
closed field k, and let C(X) c An+1 be the affine cone over X. The prob-
lem studied in this paper is to determine whether Ko(C(X)) = Z, where
Ko denotes the Grothendieck group of vector bundles on C(X) (see [2]
for definitions). This is an important special case of a question raised by
Murthy, as to whether Ko(A) = Z for any normal graded ring A

ED An, finitely generated over Ao = k, where k is a field (see Bass [1]).
n ~ 0

Spencer Bloch recently showed that K0(A) ~ 7L for A = C[X, Y, Z]/
(Z2 - X3 - Y’) giving a counterexample to Murthy’s question.
However, one still suspected that the result would be true for cones.
Partial positive results were known (see Varley [3]).

It turns out that the problem has a very different flavour in character-
istic 0 than in positive characteristics. First consider the case of charac-
teristic p &#x3E; 0. We have

THEOREM 1: Let A = E9 An be a normal graded ring, finitely generated

over Ao = k, where k is algebraically closed of characteristic p &#x3E; 0.

Suppose that A is Cohen-Macaulay, and that the vertex (corresponding to

the ideal E9 An) is the only singularity of Spec A. Then Ao(Spec A) = 0.
n&#x3E;0

Here Ao(Spec A) denotes the subgroup of Ko(A) generated by the
classes of smooth points of Spec A. Now Ko(A) is generated by the class
of the trivial line bundle, and classes of sub-varieties not meeting the
singular locus (see [3]). Since Pic A = (0) for a normal graded ring A, we
deduce (see §1)
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COROLLARY (1.3): Let A be as in Theorem 1. Suppose that dim A = 2.
Then Ko(A) = Z.
This answers Murthy’s question affirmatively in the two dimensional

case, and thus includes the result on cones over curves.

Next, we have a partial positive result in characteristic 0.

THEOREM 2: Let X c Pnk be a projectively normal curve, where k is an
algebraically closed field of characteristic 0. Assume that X is not con-
tained in a hyperplane, and that deg X  2n - 1. Then A0(C(X)) = 0,
where C(X) ~ An+1 is the affine cone over X.
As a consequence, we obtain

THEOREM 2’: Let Xlk be a curve of genus g, and D a divisor on X such
that deg D ~ 2g + 1. Then Ao(C(X» = 0, where C(X) is the cone over X
in the embedding X ~ P|D| given by the complete linear system IDI.
Using the cancellation theorem of Murthy and Swan, we can for-

mulate the above theorems as follows.

THEOREM: Let k be an algebraically closed field, and let A = EB An be

a finitely generated graded k-algebra with Ao = k. Then every projective
module over A is free, in each of the following cases:

i) char k = p &#x3E; 0, and A is normal of dimension 2.
ii) char k = 0, and Spec A is the cone over a projectively normal curve

X properly contained in Pn, and satisfying deg X s 2n - 1.

iii) char k = 0, and A = EB HO(X, OX(nD)) where Xlk is a smooth curve

of genus g, and D a divisor on X satisfying deg D ~ 2g + 1.
Finally, we construct an infinite family of examples of cones over C

which admit non-trivial vector bundles. Let L denote the field of al-

gebraic numbers.

THEOREM 3: Let X c P1 be a projectively normal curve such that

H1(X, OX(1)) ~ 0. Then if C(Xc) denotes the cone over the corresponding
complex curve, we have Ko( C(X c)) e Z. (In fact, a slight modification of
our argument will show that K0(C(XC)) is uncountable).
One remarkable fact about theorem 3 is the following. For a curve

X c pn c let Y c Pn+1C denote the projective cone over X. Let Z ~ Y be
the blow up of Y at the vertex. Then Y ~ P(OX EB OX(1)). The Leray
spectral sequence applied to the map 03C0 yields an exact sequence
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Since Z is a ruled surface, pg(Z) = 0, and q = g(X), the genus of X. (In
fact, all elements of H1(Z, (9z) are pulled back from H1(X, OX)). Now
R103C0*OZ is a torsion sheaf on Y supported only at the vertex of the cone.
From the formal function theorem (see [7]), T(R103C0*OZ) has a filtration

whose associated graded module is E9 H’(E,Im/Im+1) where E is the

exceptional set, and I is its sheaf of ideals on Z. Now E is a section of
the fibration Z ~ X, hence E ~ X. One easily checks that I/I2 ~ OX(1),
and thus Im/Im+1 ~ OX(m). Also, the map H1(Z, OZ) ~ 0393(R103C0*OZ) maps
the former isomorphically onto H1(E, (9E). Hence h2(1’: (9y) vanishes
precisely when H1(X, OX(1)) = 0. Thus, the curves X c PnC with

H1(X, OX(1)) ~ 0 correspond precisely to the cones Y with "geometric
genus" (i.e. h2(O)) &#x3E; 0. Hence, Theorem 3 may be regarded as an ana-
logue for cones of a famous result of Mumford on the infinite dimen-
sionality of the Chow group of zero cycles on a surface with pg &#x3E; 0 (see
[5]). In fact, one might conjecture that at least for cones, Ao(C(X))
= 0 ~ pg(Y) = 0 (where p. stands for h2(O)); this is the analogue of a
conjecture of Bloch for smooth surfaces with p. = 0 (see [13], ch. 1 for

motivation and further references for that conjecture).
This work was done in partial fulfillment of the requirements for a

Ph.D. at the University of Chicago. 1 wish to thank my thesis advisor
Professor Spencer Bloch, and Professor M.P. Murthy, for teaching me
about geometry and cycles, and for many helpful conversations on this
work. 1 also wish to thank Kevin Coombes for helping me with some K-
theoretic points. 1 am grateful to the University of Chicago for financial
support during may stay.

§1) Results in characteristic p &#x3E; 0

In this section we prove theorem 1. In this paper, the Chow group of
zero cycles will always be the subgroup of the Grothendieck group Ko
generated by the classes of smooth points. In particular, it is not the
same (in general) as the Chow group of Fulton [6] when the variety we
are dealing with is singular. The proof of the theorem is based on two
lemmas:

LEMMA (1.1): Let Y be an affine normal variety with isolated singular-
ities over an algebraically closed field (of arbitrary characteristic). If
U c Y is an open (dense) set, then Ao(Y) is generated by the classes of
smooth points of U. Ao(Y) is a divisible group.
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PROOF: If Y is a curve, the result holds from the theory of Jacobians.
In general, if P E Y is a smooth point, we can find a curve C c Y such
that P E C, C ~ U ~ ~, and C misses the singular locus of Y; we may
take C to be smooth. Then there is a natural map Pic C -+ Ao( Y), and
the class of P is in the image of this map. Hence the result follows from
the previous case.

LEMMA (1.2): Let A = Et) An be a graded normal ring of dimension 1,

where Ao = k, and A is finitely generated over Ao. Then A ~ k[t], where t
is homogeneous (perhaps of degree d &#x3E; 1).

PROOF: It is amusing to give two proofs. First, an algebraic one. Let

M = e An. Then AM is a P.I.D. as A is normal. Since MAM is gen-
n&#x3E;0

erated by one element, but also has a set of homogeneous generators, it
is generated by one homogeneous element (Nakayama’s Lemma). Let
MAM = fAM, with f ~ A homogeneous, and let g E A be any homog-

eneous element of positive degree. Since 9 Ef’ AM, 9 = u·fn = u1 u2·fn,
where ul, u2 E A - M. Comparing homogeneous terms of lowest degree
on both sides of U2g = u 1 f n, we see that we may assume u1, u2 to be
homogeneous. Since ui ~ M, ui E Ao = k. Thus A = k[f] (since every ele-
ment of A is a finite sum of homogeneous elements).
The second proof is geometric - since Spec A is an affine curve over k

with a non-trivial Gm-action, it is a rational curve. Since it is normal,
and has no units (because A is graded) apart from k*, it must be AÍ.
The group of automorphisms of A1k fixing a point is Gm; hence the

grading on the coordinate ring of AÍ induced from A must be the usual
one.

PROOF OF THEOREM 1: We first give a simple proof in the case when A
is the homogeneous coordinate ring of a plane curve.

Let X = Proj A c Pk2 be a smooth plane curve, and let C(X) c A3 be
the cone over X (so that C(X) = Spec A). Let 0 E C(X) be the vertex, and
let n : C(X) - {0} ~ X be the projection. Let P E C(X) be a smooth point
and 03C0(P) = P. Choose a line 1 c P2 such that 1 n X = {P1, ... 1 PII, where
PI = P, and n = deg X, and the Pi are distinct. Then 03C0-1(l) ~ {0} =
= Si n C(X), where S1 c A3 is a plane (the cone over the line 1). Thus
S 1 n C(X) = 11 U ... u ln, where n(li - {0}) = Pi, and the li are lines on
S1 which concur at 0. We can choose coordinates x and y on S1 so that
ll is the y-axis, P E 11 is the point (0, 1), and the lines 12, ..., ln respectively
have slopes À2,..., Ân. Thus
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Consider the function f = 1 - (y - 03BB2x)r03A0ni=3(y - 03BBix) (where r &#x3E; 0

will be chosen in a moment). Then f is identically equal to 1 on

12 ~ ... u ln. On 1,, x = 0, so that flll = 1 - yr+n-2. Choose r &#x3E; 0 to be

the smallest integer such that r + n - 2 = pv, where p = char k. Then
f|l1 = (1 - y)pv. Thus, the zero cycle (P) represents a pv-torsion element
of Pic(S1 n C(X)), and hence a py-torsion element of Ao(C(X)). Since
Ao(C(X)) is generated by the classes of smooth points P E C(X), we have
pV. A0(C(X)) = 0. Now the divisibility of A0(C(X)) forces Ao(C(X)) = 0.
Now we give the proof in the general case, based on the same idea.

Let O(1) denote the sheaf on Proj A associated to the graded module

~ An (see [7], ch. II). Fix a large integer m &#x3E; 0 such that O(m) embeds
n&#x3E;0

Proj A is some projective space, and let dim Proj A = r (so that dim A =
= r + 1). Let 0 ~ Spec A be the vertex, and let n : Spec A - (0) - Proj A
be the projection. Let U c Spec A - {0} be the inverse image of the
locus of smooth points of Proj A, and let P E U. Let rc(P) = P. Choose r
general hyperplane sections of Proj A through P, so that the intersection
of all of them with Proj A consists of d = deg(Proj A) points Pi =

= P, P2,..., Pd, where all the P, are smooth. Let Y =

= 03C0-l({P1,..., Pd 1) u {0}, so that Y = Spec(A/(f1, ..., fr)) where f is

homogeneous of degree m for each i. Since A is Cohen -Macaulay, and
height (f1,...,fr) = r, the ring B = A/(f1,...,fr) is a reduced graded ring
of dimension 1. The minimal primes J1,...,Jd of B satisfy Spec(BI9i)
= 03C0-1(Pi) - {0}. Let B denote the normalisation of B (i.e. its integral
closure in its total quotient ring), and let I c B be the conductor of
B ~ B (see [12] for the definition). We have the well known exact se-
quence (where * denotes the unit group)

From lemma (1.2),  ~ E9 k[t], so that Pic B = 0. Thus we have a sur-

jection (/I)*/(Image *) ~ Pic B. Since  ~ ~ k[t], * ~ ~k*;

aiso /I ~ ~ k[t]/(tni) for some exponents ni &#x3E; 0. Now k[t] (tn) )*
= k*Rn, where Rnis p"-torsion for any v such that pv ~ n (this boils
down to the identity

Thus if pv ~ sup ni, then pv· (Pic B) = (0). If we can find a value of v &#x3E; 0



254

such that v is independent of the choice of the initial point P E U, and
the hyperplane sections f1,...,fr, then as in the case of plane curves we
can conclude that p’ - Ao(Spec A) = 0; hence Ao(Spec A) = 0 by divisi-
bility. The rest of the proof will consist in showing that by shrinking U
to some non-empty open subset E and for any choices of f1,...,fr corre-
sponding to any given point P E Jt; the resulting exponent v is bounded
by some preassigned number depending only on A.

Factor the inclusion B ~ B as B ~ ~ B/Ji and

If JI and J2 are the respective conductors, then J1J2 ~ I = I. Thus if
J1E = ~tni1k[t], and J2Ê = ~tni2k[t], it is enough to separately bound
the exponents ni1 and ni2 for all i.

Let A = k[~1,..., ~s] where ~i ~ A is homogeneous of degree mi for
each i. For any homogeneous prime 0 of A of height r (corresponding
to a point 90 E Proj A), A/0 ~ k[t], where t has degree e (say) in the
grading induced from A. Thus A/0 k[u], where u’ = t, and u has
degree 1. Clearly Oi is mapped to an element of degree mi in k[u], which
is homogeneous i.e. ~i ~ 03B1i·umi for some ai c- k. So A/0 ~
~ k[03B11um1,...,03B1sums] c k[u]. Now 03B1i = 0 ~ ~i (considered as a section
of (9(mai» vanishes at J0 E Proj A. Hence deleting the finite set of zeroes
of the sections ~1,..., ~s E r(Proj A, Q (9(m)), and correspondingly shrin-
king our open set U c Spec A - {0} to a smaller open set E we may
assume that none of the 03B1i vanish when 90 is one of the primes we
construct by taking hyperplane sections of Proj A. But if 03B11,...,03B1s are

non-zero, then k[03B11um1,...,03B1sums] = k[um1,um2,...,ums] i.e. all the BI9i
are isomorphic. Since m1,...,ms depends only on A, this bounds the
exponents ni2 for J2.
We claim that if J = ~i(Ji + nj*i9j), then J c JI, By definition of

d

the conductor, JI is the largest ideal in B which is a 0 B/,9i-module.

Hence, to verify the claim, it is enough to prove the following -
given al,...,adC-J, there exists a E B such that a - ai E 9i (i.e.

a ~ (a1,...,ad) under B ~ ~ B/Ji). But if ai = bi + ci, with bi ~ Ji,
ci~ ~j~iJj, then a = 03A3di=1 ci works, since a - ai = 03A3j~icj - bi ~ Ji as
desired. Now suppose f ~ J satisfies f = (03B21t03BD1,...,03B2dt03BDd) where

03B21...03B2d ~ 0. Then clearly vi ~ ni2 for all i. So if we can suitably bound vi,
we will be done. In fact, by symmetry it suffices to find f with suitably
bounded vi, and PI =1= 0.



255

Consider the homomorphisms A ~ B - B/Ji, where we identify B/Ji
with k[umt,..., ums] c k[u]. Then for each i ~ 1, we can find 03BC, 03BD such

that 1 ~ y, v ~ s, and 03B1m03BD 103BC· 03B1m03BCi03BD - 03B1m03BC103BD·03B1m03BDi03BC ~ 0 (i.e. if two points of Proj A,
namely Pi and Pi, are distinct, then they have distinct "weighted homo-
geneous" coordinates - recall that ~03BC ~ oci, ump under A - B ~ B/Ji).
Let y e A be the element defined by y = 03B303BC,03BD = 03B1m03BCi03BD· ~m03BD03BC - 03B1m03BDi03BC· ~m03BC03BD. Then
the image of y in B/Ji is

i.e. the image y of y in B actually lies in 9i. The image of y in BI&#x26;1 is

[03B1m03BCi03BD· 03B1m03BD103BC - 03B1m03BDi03BC·03B1m03BC103BD]· um03BD·m03BC = bi’ uti, where 03B4i ~ 0, and ti is bounded by
a number depending only on A. Since &#x26;1 + J = J1 + ~j~1 Jj, the ele-
ment yo = n1=2 YJl,V is such that the image of yo in BI&#x26;1 is actually
in J·B/J1, and hence in J1· B/J1. But Yo’ k[u] = ut2+...+tdk[u], and
t2 + ... + td is bounded by a number depending only on A.

This completes the proof of Theorem 1.

COROLLARY (1.3): Let A be as in Theorem 1. Then if dim A = 2, we
have Ko(A) = Z. Hence all vector bundles on Spec A are trivial.

PROOF: By a remark of Murthy (see [1]) we know that Pic A = (0). By
the standard argument using the cancellation theorem of Bass, it suffices
to prove that vector bundles of rank 2 represent trivial elements of

Ko(A) to prove that Ko(A) = Z. Now we can find a section of a given
vector bundle of rank 2 which has isolated zeroes at smooth points of
Spec A. If P is the projective A-module of global sections of the bundle,
we have an exact sequence 0 ~ L ~ P* ~ I ~ 0, where 1 c A is the ideal
of zeroes of the chosen section, P* is the dual projective module. An
argument using the determinant shows that L ~ A 2 P* E Pic A i.e. L ~ A.
Next, [AII] E Ko(A) gives an element of Ao(Spec A) which is trivial by
Theorem 1. Hence [A] = [I] in Ko(A). Putting these facts together gives
[P*] ~ [A~2] i.e. all vector bundles of rank 2 are stably trivial. This
proves Ko(A) = Z. Now the cancellation theorem of Murthy and Swan
[4] proves that all vector bundles are trivial.
The argument needed to deduce the triviality of vector bundles from

the vanishing of the Chow group works in all characteristics (see section
2 of this paper).

§2) Some positive results in characteristic 0

In this section we obtain partial positive results for cones over
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smooth projective curves in characteristic zero. Our result is a slight
improvement on results of Varley (see [3]). The proof is based on an
idea of Ojanguren [8], who used it to prove the result for plane cubics.

THEOREM 2: Let X c Pnk be a projectively normal curve over the al-
gebraically closed field k of characteristic 0. Assume that X is not con-
tained in a hyperplane, and has degree atmost 2n - 1. Then A0(C(X)) = 0,
where C(X) c An+1 is the affine cone over X. Hence vector bundles on
C(X) are trivial. (See the proof of Corollary (1.3).)

PROOF: The triviality of vector bundles follows from the vanishing of
the Chow group, using the triviality of line bundles (a remark of Murthy
- see [1]) and the cancellation theorem of Murthy and Swan [4]. The
proof of the vanishing of A0(C(X)) is based on two lemmas.

Let deg X = d ~ 2n - 1, and set r = d - n.

LEMMA (2.1): Assume that P E X is not a Weierstrass point. Let H c P"
be the osculating hyperplane to X at P, so that the zero cycle (H. X)
= n(P) + 03A3ri=1(Pi) (where the Pi E X may not be distinct from each other
or from P, in general). Then {P, Pl, ..., Pr} span a pr c pn.

PROOF: Suppose that {P, P1,...,Pr} ~ L ~ Pn, where L is a linear

space of dimension r - 1. Since the space L of hyperplanes (in the dual
projective space) which contain L is a Pn-r, we have

Choosing the representative n(P) + 03A3ri=1 (Pi)~|D|, we have

Now deg X = d, and dim|D| = n. Since n &#x3E; d/2, the divisor D is non-
special by Clifford’s Theorem (see [7], ch. IV). Hence by the Riemann-
Roch theorem, the genus g of X satisfies

i.e. P E X is a Weierstrass point.
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LEMMA (2.2): There is a non-empty open set U c X with the following
property - if P E U, then there exist points Po, Pl, ..., Pr-1 of X such that
(i) P, Po,..., Pr-1 span a Pr c pn, and (ii) if H is the osculating hyperplane
to Po, then (H · X) = n(Po) + (P) + 03A3r-1i=1 Pi.

PROOF: The set S in the dual projective space of hyperplanes which
parametrizes osculating hyperplanes is birational to X. As s ranges over
S, the hyperplane sections (H(s) · X) have the form (H(s) · X) = nP(s)
+ 03A3ri=1Pi(s) (through the individual Pi(s) don’t make sense, the zero
cycle 03A3ri= Pi(s) does). Then the lemma amounts to the claim that

03A3ri=1 Pi(s) is not independent of s. Suppose that the lemma is false. Let
L c P" be the P" 1 spanned by Pl, ... , Pr (for general s E S, Pl (s), ... , P,(s)
span a Pr-1, by Lemma (2.1)). Projection from L to a suitable P"-’
yields a curve X c Pn-r with the following property - if P ~ X is gen-
eral, then there exists a hyperplane Hp c Pn-r such that the local inter-
section multiplicity (HP Ì X)P ~ n (choose Hp to be the image of a

suitable osculating hyperplane to X). But this is impossible - at a gen-
eral point of a curve in Pn-r, the maximum local intersection multiplic-
ity with a hyperplane is n - r. This contradiction finishes the proof of
the lemma.

We now prove theorem 2. Let 0 ~ C(X) be the vertex, and ~ : C(X) -
- (0) ~ X the projection. Let P ~ ~-1(U), where U c X is the open set
of lemma (2.2). Then if P = ~(P), we can find P0,...,Pr-1 ~ X ’ and a

hyperplane H such that (H·X)=n(P0)+(P)+03A3r-1i=1(Pr-1). Then

~-1(H)~{0} ~ An c An+1 (by abuse of notation, let 0 also denote

the projection An+1 - {0} ~ Pn). Also, (~-1(H)~{0})~C(X) =
= 10 ~ 11", U lr-l u 4 where li and l are lines through 0 in ~-1(H)~ {0}.
Since P, Po,..., Pr-1 can be chosen to span a pr e pn by lemma (2.2),
the lines l, l0,...,lr-1 span an Ar+1 ~ ~-1(H) - {0}, and satisfy
0(li - {0}) = Pi, ~(l - {0}) = P, and PET - {0}. The lines l, l1,...,lr-1
occur with multiplicity 1 in the intersection (~-1(H)~{0})~C(X),
while 10 occurs with multiplicity n.

There exists a unique linear subspace L zé Ar, with

L c span{l, l0,...,lr-1}, such that P E L, and L~span{l0,...,lr-1} = ~.
(This is just the unique Ar through P which is parallel to

span {l0,..., lr-1} ~ Ar). If f = 0 is the equation of L in the affine space
Ar+1 = span {l, l0,..., Ir - 11, then the restriction of f to the curve Y =
= (~-1(H)~{0})~C(X) is a regular function on Y whose divisor of
zeroes is (P). Thus (P) = 0 in Pic’(Y), and hence in A0(C(X)). By lemma
(1.1), this proves the result.
We easily deduce theorem 2’ from theorem 2.
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THEOREM 2’: Let X be a smooth curve of genus g over an algebraically
closed field of characteristic 0. Let D be a divisor on X such that

deg D ~ 2g + 1. (Thus D is very ample - see [7], ch. IV). Assume that X
is projectively normal in this embedding. Then Ao(A) = 0, where A =

= ~ H0(X,OX(nD)).

PROOF: Since deg D ~ 2g + 1, D is non-special. Hence by the

Riemann-Roch theorem, n = dim IDI = deg D - g. We claim that

deg D  2n - 1 (so that theorem 2 applies). For

REMARK: In fact, a result of Castelnuovo implies that for the range of
degrees in theorem 2’, X will always be projectively normal. See [12],
p. 52.

§3) A counterexample in characteristic 0

In this section we construct examples of cones over projectively
normal complex curves which admit non-trivial vector bundles. Let L
denote the field of algebraic numbers.

THEOREM 3: Let X c PnL be a projectively normal curve such that

H1(X, OX(1)) ~ 0. Then K0(C(XC)) ~ Z.

COROLLARY (3.1): Let X be a non-hyperelliptic curve, defined over L.

Then KO(A) :0 7L, where A = ~ HO(XC, coO"). (The cone over the canon-
ical embedding.)

COROLLARY (3.2): Let X c PI be a smooth curve of degree at least 4.
Then C(Xc) admits non-trivial vector bundles.

This is in contrast to the situation in characteristic p &#x3E; 0, and to the
situation for analytic vector bundles (since any analytic vector bundle
on a contractible Stein space is trivial). The method of proof is based on
an idea of Spencer Bloch. He showed that C[x, y, z]/(z 7 - x2 - y3) pro-
vides a counterexample to the statement of theorem 1 in characteristic 0.
Let me sketch his idea.

Let X = spec C[x, y, z]/(z 7 - x2 - y3). Then the origin is the only sin-
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gular point of X. Let X be a projective surface containing X as an open
subset, such that Xs;ng - Xsing = {0}, the origin. Let 03C0:  ~ X be a re-
solution of the singularity. Then X can be chosen so that 03C0-1({0}) is a
cuspidal rational curve E. Now Ko(X) = 7L ~ Pic(X), and SK1() ~
~ Pic() Q C* ~ (C*)~n for some n, since X is a rational surface. Also
SK1(E) ~ 03A91C/Z, the module of Kahler differentials of C (see [7] for the
definition, some properties and references). Since C has uncountable
transcendence degree over Q, and HomC(03A91C/Z, C) = (vector space of all
derivations C - C), Qb/z is a C-vector space of uncountable dimension.
Now one considers the diagram

Here K.(!, E) and Ko(X, P) are relative K-groups (we give the defini-
tions below). Clearly a’ is onto, as K1({0}) = C*; hence 03B2’ = 0. It turns
out that points of X - {0} admit cycle classes in Ko(X, {0}), and similar-
ly for KoCX, E). Define F0K0(, E) to be the subgroup of K,(!, E) gen-
erated by classes of points of X - E, and similarly define FoKo(X, 101).
Evidently n*: FoKo(X, {0}) --» FoKo(X, E) as 03C0:  - E  X - {0}. One
main ingredient of the proof is a geometric description of 03B2|SK1(E). A
class in SK1(E) is represented by finite sets of points of E - Esing, to-
gether with non-zero elements of the residue fields of each of the points.
If P1,..., Pr E E - Eî and 03B11,..., oc, E C* (where we think of ai E C(Pi)*),
we choose a curve C c X which meets E transversally at P1,..., Pro If C
meets E at additional points Pr+ 1, ..., Ps, assume that these intersections
are also transverse and the points Pi~E are all smooth. Let ai E C(Pi)*
be set equal to 1 for r + 1 sis s. Choose a rational function JE C(C)*,
such that f(Pi) = ai (1 sis s). Then the element 03B2(({P1, 03B11},..., {Ps, 03B1s})
= (cycle class of the divisor of f) E FoKo(X, E). Once one has this, one
can show that F0K0(, E) ~ 0, and hence FoKo(X, {0}) ~ 0, as desired.

In our case, we have to work harder, because SK1 of the ambient
surface maps onto SK1 of the exceptional set when we resolve the sin-
gularity of the cone. However, if we work with a multiple of the excep-
tional set, then obstructions to the triviality of vector bundles appear.

Let XL c Pl be our given curve, and let YL be the affine cone over XL.
We will make use of the following convention - unless "L" appears as a
subscript on the symbol for a variety, we will be working over C. Let 
be the blow up of Y at P. Then  ~ V(OX(-1)), a ruled surface over X,
and the exceptional set 1t - l(p) = Eo (where P E Y is the vertex) is a sec-
tion of 1- X with normal bundle xé OX(-1). Let E be the subscheme
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2Eo: thus if I is the sheaf of ideals of Eo on , then E is defined by the
sheaf I2. We write "2P" for the scheme spec AI M2, where Y = spec A,
and M is the maximal ideal of P.

For any scheme T, let J(T) denote the category of locally free sheaves
of finite rank; X(7) will denote the category of coherent sheaves of
finite homological dimension on T. If S c T is a subscheme, let H(S, T)
denote the category of (9,-modules which are coherent, of finite homo-
logical dimension, and vanish on T - S. If S is a single point x ~ T, we
may write ex for Jf(x, T).
Now we define the relative K-groups and cycle classes in them. Let

i : Y ~ X be a closed immersion. We have a natural map

i* : J(X) ~ J(Y). For any exact category L, let BQ,6 be the topological
space (together with its natural base point) as defined by Quillen [9].

Then we have a natural map (of based spaces) BQJ(X) ~ B Q Y).

Let F(i*) denote the homotopy fiber of i* (for a map (X, P) ~ (Y, P’)
of based spaces, the homotopy fiber is the set of pairs (co, x) where x E X,
03C9:[0,1] ~ Y is a path, with m(0) = P’, 03C9(1) = f(x). The base point is

(wo, P) where mo : [0, 1] - P’). One of the basic properties of the homo-
topy fiber is that its homotopy groups fit into a long exact sequence
with those of the domain and range. So if we set Kn(X, Y) =
= 03C0n+1(F(i),*), where * E F(i*) is the base point, then we have a long
exact sequence

A general reference for the definitions and basic properties of higher
K-groups is the fundamental paper [9] of Quillen. A summary of
Quillen’s results, and some applications to questions in the theory of
algebraic cycles, can be found in Bloch’s lecture notes [13].

Let Z c X - Y be a subscheme, closed in X, and of finite homolog-
ical dimension. Then we claim that there is a natural cycle class

[Z] E Ko(X, Y). To construct it, we use the category Yt o(X) c Yt(X), de-
fined to be the full subcategory consisting of all coherent Ox-modules F
satisfying TorOxi(F, (Dy) = 0 for i &#x3E; 0. Then the map i : Y c... X induces a

functor i* : H0(X) ~ A’(Y). By Quillen’s resolution theorem [9], the

maps BQJ(X) ~ BQH0(X) and BQJ(Y) ~ BQH(Y) are homotopy
equivalences. Hence the natural induced map between the homotopy
fibers F(i*) and F(i*) is also a homotopy equivalence. The inclusion
j : Z c+ X induces a functor j*:J(Z) ~ Yto(X), since Z n Y = ~; and the
composite functor i*oj*:J(Z) ~ H(Y) is the 0-functor. Hence the in-
duced map BQJ(Z) ~ BQJf(Y) maps everything to the base point.
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Hence we have an induced natural map BQJ(Z) ~ F(z*), and thus a
map K0(Z) ~ Ko(X, Y). The image of [(9z] E Ko(Z) under this map is the

required cycle class; by construction, it maps to the usual cycle class in

Ko(X) under the natural map Ko(X, Y) ~ Ko(X).
The relative K-groups, and the cycle classes, enjoy the following

naturality properties. If i : Y ~ X and i’ : Y’ ~ X’, and n: X ~ X’ is a

morphism such that 03C0-1(Y’) = Y, then we have a diagram

Further, let Z’ c X’ be a subscheme of finite homological dimension,
satisfying Z’ n Y’ = 4J, and TorOx’i(OZ’, (9x) = 0 for i &#x3E; 0. Let H1(X’)
denote the category of coherent OX’-modules F of finite homological
dimension satisfying TorOX’i(F, UY,) = TorOX’i(F, OX) = TorOX’i(F, (Dy) = 0
for i &#x3E; 0. Then consider the commutative square of categories (where
Z = 03C0-1(Z’))

This gives the equation n*([Z’]) = [Z] in Ko(X, Y). Two cases where the
hypothesis are satisfied are when X - Y- X’ - Y’ is an open immer-
sion, and when the map n is flat. In our applications, we only work with
Ko(X, Y) where X - Y is smooth.

There is one technical point that we systematically ignore. When we
say that a diagram of categories

commutes, what we often mean is that the functors Go F and K 0 H are

naturally equivalent. Thus, the corresponding diagram of classifying
spaces
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only commutes upto homotopy. The induced map on homotopy fibers
F(B(F)) ~ F(B(K)) depends on the choice of this homotopy i.e. on the
choice of the equivalence of functors Go F ~ K 0 H. However, in all our
situations, there is always one "natural" choice of the equivalence - for
example, there is an obvious choice of a natural isomorphism
(M ~AN)~BP ~ M QA(N Q9BP); this is the kind of choice which has to
be made consistently. More details will appear in my thesis. 1 wish to

thank Professor Swan for pointing out that some care is needed here.
We need to make use of certain results from K-theory. We give them

in a sequence of lemmas. Recall that L denotes the field of algebraic
numbers.

LEMMA (3.2) (Van der Kallen [14]): Let (9 be a regular local ring con-
taining L, and let O[t]/(t2) be the ring of dual numbers over O. Then
K2(O[t]/(t2)) fits into the exact sequence

The isomorphism ker(K2(O[t]/t2) ~ K2(O)) ~ 03A910/L is given follows:
the kernel is generated by symbols of the form {u, 1 + vtl where u E (9*,
v E O, and

(Note that 03A91O/L = 03A91O/Z, since L/0 is separable algebraic.)
From now on, all differentials will be relative to L unless indicated

otherwise.

LEMMA (3.3) (Localisation sequence [11]): Let U ~ X be an open im-
mersion, where U is affine, and X - U is defined by an ideal sheaf which is
locally principal and generated by a non zero-divisor. Let H be the

category of coherent (9x-modules which are 0 on U and have homological
dimension 1 on X. Then we have a localisation sequence

Now we come back to cones. Recall that E c  is the non-reduced
scheme "2Eo" where Eo is the exceptional set. For any finite subscheme
S c E, the localisation sequence gives
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Taking limits over all such S (see Quillen [9], p. 96) we get

where F is the local ring at the generic point of E. Define SK1(E) =
= Ker(K1(E) ~ K1(F)). Then we have a presentation

Since it is difficult to work with Hx, we wish to obtain another view-
point on SK1(E). To do this, replace E by (9,,,E, for any closed point
x ~ E, in the above argument. We obtain an exact sequence

because K1(Ox,E) 4 K1(F) (since Kl(local ring) = units). Now let x E Eo
be a smooth closed point; since any infinitesimal deformation of the
regular local ring (9x,E. is trivial (as (9x,E. is essentially of finite type over
C), we see that Ox,E ~ Ox,Eo[t]/(t2). Hence lemma (3.2) applies to give a
diagram

By a result of Dennis and Stein [10], K2(Ox,E0)  K2(C(Eo». Also,

03A91Ox,E0  03A91C(E0), since 03A91Ox,E0 is a free (9,,,E.-module, and the inclusion is
just the localisation at the generic point. Hence K2(Ox,E)  K2(F).

Let q E E be the generic point; for any point x ~ E let ix : {x}  E. Then
we have constructed an exact sequence of sheaves (for the Zariski

topology)

where H2,E is the sheaf associated to the presheaf U ~ K2(0393(U, OE)).
Here K2(F), K1(Hx) are regarded as constant sheaves supported on a
subvariety.

Since (i~)* K2(F), (ix)* K1(Hx) are flasque, they have no higher coho-
mology, and so we can use the above resolution of K2,E to compute its
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cohomology. Hence, we obtain an isomorphism SK1(E) ~ H1(E, $’2.E),
since both are presented as coker(K2(F) ~ 11. K1(Hx)).

Next, we go back to the identification of (9x,E with Ox,E0[t]/(t2). The
map Ker(K2(Ox,E) ~ K2(Ox,E0)) ~ 03A91Ox,E0 was given by

This is not quite canonical, as it involves the choice of t generating

Ker(Ox,E ~ (9X.Eo)’ However, v 
du 
~ t ~ le ~OE0 I/I2 is clearly canon-

ical. Thus we obtain an exact sequence of sheaves

In fact, this exact sequence splits naturally, using the fibration ?- X
together with the isomorphism X ~ Eo to split the inclusion E0  E.
Hence, we have a naturally split exact sequence

Now E0 ~ XL  LC. Hence 03A91E0 ~ (03A91XL~LC)~(OXL Q9LQ¿). This gives
a corresponding splitting of 03A91E0~OE0I/I2. Since 03A91XL~LC = 03A91X/C, and
I/I2 ~ OX(1), we have

by Serre duality.

Again using E0 ~ XL x C, and the Künneth formula, the other direct
summand reduces to H1(XL, 19xL(I)) Q 03A91C.

LEMMA (3.4): Ki() ~ Ki(X), and the natural maps Ki() ~ KlE) are
injective. Further, coker(Ki() ~ Ki(E)) ~ Ker(Ki(E) ~ Ki(E0)).

PROOF: Since  ~ X is an A1-bundle, the first claim follows from [9],
sec. 7, prop. (4.1). The remaining claims just exploit the fact that in
E0  E   ~ X, the composite Eo - X is an isomorphism.

In particular, H1(XL, OXL(1)) ~ 03A91C K0(,E). The next task is to

imitate the geometric construction of the boundary map used by
Spencer Bloch to show that at least some of these elements land in
F0K0(, E).
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From the diagram

and the fact that SK1(2P) = 0, we claim that if 03B1 ~ H1(XL, OXL(1)) ~03A91C is
non-zero, and ôa = 03C0*03B4, then ~(03B4) E Ko(Y) is also non-zero. For suppose
03B4 = 03C8(03B3). Then n*(y) - 03B1 ~ Image(K1() ~ K1(E)), which maps isomor-
phically to K1(E0). But, by changing y by an element of K1(Y) (in fact,
an element of C*) we may assume 03B3 ~ 0 in K1(P). Clearly 03C0*(03B3) ~ 0 in
K1(E0), from

Since a-0 in K1(E0), n*(y) - 03B1~0 in K1(E0). But this forces

03C0*03B3 - oc = 0 i.e. 03C0*(03B3) = a. Since K1(2P) K1(E) ~ K1(F) is injec-

tive (use the grading) while a E SK 1 (E), this forces a = 0.
Now let C c 1 be a smooth (possibly disconnected) affine closed

curve. Then we claim there is a map between the sequence of (C, C n E)
and (, E). Let j : C  , j’ : C ~ E ~ E. Then we have a diagram

(H0 was defined when we introduced cycle classes).
This induces the maps between the sequences.

LEMMA (3.5): Let C be a smooth affine curve, S c C a finite subscheme,
(9s,c the semilocal ring of S on C. Then there is a commutative diagram
(upto sign)



266

where ~ : K1(S) ~ K0(C, S) is the boundary map of the pair (C, S),
03B5 : O*S,C ~ K1(S) is the natural map on units, and ri sends f ~ O*S,C to the
cycle class of the divisor ( f ) of f on C.

PROOF: It clearly suflices to check that ~o03B5(f) = ~(f) for all

f ~ Image(OC ~ OS,C) ~ O*S,C. Such an f can be regarded as a morphism
C ~ A1, and [(f)] E Ko(C, S) is just f*([0]), where [0] E Ko(A l,f(S»; and
f(S) e AI - {0}. So we are reduced to checking the claim in the case
when C ~ A1, S ~ A1 - {0}, and f = t, the standard function on AI.
The image of t in K1(S) is a unit. If AI = Spec k[t], S = Spec k[t]/I, then
we have a diagram of rings

This induces a map between the localisation sequence for (k[t], k[t, t-1])
and the exact sequence of the pair (A1,S). In terms of categories, we
have a diagram

Hence we have a diagram of spaces

since the homotopy fiber in the localisation sequence is known

to be homotopy equivalent to BQJ({0}). The induced map

BQJ({0}) ~ BQH0(A1) is the one which was used to define the cycle
class of [0] in Ko(A.1, S). So the lemma will follow if we can show that
for t ~ K1(k[t,t-1]), o(t) = ±[0]~K0({0}) in the localisation sequence.
This is proved in Quillen [9].
We need one more lemma. Let C c  be as before, and let 03A0 ~ OC~E,Y

be a local generator for the ideal sheaf of C on 1 Then we have a

diagram of localisation sequences
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(induced from the diagram

Here H0(OC~E,Y) is the category of coherent OC~E,Y modules M satisfy-
ing Tori(M, OC~E,E) = 0 for i &#x3E; 0, and similarly for OE~E,Y[03A0-1]. Note
that both rings are regular). There is another map

(where X’ = .Ye( C n E, E)).

LEMMA (3.6): OC = 03B2.

PROOF: (OC~E,C) ~ Ye(C n E, E) factors through the full subcategory
J(C n E) 4 X(C n E, E).

The point of Lemma (3.6) is to use symbols for calculations, to avoid
dealing with H(C n E, E). Lemmas (3.5) and (3.6) give the geometric
description of the boundary map K1(E) ~ K0(, E), since we know that
K2(OC~E,Y[03A0-1]) ~ K1(OC~E,C) is the tame symbol (see Quillen [9]).

Finally we are ready to prove the theorem. Let xo, ..., x" be homo-
geneous coordinates on PL. Let a0,...,an~C be algebraically independ-
ent over L, and let II = ao + ai x1/x0 + ... + an xnlxo be a rational
function on . The divisor of zeroes of II consists of a union of fibres of
the map p :  ~ X; indeed, if H ~ PnC is the hyperplane ao xo + ...

+ anx" = 0, the divisor is just p-1(H n X). Let D be a derivation of C
extending ô/ôao of L[ao,..., an], Then (dll, D) = 1, where we regard D as
a derivation on functions on 1 which is 0 on functions defined over L.
Now the homogeneous coord-xo may be regarded as a regular function
on 1 in the ideal of Eo, which generates that ideal at points of X - {xo
= 01 (under the identification of X with Eo). Since (II = 0) n Eo consists
of points not defined over L, xo generates I (and hence 1/I2) at these
points.

Let 0 be a rational function on  which is regular at the points
{t1,..., tp} = (xo = 0) n Ec. Then S = ~(dII/II) (D xo (where ~, II are re-
stricted to Eo) represents an element of H’(EO, Q10 Q III2) c SK1(E),
whose boundary is a relative 0-cycle. Hence Theorem 3 is proved if this
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class is nonzero. Clearly it is enough to show that (S, D) E Hl(Eo, III2) is
nonzero (where (, D) denotes contraction with the derivation D). We
will do this using Serre Duality, in its formulation in terms of residues
(see [7]). Let 03C9 ~ H0(E0, OE0(-1) (D WEo)’ the dual vector space to

H1(E0, I/I2); assume 03C9 is defined over L. Then co is nonzero at t1,..., t p,
and xocolh has a simple pole with nonzero residue at each ti. On the
affine curve Il = 0, we can find a regular function 0 with prescribed
values at each ti. Thus, by properly choosing ~, we can arrange that
Ef 1 resti[(~/03A0) Q x003C9] is nonzero. This finishes the proof.

REMARKS: 1) The proof in fact shows that K0(Y) is uncountably gen-
erated, since there are uncountably many mutually algebraically inde-
pendent choices of numbers a0,...,an.

2) Since derivations of the form olaa (with a running through a tran-
scendence base for C) span the dual of 03A91C, at least if we allow infinite
linear combinations, one can show that image(SK I(E) - K0(, E))
= F0K0(, E). Hence K0(, E) is generated by algebraic cycles. This is no
longer clear if the curve X is not defined over a number field, since the
vector space 03A91k may play some role, where k is a field of definition of X.
However, theorem 3 is still valid; in the final step of the proof, choose
ao,..., an to be algebraically independent over k.
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