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1. Introduction

In recent years a great deal of attention has been focussed on two
basic problems of number theory. The first of these problems is to

explicitly construct the subfields of the Hilbert class field of a number
field K. The second problem is to understand the relationship between
various Bernoulli numbers and the ideal class groups of number fields.

We recall that the Bernoulli numbers Bk are defined by

Thus, Bo = 1, B 1 = - 1/2, B2 = 1/6, ... A prime p is called irregular if p
divides the class number of the field 0«P) of pth roots of unity. Kummer
was able to show that an odd prime p is irregular if and only if there is
an even integer k with 2  k  p - 3 such that p divides the numerator
of Bk. Herbrand was able to strengthen Kummer’s criterion as follows:
Let C be the p-Sylow subgroup of the ideal class group of 0«P). The
group G = Gal(Q«(p)/Q) acts on C and we have a canonical decom-

position C = Q C(X’), where x is the standard cyclotomic character
i mod(p - 1 )

G - F*p defined by u«(p) = ((t1), and C(xi) _ {a e C : u(a) = Xi(U). a for all
creG}. Herbrand proved that C(X(1-k) -# 0 implies that plBk.

In 1976 Ribet [13] proved the converse, that plbk implies
C(X(l - k) -# 0. His proof used two important ideas of Serre. The first is
that there should be a two-dimensional Gal(0/0) representation p
giving the action of Galois on a certain subspace of the space of p-
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division points of some simple quotient A of Jl(p), and that p should cut
out an unramified extension of CD«P). The second idea is that the divisi-
bility of a Bernoulli number by p should imply a congruence between an
Eisenstein series and a cusp form f attached to A. These ideas have
recently been exploited by Barry Mazur and Andrew Wiles [11] in their
proof of the main conjecture for powers of the Teichmüller character.

In this paper we modify these ideas and, for certain q # p, study the
Gat(0/Q) - representation R on the kernel of the q-Eisenstein prime (see
§3). In §7 we show that R cuts out an everywhere unramified extension
of a particular subfield of CD«P, ’q).
The contents of this paper were taken from the author’s Harvard

thesis [4]. The author would again like to thank his advisors, Barry
Mazur and Andrew Wiles, for their constant help and encouragement,
and David Kazhdan for reading the original version and offering valu-
able suggestions. Finally, thanks are due to Karl Rubin for many helpful
and enjoyable conversations.

"2. Modular curves, Jacobians, and Hecke operators

Let p &#x3E; 13 be a rational prime number, and let Fl(p) be the group of
matrices

If A’ is the upper half-plane we let Yl(p)c be the open Riemann surface
r1(p)/:Yf, and we let Xl(p)c be the complete curve obtained by adjoining
the (p - 1) cusps. Both of these curves have models over Q (Shimura
[16]) which we denote by Y1(P)/Q and Xl(p),,Q.

Similarly, one defines the curves YO(p)c and XO(p)c by replacing Fl(p)
by ro(p) in the above construction. See Mazur [8] for details. Both of
these curves also have models over Q which we denote by Yo(p)/Q and
XO(P)/Q. 
The cusps of X1(P)/Q which lie above the cusp 0 of XO(p)lu

are called 0-cusps. The remaining cusps of Xl(p)lu (i.e., those that lie
above the cusp oo E XO(p)lu) are called oo-cusps. Shimura has provided a
convenient description of the cusps of X1(P)/Q. Let r1(p)/pl(Q) = Xl(p)c
- Yl(p)c be the cusps on the Riemann surface. Then if - E r1(p)jP1(Q)b 
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with a, b relatively prime integers, we let be the associated point on

Xl (P)/Q. The cusps of X1(P)/Q are represented by equivalence classes

under the relation " is equivalent to + for all r E Z". We

may take as a set of representatives of the O-cusps

Similarly, the representatives of the oo -cusps

may be taken to be In our model of X1(P)/Q the

0-cusps are rational over Q, and the oo-cusps are rational over 0«P)’,
the maximum totally real subfield of the field of pth roots of unity.
We let Ji(p)/Q (respectively, Jo(p)/Q) be the jacobian of X1(p)/Q (re-

spectively, Xo(p)/Q). Igusa has shown that J1(P)/Q has good reduction at
every prime 1 of residue characteristic different from p, and Deligne and
Rapoport have shown that Jl(p)IJO(p) attains everywhere good reduc-
tion over 0«P)’.

If we embed X1(P)/Q into its jacobian, sending a 0-cusp to zero, then
the classes of the 0-cusps generate a rational subgroup of J1(P)/Q. Manin
and Drinfeld have shown that this is a finite group, and Kubert and

Lang [6] have computed its order to be Q = p. nifB2,x’ where the pro-
duct is taken over all even characters of (Z/pZ)*. Here B2,x is the

periodic generalized Bernoulli number (see Lang [7]). The classes of the
oo-cusps generate a subgroup, of the same order Q, rational over

Q(,p) + . The following table gives the value of Q in the first seven inter-
esting cases. There were computed by Glenn Stevens on a computing
machine.

Table 1
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The standard Hecke operators T (for 1 =1= p), and a&#x3E; (for aE(7L/p7L)*/
( ± 1)) induce endomorphisms of J1(P)/Q. For a detailed description of
these see Wiles [17]. We recall that all of these operators are defined
over Q, and that all commute pairwise. We define the Hecke algebra T
to be the ring of endomorphisms of J1(p)/Q generated over Z by the T,
and a). We recall the action of the Hecke operators on the cusps:

3. Quotients of Jl(p) and completions of T

Let a&#x3E; be a generator for the group U = {a&#x3E;: a c- (ZIpZ)*I(± 1)}.

For each integer i dividin g p 2 1 let J(i) be the maximal quotient of

J1(P)/Q on which a&#x3E; acts as a primitive ith root of unity. With this
notation we see that J(1) is isogenous to JO(p)lu, and that J1(P)/c is iso-

genous to the product Il J(i). The abelian variety J(’)attains
il(p - 1)/2

everywhere good reduction over the subfield of Q«(p)+ whose degree
over Q is equal to i (see Deligne-Rapoport [1], p. 111).

Let T(i) denote the projection of T to J(i). Then the dimension of J(i) is
[T(’) (8) Q : Q]. Of course, T(i) contains an isomorphic copy of the group
of ith roots of unity, namely the image of the group U. Thus, the dimen-
sion of J(i) is a multiple of r = [T(’) (g) Q : Q«(i)]. We call r the reduced
genus of J(i). For abelian varieties of reduced genus one we note the

following: The ring Z[(a)] = Z[(,] is integrally closed. Moreover, the
endomorphisms T are integral over Z (since they generate a finite Z-
algebra). Thus, the 1i lie in Z[(i], and this is the entire Hecke ring -F(’).

From now on we fix an integer i # 1 dividing p - 1 . Let C be the
projection to J(i) of the group generated by the rational cusps. The
Hecke ring T preserves the group C. Define the Eisenstein ideal I to be
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the kernel of the homomorphism T -+ T(i) -+ End(C). The ideal 7 con-
tains elements of the form T - (1 + 11» for 1 # p, and fi«a», where
fi(x) is the primitive cyclotomic polynomial defining the field CD«i). If q
is a prime number dividing the order of the cuspidal group C we let Cq
be the q-Sylow subgroup of C, and we define the q-Eisenstein prime n to
be the maximal ideal of T, above q, in the support of 1.

Let Tq be the completion of T at the ideal generated by q. Since T is a
free Z-module of finite type we have that Tq = T p Zq. Denote by T,,
the completion of T with respect to the Eisenstein prime n, i.e., lr 1t =
= lim lr/nn T. Since Tq is a semi-local ring, T is a direct factor of
Tq. Letting lTi be the complementary factor, we write Tq = T,, x T’ir.
Corresponding to this we have an idempotent decomposition of the
identity

Let JM/Q be the kernel of the q-Eisenstein prime n in the Jacobian

J1(P)/Q, i.e., J[n]lu = n (ker a in J1(P)/Q) = n (ker ex in J1(p)[q]jQ). We
"c" aex

define J[n]/ll to be the Zariski closure of J[n]lu in the Néron model J/ll
of J1(P)/Q over Z. If q is different from p the group scheme ./M/2 is a
finite, flat subgroup of Jlz. Note, however, that J[n]/ll may not be the
full scheme theoretic kernel of n in J,,, since Jlz need not be an abelian
scheme.

To the ideal n g T we associate another ideal Yx, that is the kernel of

the map lT - lr X. We let yxJ c J1(P)/Q be the abelian subvariety gen-
erated by the images a - J1(P)/Q for a E y,,. Define the n-Eisenstein quo-
tient J(x) of J1(P)/Q by the exactness of the sequence

Note that J(n) is a simple abelian variety if T,, is a discrete valuation
ring. 

1

4. n-divisible groups and Tate modules

Let, , and let

Then Jq (respectively, Jx) is a q-divisible group over Q which admits a
natural action of Tq (respectively, T). Corresponding to the idempotent
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decomposition (#) of §3 we have a decomposition of q-divisible groups

We define the n-adic Tate module Ta(n) to be the Galois module

Hom(U,/Z,, Jx(Q». This is, in a natural way, a module over T,,. Similar-
ly, we may define the q-adic Tate module to be the Galois module

Hom(Qq/Zq, Jq(O».
Let Je be the complex Lie group associated to Jl(p)lc, and let 0 be

the universal covering group of Jc. We may identify the singular ho-
mology group H1(X1(P)e; Z) with the kernel of the homomorphism
Ù - Jc. This identification gives rise to an isomorphism

This, in turn, yields an isomorphism

The idempotent en ((#) of §3) when applied to Ta(q) gives

The following proposition is based on 3.1 of [17] and 7.7 of [8].

PROPOSITION 1: Ta(n) is free of rank 2 over ’T,, (D Q.

PROOF: Let Q be, as usual, the C-vector space of holomorphic 1-forms
on Xi(p)c. There is an injection

where the map is given by cv H (y H f w y) By the above discussion it

suffices to show that H,(Xl(p)c, Q) is free of rank 2 over T Q Q, or the
same with R in place of Q. However, over R (##) is an isomorphism, so
it is enough to show that Hom(Q, C) or even S2 is free of rank 2 over R.
Finally, by the Multiplicity One Theorem for Fl(p) (see [7], p. 125) Q is
free of rank 1 over T Q C. Thus, over R, S2 is free of rank 2. D

As a corollary we obtain

PROPOSITION 2: Suppose that lr n is a principal ideal domain. Then Ta(n)
is free of rank 2 over lr n.
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PROOF: Ta(n) is a rank 2 torsion-free module over T.,,. The assertion of
proposition 2 follows from the structure theorem for modules over prin-
cipal ideal domains. D

5. The représentation of Gat(Q/Q) on the kernel of I

From now on we assume that the q-Eisenstein prime n is locally prin-
cipal and that T,, is an unramified extension of Zq. Under these con-
ditions the abelian varieties J1(P)/Q and J(’) have isomorphic n-adic Tate
modules.

Since J1(P)/Q has good reduction outside of p, its Néron model over

 Spec Z 1/p is an abelian scheme, whose fibre over 1 we denote by J/F,.ÎP 
The Eichler-Shimura relation gives the formula

on J/F,. Here Frob, is the Frobenius endomorphism of the group scheme
J/F,. Now, reduction to characteristic 1 preserves n-power division

points, so the relation Tl = Frob, + 1(1)/Frobi is valid on Jn(Q) (where
Frob, now means any 1-Frobenius automorphism in Gal(o/o». It fol-
lows that any Frob, E Gal(Q/Q) satisfies the quadratic Eichler-Shimura
equation

in its action on J1t[I](Q) = J[7](0).
We write f for the residue class degree [T 1t/n.T 1t]. If e is a character

of (Z/pZ)*/( + 1) of order i we write fi for the greatest integer for which
nfl divides B2,,,. Since the rational cuspidal group Cq is contained in

J1t)[I](Q) we see that there is a representation

(given by the natural action of Galois on the module of nfl-division
points) whose image consists of matrices of the form

for a suitable choice of basis of J1t[I](Q). Restricted to I (1) acts as a
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character e(4 of order i, and T acts as 1 + l. e(4. Thus, the quadratic
Eichler-Shimura equation becomes

Then det(R(Frobj» = 1. e(4 and Tr(R(Frobl)) = 1 + 1. e(p so that we may
express the character ’1 as the product X - e, where x is the standard

cyclotomic character giving thé action of Gal(O/Q) on qth roots of 1,
and e is the "nebentypus" character of the simple abelian variety J(1t) (see
Shimura [16]).

6. The diagram of fields

We assume that q is prime to 2.i.p. For a character q of Gal (0/0)
we let Q, be the field "cut out" by ri, i.e., Q" is the fixed field of ker ri. Let
0(nO) be the field obtained from 0 by adjoining the coordinates of the
nfl division points of J("). In other words, Q(n") is the field "cut out" by
the representation R.

Let us, temporarily, assume that the representation R does not split
(see §7). Then we obtain the following diagram of fields:

Here numbers indicate the degrees of the various field extensions. In
particular, d = 1.c.m. (q - 1, i). The field E is obtained by translating
Q(n/l) to Q(ip, (q).
We view x and e as characters of the idèles: x is trivial on Up (the local

p-units) so xBlup = Blup has order i. Similarly, e is trivial on Uq (the local
q-units) so Xelu. = Xlu. has order (q - 1). Thus, q has ramification degree
(q - 1) in Qx£’ and p has ramification degree i.
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7. The nontriviality of Q(nfJ)

For the benefit of the reader we quickly review our notation:
- p is a prime number &#x3E; 13.
- e, the nebentypus character of J(n), is a nontrivial character (of

order i) of (Z/pZ)*/( + 1).
- q is a rational prime number, relatively prime to 2. i. p, dividing the

order of the projection C of the rational cuspidal group to J(,,).
- I, The Eisenstein ideal, is the ideal of T annihilating C.
- n is the q-Eisenstein prime.
- f is the residue class degree of n, and P is the greatest integer with

nfJI1EB2,e.
The object of this paper is to prove the following:

THEOREM: Suppose that lr Tt is an unramified extension of Zq. Then the
representation R : Gal(Q/Q) -+ GL2(lr Tt/nP.lr Tt) giving the action of Galois
on 7rfl-division points of j(1t) is not diagonalizable mod n. Moreover, the
splitting field 0(nfl) of R is an everywhere unramified extension of Q xe.

COROLLARY: Translating the above unramified extension of Qxe to

Q(,p, ’q) yields an everywhere unramified extension E ofQ(,p, (q). In parti-
cular, q divides the class number of Q(’ pq).

A PROOF OF THE THEOREM: We view the representation R as the re-
duction mod no of the representation p giving the action of Gal(Q/Q) on
the n-adic Tate module Ta(n). We suppose that the (*) occurring in the
upper right-hand corner of Im(R) is zero (mod n), so that the image of p

is of the form 0 1 0 (mod n). Dividing J(1) by the subgroup corre-0 x

sponding to the character xe we obtain an isogenous abelian variety A

for which Im(p) has the form (t (modn(0+1». We note that this(p) has the form 
0 n 

(mod 03C0(03B2+1)  )

isogeny may be seen on the n-adic Tate module as conjugation by

( n 0 We will show that § is an everywhere unramified character0

and this, for various reasons, will imply the theorem.
Since A has good reduction away from p, Theorem 1 of [15] shows

that only p and q can ramify. The character § is trivial mod n and so
has order a power of q. Then if p ramifies in 0,,, its ramification degree
ep is a power of q. On the other hand, we know that A attains good
reduction over the field 0,,, so that ep must divide i. However, by as-
sumption q Ji so ep must be 1 and § is unramified at p.
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To show that § is unramified at q we use a minor variation of an idea
of Ribet’s contained in a letter to A. Wiles. Let D z Gal(Q/Q) be a
decomposition group for q. We often find it convenient to think of D as
the local Galois group Gal(C.10.). Let Ta(n)° and Ta(n)ét denote the
Tate modules associated to the n-divisible groups A’ and Aél. These
modules are each free of rank 1 over T,, (since A[n]O and A[n]él are
both non-zero). Then, corresponding to the exact sequence

of n-divisible groups we have a sequence of T,,[D]-modules

Let 0 and i be the characters giving the action of D on Ta(n)ét and
Ta(n)°. Then, of course, 0 is unramified. Moreover, we have the follow-
ing congruences:

(1) qlI * ljfq (modnP+l)
(2) +,r + tl (mod no + 1
(3) * § = 1 (mod n)
(4) = ï = xe (mod n).

(1) and (2) show that 4&#x3E;(t/J + 17) = ( + r) = 4&#x3E;2 + OT =- 0’ + ?y
(mod 7ro + 1). So, (0 - §)(çl - q) * 0 (mod nP+ 1). Taken together with (3)
and (4), this tells us that 0(u) = t/J(u) for all u E D with X.-(u) :0 1 (mod n).
Thus, 0(a) = ik(u) for all u E D (if Xe(u) = 1, write U as a-l. au with
Xe(a- 1) and XB(au) =F 1). So § is trivial on the inertia subgroup Iq of D,
i.e., § is unramified at q. Then § is an everywhere unramified character
of Gal(0/0), and so is trivial. It follows that q == xe (mod n(P + 1 ), so that

our representation has the form 1 (moud n(P + 1»).(0 x
Let g = ¿ anqn be a weight-two new form associated to A (see

Shimura [16]). Then lT [ ^-_’ Z[B][{an:n = 1, 2, ...}] under the map

a 1--+ e(a) and ’ , Since T acts as the trace of Frobenius, what

we have just shown is that a, == 1 + 1. B(l) (mod nP+ 1». Let G2.F. =

be the usual weight-two Eisenstein series

for ro(p, e). Then, except possibly for the constant terms, g and G2,e
agree (mod n(fJ+ 1 ). Thus, g - G2,e is a weight-two holomorphic modular
form having all of its q-coefficients (other than the constant term) in the
ideal n(fJ + 1). The q-expansion principle (as stated in Katz [3] is valid



233

here and tells us that the constant term ’ 2 B,,., is in n(fJ+ 1) as well. This
is, of course, contrary to hypothesis. Thus, (*) is non-zero.

REMARK: In any given example, the following elementary argument
often allows us to bypass the study of the modular form g: We have seen

that the image of p is of the form 1 * mod n(/I + 1)). This means thatp is of the form 
 0  Xe 

(mod 03C0(03B2+1)  )

there is a space of (ql)(fJ + 1) points on A rational over Q. Since A has
good reduction at 2, reduction of A modulo 2 is injective on the s-

torsion points of A if s is a prime number # 2. Now, the number N of F2
2 dim A

- rational points on A/f2 is precisely TI (1 - coi), where the coi are the
i= 1

eigenvalues of Frobenius. The Riemann hypothesis for abelian varieties
over finite fields tell us that IWil = J2, so N  (1 + /2-) 2*di-A We write
the order c of the projection of the rational cuspidal group to J(") as
c = 2a . qb.l l where 1 is prime to 2 and q. Then there are at least 1. (q/)(fJ + 1)
points of A rational over F2 - It often happens (in fact, it happens in

every case 1 have checked) that 1. (ql)(fJ+ 1) &#x3E; (1 + /2-) 2-dimA For

example, the following table produces some values of q and the dimen-
sions of J(’) in the first six cases. In each case, J(") is some J(’) (see §3)
and the appropriate value of i is given. Also, in each case, T,, --- 7Lq (see
[4] where several examples are explicitly computed).

Table 2

Finally, to complete the proof of Theorem 1, we wish to show that the
extension Q(nP)/Qxe is everywhere unramified. For this, it suffices to
show that p and q are unramified (since J(’) has good reduction away
from p). Over Qe A attains good reduction, so p can have ramification
degree at most i in CD(nfl). But p already has ramification degree i in Qxe
(see §6), so p can ramify no further in the extension Q(nP)/Qxe. The
following standard local argument shows that q cannot ramify.

LEMMA: The restriction of R to a q-decomposition group D - Gal(0/0)
is diagonalizable. Thus, over Q xe RID is trivial.



234

PROOF: We view D as the local Galois group Gal(Qq/Qq). Let N be
the Néron model of J(’) over Zq, and let N[nfl] be the Zariski closure
of J(1t)[nP] in N. D acts trivially on a one-dimensional subspace
cq 9 J(1t)[nP] and via xe on the quotient J(1t)[nP]/Cq. By Raynaud’s
theorem (as stated in Mazur [9], 1) the Zariski closure of Cq in N[nfl]
is a constant (hence étale) subgroup scheme of N[7rfl] of order (qf)P over
Zq. Over Zq there is the standard short exact sequence decomposing
N[nfl]

Since N[nP]O and N[nP]ét are each of order (qf)fl the étale subgroup
scheme provides us with a splitting of this sequence, N[nP] 
-- W x N[nP]o. Thus, the representation R restricted to D is

diagonal. 0

This concludes the proof of the Theorem.

REMARKS: (1) In [13] Ken Ribet considers the case p = q and shows
the existence of a continuous representation p : Gal(Q/Q) -+ GL2(1F pt)
that "cuts out" an unramified p-extension of CD«P). His representation
also comes from Jl(p), but is not specifically related to a cuspidal group.

(2) We again suppose that q = p. Let 0 : Gal(Q(Ç)/Q) - Z*p be the
character satisfying (g = (O(g) for all g E Gal(Q«(p)/Q). If A is the p-Sylow
subgroup of the ideal class group of 0«,), we may decompose A as a

direct sum A = 0 A(O’) where A(O’) is the 0i-eigenspace of A. Let n
imod(p -1)

= Vp«(IJ2,O--1). Wiles [17] constructs a quotient B of J1(P)/JO(p) with the
property that the splitting field of B[I](0) (same 7 as above) is an un-
ramified extension of Q( ( p") of degree p" if A(O’) is cyclic. This has re-
cently been generalized (eliminating the hypothesis that A(O’) is cyclic)
by Mazur and Wiles [11] in their proof of the main conjecture for
powers of the Teichmüller character.

(3) Our theorem simply says that there is no analogue of the Shimura
subgroup ([8], Chapter II, §11) for Ji(p).
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