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0. Introduction

In this article we investigate generic maps of a given rank between
free modules and the modules associated with these maps, in particular
their cokernels. Let Zij, 1  i  u, 1  j  v, be indeterminates over the

ring Z of integers, and r an integer, 0  r  min(u, v). Let further S be
the residue class ring of the polynomial ring Z[Zij] with respect to the
ideal generated by the (r + 1)-minors of the matrix (Zii). Then the map (:
SU -+ S" given by the matrix (Zij) of residue classes, its cokernel C and a
S-free resolution e of C have the following universal properties: If

9: Ru --+ Rv is a map of rank r between free modules over a commutative

(noetherian) ring R, then 9 = ( (8) R, R made a S-algebra via the sub-
stitution Zij -+ xij and (xij) representing 9 relative to bases of Ru and Rv.
If M is a R-module given by v generators and u relations and of rang v
- r, then M = C p R, since M is represented by a map 9: Ru --+ R" with
rank cp  r. Finally, to each R-free resolution F of M there exists a map
2t (D R -+ F of complexes: Y (8) R represents the generic part of the
syzygies of M.
The rings S can be considered well-understood since Hochster and

Eagon proved their perfection (relative to the polynomial ring Z[Zij]) in
the splendid article [15]. Perfection is often hunted for and usually
found in generic situations. Not surprisingly, however, the perfection of
the modules C depends on u and v: C is perfect if and only if u &#x3E; v,

whereas the images of the maps ( are always perfect. In case u  v the

cokernels therefore deviate from perfection by the smallest non-zero
value only. In regard to the homological properties of the S-modules C,
the case u = v contrasts sharply with the case u # v. In the latter case
the most important homological invariants of C are grade-sensitive with
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respect to the ideal of the non-free locus of C (which coincides with the
singular locus of the ring S).

In section 1 we formulate the results on the perfection of C and, more
generally, of suitable specializations to which properties like perfection
can be transferred by the theory of generic perfection ([12], [15]) and by
exactness criteria for finite free resolutions ([7]); cf. section 2. In sections
3 and 4 we exploit the inductive methods of Hochster and Eagon to
show the perfection of the modules Im (. A computation of the kernels
of the maps (, which turn out to be generated by the determinantal
relations, and the computation of the canonical modules of the rings S
enable us to show that the only possibly remaining obstruction to the
perfection of C is non-existent in case u  v (sections 5 and 6). In the last
section we investigate the homological properties of the modules C and
conclude the article with a few remarks on the corresponding problems
for symmetric and alternating matrices.

In certain cases the perfection (or almost perfection) of the modules C
was known before ([11], [8], [3]). We give more detailed information in
section 1.

Notations and terminology: All rings are assumed to be commutative.
We refer the reader to [21] for the general theory of commutative al-
gebra. The grade of a finitely generated module M over a noetherian
ring R is the smallest integer i such that ExtR(M, R) -# 0 ([22]). It equals
the maximal length of a R-sequence contained in the annihilator ideal of
M. By the usual abuse of language the grade of an ideal means the grade
of the corresponding residue class ring. A module M is said to be perfect
if its projective dimension, abbreviated by pd M, coincides with its

grade, which is always a lower bound of the projective dimension. An
ideal is called perfect if the corresponding residue class ring is perfect.
We use the notion of rank in the somewhat restricted, but very useful

sense of [23]: M has rank s if and only if M, is a free R,-module of
constant rank s for all associated prime ideals p of R. If M is represented
as the cokernel of a map p: Ru -- Rv with matrix (xij) then M has rank v
- r if and only if the Ideal Ir+ 1 (Xij) generated by the (r + 1 )-minors of
(xij) is zero and Ir(xij) does not consist entirely of zero divisors. (We
adopt the usual conventions IO(Xij) = R, Ir(xij) = 0 for r &#x3E; min(u, v).) In
this case a localization Mq is a free R,-module if and only if q # Ir(xij).

Finally we want to point out that a (u, v)-matrix (xij) represents a map
Ru --+ RV, i.e. the rows of (xij) generate Im p.
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1. The generic perfection of generic modules

Throughout the article we will use the following notations. Let u, v,

and r be integers such that u, v &#x3E; 1 and 0 _ r  min(u, v - 1). Let Zij,
1  i  u, 1 - j :g v, denote algebraically independent elements over the
ring Z of integers, let P be the polynomial ring 7L[Zij: 1  i  u,

1  j :::; v] and S the factor ring P/Ir+ 1(Zij). The map ,: SU -+ SV is given
by the matrix (zij) of the residue classes Zij of the indeterminates Zij.
Finally, the complex

with Fo = S’, F1 = Su, and (i = Ç is a S-free resolution of C : = Coker .
It is always understood that these data depend on u, v, and r.

THEOREM 1: Let A be a noetherian ring, and u, v, r be integers such that

u, v &#x3E; 1 and 0  r  min(u, v - 1 ). Let Yij’ 1  i  u, 1  j  v, be ele-
ments of A, and let R denote the factor ring A/lr+ l(Yij). Let 9: RU -+ R’ be
given by the matrix (xij) of the residue classes xij of the elements Yij.
Consider A as a P-algebra via the substitution Zij -+ Yij and R as a S-
algebra via the induced map Zij ---&#x3E; xij. Suppose that grade Ir+ 1 (Yij) = (u
- r)(v - r).
Assume further that 1,(x,j) contains an element which is not a zero div-

isor of R. Then:
(a) L 0 R is a R-free resolution of Coker 9.
(b) lm c:p and, hence, all higher syzygies of Coker c:p are perfect A-

modules.

As long as Ir+ i(yj) # A, grade Ir+ 1 (Yij) is bounded above by (u - r)(v
- r). Hochster and Eagon ([16]) showed that Ir+ l(Yij) is a perfect ideal,
if grade Ir+ l(Yij) attains its maximal value (u - r)(v - r). In particular,
this is true if A is a polynomial ring B[yij]. To avoid tedious repetitions
we will refer to the notations and hypotheses of the first paragraph of
Theorem 1 as the standard hypotheses on 9. In regard to the perfection
of Coker 9 the cases u &#x3E; v and u  v behave differently:

THEOREM 2: Let 9 satisfy the standard hypotheses.
(a) If u &#x3E; v, then Coker 9, lm 9 and, hence, all higher syzygies of

Coker (p in a R-free resolution are perfect A-modules.
(b) If u  v, Ir(xij) :0 R, and 1,(xij) contains an element which is not a

zero divisor of R, then Coker 9 is not a perfect A-module.

As noted already, the standard hypotheses on 9 are satisfied if A
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= B[yij] is a polynomial ring in the indeterminates Yij (or, more gener-
ally, the Yij form a A-regular sequence). It follows immediately from
[16] that the additional assumptions on Ir(xij) are likewise fulfilled in
this case, where 1,(xij) * R requires r &#x3E;: 1 of course.

From the theory of generic perfection ([12], [15]) we obtain as an
immediate consequence:

COROLLARY: (a) lm  is a (strongl y) generically perfect module. (b) In
case r &#x3E;_ 1 Coker’ is (strongly) generically perfect if and only if u &#x3E;_ v.

It is easy to find examples which show that the additional assumpt-
ions on Ir(xij) can not be omitted for part (a) of Theorem 1 and part (b)
of Theorem 2, and they are obviously indispensable for part (b) of
Theorem 1 in case r = u. In this case one simply has S = P and R = A,
(zij) is the matrix of indeterminates Zij, and (yij) = (xij) a matrix of
linearly independent rows.
We have to exclude the case r = v  u from Theorem 1 because part

(b) does not longer hold then. In this case and also in case r = v = u one
studies Coker (yij), which is of course annihilated by Iv(Yij) =f. 0, as a
torsion module over A. These modules were called "generic torsion
modules" by Buchsbaum and Eisenbud ([8]). Their perfection was
proved by Buchsbaum and Rim who constructed an explicit generic free
resolution ([11], Corollary 2.7, cf. also [10], Theorem 3.1, and [8]).
Since Coker (Yij) is annihilated by lv(yij), the perfection of these modules
is contained in the case r = v - 1 of part (a) of Theorem 2. A second
case, in which A-free resolutions are known, is the case v &#x3E; u = r + 1 (cf.
[10], Theorem 5.2 and [3], Proposition 7).
We do not give P-free resolutions of the modules C. Their complexity

is certainly comparable to the complexity of the resolutions of determi-
nantal ideals ([19]. It would be more interesting to have an explicit
description of the S-free resolutions L because they represent the gen-
eric part of the resolution of a module with v generators, u relations and
rank v - r, as discussed in the introduction. As an auxiliary result for
the proof of Theorem 2 we will compute the map (2, i.e. compute a

system of generators of Ker ,. As one should expect, Ker Ç is generated
by the determinantal relations of the rows of (zij) (Theorem 3). The
complexes K(,r) constructed by Buchsbaum in [6], pp. 281, 282 can
perhaps provide resolutions of the generic modules C = Coker Ç, non-
minimal ones however in general.
A second auxiliary result in the proof of Theorem 2 is the explicit

representation of the canonical modules of the "determinantal rings"
given in [5].



175

2. Réduction to the generic case

In this section we derive Theorems 1 and 2 from the following
propositions.

PROPOSITION 1: For all u, v  1 and r, 0  r  min(u, v - 1), lm ( is a
perfect P-module.

PROPOSITION 2: For all u, v _&#x3E; 1 and r, 1  r  min(u, v - 1), Coker is
a perfect P-module if and only if u &#x3E; v.

We need a strengthening of Proposition 2 (which however will finally
turn out to be just a special case of Proposition 2).

PROPOSITION 3: Let u, v 1, u  v, 1  r :5:, min(u, v - 1). Let m denote
the prime ideal Ir(zij) of Sand 9Jl the prime ideal Ir(Zij) of P. Then
(Coker ()m is not a perfect Ru-module.

PROOF OF THEOREM 1: Consider the S-free resolution of C = Coker (:

Since Im is perfect by virtue of Proposition 1, and the free S-modules

Fk are perfect P-modules too, the perfection of Coker follows im-
mediately for all k &#x3E;_ 2 by induction. Applying the theory of generic
perfection ([12]) or the exactness criterion of Buchsbaum and Eisenbud
([7]) to 2 Q A, where Y is a P-free resolution of Coker (k’ one obtains
that (Coker (k) Q R Coker«k Q R) is a perfect A-module of grade (u
- r)(v - r) for all k 2. Such a R-module is necessarily torsionfree.
Let r E Spec R be an associated prime ideal of R. By hypothesis on

Ir(xij), its preimage s in S does not contain Ir(zij). Therefore e (D S,, and,
consequently, L Q Rr are split-acyclic. The acyclicity of L Q R now
follows from a trivial lemma:

LEMMA 1: Let T be a commutative noetherian ring and

a zero-sequence of finitely generated T-modules, such that Coker a is a

torsionfree T-module. IJ CC Q T is exact for all t E Ass T, then ’W is exact.

PROOF OF THEOREM 2: Coker ( has positive rank over S (we will state
this explicitly in Proposition 4) and thus has grade (u - r)(v - r) over P.
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Again by the theory of generic perfection, Coker 9 = (Coker Q Q R is a
perfect A-module as a consequence of Proposition 2, if u  v.

The non-perfection of Coker ( under the hypotheses of part (b) of
Theorem 2 follows from a stronger statement:

SUPPLEMENT TO THEOREM 2: Under the hypotheses of part (b) of
Theorem 2 let r be a prime ideal of R, which contains Ir(xij). Then

(Coker ()r is not a perfect module over the corresponding localization of A.

In proving this supplement we may directly assume that R and A are
local with maximal ideals r and a resp. The preimage s of r in S contains

1,(zig). According to Proposition 3, C. is not perfect, but its deviation
from perfection is small: From Proposition 1 we obtain pd Cg
= grade C, + 1 = (u - r)(v - r) + 1 over Pq, where q is the preimage of 5
in P. To simplify the notation let us write S = Ss, P = Pq and C = C,,.
Let

be a minimal P-free resolution of C. For every prime ideal q of P such
that q jJ Ir+ 1 (Zij) the complex 5£ Q P. is split-acyclic. Hence L Q A is
split-acyclic at all prime ideals n of A with grade n  w - 1 since

grade 1,, 1(yij) = w - 1 by hypothesis. The map /3w finally splits at

primes q jJ Ir(Zij) since Cq is a free module over the corresponding loca-
lization of S and thus a perfect module over P.. The hypothesis on Ir(xij)
implies grade Ir(Yij) &#x3E;_ (u - r)(v - r) + 1 = w. Hence flw Q A splits at all
prime ideals n of A with grade n  w. The exactness criterion of

Buchsbaum-Eisenbud applies and yields the acyclicity of 5£ Q A. Since
the extension P -+ A is local, £f Q A is a minimal resolution of Coker (.
Since rank Coker ( = v - r &#x3E; 0 over R, we obtain grade coker Ç = (u
- r)(v - r) = w- 1.

3. The inductive system of Hochster and Eagon

In order to give an inductive proof of the perfection of determinantal
ideals, Hochster and Eagon introduced a very large class of ideals. Let
us first recall their notation, which has to be "transposed" for our
purpose.

Throughout this section let B denote an integral domain, let Xij,
1  i  u, 1 :::; j  v, be indeterminates over B, and A the polynomial
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ring B[Xij]. For a sequence H = (uo,..., ur) of integers ui,
0  uo  ...  ur = u, and an integer n,Os n  u, let I(H, n) denote the
ideal generated by the (i + 1)-minors of the rows l, ..., ui of the matrix

(Xij), i = O,...,r, and the elements Xl1,,,.,Xnl. In [16] Hochster and
Eagon proved the following propositions:

(HE-1) If n = Ut or n = ut + 1 for a tE{O,...,r}, then I(H, n) is perfect.

(HE-2) If n = ut, I(H, n) is a prime ideal.

(HE-3) If ut  n  Ut+ 1, then I(H, n) is a radical ideal:

I(H, n) = I(H’, n) n I(H, n’)

where H’ = (ua,..., Ut-l’ n, Ut+ 1’...’ Ur) and n’ = ut + 1.

where h is chosen such that uh _ 1  n  u,,.

(HE-5) With the notations of (HE-3), in case ut + 1 = n  ut+ 1 one has

grade I(H’, n) = grade I(H, n’) = grade I(H, n) and grade I(H’, n’)
= grade I(H, n) + 1.

(HE-6) If B is normal and n = ut, then All(H, n) is normal.

We are studying the homomorphism e: Au -+ Av, which is given by
the matrix (Xij), the module M : = Coker (P, and in particular the

modules

Further let R(H, n) : = All(H, n). With (HE-3) it is almost trivial to com-
pute the rank of M(H, n) over R(H, n).

PROPOSITION 4: Let r v. (a) As a R(H, n)-module, M(H, n) has rank
v - r.

(b) For all r E Spec R(H, n) the R(H, n)r-module M(H, n)r is free if and
only Ç r b Ir(xij), where Xij denotes the residue class of Xij in R(H, n).

PROOF: The first possibly non-vanishing Fitting ideal of M(H, n) is

1,(xi). By (HE-2) and (HE-3) I«(uo,..., Ur - 2), n) is not contained in an

associated prime ideal of R(H, n), and therefore Ir(xij)
= I((uo,...,ur-2,u),n)/I(H,n) contains an element which is not a zero
divisor of R(H, n).
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Let U(H, n) denote the kernel of the natural epimorphism
M -+ M(H, n) and T(H, n) the R(H, n)-torsion submodule of M(H, n).
Then as a consequence of Proposition 4, T(H, n) is annihilated by Ir(Xij),
and thus the kernel V(H, n) of the natural epimorphism
M - M(H, n)/T(H, n) is given by

The main result of this section is

PROPOSITION 5: Let u, v &#x3E; 1 be integers,

Then for all the R(H, n)-module M(H, n) is

torsionfree.

In order to prove Proposition 5 we will show that the U(H, n) and
V(H, n) form a module-theoretic version of Hochster and Eagon’s prin-
cipal radical system:

LEMMA 2: Let T be a noetherian ring and M a finitely generated R-
module. Let A be a partially ordered set with ascending chain condition
and (UA) and (Vl), A E A, two families of submodules of M with the follow-
ing property: for all Â, f.l E A with À  f.l one has

Suppose further that for each À E A at least one of the following con-
ditions is satisfied:

(1) UÂ = VÂ.
(2) There are a /1 E A, /1 &#x3E; ),,, and an element x E T, which is not a zero

divisor of MjV)., such that U). + xM = U, and (V).: VA) + Tx = T implies
V). = VA -

(3) There are /1, v E A, /1, v &#x3E; Jw, and an element XE T such that UÂ
+ xM = VJl’ Uv V).: xT, and VÂ: xT &#x3E; v:.
Then UÂ = n for all Â e A.
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The proof of Lemma 2 is a straightforward generalization of the proof
of Proposition 24 in [16]. Therefore we omit it. (We avpid the indexing
by 8 E e; UA corresponds to the ideal 1). and V. to its radical JÂ.)

PROOF OF PROPOSITION 5: e, is partially ordered in a natural way:
(H, n)  (H, fi) if and only if uo  ùo, ..., ur _ ùr and n  n. Equation (*)
guarantees that V(H, n) c V(il, fi) whenever (H, n)  (H, fi), whereas the
inclusions U(H, n) c V(H, n), U(H, fi) c V(H, fi) and U(H, n) c U(H, fi)
are trivial. It further implies that V(H, n) is a homogeneous submodule
of the graded A-module M (as is U(H, n) by definition).
We prove by induction on v that the families (U(H, n)) and (V(H, n)),

(H, n) E Ytr, satisfy the conditions of Lemma 5. The case v = 1 is trivial.

Assume v &#x3E; 1.

Case (1): n = u. Then the matrix (Xij) looks like

modulo I(H, n). M(H, n) splits into the direct sum R(H, n) E9 M’(H, 0)
where M’ is defined with respect to the matrix formed by the columns
2,..., v of (Xij). Since, by the definition of A, n = u is only possible if
r  v - l, the induction hypothesis on v can be applied to give the tor-
sionfreeness of M’(H, 0) as a R(H, n) = R’(H, 0)-module.

Case (2): n=u,u, r  v - 1 or n=u,v-1, r = v - 1. The ele-
ment Xn + 1,1 is not a zero divisor modulo I(H, n) and thus not a zero
divisor modulo V(H, n). Since X,, , 1, 1 is a form of positive degree and
U(H, n) and V(H, n) are homogeneous, all the properties required in con-
dition (2) of Lemma 2 are fulfilled with (H, n + 1) corresponding to p.

Case (3): Ut  n  Ut+ 1, r - v - 1 or u,nu,+,, n  U - 1, r=v- 1:
It is easy to check that condition (3) of Lemma 2 is satisfied with x
= Xn+ 1,1’ (H, n + 1) and (H’, n) corresponding to Jl and v resp., where

H’ = (uo,...,Ut-l, n, ur + 1, ... , ur).
Case (4): n = Ut = n - 1, r = v - 1. Modulo I(H, n) the matrix (Xij)

becomes
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The elements xu 1, ... , Xuv are algebraically independent over the subring

where H’ = (uo, ..., Ur - 1) and I(H’, 0) is taken relative to the matrix (Xij:
1  i  u - 1, 2  j _ v). Let M’ : = M’(H’,O) be the corresponding R’-
module. Then

where R : = R(H, n) and x is the residue class of (Xu2’...’ xuv) in
M’ @R’ R.
M’ is a torsionfree R’-module by induction hypothesis on v, and thus

M = R E9 (M’ @ R) is a torsionfree R-module. The element (xul, x) is

linearly independent, hence excludes primes P E Spec R with

depth R &#x3E;_ 2 from being associated to M = M/R(xUl, i). It even gen-
erates a free direct summand of Mp if p b Rx.,. Therefore q:= Rx.,
could be the only non-zero prime ideal associated to M. But Mq is a free
R -module, since Ir(xij) ::p q, and this excludes q as an associated prime.
Case (5) : n = v - 1, Ur-l  n, r = v - 1. Modulo I(H, n) the matrix

(XiJ) has the same form as in case (4), and M(H, n) = RV/U, where U is
the submodule generated by the rows x1, ... , xu of (Xij) and R = R(H,,n).
Suppose y = (Yl’’’.’ y,) is a torsion element modulo U:

a not a zero divisor of R. By (HE-3) the element x., generates a minimal
prime in R. Thus a e Rx., and y c- Rx.,. Subtracting a suitable multiple
of x. from y we may assume that y, = 0 and auxul = 0. Again by (HE-3)
au E p : = 1,.(xij: 1  1  u - 1, 2  j  v). The prime ideal p annihilates
Rv -1 modulo the submodule U generated by Xl: = (X12’...’ Xlv), ...,
XU-l : = (Xu-1,2,..., Xu-l,v). Consequently we may assume au = 0. The
residue classes of xu 1, ... , xuv in R/p are algebraically independent over
R’, the ring R’ being defined as in case (4), and as in case (4) the module
M’ Q R/p is torsionfree over R/p. Since a e p, we conclude that

(Y2,...,Yv)EpRV-l + 0 c Ù and y E U.

4. Perfection of the image of a generic map

In order to prove Proposition 1 we will show that Coker ( is almost
perfect:
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DEFINITION: Let T be a noetherian ring and M a finitely generated T
module. We call M almost perfect if pd M  grade M + 1.

Again we will mimic Hochster and Eagon’s inductive method. We
-need a straightforward (and elementary) generalization of Propositions
17 and 18 of [16].

LEMMA 3: Let T be a noetherian ring, M a finitely generated T-module,
and U and V submodules of M. Suppose that U n V = 0, grade M/U
= grade M/ U = grade M and grade M/(U + V) = grade M + 1. Then:

(a) If M/U, M/V and M/(U + V) are (almost) perfect, M is (almost)
perfect.

(b) If M/U and M/V are almost perfect and M/(U + V) is not perfect,
then M is not perfect.

PROOF: One considers the behaviour of projective dimension along
the exact sequences

In passing from M to M/xM, x not a zero divisor of M, it can happen
that M/xM is (almost) perfect whereas M is not. This complication does
not occur if x does not avoid all the prime ideals p at which pd M, is
maximal. In particular we have as a substitute of [16], Proposition 19
and Corollary:

00

LEMMA 4: Let K be a field and T = Q T a graded noetherian K-al-
i=O

gebra with K = To. Let M#-O be a graded T-module and x E T a form of
positive degree which is not a zero divisor of M. Further suppose that
grade M/xM = grade M + 1. Then M is (almost) perfect if and only if
M/xM is (almost) perfect.

We finally need an analogue of Proposition 20 of [16]:

LEMMA 5: Let Xl, ..., Xn be indeterminates over the ring Z of integers,
and M a finitely generated Z[Xi, ... , Xn]-module which is torsionfree over
Z. Suppose that for each prime p E Z the (Z/pZ)[X1, ... , Xn]-module
M©Z/pZ has the same grade as M and is a (almost) perfect
(ZIpZ)[X,,...,X.]-module. Then M is a (almost) perfect Z[X1,...,Xn]-
module.
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The proofs of Lemma 4 and Lemma 5 are straightforward gen-
eralizations of the corresponding proofs in [16].

In order to prove Proposition 1 it suffices to show that Coker Ç is
almost perfect. For we have an exact sequence

S is perfect by (HE-1), and grade Coker ( = grade S = grade lm (, since
rank Coker ( is positive in case r  v (where, of course, the data Ç, S etc.
are understood to depend on u, v, and r). By virtue of Lemma 5 we may
replace the base Z by a field.

PROPOSITION 6: Let B be a field and u, v &#x3E; 1 integers. Let

Then M(H, n) is almost perfect for all 

PROOF: Again we use induction on v and descending induction on the
partially ordered sets Ytr. The assertion is trivial for v = 1. As in the
proof of Proposition 5 we distinguish five different cases:
Case (1): n = u. Then M(H, n) = R(H, n) Q M’(H, 0) as in case (1) of

the proof of Proposition 5, and M(H, n) is almost perfect by induction
on v.

Case (2): n = Ut  U, r  v - 1 or n = Ut  U - 1, r = v - 1. Since

M(H, n) is a torsionfree R(H, n)-module, Xn + 1,1 is not a zero divisor of
M(H, n). We have M(H, n)lxn , 1, 1 M(H, n) -- M(H, n + 1). M(H, n + 1) is
almost perfect by induction on Ytr, and Lemma 4 shows that M(H, n) is
almost perfect, too.

Case (3): n=ut+ 1 ur+l,rv-1 orn=ut+ 1 ut+1 u,r=v
- 1. By virtue of (HE-3)

where H’ = (Uo,..., Ut-l’ n, ut + 1, ... , ur) and n’ = Ut+ 1. The minimal
primes of the reduced ring R(H, n) are p : = I(H’, n)ll(H, n) and q :
= I(H, n’)/I(H, n). As a torsionfree R(H, n)-module, M(H, n) can be em-
bedded in a free R(H, n)-module. Therefore pM(H, n) n qM(H, n) = 0. By
induction on Jfr the modules M(H, n)/pM(H, n)  M(H’, n),
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M(H, n)/qM(H, n) ^-_’ M(H, n’) and M(H, n)/(p + q)M(H, n) -- M(H’, n’) are
almost perfect and their grades satisfy the requirements of Lemma 3,
which shows that M(H, n) is almost perfect, too.

Case (4): n = ut = u - 1, r = v - 1. As in case (4) of the proof of
Proposition 5 and with the notations introduced there, we have

M’ and, thus, M’ @ R’ R are almost perfect by induction on v, R and,
thus, R(xu 1, x) are perfect by (HE-1 ). They all have the same grade. Now
the assertion results from the behaviour of projective dimension along
the exact sequence associated with the preceding representation of

M(H, n).
Case (5): n = u, + 1  u,+ 1 = u, r = v - 1. For the reason given in

case (3) we have two exact sequences as in the proof of Lemma 3:

where W = Ker n. Since (H’, n) E Ytr, M(H’, n) is almost perfect by in-
duction on Ytr. Observe that n’ = u. As in case (1) both the modules
M(H’, n) and M(H’, n’) split:

and the map n splits accordingly. The ideal a : = Iv-l(Xii 1  i  u,

2  v  j) annihilates M’(H, o). Since I(H’, n’) = I(H, n’) + a, the compo-
nent map M’(H, 0) - M’(H’, 0) is an isomorphism, and we have an exact
sequence

Thus W is perfect with annihilator I(H, n’), and now the first of the two
sequences above yields the assertion on M(H, n), since the grades of W,
M(H, n), and M(H’, n) coincide.
The proof of Theorem 1 is complete now.

5. The kernel of a generic map

In this section we show that the kernel of a generic map is generated
by the determinantal relations of the rows of the corresponding matrix.
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Simultaneously we derive a technical result which is one of the main
ingredients of the proof of Theorem 2.

Let T be a ring and consider a (u, v)-matrix (xij) with XijE T. Suppose
Ir+ 1(xj) = 0. Let

Then, for any collection of indices i 1, ... , ir + 1 and j 1, ... , j, one obviously
has

We refer to these relations and the corresponding elements of the kernel
of the map represented by (xij) as the determinantal relations of the rows
xl, ..., XU.

THEOREM 3: Let (p satisfy the standard hypotheses. Assume that r &#x3E; 1

and that 1,(xij) contains an element which is not a zero divisor of R. Then
the kernel of ç is generated by the determinantal relations of the rows of
~. 

The only purpose of the condition r &#x3E; 1 is to exclude the degenerate
case r = 0. Part (a) of Theorem 1, whose proof has already been com-
pleted, reduces Theorem 3 to the generic case A = Z[Zij], and thus to
part (c) of the following proposition for q = 0.

PROPOSITION 7: Let B be an integral domain, let (Xij) be a (u, v)-matrix
of indeterminates over B, r an integer with 1  r  min(u, v - 1), R the
residue class ring B[Xij]ll, , (Xij), and the homomorphism RU -+ R’ given
by the matrix (xij). Further let q denote the zero ideal of R or the ideal
generated by the r-minors of the first r columns of (xij), and s &#x3E; 1 an

integer. Then:

(a) The ideal generated by the r-minors of the first r rows of (xij) con-
tains an element which is not a zero divisor of R/q’.

(b) If r &#x3E; 2 the element x 11 is not a zero divisor of
RI(q’ + I,(xij: 1  i _ k, 1 - j  v)) for k = r,..., u - 1.

(c) Let a1,...,ak be elements of R such that alxl +... + akxk E qSR",
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where xi denotes the i-th row of (xij). Then there is a linear combination
(b1, ..., bk) of the determinantal relations of the rows x1, ... , xk such that ai
- bi E qS Jor i = 1,..., k.

PROOF: Parts (a) and (b) are trivial in case q = 0. Their proof in the
remaining case follows immediately from [5], Proposition 2. They serve
as auxiliary arguments in the inductive proof of part (c).

Let r = 1. By part (a) the first row is linearly independent modulo q’.
Hence (c) holds for k = 1. Assume k &#x3E; 1. By the same argument we have
ak E b + qs where b is the ideal generated by all the elements in the rows
1,..., k - 1. All these elements occur as coefficients of the k-th row in the
determinantal relations of the rows 1,..., k. Subtracting a suitable linear
combination of these relations from (al’...’ ak) we may assume ak = 0.
Then we are through by induction on k.
The proof of part (c) for r &#x3E; 1 rests on a standard localization argu-

ment which, roughly, decreases the size of all minors by 1. Over P[X1-11]
we can transform the matrix (Xij) by elementary row and column
operations into

where Yij = Xij - XilXijX1-11. The elements YJ are algebraically inde-
pendent over B, and the elements X11,..., Xlv, X 21, ... , Xu 1 are algebrai-
cally independent over C:= B[¥ij]. R[xi-11] can be considered a flat
overring of Cll,(Yij): R [xi il] = (C/Ir( X j)) [Xi il ... 1 xiv,
X2 1, ..., x. 1 ] [X- 1 ]. The extension of the ideal q of C/lr(¥ij) generated by
the (r - 1 )-minors of (¥ii 2  i  u, 2  j  r) to R [x 1 is just
qR [x 111 ], and the determinantal relations of the rows 2,..., k of the
matrix above "extend" to determinantal relations of the rows x 1, ... , xu

(up to multiplication by x 11 ).
Let r &#x3E; 1. In case k _ r part (a) shows again that x1, ... , Xk are linearly

independent. In case k &#x3E; r the localization argument just explained
shows that there is a linear combination (bl, ..., bk) of the determinantal
relations of x 1, ... , Xk such that

for an integer N &#x3E; 0. The element bk is contained in the ideal b gen-
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erated by the r-minors of the first k - 1 rows. By part (b) x11 is not a

zero divisor modulo b + qs, hence ak E b + qs. Now the subtraction argu-
ment given for r = 1 and induction on k complete the proof of part (c).

6. The perfection of the cokernel of a generic map

In their monograph [1] Auslander and Bridger discuss various hom-
ological properties of modules. We need some of their results. Let T be a
noetherian ring, M a finitely generated T module and (p: TU -+ T’ a

homomorphism such that M = Coker (fJ. Then one has exact sequences

where M* = HomT(M, T). N is determined by M up to projective
equivalence, and we will only use properties of N which depend on the
projective equivalence class of N. Therefore we may write N = D(M)
and, correspondingly, M = D(N).

Auslander and Bridger call a module M t-torsionless if ExtT(D(M), T)
= 0 for i = 1,..., t. One observes that M is torsionless, i.e. the canonical
homomorphism M -+ M** is injective, if and only if M is 1-torsionless
and furthermore that M is reflexive, i.e. M -+ M** is an isomorphism, if
and only if M is 2-torsionless. A module M is t-torsionless for t &#x3E;- 3 if

and only if it is reflexive and Ext(M*, T) = 0 for i = 1,..., t - 2. A t-
torsionless module is clearly a t-th syzygy: there is an exact sequence

with free T modules Fi. A t-th syzygy certainly satisfies the Serre type
condition

(St) depth Mt &#x3E;_ min(t, depth Tt) for all t E Spec T.

Proofs of these assertions can be found in [1]. We need partial con-
verses which in the literature ([1], [13]) are usually given under con-
ditions on T. Using the ideas from [1] and [13] the reader will be able
to supply the proof of Lemma 6:

LEMMA 6: Let T be a noetherian ring, M a finitely generated T-module,
and t an integer. Suppose that Mt is a free T-module for all t E Spec T,
depth 7t  t - 1.
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(a) If M satisfies (8t), then M is a t-th syzygy.
(b) If M is a (t + l)-th syzygy, then M is (t + l)-torsionless.

We now complete the proof of Propositions 2 and 3, in which we
considered the map Ç : S" -&#x3E; S" with S = 7L[Zij]/lr+ l(Zij),
0  r  min(u, v - 1), and ( given by the matrix (zij) of the residue
classes of the indeterminates Zii. We first show that Coker ( is perfect
when u &#x3E; v.

By Proposition 6 we already know that C : = Coker ( is almost per-
fect. Translated into an assertion on the depth of the localizations C.,
p E Spec S, this means

for all p E Spec S. (Note that S is a Cohen-Macaulay ring). Perfection of
C. means

depth C. = depth S:p

for all p E Spec S, and is hence equivalent to Ext’(C, cos) = 0 by the local
duality theorem. (By cos we denote the canonical module of S, cf. [5].)
The dual C* = Homs(C, S) of C is the kernel of Ç*. Identifying Su and

(S")*, S" and (S’)* we may consider (* as the generic map Sv -+ Su whose
cokernel D(C) is almost perfect by Theorem 1. By virtue of Proposition
4, (b) C. and D(C), are free Sp-modules whenever p b Ir(zij). Since

grade Ir(Zij) = u + v - 2r + 1 &#x3E;- 3, an application of Lemma 7 shows that
C and D(C) are second syzygies and reflexive. C* is even a fourth syzygy
and hence Extb(C**,S) = Extb(C,S) = 0. In case u = v this already
shows that C is perfect, since S is a Gorenstein ring then. So we may
assume u &#x3E; v.

In [5] we gave a representation of Ws as an ideal of S. From the exact
sequence 0 -+ Ws -+ S -+ Slws -+ 0 one derives an exact sequence

Thus it is enough to show that the natural homomorphism
x : C* -+ Homs(C, S/ws) is surjective. C* can be identified with the sub-
module of all (a 1, ... , av) E (SV)* such that

where zl, ..., z" are the columns of (zij). Each homomorphism
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p: C - S/ws can be lifted to an element (b1,..., bv)E(SV)* such that

We know from [5] that cos is the ideal pu-v, where p is generated by the
r-minors of the rows 1,..., r of (Zij). Now Proposition 7 can be applied
to the transpose of (zij). It shows that each relation (b1,..., bv) of

z 1, ... , z" modulo cos is the sum of a relation (a1,..., av) E (Sv)* and an
element of cos(Sv)*, i.e. (al,...,av) is mapped to by the natural homo-
morphism x.

In order to prove Proposition 3 we have to show that in case u  v

and r 1 the localization Cm with respect to the prime ideal m = Ir(zij)
is not a perfect Sm-module. Since m n Z = {0} we can replace the base
ring Z by the field Q of rational numbers. The localization argument of
the proof of Proposition 7 reduces the assertion to the case r = 1, in
which we invoke the induction machinery of Section 4: Lemma 4 shifts
the problem to the S/Szi lmodule C/Z11C, and part (b) of Lemma 3
shifts it to the SI(p + q)-module C/(p + q)C, where

This is essentially the case (u - 1, v - 1), and if finally u = 1, Cm is a
torsionfree module of projective dimension 1 over the regular local ring
Sm, hence not perfect. (C is a perfect S-module if and only if Cm is a
perfect Sm-module ; so Proposition 3 finally turned out to be a special
case of Proposition 2.)
The proof of Theorem 2 is complete now.

7. Homological properties of generic modules

In this section we investigate the homological properties of the R-
modules Coker ç, where 9, A, R etc. satisfy the standard hypotheses on
ç. We will see that there is a sharp trichotomy between the cases u = v,
u  v, and u &#x3E; v, which is not apparent from Theorem 1 and 2. Since we
will have to consider 9 and (p* simultaneously, we display the de-
pendence of the generic objects (, C, S and e on u and v by suitable
indices.

We first settle the case u = v. The acyclic complex !!Z uu resolves Cuu
= Coker ’uu as a Suu-module. By il uu we denote the complex which
arises from L uu under the substitution Zij -+ Zji. Then -Î.. is clearly a
resolution of Coker ’:u = D(Cuu).
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THEOREM 4: Let (p satisfy the standard hypotheses. Suppose that u = v
and that 1,(xij) contains an element which is not a zero divisor of R. Then:
(a) M : = Coker qJ is an infinite syzygy module, i.e. there is an infinite

exact sequence

with free R-modules Fi.
(b) Hi(:u 0 R) = 0 for all 1 &#x3E; 1.

(c) Extk(M, R) = ExtR(M*, R) = 0 for all 1 &#x3E; 1.

PROOF: D(Cuu) is a maximal Cohen-Macaulay module over the

Gorenstein ring Suu. Therefore Hi(:u) = Extsuu(Cu", Suu) = 0 for all

i &#x3E; 1. The argument, which we used to derive Theorem 1 from Proposit-
ion 1, shows that Hi(:u Q R) = 0 for i &#x3E; 1. Since L uu (8) R is a free

resolution of D(M) by Theorem 1, we conclude ExtR(D(M), R) = 0 for
i &#x3E; 1. Hence M is an infinite syzygy and Extk(M*, R) = 0 for all i &#x3E; 1. If

we apply these arguments to (*, we obtain the remaining claims.

In the case u # v the homological invariants of Coker Ç turn out to be
grade-sensitive with respect to the ideal Ir(xij).

THEOREM 5: Let Ç satisfy the standard hypotheses. Suppose that Ir(xij)
contains an element which is not a zero divisor of R, and that Ir(xij) # R.
Let w : = grade Ir(xij) (as an ideal of R). Then in case

(a) u &#x3E; v:

(i) M = Coker ç is a w-th syzygy, but not a (w + 1)-th syzygy.
(ii) Hi(:u (8) R) = 0 for i = 1,..., w, HW+ l(:u (8) R) ;:/= 0.

(iii) Extk(M, R) = 0 for i = 1,..., w - 1, ExtR(M, R) # 0.

(b) u  v: 

(i) M is a (w - 1)-th syzygy, but not a w-th syzygy.
(ii) Hi(:u (8) R) = 0 for i = 1,..., w - 1, HW(:u (8) R) ;:/= 0.
(iii) ExtRM, R) = 0 for i = 1,..., w, Ext + l(M, R) ;:/= 0.

Before we prove Theorem 5 let us recall that Mp is a free Rp-module if
and only if p b Ir(xij). Theorem 2 of [4] gives an upper bound for
w : w  u + v - 2r + 1.

PROOF: It suflices to consider the case u &#x3E; v only and to prove the
assertions of case (b) for the cokernel N of ç*. Then M = D(N) and N
= D(M). Further L uv 0 R is a resolution of M, whereas L vu 0 R is a
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resolution of N. Hence the following equivalences hold by virtue of
Lemma 6: (a), (i) =&#x3E; (a), (ii) =&#x3E; (b), (iii) and (b), (i) =&#x3E; (b), (ii) =&#x3E; (a), (iii).

Part (i) of (b) is an easy consequence of Theorem 1 and the supple-
ment of Theorem 2. N is almost perfect (as an A-module) hence

depth N"  depth R" - 1 for all p E Spec R, and Np is free for all

p E Spec R such that depth R"  w - 1. By Lemma 6 N is a (w - l)-th
syzygy. On the other hand, for a prime q :D 1,(xij) such that depth Rq
= w the module Nq is not perfect over the corresponding localization of
A, whence depth Nq = w - 1.
By Theorem 2 M is likewise a w-th syzygy. We consider L*uv (8) R

which starts out as

the map § factoring through M. According to Lemma 6, M is a (w + 1)-
th syzygy if and only if Hw"(e* (D R) = 0, and this would force

Coker § a w-th syzygy, especially depth (Coker t/J)m = w for all prime
ideals m =) 1,(xii) with depth Rm = w. Using again the argument, by
which we derived the supplement of Theorem 2 from Proposition 3, we
only need to disprove this in the generic case R = Suv = S, ç = (UV
(xij) = (zi,), m = Ir(zij).
The columns of a matrix representing § generate the relations on the

columns of (zij). By Theorem 3 we can always choose the determinantal
relations as generators. Then the formation of § commutes with the
inversion of XII (up to free direct summands), which inductively reduces
the problem to the case r = 1. We may further replace the base ring Z
by Q, since m n Z = {0}. Then m is the irrelevant maximal ideal, and it
suffices to show that Coker § itself is not perfect. The argument we will
use parallels the one at the end of section 6.
One obtains a matrix of § by juxtaposing the "slices"
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for all i, j, 1 - i  i  v. Let G : = Coker t/J. Glx 11 G is certainly tor-

sionfree over S/x 11 S, and therefore (pG/z11G)n(qG/z11G) = 0, where p
is the ideal generated by zll,...,zl, and q the ideal generated by
z 11, - - ., z. 1 (cf. the proof of Proposition 6, case (3)). It easy to check that
G/pG is a direct sum of Coker t/Ju-l,v and a free direct summand (gen-
erated by the elements of the canonical basis of the target of VI which
correspond to the first column of each slice) whereas G/qG is a direct
sum of Coker .pu,v-l (: = 0 in case v = 2) and a module of projective
dimension 1 and rank &#x3E; 0 (arising from the slices which involve

z 11, ..., z. 1). Since u - 1 _&#x3E; v, Im t/Ju-l,v = Cu -1, " is perfect and, hence,
Coker t/J u - 1, v is at least almost perfect. Coker t/J u, v - 1 is likewise almost

perfect, and a module of projective dimension 1 over S/q is almost per-
fect, too: G/pG and G/qG are almost perfect. G/(p + q)G finally consists
of three direct summands: Coker t/J u - 1, v - 1 (: = 0 in case v = 2), a free
direct summand, and a direct summand of projective dimension 1 and

rank &#x3E; 0 over S/(p + q). The last summand already renders G/(p + q)G
not perfect. Then by Lemma 3, (b) G/x 11 G and, by Lemma 4, G itself are
not perfect.
Buchsbaum and Eisenbud showed in [9], Corollary 5.4 that the gen-

eric modules Cuv have infinite projective dimension in case r  u. They
use the following argument: If Cuv had a finite free resolution then the
ideal q generated by the r-minors of the first r columns of (Zij) would
admit a greatest common divisor as a consequence of their structure
theorem. This, however, is impossible for computational reasons as
given in [9] and also because the class of q generates the divisor class
group of Suv which is not zero. One can of course also use Theorems 1
and 2 to conclude that Cuv has infinite projective dimension. Even more:
In case u &#x3E; v a localization (Cuv)s is necessarily free when it has finite
projective dimension, and in case u  v its projective dimension is at
most one and this again forces (Cuv)s to be free, since Extsuv(Cu", Suv) = 0.
Thus (Cuv)s has finite projective dimension if and only s :p Ir(zij), i.e. if
and only if it is free.
The methods of Hochster and Eagon were successfully applied to

ideals of minors of symmetric matrices ([18]) and to ideals of pfaffians of
alternating matrices ([20]). Therefore one should be able to analyze the
modules associated to symmetric and alternating matrices in roughly
the same way as we analyzed the modules associated to generic
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matrices. It should be helpful that the divisorial structure of the corre-
sponding rings is very simple ([14], [2], [17]). We expect the following
results:

(a) Let Zij, 1  i  j  u, be indeterminates over Z. Let r be an in-

teger, 1  r  u, and I the ideals of (r + l)-minors of the symmetric
matrix having the Zij as elements in the diagonal and above, and S :
= 7L[Zij]/I. Let J : Su -+ SU be given by the matrix (zij) = (Zji). Then Im
is perfect, and Coker J is perfect if and only if r # u mod 2.

(b) Let Zij, 1  i  j u, be indeterminates over Z. Let s be an even

integer, 2  s  u, and I the ideal of s-subpfaffians of the alternating
matrix having the Zij as elements above the diagonal, and S = Z[Zij]/I.
Let ex: Su -+ Su be given by the matrix (zij) = - (zji). Then Coker a is

perfect.

REFERENCES

[1] M. AUSLANDER and M. BRIDGER: Stable module theory. Mem. Amer. Math. Soc. 94
(1969).

[2] L.L. AVRAMOV: A class of factorial domains. Institut Mittag-Leffler, Report No. 2
(1979).

[3] L.L. AVRAMOV: Complete intersections and symmetric algebras. Department of Math-
ematics, University of Stockholm, Report No. 7 (1980).

[4] W. BRUNS: The Eisenbud-Evans generalized principal ideal theorem and determi-
nantal ideals. Proc. Amer. Math. Soc. 83 (1981) 19-24.

[5] W. BRUNS: The canonical module of a determinantal ring. To appear in the Proceed-
ings of the Symposium on Commutative Algebra at Durham, July 1981.

[6] D.A. BUCHSBAUM: Complexes associated with the minors of a matrix. Symposia
Math. IV (1970) 255-283.

[7] D.A. BUCHSBAUM and D. EISENBUD: What makes a complex intact? J. Algebra 25
(1973) 259-268.

[8] D.A. BUCHSBAUM and D. EISENBUD: Remarks on ideals and resolutions. Symposia
Math. XI (1973) 193-204.

[9] D.A. BUCHSBAUM and D. EISENBUD: Some structure theorems for finite free resolut-
ions. Adv. Math. 12 (1974) 84-139.

[10] D.A. BUCHSBAUM and D. EISENBUD: Generic free resolutions and a family of generi-
cally perfect ideals. Adv. Math. 18 (1975) 245-301.

[11] D.A. BUCHSBAUM and D.S. RIM: A generalized Koszul complex II. Depth and mult-
iplicity. Trans. Amer. Math. Soc. 111 (1964) 197-224.

[12] J.A. EAGON and D.G. NORTHCOTT: Generically acyclic complexes and generically
perfect ideals. Proc. Royal Soc. A 299 (1967) 147-172.

[13] H.-B. FOXBY: n-Gorenstein rings. Proc. Amer. Math. Soc. 42 (1974) 67-72.
[14] S. GOTO: On the Gorensteinness of determinantal loci. J. Math. Kyoto Univ. 19

(1979) 371-374.
[15] M. HOCHSTER: Generically perfect modules are strongly generically perfect. Proc.

London Math. Soc. (3) 23 (1971) 477-488.
[16] M. HOCHSTER and J.A. EAGON: Cohen-Macaulay rings, invariant theory, and the

generic perfection of determinantal loci. Amer. J. Math. 53 (1971) 1020-1058.
[17] H. KLEPPE and D. LAKSOV: The algebraic structure and deformation of Pfaffian

schemes. J. Algebra 64 (1980) 167-189.
[19] A. LASCOUX: Syzygies des variétés déterminantales. Adv. Math. 30 (1978) 202-237.



193

[20] V. MARINOV: Perfection of ideals generated by the pfaffians of an alternating matrix.
C. R. Acad. Bulg. Sci. 31 (1979).

[21] H. MATSUMURA: Commutative Algebra. W.-A. Benjamin, New York 1970.
[22] D. REES: The grade of an ideal or module. Proc. Cambridge Phil. Soc. 53 (1957) 28-

42.

[23] G. SCHEJA and U. STORCH: Differentielle Eigenschaften der Lokalisierungen ana-
lytischer Algebren. Math. Ann. 197 (1972) 137-170.

(Oblatum 30-XI-1981) Universitât Osnabrück
- Abteilung Vechta -
DriverstraBe 22
D-2848 Vechta
Federal Republic of Germany


