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1. Introduction

In this note we extend the results of the preceding paper [4] to the
case of non compact complete manifolds. Beyond the method of [4]
we only make use of appropriate cut-off functions as in [2]. This
cut-off trick is due to Andreotti and Vesentini (see [5, Th. 26]). It is
the point of view of [2] that every vanishing theorem based on a
Weitzenbôck identity generalizes from the compact to the complete
case for L2-forms. On the other hand the results in [4] are proved by
applying a Sobolev inequality to a Weitzenbôck formula for certain
bundle valued harmonic forms. Thus it is not surprising that the
L2-isolation theorem of the preceding paper extends to complete
manifolds.

We shall use freely the notation and formulae of [4]. However the
isoperimetric constant cl will have to be replaced by another iso-
perimetric constant co = co(M) defined as follows:

where D ranges over all open, relatively compact subsets of M with
smooth boundary. M is assumed from now on to be a noncompact,
complete, oriented, 4-dimensional, Riemannian manifold.
We begin by stating the results. First, our method yields a simple

proof of the following result of C.-L. Shen[6].
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THEOREM 1: Assume that

with strict inequality holding at some point of M.
Suppose further that 13 is a harmonic section of the bundle A 2 0 E

satisfying the decay condition:

f or some point Xo E M. Then j3 = 0.
In particular, if CI) is a sourceless Yang-Mills field such that 0-

satisfies (i) and (ii), then 0- = 0.
As a generalization of Theorem 2 of [4] we obtain the following

THEOREM 2: Assume that the curvature of M satisfies k_ &#x3E; 0. If
IIO-II  co/I08, then every square integrable harmonic section of
A2 ® E vanishes identically. In particular, if w is a sourceless Yang-
Mills field with IIO-II  co/I08 then n-=0.
Of course, this theorem is of interest only if co(M) &#x3E; 0. This is the

case f or R4 with the flat metric and we obtain the f ollowing:

COROLLARY: Let w be a sourceless Yang-Mills field over R4
equipped with a complete conformally flat metric. If f R410-12 
’Tf’225/33, then n-=0.

This corollary yields an improvement of the constant in Theorem 3
of [4].

THEOREM 3: Let w be a sourceless Yang-Mills field over S4 with a
conformally flat metric. If

then w is either self -dual or anti-self-dual.
Finally the following result gives a lower bound of the spectrum of

the Laplacian A-’.
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THEOREM 4: Suppose 2k-  IL &#x3E; 0. If

We now prove the theorems stated above. For a given xo E M we
can construct (cf. [5]) a family IÀR)1&#x3E;0 of Lipschitz continuous func-
tion ÀR : M --&#x3E; R with the following properties

where dÀR exists almost everywhere since ÀR is Lipschitz and the
constant C is independent of R. In what follows we shall write À for
ÀR. Set 0- = 0 in the Weitzenbôck identity (3.3) of [4] and take the
inner product with À 2p. Integration by parts, which is permitted since
supp À 2p C B2R(xo) is compact, now yields

Leibnitz fuIe shows that

Hence if A-’O = 0, estimating the last three terms on the right hand
side of (3) as in [4], we obtain

Observe that for À = ÀR, (2) implies
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Passing to the limit as R --&#x3E; - in (5) we see that under the assumptions
of Theorem 1

Hence j3 = 0 on an open set. By the unique continuation theorem of
Aronszajn, Krzywicki and Szarski (cf. [5]) 0 = 0 and Theorem 1 is

proved.
To prove Theorem 2 we use the Sobolev inequality of P. Li [3,

Lemma 6]

for compactly supported functions, which implies in our case that

Now assuming A’-p = 0, substituting (4) into (3), using (7) together
with the definition of k- and the pointwise estimate (3.8) of [4], we
obtain

Theorem 2 now follows by passing to the limit as R - 00, since by (6)
limR-+oolldÀ (g) j3) = 0 if 13 is square integrable.
The corollary follows from Theorem 2 by substituting the value

co(R4) = 2 IF . Theorem 3 follows from the corollary since R4 with the
flat metric is conf ormally equivalent to S4B{pt.} with the standard
metric and because the Yang-Mills functional is conformally in-

variant.

We now turn to the proof of Theorem 4. The Laplacian A’- is

essentially self-adjoint on C(A 2 0 E). This is a consequence of

completeness (cf. [1]). Thus it suffices to estimate (âl3, 13) for com-
pactly supported 13. From the Weitzenbôck identity (3.3) of [4], the
Sobolev inequality (7), the definition of k_ and the estimate (3.8) of [4]
we obtain through integration by parts the following estimate:



169

provided the assumptions of Theorem 4 are satisfied. This proves the
theorem.
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Added in proof

In "Best Constant in Sobolev Inequality", Ann. Mat. Pure Appl. 110
(1976) 353-372, G. Talenti shows that the best constant in the Sobolev

inequality jjV/) cllfll for functions on R4 is c = (8-rr/1/6). Using this we
can improve the Corollary of Theorem 2 and Theorem 3. In the corollary
the constant 7T2 25/33 can be replaced by 87T2 and in Theorem 2 16/27 may
be replaced by 2. The statements obtained this way are optimal. In fact,
Bourguignon and Lawson, in "Stability and Isolation Phenomena for
Yang-Mills Fields", Commun. Math. Phys. 79 (1981) 189-230, exhibit
Yang-Mills fields on S4 with its canonical metric for which the pointwise
norm 10_1 s= V3, and hence IIO-II = 8IF2. Analyzing the case of equality
carefully, we can show that if IIO-II = 87T2, then 10_1 = V3. Such fields
have been classified by Bourguignon and Lawson.


