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1. Introduction

A long outstanding problem in the transcendental theory of algebraic
varieties is to find a cohomological criterion for a cycle on an algebraic
variety to be itself algebraic (see Hodge [3], Chapter 4). Criteria are
available in certain cases; but they are far from complete.

Because of the sensitivity of abelian varieties to moduli, they offer an
attractive terrain upon which to test the so-called "Hodge conjecture"
concerning the connexion between algebraic cycles and real harmonic
forms of type (p, p) with integral periods. For sufficiently general abelian
varieties, as expressed by suitable independence of the periods in a nor-
malized period matrix, the Hodge conjecture is known to be true

(Mattuck [7], Comessatti [2]).
Here we show that the problem can be related to A. Weil’s higher

Jacobian varieties. For odd p, the p-th higher Jacobian Â of an abelian
variety A turns out to admit a homomorphism rc onto A. We compute
explicitly the kernel K of n and the resulting splitting of Â. We then
show that to any real harmonic form 9 of type (p, p) with integral
periods on A we can associate a real (1, l)-form with integral periods on
Â. In this way it is possible to define an algebraic (divisorial) corre-
spondence between A and the kernel K, from which we are able to
obtain various algebraic cycles on A associated with the form (P.

However, their connexion with ç is rather obscure, because of the

highly transcendental nature of our construction, and we have not yet
succeeded in making the computations needed to clarify it.
Some of our results, especially concerning n, were obtained ca. 1960.

0010-437X/82080133-15$00.20/0
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2. Ingredients

The materials required for a polarized abelian variety over the com-
plex field C are as follows (cf. Weil [11], [12]) : a real vector space Y of
even dimension, say 2n; a lattice L c Y, i.e. a discrete subgroup of rank
2n; an endomorphism J of V such that J2 = - Id; an alternating
bilinear form E : V x V - R (real field) such that E(u, v) is integral for all
vectors u, v in L and, finally, such that the bilinear form Q(x, y)
= E(x, Jy) on Y is symmetric and positive definite.
V is then made into a complex vector space by defining ï x = Jx

(i = / Î); and H(x, y) = Q(x, y) - i - E(x, y) is an Hermitian metric on V
It induces a Hodge metric on the quotient, A = Y/L, which thereby
becomes a polarized abelian variety. H is called a Riemann form for A
(but terminology is rather variable).

Observe that E(Jx, J y) = Q(Jx, y) = Q(y, Jx) = E(x, y).

3. Subspaces

In the sequel we shall require only a special case of the following
elementary result.

Let el, ..., e2n be a base for L, and let U be the subspace of V spanned
by linearly independent vectors u1,..., um, with say ua = uej (sum-
mation convention here and elsewhere).

PROPOSITION 1: U n L has rank m if and only if there is a number c :0 0
such that c. D is integral for every m x m minor D of the matrix u = (ul,

PROOF: If U n L has rank m, then there is a non-singular matrix a
= (ap) such that

If u’ is an m x m submatrix of u, then u’a is integral, and so (det u’)(det a)
is an integer.
For the converse, let c. det u’ E Z for all such u’. Write u, with possibly

permuted rows, as

where u" is of size 2n x m. Assuming det u’ =1= 0, let v be the inverse of u’.
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If u’ denotes the k-th row of u, then Uk = plul + ... + pmu’" for certain
numbers pa. Now replace row j of u’ by tA The determinant is then

Pj. D, where D = det u’. By assumption, c times this determinant is in-
tegral, i.e.

We have

and so

Finally, cD is integral, and therefore so is ua, where a = cDv. Q.E.D.

If U satisfies the conditions of the proposition and is moreover stable
under the operator J, then U/ U n L has an induced structure of abelian
subvariety of A.

4. Higher Jacobians

Let p be an odd integer  2n (later we shall want 1  p  n). Form
the exterior products

and let L denote the lattice generated by the elements

where again ei is a base for L. I is the multi-index I = (il,.", ip) with
1  ïi  ...  ïp  2n. Next, writing x = Xi A ... A Xp, y = Yl A ... A Yp,
we set

and we have
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If ul, ..., u2" is an orthonormal basis for V relative to the form Q, then

(Here and below we use J both for the complex operator in V and as a
multi-index. No confusion can possibly result.)
From §2 and the foregoing we have thus obtained a new polarized

abelian variety

which can be identified with Weil’s p-th Jacobian of A (cf. [10]).

5. The homomorphism

Again let el, ..., e2,, be a base for the lattice L, and introduce real
coordinates x in V or A by x --+ xiei. From the Riemann form E we
obtain the differential 2-form

Write and build the 2q-form

where

Let Aij denote the cofactor of aji. Thus

where a = (aij). Set
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and define n : 9- V by

Here and below, I = (i1, ..., ip) with il  ...  i p, etc.
Since the ai are integers, this map carries L into L and so induces a

homomorphism, still called n, of Â to A.
It is easy to verify the following fact:

PROPOSITION 2: If n’: P -+ V is the homomorphism defined in an analog-
ous manner starting from any basis vl, ..., V2n of V, then n’ = (det c)2n,
where vi = de. and c = (cij).

In particular, if {Vi} is a new base for L, then the matrix c is un-

imodular, and so then n’ = n.

PROPOSITION 3: n is surjective.

PROOF: Let {e’i} be a sympletic basis for Y:

By Prop. 2 we have only to show that the homomorphism n’ con-
structed from (e§) is surjective. We introduce real coordinates (y’) by
y -+ y’e. Then

where we write

It will also prove convenient to write

and

for a multi-index
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We have

where again q = 2(p + 1); and so

bit ...ip having the value ± 1 if {il,.", ip+ 1} = {iT,..., i;+ 1} and if there
are no repeated indices. Otherwise bil...ip = 0. In the index equality we
mean that the set {i1, ..., ip+ 1} is invariant under the involution i - i*. If
now Bjk is the cofactor of bkj = E(ei, e’j), we have

Accordingly the homomorphism n’ is given by

Fix k and take

For this I, bj = 0 unless j = k. It is then clear that ek occurs in the
image of 7rB hence also of n. Q.E.D.

PROPOSITION 4: n is C-linear.

PROOF: Again let {ei} be a base for L and write

Then

Next,
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and

We must show that

Multiply both sides by aki. Since A’‘aki = - (det a)àl, the left side is

The right side is

Multiply both members by h p + 1: We must show that

Observe that

Now the left side of the previous equation can be written

where s runs through the permutations of { 1, ..., p + 1}. By the remark
above, this reduces to

6. A special base

We now fix a quasi-symplectic base ei in L for the form E. That is, for
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where the di are integers such that d11d21...Idp; viz., they are the elemen-
tary divisors of E (cf. Siegel [9], p. 65). For indices n + 1,..., 2n we write

As before, we introduce coordinates x’ in V by x - x’ei, and similarly
X’ in 9 by xl el. That being so, we can write

where aij = 0 if j :0 i*, and aii. = di. Similarly, on 9 we have

Here âI f = 0 if J I*, and à,,. = dl = dit ... dip. Indeed, the products
el = eh A ... A eipyield a quasi-symplectic base for L:

where 1 = number of i  n in 1.

7. The kernel of 1t

We continue with the notation of §3, but henceforth referred to the
quasi-symplectic base {ei} of the preceding paragraph. Then n(ei)
= aÎek, and it follows from the proof of Prop. 3 that

a§ = 0 unless alk* has a set lk* of
p + 1 distinct indices, invariant under *.

Call an index l "good" (1 e G) if 1 contains p 2 1 distinct pairs i i*
and one index, denoted by p(I), different from all of those. Otherwise
write 1 E B ("bad"). If 1 E B, then aÎ = 0 for all k.

For k = 1,..., 2n we now let À(k) denote an index J = Ub...,jp) in G
with p(J) = k and with maximum absolute value of

We can clearly do that in such a way that A(k*) = Â(k)*. Finally, we
let Go be the set of good indices 7 such that 1 =F ,(p(1)). That being fixed
we have
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PROPOSITION 5: W = Ker n : V -+ V is spanned by the elements

where mi is a product of certain dj.

PROOF: For bad I, n(e¡) = 0, as already pointed out. For 1 E Go, 7r(ej)
aJIe. i and ir(eÂ,(,» = a{p(j). Let p(I) = k. Then as remarked above,
n(ej) = a’ek (no sum on k); and ir(eÂ,(,» = a k.(,)ek. From the definitions
and the fact that djid2i... Id, it follows easily that the coefficients here
are both products of dj’s, and that the latter is larger than aÎ in absolute
value, hence is divisible by aj.
The elements (i), (ii) are obviously linearly independent. V bas dimen-

sion) , and the number of elements (i), (ii) is clearly 2n.

Then Prop. 5 follows from the fact that n is surjective. Q.E.D.

Let K denote the kernel of n : Â --+ A. Then K is an abelian subvariety
of Â, hence has the form

The elements (i), (ii) are in L and consequently generate a sub-lattice
L of L of finite index in W n L. Then the abelian variety

is a finite covering of K.

8. Splitting of Â

W being as above the kernel of n : 9 - E let U denote the orthogonal
complement of Y with respect to the form Ê of §4.

If x E U, so that Ê(x, W) = 0, then

Therefore U is a complex subspace of Ç: Further, if x E U n W, then
Jx E W, and so Ê(Sc, Jx) = 0, i.e. ù(k, x) = 0, whence x = 0. Thus 9 = U
+ W (direct sum). This splitting leads to a splitting of Â in accordance
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with the "complete reducibility theorem" of Poincaré (cf. Weil [12],
Chapitre VI, no. 11, Théorème 6). Here we shall make this explicit (cf.
§2, Prop. 1).

For k = 1,..., 2n set

where

and where

(see Prop. 5 for notations). Observe that C;k)* = 1.

PROPOSITION 6: The elements ék form a basis for U.

PROOF: For I e B it is clear that

Next take 1 E G with p(I) = k, I * Â(k). That is, 1 E Sk. Then it is plain
that 1 -# Â(k)*. We have (cf. Prop. 5)

The first two terms vanish; the last two reduce to

Hence the ëk are orthogonal to the kernel of rc. They are obviously
linearly independent, which establishes the proposition. Q.E.D.

It is evident that the elements ék are in L. They therefore generate a
sub-lattice Lo of rank 2n contained in U. Thus U n L has rank 2n, and

accordingly we have an abelian subvariety



143

in Â and a finite covering

of A’. Via n, A’ is a finite covering of A, and therefore so is B.
Write

Then

where hk is an integer 0, and

But aj ,Z(k) = 0 unless j = k*, and so we have

the pk being non-zero integers.

9. Forms of type (p, p)

Let vl, ..., Vn be a complex basis in V. We introduce complex coor-
dinates za = Ça + i11a by z - z"va. And we now assume that the odd in-
teger p is  n. A harmonic (p, p)-form 9 on A has an expression

where the coefficients are constants. We assume that qJ is real: qJBÃ =

-(oAÈ. We assume further that all of the periods of ç are integral.
We now define a bilinear form 0 on ÿ by

where 7§j is the oriented torus generated by eu , . - ., eip’ eh’...’ ejp’ the ei
as in §7. It is well known that the cycles Tjj with I n J = 0 generate the
integral homology of A in dimension 2p (cf. Lefschetz [6], Chapitre 6,
No. 6).
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PROPOSITION 7: If qJ -# 0, then the bilinear form 0 on V is not the zero
form. It is alternating and has integral values on L. Moreover, it is of type
(1,1).

PROOF: The first assertion follows from the preceding remark; 0 is
alternating because JI is an odd permutation of IJ; it is integral on
L x L because of our assumption that ç has integral periods. We come
now to the last point.

Set

Then

where (xi) is the real coordinate system on V defined by the basis {ei}
(see §6). For uniformity of notation, let J = (ip 11, - - -, i2p). Then

Then

But

(cf. §5), and so

Q.E.D.

W defines a harmonic differential form 0 of type (1,1) on Â whose
periods are the quantities tPIJ = 0(ej, ej). In terms of the real coor-
dinates x, on Â (or V),



145

It should be noted that we have not attempted to associate complex
coordinates in 9 with the z" in V

PROPOSITION 8: If the form ç is positive, then so is 0.

PROOF: ç is positive if the hermitian form

is positive, which we now suppose. Then

Here

and

From the expression exhibited above for 0(ej, je.) we obtain

which is positive, for the decomposable vector x. If we replace x by x
+ , writing yi = Ylej = w"v,,,, then in the determinant above zf will be
replaced by zf + wf, and the same conclusion obtains. The assertion
follows easily for an arbitrary element of P different from zero. Q.E.D.

Of course in general (p will not be positive; but for a suitable integer b
the form ç + bmP will be positive.

10. Algebraic cycles

The construction of the preceding paragraph provides us with an iso-
morphic mapping, call it f, from the group Fp of real harmonic (p, p)-
forms 9 with integral periods on A into the group of real (1, 1)-forms 0
with integral periods on Â. We recall that any algebraic cycle of (real)
dimension 2n - 2p on A (more precisely, its homology class) is dual to
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such a (p, p)-form 9, and so the group of real homology classes Gp of
such cycles is embedded in Fp, by duality.
On the other hand, 0 = J(qJ) is dual to a class of (2N - 2)-cycles on Â

(N = complex dimension of Â), and the class contains an algebraic cycle
(divisor). If D is such a divisor, then D establishes an algebraic corre-
spondence between A and the kernel K of n (cf. [1, Chapter 6], [4, Book
III, Chapter XI] and §7 above). Let Z denote an algebraic cycle on K of
real dimension 2r, and put Z = n -1(Z). Then the divisor D can be so
translated in Â that the intersection D. Z is defined. Its projection in A
is then an algebraic cycle ZA of dimension 2r - 2 (which we assume of
course to be - 2n), or else is zero. In this way we obtain algebraic cycles
of various dimensions in A.

As we are concerned here with cycle classes with respect to real ho-
mology, the above opérations can be taken in the homological sense.
Thus, if ÔJ is the fundamental Kähler ( 1,1 )-form on Â and roK is the
induced form on K, the class dual to CON’-,, (N’ = dim K = N - n) con-
tains an algebraic 2r-cycle Z (intersection of divisors on K). Then Z is
dual as cycle to some multiple kÔJN’-r. The harmonic form on A dual to
the projection ZA is then obtained by integration of this latter form over
the fibres of n : Â - A.

In particular, for suitable r we get a homomorphism f * from Fp to
Gp.

Despite the very explicit nature of the calculations, or perhaps
because of it, i.e. using the results of §§7, 8, it seems quite difHcult to
clarify the connexion between /*(?) and 9. If however it could be

shown that Ker f * = 0, then from simple rank considerations we could
infer that our (p, p)-form ç is dual to a class c such that some multiple kc
contains an algebraic cycle.

11. Remarks

In the foregoing p was always taken to be an odd integer. Weil’s
higher Jacobians for even p are defined by means of duality of abelian
varieties. But with reference to forms of type (p, p), for even p it would
seem more to the point to replace ç by 9 A ro or by Alp (ll as in [12]).
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