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FINITE DETERMINACY AND TOPOLOGICAL TRIVIALITY II:
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© 1982 Martinus Nijhoff Publishers - The Hague
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In this paper we continue the investigation of the topological trivi-
ality of unfoldings begun in part 1 of this paper [2]. There it was proven
that for weighted homogeneous polynomial germs fo : kS, 0 - kt, 0 (k =
R or C) which are finitely A-determined (or infinitesimally stable off
the subspace of non-positive weight) any unfolding which does not de-
crease weights (an unfolding of non-negative weight) is topological
trivial. From this there followed, for example, consequences about the
topological versality of unfoldings which were not versal.
The usefulness of these results depends upon our ability to establish

that germs are, for example, finitely A-determined. Mather’s algebraic
characterization of finite A-determinacy [BIII] still leaves a generally
difhcult algebraic problem to be solved. Most work on A-determinacy
has concentrated on improving the order of determinacy (see e.g. Dup-
lessis [4] or Gaffney [5]). The first main result we obtain is a sufficient
condition that a linear unfolding of a germ be finitely A-determined.
Neither the germ nor the unfolding need be weighted homogeneous;
but in the applications this has been the case. Also, in the weighted
homogeneous case, the method also establishes in an analogous manner
a sufficient condition for the unfolding to be infinitesimally stable off the
subspace of non-positive weight.
For a linear unfolding f of a germ fo, we determine which relations

between the extended d-tangent space of fo and the deformations of fo
obtained from f do not lift to relations for f itself. The failure of the
relations to lift is measured by a series of inductively defined linear maps

* Partially supported by grants from the National Science Foundation and the British
Science Research Council.
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il defined from ker(’C1-1) to a quotient of coker(’C1-1). Here il measures
the failure of the relations to lift up to the 1-th order. The sufficient

condition for finite A-determinacy is that one of these 1’, be surjective.
The description of the condition in this general form still sounds for-

midable. However, for an important class of examples it can be further
simplified (and almost always reduces to the surjectivity of il). This
class, which consists of the uni-maximal germs (see §1), includes the uni-
modal germs. For this class, an important role is played by the Euler
relations. Our second main result concerns uni-maximal germs which

have a special type of non-singular pairing on the space of deformations.
This establishes that the Euler relations are already sufficient to gua-
rantee that il is surjective (in general, we show that a weaker form of
the pairing is still useful in proving Tl is surjective). Such pairings are
extensions of the natural pairings on the Jacobian algebra used by
Looijenga in his work on the simple elliptic singularities [7].
When we specialize these results to germs defining isolated hypersur-

face singularities, we recover results of Looijenga [7] and Wirthmüller
[13] in terms of certain unfolding being of finite A-codimension (or
infinitesimally stable off a subspace). We also apply the criteria to two
examples of finite map germs which have uni-modal singularities (§8).
We do not require that the finite map germs be complete intersections;
and in the equi-dimensional case we obtain the example computed by
Ronga [11]. Examples of uni-modal complete intersections (of positive
dimension) together with special properties which simplify the sufficient
condition will appear in the final part of this paper.

Lastly, we consider the question of topological stability of unfoldings
of the uni-maximal germs which satisfy the sufficient conditions. In his
paper [7], Looijenga referred to the fact that the unfoldings of the
simple elliptic singularities which he constructs are topologically stable
germs. To clarify the role that such germs play in topological stability,
we prove our final result (§9). If we form a stratum from the union of Jf-
orbits associated to the deformations of maximal weight for a uni-
maximal germ, then any germ transverse to this stratum is topologically
stable.

This author would like to thank Eduard Looijenga for sharing his
insights into the question of topological stability. Also, gratitude is

expressed to the British Scientific Research Council for its support and
the Department of Pure Mathematics, University of Liverpool for its
generous hospitality during the preparation of this work.
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§1 Preliminaries

We will use the same notation as in part 1 [2] (in particular, we refer
the reader to §§0-2). We will consider a polynomial germ fo : ks, 0 --+ kt, 0
(k = R or C) which is weighted homogeneous and finitely 5i-deter-
mined. If fo has rank 0, then we recall that the deformation space is
given by

Then, N( fo) also has a weighting. We will say that fo is a unimodal
germ if dimkN(fo) = 1. In general, we let N(fo)max = N(fo)m where m
= max{k: N(fo)k + 01 and denote m by "max wt". We are interested in
the case when max wt &#x3E;- 0. We will say that fo is a uni-maximal germ if
d’MkN(fo)... = 1.

Furthermore, if N(Jo),.. = N(fo)m with m &#x3E;- 0, then we will refer to an
unfolding versal in weight  m, as an unfolding versal in non-maximal
weight.
To describe the general form of the sufficient condition, we indicate

the form of the linear maps which measure the failure of the lifting of
relations between TA eJo and the deformations of weight  m.

To describe this, we more generally consider any finitely 5i-deter-
mined germ fo : kS, 0 --+ kt, 0 of rank 0 and let N c mxo(fo) be a subspace
which maps injectively into N(fo) under the canonical projection n.

Also, we let {Q&#x3E;i}1 = 1 - mx(}(fo) be a set which maps to a basis for the
complement of n(N).
We define a map

Recall that

and fJ(fo) = C(j x { Bi}. Then io is defined by

In particular, ker(T.) contains the relations involving Td eJo and rcy{ Q&#x3E;i}.
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We also observe that

In §3 we give a simple condition which guarantees coker(io) N.
Given Wc rcx,u{Bi} a linear subspace, we dénote *nflÇ*nf+ W by

(mû/mû + 1 ) W. If V c (*nf/*nf+ )kg then we let mu V denote the image in
(m+1/m+2)W Hence, for a quotient W’ _ (mû/mû + 1 ) W/V, muW’ =
(m+1/m+2)&#x3E;&#x3E;7mu JI: The only possible point of confusion is in realizing
that mu V is meant to be taken in (m+1/m+2)W(see below).
For the data {Q&#x3E;j}1= 1 and N, we will define a series of linear mappings

extending io

Here 8,- 1 measures an indeterminacy; and we view fJ(fo) =
C(jx, u{Bi}/murcx, u{Bi} with u-local coordinates for (kq,O), so that mu

coker(-ro)’!’-f (mulm’) (O(fo)/Im(To». For these mappings, 90 and 9, =
0, so if coker(,ro) c+, N we obtain

For the case of weighted homogeneous germs fo, we will be interested
in the case where n(N) = N(/o) for some m 0 with N generated by
weighted homogeneous germs of exact weight {Q&#x3E;j}, and {Q&#x3E; j} will be a
basis of weighted homogeneous germs of exact weight for Then

Also, for studying infinitesimal stability off the subspace of non-positive
weight (for weighted homogeneous germs) we also define a series of
linear maps ii , 0 (1) = io), where

and denotes the u-coordinates of positive weight.
Again 8,+ = 0 for 1 = 0 or 1, and

For the uni-maximal germs, the study of ii (or is simplified when
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a certain pairing involving is non-singular. We first recall the
local algebra of fo, Q(fo) = Then, N(fo) is a Q(fo)-module.
This module structure together with the natural projection
p = induces a pairing

sending (g, This, in turn, induces a dual map

We can define a weighting on N(fo)max) so that a non-
zero h which vanishes except on has weight = max wt - j. Then, X
preserves weights. We can analogously define

It is this Im(x) which is related to Im(il) on the Euler relations. Next,
we define

DEFINITION 1.2: has a strong non-singular pairing if
i) max is 0 in weights d,, all i, and

ii) x is surjective.
For such a situation, (1.1) becomes a non-singular pairing on a quo-

tient of mxQ( fo). Alternately we can view Hom(N( fo), N( fp)max) as the
dual Q( fo)-module to N(f.) by viewing N( fo)max as a 1-dimensional k-
vector space. Then, x being surjective is equivalent to the projection

being the generator of Homk(N( fo), N( fo)max) as a
Q( fo)-module. In general, for any weighted subspace N of we

define

DEFINITION 1.3: N(fo) has a non-singular pairing on N if (i) Ni = 0
when 1 = - di, any i, and (ii) under the restriction map, x maps onto
Homk(N, N(fo)max).

§2 Statement of the main results on sufficient conditions

With the preliminary definitions we have given, we can state the
sufficient conditions for an unfolding to be finitely A-determined or
infinitesimally stable off the subspace of non-positive weight. In fact, for
the statement involving infinitesimal stability, we are referring to the
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complexification of the germ if k = R. From now on, whenever we refer
to an analytic germ f being infinitesimally stable off the subspace of
non-positive weight it will be understood that we are referring to the
complexification of f when k = R.

Let fo : ks, 0 -+ kt, 0 be a weighted homogeneous polynomial germ of
rank 0 and let {Pi}1 = 1 be a set of weighted homogeneous germs of exact
weight which project to a basis for N(fo)m for some m 0. We con-
sider the unfolding f(x, u) = (fo(x) + Y ujoi, u) versal in weight  m. We

then have the maps Tl (and ii ) 1 &#x3E;_ 0. If {Q&#x3E;j} is a set of weighted homog-
eneous germs of exact weight which project to a basis of N(fo)m’
then we abbreviate the condition myQ&#x3E;j c Im(io) by writing
my. Nlfo)m c Im(io). Since Im(io) is a Cy-module, to verify this conclu-
sinon, it is enough to verify Yi. Q&#x3E;j E Im(io). Also, we shall see that the
inclusion is independent of the choice of basis {Q&#x3E;j} for N(fo)  m.
The general form of the sufficient condition is given by the following

THEOREM 1: Given fo a weighted homogeneous polynomial germ and f
an unfolding of fo versal in weight  m (as above), suppose that

myNlfo)m c Im(To).
(i) if some ii is surjective then f is finitely A-determined,
(ii) if some il is surjective then f is infinitesimally stable off the sub-

space of non-positive weight.
As a corollary of the method of proof, we can also give a sufficient

condition for the finite A-determinacy of a linear unfolding f of a finite-
ly MT-determined germ fo : ks, 0 - kt, 0. Given N c mxo(fo) which injects
into N(fo) and {Pj}1=1 projecting to a basis for the complement of the
image of N then we have

THEOREM 2: If for the above germ fo, myN c Im(io), then in order that
the linear unfolding f(x, u) = (fo + Y ujoi, u) be finitely s/-determined it is
sufficient that rl be surjective for some 1 &#x3E; 0.

REMARK 1: The conditions myN c Im(io) could be replaced by
mÿN c Im(io) and there would be corresponding ik. However, for our
present purposes such a generalization is not needed. In fact, only the
version for weighted homogeneous germs has so far been used in the
analysis of uni-modal germs.

Next, we can say precisely how in the uni-maximal case, a strong non-
singular pairing gives information about Ti (or ’Ci).

THEOREM 3: Let fo be a weighted homogeneous polynomial germ which
is uni-maximal (of rank 0). Suppose that N(fo) has a strong non-singular
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pairing, and let f be an unfolding of fo versal in non-maximal weight. Then,
(i) 1) is surjective so f is infinitesimally stable off the subspace of non-

positive weight
(ii) if N( fo)o or N(fo), = 0, then ’C 1 is surjective and f is finitely A-

determined.

REMARK 2: In §6 we shall show even more; namely, that the condi-
tions imply that i 1 (or i 1 as appropriate) is surjective when restricted to
the "Euler relations". Even when N(fo) only has a non-singular pairing
on a weighted subspace N we can still obtain useful information about
the image of Tl (or r’) restricted to the ’Euler relations’. This can then
be used in establishing the surjectivity of 1’1 (or T’) as in §8.

REMARK 3: For a finite germ fo : ks, 0 -+ kt, 0, we can construct other
germs fl : kS’, 0 - kt’, 0 with the same local algebra as fo but with t’ - s’
% t - s (so in particular fi cannot be obtained as an unfolding). In §7,
we shall see that applicability of theorem 1 to fo relates to its applica-
bility to f1.

§3 Construction of Tl and T’

We consider a weighted homogeneous polynomial germ fo : kS, 0 -+ kt,
0, and choose a fixed set {Q&#x3E;j}1=1 of weighted homogeneous germs of
exact weight whose projections form a basis for N(fo)  m where m &#x3E;_ 0 is
a fixed integer. Then, the mapping io, described in §1, is defined. Here,
we will describe the construction of the il (and ’C,+) and indicate how the
definition of the T, does not depend on fo being weighted homogeneous.
Although we define all il, for most applications, it is sufficient to under-
stand the definition of Ti.

First, we remark that if we assign weights

then io is a k-linear mapping preserving weights. We begin with a
lemma.

LEMMA 3.1: 1 n the preceding situation, if

then, there is a weight preserving isomorphism
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This, in turn, follows from

or equivalently

«Vi) denotes the vector space spanned by the vl, ..., etc.).

PROOF: First, we recall

Let {Pi} project to a basis for N(fo)m. Then

By the preparation theorem,

The hypothesis myN(fo)m c Im(io) then implies

Thus,

However,

and by assumption

Thus, (3.5) is a direct sum and (3.6) must be an equality. The result
follows. D
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For the construction we assume mYN(fo),. c Im(io). For any unfold-
ing f(x, u) of fo, we will define an auxiliary map

and a sequence of maps ’C,(f). Then, we obtain our desired ii and ii as:
il = ’tl(f) (and f = i(f) for f the unfolding versal in weight  m given
by f(x, u) = ( fo(x) + E ui Oi, u) and ij - ’C,(f+) (and f ’ = i( f + )) for f+
the negative versal unfolding f+ (x, u +) = (fo(x) + E ui + Oi, u +) (where
the sum is over Oi of wt  0). To define i( f ), we represent f as usual as
f(x, u) = if(x, u), u). We first define for f a map analogous to io for fo;
namely,

defined by

We note

We let r(/) = ’C(f)IOsae(}taeC(jY{i}. It is important to note that under
this restriction, i(f) et Q CCY{i} is a homomorphism over f * (and not
fo*) so, in particular,

The key fact about i(f) for the definition of the ’tl(f) is that for

 c- 0, ED 0, (D W.I{Ôil

so that if Çi E ker(io) then

Now let prl denote the composition



110

Then, we define Ti(f) = pr1 0 i(f)

Inductively, we define

where

and pri denotes projection mrc x,u{ Bi} -+ mu coker(’Cl-l(f).
The inductive definition of ’Cl(f) will be such that:
(i) ker( ’C 1- 1 (f) consists of those tf E ker( ’C 0) such that there is a

4&#x3E; Emu. Im(i(f) so that i(f)(tf) - p E mO(f).
(ii) mu .cOker(’t1-1)/8,-1 mO(f)/(mu Im(i(f)(Bm(}(f) + m+ 10(f).

Note by (3.7) that «[ . Im(ï(/)) * «[ . Im(io) mod mû+ 10(f) so

Then we inductively define ’Cl(f) by

where pr’, denotes the projection

It follows that ’t,(f) is well-defined up to the choice of ql, i.e., up to pr§(§
- ql’), where /&#x3E; - /&#x3E;’ E mu Im( i(f) (B mO(f). Thus, the indeterminacy is
in 8,- 1.

Lastly, we verify the inductive assumptions on ker(’C,(f) and

mu. coker(’C,)/8,. By the inductive assumption, gl e ker(ii@) if there is a
ql e *n Im(+U)) such that i(f)( t/J) - /&#x3E; E m + 10(f).
Also .,

where M c rcu{Im(i(f)} n mO(f).
Thus, mu. M c mu Im(f(/)) n m+ 10(f).
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Hence, the inductive verification of (ii) also follows.

REMARK 1: From the definition, it follows that 81 = 0; thus

Beyond this the ’t, are increasingly difhcult to work with. Fortunately,
all of the calculations involving unimodal singularities, with but one
exception to be described in the last part of this paper, only involve ’C 1.

REMARK 2: Note that if we: 1) replace N(fo) t . by an N c mxo(fo)
which injects into N(fo), 2) let {4&#x3E; j} c mx°(fo) be a set which projects
onto a basis for the complement of N, and 3) drop any references to
weights then the construction of the i(f) and i,(f) goes through without
change (even including lemma 3.1).

§4 Infinitesimal stability off of a subspace

Before proceeding with the proof of theorem 1, we first find it neces-
sary to establish the converse of proposition 5.1 in Part I. We refer the
reader to the notation used for that proposition. There we considered
an unfolding f of fo : ks, 0 -+ kt, 0 with both germs analytic and fo finitely
.X’-determined. We also let fo and f denote representatives of the germs
or their complexifications in the case k = R. Then, with the notation of
that section we defined for S = f-1(y, u) h ¿(f) n U

is not infinitesimally stablel

we let I be the ideal of holomorphic germs vanishing on Y.
Proposition 5.1 established a torsion condition involving 1; its con-

verse is given by the following

PROPOSITION 4.1: Let fo and f be holomorphic germs represented by
mappings defined in neighbourhoods of 0 as above. We also let I’ c rcy,u be
an ideal such that there is a k &#x3E; 0 so that

Then, on some possibly smaller neighbourhood W’, V c V(l’) ; so, in par-
ticular, 1(-, u) is infinitesimally stable off of V(l’) n W’.
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PROOF: In the proof of proposition 5.1 of part I, we constructed a
coherent sheaf N(f) with supp(T(/)) = E Let {4&#x3E;i} = dénote a set of
generators for N(f) as a (9w module. By shrinking W if necessary to a
W’, and restricting all sheaves, we may choose generators for l’,
{gi} c (9w’ and holomorphic mappings hij, E (9u, kijl E (9w’ so that

Now, at a point (yi, ui) e W’ - Y(l’), some g;(yi, ui) % 0. Thus, gi is a

unit at y1 and (4.2) implies that g4&#x3E;j = 0 in N(/)(yt.ui)’ As the

(g§.§)J=i generate %(f)(Yl’U) we conclude %(f)(Yl’U) = O. Thus,
SupP(%(f) n W’ c V(1’).

§5 Establishing the general sufficient conditions

Our central goal in proving theorem 1 is to reduce it to condition that
for appropriate unfoldings f of fo : ks, 0 -+ kt, 0, Im(iU)) has finite codim
in rcx,u{Bi}=l = O(f). Thus, in what follows we fix a basis

{}?=i for N(fo)m for a fixed m &#x3E; 0. Thus, io is defined and we

suppose my. N(fo)m c Im(io). We consider any unfolding of Jo, f(x,u)
= (/(x, u), u). The maps ’C(f) and ’C,(f) are defined. We recall from §3 that

LEMMA 5.1: Consider fo as above such that myN(fo)m c lm(TO). Let f
be any unfolding of fo. In order that

it is sufficient that there is a k &#x3E; 0 so that

PROOF: We know by (3.2) that if {t/Ji} projects to a basis of N(fo)?m
then

Thus, by the preparation theorem,
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We let

By (5.3), it is sufficient to show Ek z Im(’C(f) for some k  0. In fact, by
Nakayama’s lemma applied to the finitely generated rc u-module
(EJIm( ’C(f) it is sufficient to show Ek  Ek + 1 (then

Next, by (5.3) we have

hence

Also, by (3.7)

Thus,

Hence

Then, the condition that Ek g Ek + 1 is exactly (5.2). D

We specialize to two unfoldings: f(x, u) = ( fo + E ui Oi, u), the unfold-
ing versal in weight  m, and f+ (x, u +) = ( fo + E ui + Oi, u) (where the
sum is over Oi of wt(oi)  0), the negative versal unfolding. Then, we
relate our conditions by

LEMMA 5.5: For fo, f, f + as above we have
(i) f is a finitely A-determined germ if and only if
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(ii) f is infinitesimally stable off the subspace of non-positive weight if
and only if

PROOF: We have for (i)

As O(f) = O(f) ae rc x,u{ët+ j}, and Im(’C(f) c 0(f) we conclude that

T de. f has finite codimension in O(f) if and only if (5.6) holds.
For (ii), let the set of polynomial germs of exact weight {tf j} E 0(f,)

project to a basis for 0(/+)/Im(T(/+)). If (5.7) holds we may assume {tfj}
is finite. Thus,

By the preparation theorem applied to f viewed as an unfolding of f+
we have

(where u’ denotes the u-coordinates of non-positive weight). Then, as

{ tf j} is finite, we let

Since wt(u’) :g 0, we have
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Now multiplying (5.8) by y we obtain

Since the right hand side of (5.9) is a C(ju,-module we have

hence

Thus, by proposition 4.1, f is infinitesimally stable off the subspace of
non-positive weight. Conversely, by proposition 5.1 of part 1 we obtain
(5.9). Since fo is finitely K-determined so is f ; thus, at least 0(/)/Im(ï(/))
,is a finitely generated rcy,u-module. Then, we repeat the type of argu-
ment used in proposition 5.4 of part 1 to conclude first that 0()/Im(ï(/))
is a finitely generated Cu,-module and then reducing mod mu’ we con-
clude 0(+)/Im(T(/+)) has finite k-dimension. D

We can now easily complete the proofs of the theorems. By the pre-
ceding lemma, it is sufficient to show:

In turn, by lemma (5.1), it is sufficient to show that for some k  0 if

TkU) is surjective,

Now, Im(i(f) c Im(T(/)); thus, so is CCu{lm(i)}, which contains 8k.
Also, by (3.8)

where M c C(ju(lm(i) n mfJ(f), which contains nflm(io) (mod
m+ IfJif». As ’Ck(f) is surjective

REMARK: Again, nowhere in the proof for the finite W-determinacy is
there dependence on the weighted homogeneity and the proof works as
well for the non-weighted homogeneous case.
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As a final corollary of the proof we have

COROLLARY 5.11: If fo is a weighted homogeneous germ such that

my. N(fo)m c Im(io) and ii is surjective then

for f the unfolding versal in weight  m.

PROOF: We have mufJ(j) c Im(i(f)) so

On the other hand,

which has codimension = dimkN(fo)m.

§6 Sufficient conditions via non-singular pairings

In this section we investigate the role of non-singular pairings on
N(fo) in determining the image of i 1 for an unfolding of fo versal in non-
maximal weight. We shall see that such pairings lead to considerable
information about i 1 restricted to the Euler relations.
We consider a (finitely K-determined) weighted homogeneous germ

fo : ks, 0 ---&#x3E; kt, 0 of rank 0. We let {Q&#x3E;j} c m,,O(fo) be weighted homogen-
eous germs of exact weight which project to a basis for V(/o)max’ For
now, we do not assume fo is unimaximal, but we do assume

myN(fo)max c Im(io). We also letax, u) = (fo + Y UiQ&#x3E;i, u) be the unfolding
versal in non-maximal weight (and we assume the maximal weight 0).

If we choose a basis {c/Ji} of germs of exact weight for N(fo)max, then
(mu/ m;)N(fo)max has a basis {uipi}. By assigning to uiQ&#x3E;i its weight as an
element of rc x,u{ Bi}, we obtain a weighting for (mu/m;)N(fo)max- Then, it
readily follows that l’ 1 preserves weights.
Now, by the weighted homogeneity of fo there is the Euler relation
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where ai = wt(xi) and di = wt(foi) for foi = Yio fo. If e = £ a;x;8§ -
E diyiei, then the Euler relation states ro(e) = 0. If g is any other

weighted homogeneous germ in Cx, then we also obtain another Euler
relation

To use this relation in the computation of i 1 we must express it as

an element of ker(io). However, g ’ yiEi E myûx{Ei} and by (3.3),
my rc x{ Bi} c Im(io). Thus, gyici = ’Co(Âi); and hence

We can be even more precise than this about the Âi. By lemma 3.1, io
is surjective in all weights max wt; hence, if wt(gci) + max wt, then
gei = ’Co(À-D and we can choose Âi = yl,t with wt(À-D = wt(ge,). For such a
weighted homogeneous g so that wt(gei) + max wt for any i, we define

We let the vector space spanned by such t/Jg be denoted by E. We think
of E as representing a subset of the Euler relations. It is on this subset
that we obtain information about i 1. Note that there is some indeter-

minacy in the definition of the t/Jg and hence E. Nonetheless, we claim
that il(E) is well defined.

If we had represented g. Bi = io(Àl’) and obtained instead gl§, then t/J g
- gl§ Ediyi(Â - À§’) with Â’ - eker(ïo). That ’Cl(E) is well-defined is
a consequence of the following lemma

LEMMA 6.1 : Suppose that for fo, my - N(fO)max c Im(io). If t/J E Os (D
6t 0 Wy{ôil and f is the unfolding versal in non-maximal weight defined
via the {pj}, then

(Recall f = f(/) for the above unfolding f).

PROOF: Since both sides are linear in gl it is sufficient to verify this on
each component 0., and 0, © Wl{bil.



118

Then,

Next, for e 0, Q rcy{ i}’ i(Yit/J) = (Yi o f)i(t/J). Thus,

As before,

In the special case when Çi E ker(io), we obtain

Thus, ii(E) is well-defined. In fact, this lemma provides us with a simpli-
fied way to compute ’Cl(E).

LEMMA 6.2: With the preceding notation

PROOF:
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where ’Co(Àa = gEi. Then

Also, by the preceding lemma

Thus,

REMARK: A similar argument works for i i .
We can now state a result which explains the role of a non-singular

pairing in computing il(E) or ’Ci (E).
We begin by observing that given the choice {cPj} of basis for

(/o)max? then for 1 + max wt there is a natural isomorphism

sending h -+ zi - wt(ui)uih(oi).
We have an analogous isomorphism for all 1

Then, via these isomorphisms, we relate the images of i 1 and the dual
map x (recall §1) by

THEOREM 6.5: If fo is a uni-maximal germ with myN(fo)max C Im(io)
then in weights 1 % max wt + di, any i (di = wt yi):

(i) via the isomorphism (6.3), Im(x), is isomorphic to -r,(E),
(ii) via the isomorphism (6.4), Im(x+), is isomorphic to ’Ci(E),.

PROOF: By lemma 6.2, if wt g  max wt + di, any i,

Also, by the Euler relation
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Thus,

An identical argument works for ’Ci and X+.
As a corollary we have the result which implies theorem 3.

COROLLARY 6.6: If fo is a uni-maximal germ so that N(fo) has a strong
non-singular pairing and myN(fo)max C Im(io), then

PROOF: By the definition of strong non-singular pairing, x is sur-

jective (hence X+ is also surjective) and (mulm;)N(fo)max is 0 in weights
= max wt + di, any i. Thus, by the preceding theorem l’ 1 or Tl’ has the
desired properties. 0

As the next corollary we have the consequences of the calculations of
Looijenga and Wirthmüller.

COROLLARY 6.7: Let fo : W, 0 - k, 0 be a non-simple weighted homo-
geneous germ defining an isolated hypersurface singularity. Then there is
an unfolding versal in non-maximal weight f such that:

(i) f is infinitesimally stable off the space of non-positive weight
(ii) if fo is simple elliptic or N(fo)o = 0, then f is fznitely A-determined.

PROOF: In this case, 0(fo)l TY, - fo c+l CC xl A(fo) where Alfo) is the ideal

generated by afo . Thus, O(fo)/T:K e. fo has a natural structure of
i

an algebra. Furthermore, the pairing reduces to the multiplication
,W.1,A(fo) x rc xl A(fo) -+ rc xl A(fo) -+ N(fo)max composed with projection.
By Grothendieck local duality theory (see e.g. [1] or [6]) this is a

non-singular pairing. The remaining conditions for a strong non-

singular pairing are trivially satisfied. D

Finally, as a last corollary we observe

COROLLARY 6.8: Let fo be a uni-maximal germ with
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MY N(fo)... - Im(io) and a non-singular pairing on N. Then,

PROOF: By the non-singular pairing property,

Thus, by Theorem 6.5 the result follows.

§7 Finite map germs

A finite map germ fo : ks, 0 -+ kt, 0 is a germ with s _ t which is finitely
K-determined (this is equivalent to dimkq(fo)  oo [8, IV]). For any
embedding i: kt, 0 - kt+r, 0, fi = i o fo is another finite map germ with
the same local algebra. If f : ks + q, 0 -+ kt+q is an infinitesimally stable
unfolding of fo, then there is a simple way to construct from f the in-
finitesimally stable unfolding of fl. Suppose i is the identity i : kt,
0-+ kt x {0}, 0, and {cPi} projects to a basis for mxQ(fo). Then, defining
g(x, v) = (E vi;$;, ..., E VtilPi) we obtain the infinitesimally stable unfold-
ing F of fl given by

If f is only finitely A-determined, it is natural to ask whether for such
a construction, F is also finitely A-determined. Unfortunately, the

answer is no; however, the construction is close to being correct. In this
section we give the correct version.
To see why it fails consider fo(x, y) _ (x2 + By4, xy3 + ty5) g = + 1.

We will see in §8 that for 8 + t2 + 0, there is a negative versal unfolding
which is finitely A-determined. However, if we apply the preceding pro-
cedure to (X2 + By4, xy3 + ty5, 0), we do not obtain a finitely s/-deter-
mined germ. If we look at the aT-orbit structure in the two dimensional

section (x2 + By4, xy3 + ty5, uy6) in the (t, u) parameters, then the un-
folding fails to be transverse to the lt’-orbits of (X2 + By4, Xyl + ty 5,y 6).
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This example, in fact, suggests the correct way to obtain a finitely A-
determined germ.
We consider a uni-maximal fo of rank 0, and let

The condition which we need involves an extension of x to

i: mxQ(fo) -+ Homk(Ñ(fO) max’ N(fo)max) where Ñ(fo) = O(fo)/T:K e. fo.
By standard elementary linear algebra, if î is injective in weight  b,
then the other dual linear map

is surjective. Note there is no way the original x could be injective in
weight = b by weight considerations.

Next, we let {gi}i = 1 C C(j x be a set of weighted homogeneous germs
which span Q(fo) &#x3E; b, and {t/J j} a set of weighted homogeneous germs
which form a basis for (m.,Q(fo» 5’. We define g(x) = (gl(x),..., g,(x»,

(summed over i = 1,..., q and j = t + 1,..., t + r). Also, we let J(x, u)
= (fo(x) + Eu, 0 i, u), and

Then, we have

PROPOSITION 7.2: For the above weighted homogeneous germ fo of rank
0 with î injective in weights ::g b and myN( fo)maX c Im(io), if some ’Cl(f) (or
’C,+(f) is surjective, then myl N(fl)max C Im(io(fl)), and for the same 1, ii(F)
(or ii+(F)) is surjective. Hence, F is either finitely A-determined or in-
finitesimally stable off the subspace of non-positive weight.

Note: Here y represent the coordinates for (kt + r, 0).

PROOF: We have

However, {s, t/J j} projects to a basis for Q(/i) Q(fo)lm,,, - Q(fo). Thus,
by the preparation theorem C(jx{Bt+à = rcYl{Bt+i,t/JjBt+i}. · Hence
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il c Im(io(.h)). Thus, N( fl)max = N(.f’o)max in the sense that we
may choose 0 E O(fo) which projects to a generator of N( fo)max, and (p, 0)
projects to a generator of N(fl)max. It is sufficient to project to rc x{ Bi}= 1
and show

However, the right hand side of (7.3) contains Im(To(/o)). By our as-
sumptions and lemma 3.1,

Thus, (7.3) is established.
Secondly, suppose ’Cl(f) is surjective. Since rc x{ Bt+i} c Im(io( fl)), we

have that for any element E ker(io( fo)) there is a t/Jl ErcYl{Bt+i,t/JjBt+i}
so that 4( + t/J 1 E ker(ioUi)) and

Thus, Im(ï)) c Im(T,(F)). If n: m,vN(fl)max -+ mu,v coker(’Cl-l(F»/8,-1
denotes the projection, then n(mN(fl)max) c Im(ii(F)).

Lastly, for each i, j with j &#x3E; t, yi. §;elm(ioUo)); thus, there are

elements of ker(ioUi)) of the form

with Then,

where n... denotes projection onto N(fl)max-
Then, by the surjectivity of the map (7.1), it follows that in

(mu,v/m;,V)N(fl)max we have

Hence, in 1 1 implies
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Thus, if

denotes the projection, then by increasing induction on j we obtain

Thus, ir(-’ ,,,N(fl)...) - lm(,r,(F» so ’Cl(F) is surjective. A similar argu-
ment works for ’t,+(F). D

§8 Two examples

We consider here two examples of how the preceding results can be
applied. Both of these examples are uni-modal singularities with simple
moduli (recall from part I that such germs can only be deformed to
other values of the modulus parameter or to simple singularities). Then,
we already know by Proposition 4.2 of part 1 that our methods must
apply.

Example 1 fo(x, y) = (X2 + By4, xy3 + ty5)
where B = ± 1 (over R) and t is the modulus parameter. This is the first
non-simple ¿2-singularity (see e.g. [3], [8, VI], or [10]). We also must
have B + t2 =1= 0 to ensure that fo is finitely % -determined. We assign
weights wt(x) = 2, wt(y) = 1, and then wt(Bl) = -4, wt(e2) = - 5. In this
case, the modulus occurs in weight zero and N( fo) + = 0. Thus,
N(fo)max = N(fo) -. There is a basis for N(fo) - given by: yiB2’ 1  i  4;
X82, xyE2; and yiel’ 1  i  3. There is a nonsingular pairing on y2, y3,
y4, x, XY&#x3E; - B2 (dually paired to y, y2, y3, xy, x) C mxQ(fo)) as long as e
+ t2  O.
Also, a direct calculation shows that as long as g + t2  0, io is sur-

jective in weights 4 and 5 (we are using the weighting described at the
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beginning of §3). Thus, my. N(fo)o c Im(io) and lemma 3.1 implies that
io is surjective in weights % 0. We then have the situation given by the
chart.

In the chart we compute dim ker(io)k for k &#x3E; 0 as the difference of the

first two rows. Since for k &#x3E; 0 dim«mulm;)N(fo)o)k = dim N(fO)-k, we
see from the chart that numerically it is possible for ’C 1 to be surjective in
each weight.
We consider the unfolding versal in negative weight

Here the wt denotes the weight of the unfolding parameters. We have
used u and v to keep track of the terms in each coordinates. We know
by lemma 6.5, that dim ’tl(E)k = dim Q(fO)k when 0  k  4. Then com-

paring with dimN(fo)-k, we see that we still need an extra relation in
each weight 1  k  4. There is the following relation

where

Note that y4Bl ft basis we choose for N(fo) -. However, by the Euler
relation

Thus, we can replace fOly4Bl by this term and obtain an element in
ker(To)4. Applying il yields 60(t2 + B)V3y5B2. This gives V3 - y5 . B2. For
the remaining 3 relations, we let

Then, gl, yÇi and y2t/J are relations in weights 1, 2, and 3 respectively.
Also, we can immediately choose the 1 so that 4r = ro(4(1). Then, ygl
and y2t/J are ’Co(yt/J 1) and ’CO(y2t/J 1) respectively. When we compute
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’C 1 (yit/J 1), we obtain successively

When e + t2 * 0, it is not too difficult to verify that these are independ-
ent of ii(E). Hence, we conclude il is surjective.

Secondly, for this example we also want to consider the situation of
§7. A basis for mxQ(fo) is given by {yi, 1  i  6; xyj, 0  j  21. We
consider any germ f1(x, y) _ (x’ + By4, xy’ + ty5, y6, 0, ...,0) where the
coordinates yi with y, of, = 0 have weight 6. Then, we can apply pro-
position 7.2 if the associated map Ñ(fo) -+ Hom«mxQ(fo» 5, N(fo)o) is
surjective. As N(fo)o  k, we have a dual basis for Hom(mxQ( -f 0):5 5
N( fo)o). In terms of this dual basis, the non-singular pairing on the ele-
ments hB2 guarantee that the image contains the dual basis to

-xQ(fo):5’. Also, B2 maps to the dual basis for y5. This leaves mxQ(f0)4
= (y4,xy2). If we look at the image of el and YB2 applied to this basis

{y4, xy2} we obtain the matrix ( 1 with determinant e (t2 + e).
Thus, these images span a subspace containing the dual elements to y4
and xy2. Thus, proposition 7.2 is applicable. We summarize all of these
results with the following.

PROPOSITION 8.1: If t2 + 8 % 0, the germs

have negative versal unfoldings which are finitely d-determined and, in
fact, of d-codimension = 1.

Example 2 fo(x, y, z) = (2xz + y2, 2yz, X2 + 3gy2 - cz2)
(c =1= 0, c + 9g2 =1= 0; here c is fixed and g is the modulus). This is the first
non-simple E3-singularity (again see [3] or [8, VI]). The form of these
equations are due to Wall [12]. However, the equi-dimensional case was
considered independently (using a different form of the equations) by
Ronga in [11]. In this case all of the coordinate functions are homo-
geneous quadratic, so the coordinates x, y, z have weight 1.

Again the modulus occurs in weight zero. A basis for N(fo)_ is given
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by: YB1, z81, X92, yE2, and Y93, ZB3. Then, N(fo) has a non-singular pairing
on Zgl,X£2,Yg2&#x3E; so dimk’Cl(E)l = 3. We identify N(fo)o ’-" y2. B3).
Again a direct calculation shows that (with c % 0, c + 9g2  0), Im(io)
contains all quartic polynomials (i.e. O(fO)2); thus my N( fo)o c Im(io). As
dim ker(io)1 = 6, there are 3 extra relations in addition to the Euler
relations; rather than give them, we merely give their images under Ti
for the unfolding

We obtain: (3gul - wl)y2E3; (-3gU2 _ (c + 9g2)Vl + W2)y2B3; and {(3c
- 9og’)u1 + (39g)wl + 6g(c + 9g2)V2}y2B3. These span a subspace of di-
mension 3 complementary to ii(E). Thus, -zl is surjective.

Furthermore, a basis for mxQ(fo) is given by {x,y,z,y2,z2,xy,Z3}. We
consider a germ Jl(X,y,Z) = (fo(x,y,Z),Z3,0,...,0) where we assign
weights 3 for coordinates yi with Yi 0 JI = 0. Again to apply proposition
7.2, it is sufficient to show that the mapping

is surjective. The non-singularity of the pairing gives the dual basis to
{x, y, z}. Also, B2 maps to the dual basis element of xy. Lastly the images

of {Bl, B3} take values on {y2, Z2} given by I ) with determi-
nant -(2)c-1(c + 9g2). Thus, the image of 81, B3) contains the dual
basis elements to Z2 and y2. Thus, the map is surjective.

Again we can summarize these results with the following.

PROPOSITION 8.2: If c % 0 and c + gg2 + 0, the germs
fo(x, y, z) = (2xz + y2, 2yZ, x2 + 3gy2 - CZ2) and
fi(x, y, z) = (2xz + y2, 2yz, aG2 + 3gy2 - CZ2, Z3, 0, ... , 0), r &#x3E; 0,
have negative versal unfoldings which are finitely A-determined and, in
fact, have d-codimension = 1.

Further consequences for these germs will follow from the results of
the next section.

§9 Topological stability

In this section, we consider a uni-maximal germ fo : IRs, 0 - R’, 0 and
an unfolding f versal in non-maximal weight. By the methods of this
section, we will show that if f is finitely A-determined (or has its com-
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plexification infinitesimally stable off the subspace of non-positive
weight) then f is a topologically stable germ. In fact, we will show that it
is only a transversality condition which is needed to prove topological
stability.
We consider the above fo with an unfolding versal in non-maximal

weights which is either finitely A-determined (or whose complexificat-
ion is infinitesimally stable off the subspace of non-positive weight). If
N(fo)max is generated by v then by Theorem 1 or 2 of part 1 there is an
open neighbourhood T of 0 in R, so that the versal unfolding of fo is
topologically trivial along the v-parameter-axis for parameter values in
T. For 1 sufficiently large and r &#x3E;_ 0, we let

Then, the topological stability of germs transverse to ff is contained in
the following.

THEOREM 4: Let f : M -+ N be a smooth mapping where dim M = m,
dim N = n and m - n = s - t. lJ j’f(xo) E S and j’(f) is transverse to S at xo,
then there is a neighbourhood U of f in the Whitney topology and compact
neighbourhoods U’ of xo and V’ off(xo) = yo such that for gEô/1, there are
homeomorphisms 4&#x3E;g: U’ c., M and t/Jg: V’ c+ N depending continuously on
g in the C’-topology so that 4&#x3E; f = id, t/J f = id and on U’

REMARK: Before beginning the proof, we want to emphasize a key
point; namely, that modulo the method of Mather of using versal un-
foldings, the proof only depends upon the existence of locally integrable
(continuous) vector fields which give the topological triviality of the
versal unfolding. Nowhere do we use the differentiability of these vector
fields off a subspace, although this fact appears to be basic at this stage
to extending this result for proving global topological stability.

PROOF: Note that the transversality condition implies m &#x3E;_ s + q,
where q = dim N( fo)  maX. We first consider the case m = s + q, and then
indicate the modifications for the general case. Also, we shall see that by
the form of the proof, we may as well assume j’(f) (xo) E K’(fo x id).

Then, the versal unfolding of the germ of f at xo is C°°-equivalent to
the versal unfolding of fo. Thus, we may choose a representative F for
the versal unfolding of fo F : U --+ V such that: (i) F is infinitesimally
stable, FI¿(F) is proper (and finite to one), and F-1(O) r-) E (F) = 0, and
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(ii) there are closed embeddings i : V’ c+ V and j : U’ ’+ U so that i is

transverse to F, F-’(i(V’)=j(U’), and FI:F-I(i(V’»--&#x3E;i(V’) is Coo-

equivalent to fi neighbourhood of xo. Under this identification, we have
the fiber square

Lastly, we use the proof of Theorem 1 and 2 in part I. We let L c U
and L c V denote the unfolding directions for maximal weight (say the

uq , 1-axis).
Next we may assume there are continuous vector fields ç on U and 1

on E locally integrable on U1 x [ - b, b], V1 x [ - b, b], with Ul, V1 com-
pact neighbourhoods of 0 in U, V respectively so that the integral curves
remain in U or V and

iii) V’ is transverse to L and U’ is transverse to L at 0.

We will use the methods of [9, §7], to reduce our problem to consider-
ing a neighbourhood of the mapping 1 V", for V" a compact neighbour-
hood of yo. To describe the neighbourhood V", we make use of the
following fact about intersecting submanifolds in an ambient space.

LEMMA 9.1: Let 1 : X q R" and j : Y c&#x3E; R" be embeddings of compact sub-
manifolds of complementary dimension in Rn. Suppose i and j are trans-
verse and i(X) n j(Y) = {0}. Then, there are neighbourhoods U of i and Y
of j in the Whitney el topology so that the map IF: U x V -+ Rn given by
(i’, j’) H i’(X) n j’(Y) is a continuous well-defined map.

PROOF: Given any i: X --+ R" and j’: Y -+ IRn, we define (i’
- j’): X x Y --+ R" by (x, y)....... i’(x) - j’(y). For i and j, this map is a local
diffeomorphism at (xo, yo) where i(xo) = j(yo) = 0. Hence we may choose
compact neighbourhoods U of xo and V of yo so that i - jl U x V is a
diffeomorphism. Thus, since (i’,j’)....... i’ - j’ is continuous for the Whitney
topologies, as is restriction to a compact neighbourhood, we may
choose neighbourhoods U of i and Y of j so that i’ - j’l U x V is a
diffeomorphism for (i’, j’) E Gll x Y with 0 E int{(i’ - j’)(U x V)l and i’(X
- U) r) j’(Y - V) = 0. Then, (i’ - j’)-l(O) is a single point (x’, y’), so

i’(X) n j’(Y) = i’(x’) = j’(y’); and the continuity of i’ - j’ U x V implies
that (x’, y’) and then i’(x’) depend continuously on (i’, j’). D
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REMARK: The proof, in fact, shows that i’ and j’ are transverse.
For 11 or ç we denote the integral curve passing through y or x at

t = 0 by Yy or yx. Although the yy and yx need not depend differentiably
on y and x, the continuity and local integrability ouf 11 and ç do imply
that the maps y - yy : [ - ô, ô] -+ V and x -+ yx : [ - ô, ô] ---&#x3E; L7 are contin-
uous in the Whitney C1-topology. Since i(V’) and j( U’) are transverse to
L and L at 0, we may choose compact neighbourhoods U" of xo and V"
of yo so that f(U") c int(V") and j(U") n L = {0}, i(V") n L = {0}. Thus,
we can apply lemma 9.1 to i(V") and yo to conclude that there are neigh-
bourhoods U and Y of i and yo in the Whitney C1-topology and the
mapping ’JI satisfying the conclusions of the lemma (we can also ensure
that the images remain in V). Thus, there is a smaller neighbourhood of
yo in int(V"), V"’, so that if y EV"’, then yi(y) E 1’. Then, we define for
i’ E U

By lemma 9.1, this is a continuous injection. As V’" is compact, this is a
homeomorphism onto its image.

Similarly, we can apply lemma 9.1 to E = yo and U" to find neigh-
bourhoods U’ and Y’ and a continuous map 0: 0&#x26;’ x V" --&#x3E; U. Again
there is a compact neighbourhood U"’ of xo contained in int( U") so that
yx c- Y’ for x E j(U"’). By the identification of a neighbourhood "Ir of
f U" with pull-backs of imbeddings i’ : V" --+ V, corresponding to g there
are embeddings ig : V" 4 V and jg: U" 4 U so that jg : U"  F -1(i9( Y"))
and FOjg = ig o g. We may choose our neighbourhood W small enough
that ig E d/J, and jg E dJt’ for g E "IY. Then we define 4&#x3E;g: U" -+ U by 4&#x3E;g(X)
jg 1 o -P(ig, yj(x». Again 0,, is a homeomorphism. By the condition
dF(ç) = o F, it follows that F(yx) = YF(x). Hence, by construction, if we
set t/J 9 = t/Jg’ then f = t/J; log ° P g. The continuous dependence on g of
(4)g,t/Jg) follows again from Lemma 9.1. This completes the proof for the
case m = s + q.

If m &#x3E; s + q, then we must modify the proof as follows. The infini-
tesimally stable germ F has the form FI x id,,, where F1 is the infini-

tesimally stable unfolding of fo. Thus, j’(F) - ’(Y) - E x W c-- U x W for
W a neighbourhood of 0 in Rr, and similarly for F(j’(F) -’(Y» - L x W
We claim that we may assume that codim Y’ in V x W = 1. We con-

sider K = Toi(V’) n (L Q Rr). By the transversality assumption, codim
K = codim Y’ in V x W. If K =3 L, then the germ is, in fact, infinitesim-
ally stable and the result follows from the C°°-theory. Otherwise we can
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choose a subspace K’ complementary to the projection of K onto Rr. If
we project along K’ in R’ lql,,l 1onto Toi(V’), then, this restricts to a
local diffeomorphism pr on i(V’). As F is constant along the fibers of this
projection, the new germ obtained from F by restricting to

F-1(proi(V’» is C ’ -equivalent to f Finally, with codim V’ in Y x W
= 1, we may pull-back ç and ri to V x W and U x W and apply the first
part of the proof. 0

As an immediate corollary we have

COROLLARY 9.2: If fo : IRs, 0 -+ Rt, 0 is a uni-maximal germ and f is an
unfolding versal in non-maximal weight which is finitely A-determined or
whose complexification is infinitesimally stable off the subspace of non-
positive weight, then f is a topologically stable germ.
We obtain information about topological stability on the edge of the

nice dimensions with

COROLLARY 9.3: The germs transverse to any of the following strata are
topologically stable
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