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In this paper we examine the question of what properties are

inherited by soluble Lie rings from their abelian subrings.
More formally, suppose Y is a class of Lie rings which is closed

with respect to taking abelian subrings. We will say that T is abelian-
closed if given any soluble Lie ring L all of whose abelian subrings
are in T then L is also in T.

Similar investigations have been made for groups by Mal’cev [6],
Schmidt [7] and ëarin [2].

§1. Notation and Initial Observations

Most of the terminology we will use is already fairly standard in the
theory of Lie algebras (see Jacobson [5] or Amayo and Stewart [1]).
However some notions special to Lie rings, and due for the most part
to the existence of torsion elements, need explanation.
The collection of all torsion elements of a Lie ring L is a charac-

teristic ideal and is denoted by T(L) (a characteristic ideal is invariant
under any derivation of L).

If p is a prime then Lp denotes the collection of all x E L such that
p kx = 0 for some positive integer k. Lp is also a characteristic ideal,
called the p-component of Land T(L) is a direct sum of the various
Lp as p ranges over all primes (cf. Fuchs [3] Ch XII).

Likewise the divigible subgroup of L is a characteristic ideal
denoted by D(L).
The torsion free rank ro(L), the p-rank rp(L) and the total rank r(L)

are just the corresponding ranks for the underlying abelian group of L
(Fuchs [4] pg. 85 ff).
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We will use the following notation for the classes of Lie rings we
consider:

F finite Lie rings
Max Lie rings satisfying the ascending chain condition on subrings
Min Lie rings satisfying the descending chain conditions on

subrings
19 finitely generated Lie rings
Wz Lie rings of finite type i.e. having a finitely generated underly-

ing abelian group
- one generator-{i.e. cyclic} Lie rings
A abelian Lie rings
A0 abelian Lie rings with ro(L)  00
Ai 1 abelian Lie rings with ro(L)  00 and rp (L)  00 for all primes p.
A2 abelian Lie rings with r(L)  o0
A3 abelian Lie rings with ro(L)  00 and T(L) E F

Note that 19  d and also A3  A2  Ai  do  A since these rela-
tions are already true for abelian groups. A, Ao, A1, A2 and A3 are all
closed under taking subrings but only A, A0 and Ai are closed under
quotients.

If K is a class of Lie rings then we write ES? for the class of Lie
rings with a finite ideal series each of whose factors is in K. We shall
be interested in the classes E C(6 (polycyclic Lie rings), EA (soluble
Lie rings) and EAi, i = 0, ..., 3. All these classes are closed under

taking subrings.
Note that we will often consider abelian Lie rings simply as

abelian groups, carrying over properties and terminology where con-
venient. Fuchs [4] can always be used as a reference. Similarly,
properties of the underlying abelian group of a Lie ring Lare often
useful in determining the properties of L. We will frequently use the
fact that the derivation ring, Der(L), of L is a Lie subring of the
endomorphism ring of L considered as an abelian group and supplied
with the usual commutator product.

§2. Abelian Closure and Chain Conditions

First we will consider the minimal condition on subrings. If L E
Min then it contains a unique minimal ideal of finite index. If L is also
soluble then we have:
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LEMMA 1: Let LEE.:il n Min, then L is a finite extension of a
central, divisible, abelian ring (and consequently is countable).

PROOF: L has an invariant abelian series each of whose factors

satisfies the descending chain condition on subrings and hence each
factor is a torsion abelian group. Hence L is a torsion ring.

Let N be the unique minimal ideal of finite index. Then N has no
proper subrings of finite index. For suppose P were such a subring,
then for some integer m

Now mL is always a (characteristic) ideal of L and so we can form
NI mL and by construction this has finite exponent.
By solubility there is a characteristic abelian series.

Then Ln/Ln-l is abelian of finite exponent and satisfies the minimal
condition for subrings. Hence it is finite. But Ln-i is a characteristic
ideal in N and so is an ideal in L (if 1 is an ideal of L and J is a
characteristic ideal of 1 then J is always an ideal of L). But this is a
contradiction, hence N has no proper subrings of finite index.

If m &#x3E; 0 and mN  N then as above there exists a characteristic

abelian series from mN to N. Looking at the top factor again gives a
contradiction and so mN = N for all m and so N is divisible.

Finally, in a torsion Lie ring D(L) is contained in the centre Z(L).
Indeed suppose y E L and ny = 0 for some integer n &#x3E; 0. Let x E

D(L). By divisibility we can find z E D(L) such that x = nz. Then

and so x E Z(L).
Note that the initial conditions in this result can be weakened to

allow L to have only the minimal condition on subideals. But then the
result in any case forces L to satisfy the minimal condition on
subrings.

LEMMA 2: Let LEE s4 fl Min and let F  Der(L) be a torsion Lie
ring of derivations of L. Then r E F

PROOF: By Fuchs [3] p. 207 the endomorphism ring of a divisible
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abelian group is torsion free. Hence any Lie ring of derivations of a
divisible Lie ring is torsion free.
By Lemma 1, D = D(L) is torsion abelian, and LID e f. Now F

induces a Lie ring of derivations on the characteristic idéal D, and
since T is torsion this action must be trivial by the above.
Now consider a derivation d : L -+ L inducing zero on L/D and

killing D. Then d is fully determined by its action on a finite set X (of
coset representatives for L/D), and it sends X to a subgroup Y of D,
whose exponent is bounded (by the exponent of LID). Hence Y is
finite since D is divisible. Consequently, since d sends a finite set X
- a finite set , finitely many li d are possible. Further, since

L/D e f, only finitely many derivations L/D --&#x3E; L/D are possible.
These two facts taken together mean T E F.

THEOREM 3: Min is abelian-closed.

PROOF: Suppose L is soluble with each of its abelian subrings in
Min. Let L have derived length d. We will use induction on d.
Let N be an ideal in L maximal with respect to N (d-1) = 0 and

N &#x3E; L(1) (L (n) denotes the nth term in the derived series of L). By the
induction hypothesis N E Min.
Now consider

By the maximality of N we have C  N. The cyclic subrings
generated by each element of L are abelian and so are in Min. Hence
L is a torsion ring.

Since N is an ideal of L, so is C and we can consider L/C to be a
(torsion) Lie ring of derivations of N. Hence by lemma 2

The result now follows since Min is closed under extensions.
We now consider what happens with the maximal condition. Once

again we need information about derivations.

LEMMA 4: Let L be a Lie ring and r:5 Der(L). (i) If L E G n A then
1- iE Wz  W. (ii) If L e Wz then l’ EE Wz  19. (iii) If L (=- E% then l’ (-= Wz 
19. Further if T E EA then r E E 19.

PROOF: (i) This follows from the fact that if L is a finitely
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generated abelian group then its ring of endomorphisms is finitely
generated as an abelian group (Fuchs [3] p. 212 ff). (ii) By case (i). (iii)
Since wz n E A = E Cf6.

THEOREM 5 : If LE EA and each of its abelian subideals is finitely
generated then LEE Cf6.

PROOF: This is clearly true when L E.stJ so assume Le A. Let N
be the last nontrivial term of the derived series of L. By hypothesis
N E CfJ.

Let HIN be an abelian subideal of LIN and let C = CH(N). Now
C &#x3E; N and so HIC E A and hence by Lemma 4(i), HIC E 19.
Now C2 = [C, C]  N and so [C2, C] = 0 and C is nilpotent (of

length 2). Let M be a maximal abelian ideal of C. M is a subideal of L
and so M E (9. By the maximality of M we have

Hence since C2  Z(C)  M we have CIM E A. By lemma 4(i) again
we have CI M E G. Hence H E G.
Thus H/N E G and LIN satisfies the initial hypotheses of the

theorem. By induction on the derived length the result now follows.
We can now restate this result in a number of forms:

COROLLARY: (i) EC is abelian-closed. (ii) If L E EA is such that
all its abelian subrings are finitely-generated then L E 19. (Note that the
terminology of abelian-closure cannot be used here since G is not

closed with respect to taking abelian subrings.) (iii) Max is abelian-
closed. (iv) F is abelian-closed.

PROOF: (i) and (ii) follow from E 19 G. (iii) Follows since E (9 
Max. (iv) Let LE E A with all its abelian subrings finite. Now
F  G fl Min. Hence by Theorem 3 and Theorem 5

Now if L E E G then D(L) = 0 and so by Lemma 1 we have L E F.

§3. AbeUan C losure and Rank Conditions 

LEMMA 7: Let L be a torsion Lie ring, and suppose (by slight abuse
of notation) that the underlying abelian group of L is in A1. Then
every finite set of elements of L lies in a finite characteristic ideal of L.
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PROOF: Since L is torsion it is the direct sum of its p-components
LP, and the underlying abelian group of each Lp is a (group) direct
sum of finitely many cyclic groups of order pk for various k and
finitely many Prufer Cp 00 groups.

Let xl,..., x,, E L with each xi of order mi say. Let m =

ml m2 ... mn. Clearly m involves only finitely many primes and so

is finite. But this is a characteristic ideal since it is a fully invariant
- 

subgroup of L considered as an abelian group.

LEMMA 8: Suppose L is a Lie ring and H is an ideal of L with
H E EA1 and LIH E ABAo. Then L contains a free abelian subring of
countable rank.

PROOF: Case (i) H = 0. This follows immediately from the

definition of A0.
In view of this case, since L/H will always contain a free abelian

subring of countable rank we may assume without loss of generality
that L/H is in fact such a ring.

Case (ii) H e A1 and H is torsion free.
Let A be a maximal abelian subring of L with A &#x3E; H. Let ro(H) = n

say. Suppose ro(A) = m(&#x3E; n). By the maximality of A we have A =

CL(A) and since L/H E d we have that A is an ideal of L. Hence LIA
may be considered as a subring of Der(A).
Now we can consider A as being embedded in V = Q ®Z A a

vector space over the rationals of dimension m. Now V has dimension

m, hence the endomorphism ring of V has dimension m2 (being
isomorphic to the ring of m x m matrices over Q). Hence Der(A) has
rank  m 2 and consequently so too does LIA. This means LIA E A and
in particular ro(L)  oo, which is a contradiction.
Case (iii) H E d and H is torsion. Since we are assuming that LIH

is free abelian of countable rank suppose

We will construct a sequence of elements YI, y2, ... such that yi = kixi
for nonzero integers ki and
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Since LI H E d we have [x, y] e A for all x, y E L. Take yi = x and
suppose that y,, ..., yn have been constructed. By Lemma 7 [yi, Xn+i]
for i = 1, ..., n all lie in a finite characteristic subring F  H. Since H
is an ideal of L and F is characteristic, F is also an ideal of L.

Suppose IFI = m, then for all i = 1,..., n

Put Yn+1 = mxn+1 and then Ynll is as required.
Now let A be the subring generated by yi, y2, .... The natural

homomorphism

maps A onto (A + H)/H. Now LIH is torsion free so nxi JÉ H for all n,
and since the x¡ + H generate LIH, e restricted to A is injective.
Hence A is free abelian of countable rank.
Case (iv) H E A.
Let T = T(L) and use induction on ro(HIT) = n.
If n = 0 then T = H and case (ii) applies. If n &#x3E; 0 choose an ideal K

of L with T  K s H and K of maximal rank subject to

We may assume L/K is torsion free (for otherwise we can just factor
out the torsion ideal). Case (ii) now applies to show that L/K has a
subring A/K which is free abelian of countable rank.
The induction hypothesis can now be applied to show that A has a

free abelian subring of countable rank.
Case (v) The general case.
We now use induction on the derived length d of H.
If d = 1 use case (iv). Suppose d &#x3E; 1. Then by induction L/H(d-1)

has a free abelian subring of countable rank. But H (d-1) e Aso a
further application of case (iv) finishes the argument.

LEMMA 9: If LEE A and L is torsion free then L has a finite
characteristic series with factors which are torsion free abelian.

PROOF: The proof will be by induction on the derived length d of L.
The result is clear when d = 1 so suppose d &#x3E; 1. Then LIL(d-1) E

Ed and has derived length d - 1. Put
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Now T is a characteristic ideal of L, LIT is torsion free and has

derived length d -1, hence by induction LIT has a finite series of
the required type.

Let C = CT(L(d-1)). Then C is a characteristic ideal of L and as
usual TIC may be considered a subring of Der(L(d-1)). Now L(d-1) is
torsion free so considered as an abelian group its endomorphism ring
is torsion free. Hence TIC is torsion free. But T/C is a quotient of
TI L (d-t) which is a torsion ring. Hence T = C.
So [T, L(d-1)] = 0 and L(d-1)  Z(T).
Now if L is a torsion free Lie ring then LIZ(L) is also torsion free.

Indeed let x E L be suc a nx t: Z(L) for some Inreger n;t: o. Then
for any y E L

Hence [x, y] = 0 since L is torsion free and x E Z(L).
Now T/Z(T) is a quotient of T/L(d-1) and so is torsion, but by the

above observation it is also torsion free. Hence T = Z(T) and T E A.
The result now follows from the case n = 1.

Suppose X is any class of torsion, abelian Lie rings. Define a class
K by L e K if and only if

and

THEOREM 10: Let X be a class of torsion, abelian Lie rings such
that: (a) ns4saess41; (b) X is closed under the taking of
subrings. Then if EX is abelian-closed, EX is abelian-closed.

PROOF: Let L E E s4 and suppose that all its abelian subrings lie in
X. We will use induction on the derived length d of L.

If d = 1 then L E X. If d &#x3E; 1 then by induction we may assume

If L/L 2É A0 then by Lemma 8 L has a free abelian subring of
countable rank which is a contradiction. Hence LI L 2 E do and so
L E E A0.
Put T = T(L). Then by Lemma 9 LIT has a finite characteristic
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séries with torsion free, abelian factors. Hence L/T E EX (clearly
each of the factors is in X).
By hypothesis TEE ae and since T and ài coincide for torsion

rings we have TEE ae. Hence L E EX as required.
We now obtain the required results as corrollaries to this theorem.

COROLLARY 11: (i) EAI is abelian-closed. (ii) EA2 is abelian-
closed. (iii) EA3 is abelian-closed.

PROOF: (i) Take T to be the class of torsion Lie rings in si. Let
LEE d be a torsion ring and suppose that all its abelian subrings are
in AI.
Now LE E AI if and only if

for all primes p. (Use induction on the derived length d. Then Lp(d-1) is
in Ai and hence, since it is torsion, in Min.)

Since Lp is a direct factor of L, the abelian subrings of Lp are
precisely the abelian subrings of L intersected with Lp. Hence
Theorem 3 together with Theorem 10 gives the result.

(ii) Take ae = d n Min and use Theorems 3 and 10.
(iii) Take K = A n F and use Corollary 6(iv) and Theorem 10.
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