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Let C(s) denote the Riemann zeta function, and for each even
positive integer k, define

Then ’oc(k) = -BJ2k, where Bk denotes the k-th Bernoulli number,
and so ’oc(k) is rational. Let p be an odd prime. Then it is known that
the numbers ’oc(k) (1  k  p - 1) are p-integral, and so may be regarded
as lying in Zp. Kummer studied the relationship between these num-
bers and the arithmetic of Q(lLp), and the following theorem is

generally known as Kummer’s criterion.

THEOREM 1: Let p be an odd prime. Then the following are

equivalent.
(i) p is regular (i.e., the class number of 0(g,) is prime to p).
(ii) there is no unramified cyclic extension of 0(g,) of degree p.
(iii) there is a unique cyclic extension of 0(g,)’ of degree p which is
unramified outside the prime dividing p.
(iv) the numbers ’oc(k) (k even, 1  k  p - 1) are units in Zp.

The aim of this paper is to prove an analagous result in the elliptic
case, but before explaining this, we mention the f ollowing refinement
of Kummer’s criterion which is due to Ribet [6].

THEOREM 2: Let X denote the canonical character of Gal (Ô/O) with
values in Z P giving the action of Gal (Ô/O) on li,, and let k be an even
integer with 1  k  p - 1. Then p divides ’oc(k) if and only if there is an
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unramified cyclic extension E of 0(g,) of degree p such that for all
cl E Gal(E/Q) and T E Gal (EJO(lip»,

We now turn to the elliptic case. Let K be an imaginary quadratic
field with class number 1, and let (J denote the ring of integers of K.
Let K be an algebraic closure of K, and let E be an elliptic curve
defined over K whose ring of endomorphisms is isomorphic to C. Let
p be a rational prime, not 2 or 3, which splits in K, and for which E
has good réduction at both primes of K dividing p. We fix, for the rest
of this paper, one of the primes p dividing p, and we write * for the
field K(Ep), where Ep denotes the kernel of the endomorphism p on
E(K). Let F be any Galois extension of K contained in f. We say p
is irregular for F if there is a cyclic extension of F of degree p which
is unramified outside the primes of F dividing p and which is distinct
from the composition of F and the first layer of the unique Zp-
extension Koo of K unramified outside p.
Coates and Wiles [1] have given a criterion for determining whether

p is irregular for the ray class field of K modulo p in terms of the
p-adic properties of Hurwitz numbers. We shall extend their result,
and provide criteria for determining whether p is irregular for any
Galois extension of K contained in F.
To state our result precisely, we shall need to introduce a little

more notation. Choose a Weierstrass model for E

such that g2 and g3 belong to (j and the discriminant is prime to p and
its conjugate p*. As usual, we shall suppose that K is embedded the
complex field C, and we shall denote by P(z) the Weierstrass P-
function associated to our model. We identify B with the endomor-
phism ring of E so that a E (j corresponds to the endomorphism
e(z) - e(az), where e(z) = (e (z), e(z». Let L be the period lattice of
91(z), and choose an element 000 E L such that L = HocC. Let tp be the
Grossencharacter attached to the curve E over K by the theory of
complex multiplication, and write L(tfrk, s) for the primitive complex
Hecke L-function attached to k for each integer k &#x3E; 1. Then, if -dK
denotes the discriminant of K, Damerell’s Theorem states that the
numbers

belong to K, and, moreover, if 0  j  k, they belong to K.
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We shall be interested in the p-adic properties of these numbers,
and so, for simplicity, we shall fix an embedding of K in Cp, an
algebraic closure of the completion Kn of K at p. In fact, it has been
shown (see [9]) that the numbers L.o(, k) all belong to K,, and are
p-integral if 0:5 i «r- p - 1 and 1  k s p.

Finally, we write XI and X2 for the canonical characters with values
in Z p giving the action of Gal(K/K) on the p and p*-division points of
E respectively. Clearly, XI and X2 together generate
Hom(Gal(e/K), Z’). If F is a subfield of F, we shall say a character
x of Gal(,f/K) belongs to F if the kernel of X contains Gal(/F).
Our main result is as follows.

THEOREM 3: Let F be any Galois extension of K contained in °
Then the prime p is irregular for F if and only if there exist integers k
and j with 0jp-l, 1  k s p such that Xk ix2 is a non-trivial
character belonging to F and LtX)(k+j, k) is not a unit in K,.

As a numerical example, consider the field K = Q(i) and the elliptic
curve E: y2 = 4x3 - 4x. If p is a prime congruent to 1 modulo 4, and p is a
prime lying above p, then the characters belonging to 9t,, the ray class
field of K modulo p, are the characters Xk IX2’ for which j = 0 mod(p - 1)
and k = 0 mod 4, while the characters belonging to ep, the ray class field
of K modulo p, are the characters XkX2j for which k + j = 0 mod 4. Using
the table in Hurwitz [3] together with the f ormulae in Weil [8] p. 45, it is
easy to calculate the following table of values for (te - l)!Lao(B k).

Values of iri(k - k) for the curve Y2 = 4x3 - 4x.

It follows from Theorem 3 that p is regular for both Rq, and R, when
p = 5, but that while p is regular for 9é, , it is irregular for Rp when p = 29,
since 29 divides L(X)(20, 19).

Similarly, p is irregular for Ap when p = 37, 389 or 15629, since
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these primes divide Loo( t/J 17), Loo( t/J 23) and Loo( t/J , 22) respec-
tively.
Before giving the proof of Theorem 3, we remark that Hida [2] has

gone part way towards proving the analogue of Theorem 2. His result is
summarized in the following theorem.

THEOREM 4: Suppose the curve E is defined over 0 and let k be an
integer such that 1  k s p, k:¡J6 p -1. Then, if F is any Galois extension
of K such that Xk IX2 -k belongs to F and p divides Loo(2k, k), there is a
cyclic extension of Fof degree p unramified outside p on which Gal(F/K)
acts via XIX 2 

PROOF OF THEOREM 3: Let M denote the maximal abelian p-
extension of F unramified outside the primes of F dividing p, and let
Fco denote the composition of F and Koo. It can be shown that for F as
in our theorem, Gal(M/F.) is finite, and it is easy to deduce from this
that p is irregular for F if and only if Gat(M/Foo) is non-trivial. The
idea of our proof is to relate the formula given in Theorem 11 of
Coates and Wiles [1] for the order of Gal(MIF.) to the numbers
Loo(k+j, k).

It will be convenient to do this in two parts. The first is to prove the

p-adic analogue of the well known formula which gives the product
of the class number and the regulator of an abelian extension of K in
terms of the logarithms of Robert’s elliptic units. The p-adic logarithms
of these elliptic units arise in the work of Lichtenbaum [5] as special
values of certain Iwasawa functions which he constructs which, as we
shall show, are precisely the functions which Katz produced inter-
polating the numbers Loo(k+j, k). The congruences which arise from
this observation will yield Theorem 3.
For the moment, let us suppose only that F is a finite abelian

extension of K of degree d and conductor g. For each character X of
Gal(F/K), we let Fx denote the fixed field of the kernel of x and we
write gx for the conductor of F,. If we denote by 9tq the ray class field of
K modulo gx, it is clear that we may regard X as a character of

Gal(&#x26;,,,/K), and hence, via the reciprocity map, as a primitive character
of the ray class modulo gX which we shall denote by Cl (gx). Let nx be the
smallest positive rational integer in gx and let W9x be the number of roots
of unity in K which are congruent to 1 modulo gx. Let w and wF be the
number of roots of unity in K and F respectively, and let h denote the
class number of F. Then, if Ogx(C), C E CI(g,) is the invariant defined by
Robert [7] p. 14, we have the following lemma.
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LEMMA 5: With a suitable choice of the sign of the regulator R of F,

where the product on the left is taken over all non-trivial characters of
Gal (FI K).

PROOF: This is Theorem 3(ii) of Robert [7], if we note that the numbers
Robert denotes by p(x’) satisfy (fl,oi p(X’))2 = 1.

From now on, we fix our choice of the regulator R of F so that
equation (1) holds, and we shall now prove a p-adic analogue of this
formula. Let logp be an extension of the p-adic logarithm to the whole of
Cp, and let à be the group of values taken by the characters of Gal (FI K).
Recall that Rg is the ray class field of K modulo g, and we extend log 1 
and logp to &#x26;ô (&#x26; Z [à] by defining

and

Let 0, dénote the expression IIcEcl(g)( pg (C)  X -l( C», and

observe that if u E Gal(F/K), then

It follows that

and that

Choose units el,..., ed-l in F which generate a subgroup of index
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Wp in the group of units of F so that

We define p-adic regulator of F, Rp by

(This definition fixes the sign of Rp, but otherwise agrees with that
used by Coates and Wiles [1].)
Nowyif Co is-a fixed-element of-CI(8x)’ q,9x{C)/-q,9x-( Cu) isa unit in Ra for

all C E Cl (gx), and it is clear that

Moreover, since cf&#x3E;x is fixed by Gal(R,/F), it follows that if W dénotes the
group of roots of unity in F, there are elements ax,j E Z[â] and

llx E W(&#x26; Z[â] such that

Thus, if 0’ E Gal(F/K)

and so we conclude that

and

But, it is easy to see that det(X(o,»,*,,.,él is non-zero (see, for
instance, Lemma 10.9 of Lichtenbaum [5]), and so, since R#- 0, we
conclude from Lemma 5 and equations (4)-(7) that we have the

following p-adic analogue of Lemma 5.

THEOREM 6: With our given choice of the sign of Rp
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where the product on the left is taken over all non-trivial characters of
Gal(FIK).

Let Ê be the f ormal group giving the kernel of reduction modulo p
on E, and we choose -2x/y as the parameter for Ê. Let q : Ê ZGm be
the isomorphism of formal groups defined over C, between Ê and the
formal multiplicative group Gm chosen in [9]. The coefficient of T in
the power series expansion of q (T) = 0" T + ..., is, of course, a unit
in Cp. In fact, flp belongs to the maximal unramified extension of Kp
and, as is shown in [9], the action of Frobenius on flip is given by
multiplication by tk(p).

Recall that if X is a character of Gal(F/K), we may regard X as a
character of the ray class modulo gx, and hence as a primitive
Dirichlet character of conductor gx. Suppose gx = "mxcx’ where ex is

prime to p. Then we may express X uniquely as the product of two
primitive Dirichlet characters Xo and Xp of conductor ex and "mx
respectively. Choose generators 11’ of p, and yx of ex, and let Px be the
point of exact order gX on the curve given by Px = Pxo + Pxn where
Pxo = E(Ooo/yx) and PXn = E(Ooo/1I’mx). The point Pxn may be regarded as a
point of order pmx on the f ormal group Ê, and so C, = n (P,,) + 1 is a
p’"x-th root of unity. We write Cx for the Gauss sum

Let 6 denote the triple (E, 2dxly, Tl -1) as in §6 of Lichtenbaum [5]
and let L(6, X, Px) be the function he defines in §8.1. Then we have
the following theorem.

THEOREM 7: Let DFIK be the relative discriminant of F over K. Then
i-i,oi I-(W, x, P,)(1), with the product taken over all non-trivial

characters of Gal(FIK), has the same p-adic valuation as

where the product is taken over the prime ideals of F dividing p, and Nq
denotes the nonn to K of q.

PROOF: It is easy to see from Corollary 9.4 of Lichtenbaum that, if
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x is non-trivial

Since p is prime to 2 and 3, and yx + 7T mx is prime to gx, it is clear from

equations (8) and (9) that it will suffice to prove that IIx#1 Cx(l- X(ir)lp)
has the same ,,-asdic valuation as pd"Flil. IIq q ( 1- (N q)-’).
Now it is well known that irxC,,C,71 is a unit in Cp, and so the

conductor-discriminant theorem shows that IIx#, Cx has the same
,,-asdic valuation as DFIK . Moreover, if H dénotes the maximal abelian
extension of K contained in F in which p is unramified, it is easy to
see that only those characters X which belong to H contribute to

rix,él (1- X(w)lp). We conclude that IIx#1 (1- X(7T)/p) has the same
p-adic valuation as pl-£H:K], which is also the same as the p-adic
valuation of p. IIqp (1- (Nq)-’).
From now on, we suppose, as in Theorem 3, that F is a Galois

extension of K contained in F. The importance of the previous
theorem can be seen from the following corollary.

COROLLARY 8: Let F be a Galois extension of K contained in f.
Then p is regular for F if and only if the number IIx#1 L(E, X, P,)(1),
where the product is taken over all non-trivial characters of Gal(FIK),
is a unit in C,.

PROOF: Recall that M denotes the maximal abelian p-extension of
F unramified outside the primes of F lying above p, and that Foc
denotes the composition of F and Koo. Since the p-adic regulator R, is
non-zero, it follows from Theorem 11 of Coates and Wiles [1] that
Gal(M/Foo) is finite, and that it is trivial if and only if

IIX#1 L(6, X, Px)(1) is a unit in C,. But since Gal(F./F) has no torsion,
we conclude that p is regular for F if and only if Gal(M/F.) is trivial,
and the assertion of the corollary is now plain.
To conclude the proof of Theorem 3, we need to relate the numbers

L(rk+i, k) to the values of L(Z, X, Px). Let f be the conductor of Ji
and let p be the Dirichlet character of conductor f given by

and observe that the character X ix2’, when viewed as a primitive
Dirichlet character, is given by
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where W is the usual Teich-Muller character on Z; (and hence a
Dirichlet character of conductor p under the obvious identification of

Ù, with Zp). By the characters on the right hand side of equation (11)
we mean, of course, the associated primitive characters. The follow-
ing theorem is due to Katz.

THEOREM 9: For each integer i mod w, there is an integral valued
measure &#x3E;; supported on Z;2 such that

for all k &#x3E; 1, j ? 0 satisfying k + j = i mod w

and

for all k - 3 and j 0 mod p -1.
Furthermore, if a E Z; there is another integral valued measure

1£9 a) on Z; such that

for all k e 1 such that k --- i mod w.

PROOF: We shall only indicate briefly here how the existence of
these measures can be deduced from the results in Katz [4]. For a
fuller explanation of how this type of result can be obtained, we refer
the reader to our earlier paper [9]. Let No be the smallest positive
rational integer belonging to the conductor of the primitive Dirichlet
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character p -i, and let a be any level No-structure on E. The isomor-
phism 4 fixed by Katz [4] in 8.7.2 is the one corresponding under
8.3.17 to our chosen isomorphism of formal groups q. Thus, the unit
defined in 8.3.16 is just 0;1, and since, as we remarked earlier,
Frobenius acts on il, by multiplication by qi(p), it follows that the

generator of p fixed by Katz in 8.7.3 is, in fact, l/1(p). Let fi be the
function on (ZINOZ)2 given by

Then, the function g on CINOC corresponding to fi is the primitive
Dirichlet character p -¡, and so the formulae 8.7.5 show that the

measure gi defined by

satisfies equations (12) and (13).
If b is any integer congruent to 1 modulo No, it is a straightforward

exercise using the formulae in Katz to show that the measure li,a)
defined by

has the desired properties.
Before proceeding, we observe that it is a consequence of equation

(12) and the fact that the numbers Loo(, k) belong to K provided
0  j  k, that LCX)(k+i, k) belongs to K, for all k ? 1 and j e 0.

Theorem 9 enables us to prove the following theorem.

THEOREM 10: Let X be a non-trivial character of Gal(FIK), and let
il and i2 be integers modulo (p - 1) such that X = xb’x#. Then Xo =
Xw-‘1 and X, = CI) il. Choose generators 7T and yx of p and the conductor
C, of Xo as before, and let Px be the corresponding gx-division point of
E. Then L(Z, X, Px) is an Iwasawa function, and if a is primitive
(p - 1)-th root of unity and u - 1 - il mod (p - 1)
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PROOF: Since L(Z, X, Px) is a continuous function, it will suffice to
prove that if k &#x3E; 3 and k = il mod (p - 1), L(6, X, Px) (1- k) is given
by the formula in the theorem, since this a dense subset of Z p. But,
for such k, Theorem 8.2 of Lichtenbaum [5] shows that

where Ek,xo is given by Theorem 7.1 and

Since Xo( 1T)1Tk = (1)ijj(,,»t/1k(,,), the theorem follows immediately
from equations (13) and (14).

Let X be a non-trivial character of Gal(F/K) and choose integers k
and j with Osjp-l and lksp such that X=Xk IX21. Since

L(6, X, Px) is an Iwasawa function, L(6, x, P,)(1) is an integer in C,,
and it is a unit if and only if L(Z, X, Px)(1- k) is a unit. Now, if j = 0,

L(Z, X, P,)(1 - k) I)k-1 w(k - 1)!ill-kyk(l _ jk(p)ip )L.( k , k)

and so we conclude that L(E, X, P,)(1) is a unit if and only if LCXJ(k, k)
is a unit in C,.
On the other hand, if j d 0, it follows from the fact that yi = (1)j(y)

mod p for all y E Z Q and Theorem 10, that L(E, X, Px)(1 - k) is a unit if
and only if j xk-lyjdlLk+j is a unit. Again, we deduce f rom equation
(12) that this is the case if and only if Loo( k) is a unit in C,.
These facts, together with Corollary 8, yield Theorem 3.
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