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To Susan

In an earlier paper [13], E.M. Stein and the author developed a
theory of intertwining operators for representations of real reductive
groups G induced from parabolic subgroups. In part of that paper, we
dealt specifically with the major unitary representations that con-
tribute to the Plancherel formula for G and determined their irre-

ducibility/reducibility in terms of a finite group known as the R group.
The present paper makes a detailed study of the R group, conclud-

ing with a structure theorem for the commuting algebra for each of
these major unitary representations. The theorem shows in particular
that each such representation splits into the direct sum of in-

equivalent irreducible representations. However, our results will be
obtained only for a more limited class of groups G than are the
subject of [13]. The limited class includes all linear connected

semisimple groups. Each group G in the limited class is assumed to
have a faithful matrix representation and to have some other proper-
ties that restrict the disconnectedness of G ; precise axioms are given
in § 1. An example due to Vogan [16], discussed further below, shows
that some such limitation is necessary.
We introduce a minimum of notation needed to give a precise

statement of the main theorem. Let G be a linear reductive group

satisfying the axioms of §1, let K be a maximal compact subgroup,
and let MAN be the Langlands decomposition of a parabolic sub-
group of G such that M has a discrete series. To each discrete series
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representation e of M and each imaginary-valued linear functional A
on the Lie algebra of A, we associate the induced representation of G
given by

Let W03BE,039B be the subgroup of the Weyl group of A of elements that fix
A and the class of e. To each element w of W03BE,039B, §8 of [13] associates
a unitary self-intertwining operator 03BE(w)A(w, 03BE, A) for U(03BE, 039B, .).
These operators multiply according to the group law of W03BE,039B, except
for scalar factors. Let R03BE,039B be the subgroup of W03BE,039B defined in §6 below
or in § 13 of [13]. Then the operators associated just with the elements
of R03BE,039B form a linear basis of the commuting algebra of U(03BE, 039B, ), by
Theorem 13.4 of [13].

MAIN THEOREM : The group Re,A is the direct sum of a number r of
copies of Z2 with r --5 dim A, and the operators 03BE(w)A(w, 03BE, 039B) asso-
ciated to the elements of ReA commute with one another. In particular,
the commuting algebra of U(e, A, .) is commutative and its dimension
is a power of two ; therefore, U (03BE, A, .) decomposes into the direct sum
of inequivalent irreducible representations.

This theorem has two parts - the f act that R = 03A3 Z2 (given below as
Theorem 6.1) and the commutativity of the operators (given below as
Theorem 7.1). Vogan’s example shows that the second conclusion is
not automatic from the first, even for linear groups: Let G be the
semidirect product of SL(2, R) ~ SL(2, R) by the eight-element qua-
ternion group Hg (of standard basis elements of the real quaternions,
together with their negatives), where i operates on the first SL(2, R)
by conjugation by (A -) and j operates on the second SL(2, R) by
conjugation by (i 0-1. For the minimal parabolic subgroup, M is

Z2 EDZ2 ~ Hs, and we use A = 0 and e = sgn Q9 sgn Q9 0’ with 0’ an
irreducible two-dimensional representation of Hg. Then R03BE,039B = Z2 0 Z2,
but the commuting algebra of U(03BE, 039B, ·) is isomorphic with a full

2-by-2 matrix algebra.
The trouble encountered in Vogan’s example is that the discon-

nectedness of G is too wild. In §1 we introduce axioms for a

hereditary class of linear reductive groups G whose disconnectedness
is more limited. A key property of such groups, not shared by
Vogan’s example, is given in Lemma 4.4 and is used critically in
Lemma 7.6.
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The main difficulty in proving that R = 1 Z2 is in understanding the
subgroup of the Weyl group that fixes e. In §§2-3 we make the

necessary detailed analysis of how the Weyl group of A acts on a
compact Cartan subalgebra of the Lie algebra of M ; this analysis is of
independent interest and centers about Theorem 3.7. The proof that
R = 03A3 Z2 begins in earnest in §4.
Once one knows that R = 03A3 Z2, it is not too difficult to deduce the

commutativity of the operators. The proof that we give here of

Theorem 7.1 departs from the announced proof ([9] and [10]) and is
shorter than the announced proof. It uses the concept of ’superor-
thogonality of roots’ introduced by Gregg Zuckerman and the author
in joint work.

In the case that MAN is a minimal parabolic subgroup, parts of the
paper simplify considerably: The results of §2 reduce to easy facts in
[11], part of §4 is not needed, and §5 is almost completely un-
necessary.
The results of this paper were announced in [10]. In the case that

MAN is minimal parabolic, they had been obtained earlier, ahd brief
sketches of proofs had been given in [8] and [9]. The press of other
matters has delayed publication of complete proofs until now.

§1. Assumptions on G

The groups G in this paper are real Lie groups of matrices satisfy-
ing the following axioms:

(i) The identity component Go of G has a reductive Lie algebra g.
(ii) Go has compact center.
(iii) G has finitely many components.
(iv) If G’ denotes the analytic group of matrices with Lie algebra

the complexification gC and if Z(G) denotes the centralizer of
G in the total general linear group of matrices, then G c
G" Z(G).

From (iv) it follows that each Ad(g), for g in G, is in Ad(G’); this
latter statement is the 4th axiom in [13]. Thus the present axioms are
a specialization of those in [13], which in turn are a specialization of
those of Harish-Chandra in [4]. All finite groups satisfy the axioms of
[13], whereas the only finite groups that satisfy (iv) above are the
abelian ones.

Since G satisfies the axioms of [4] or [13], all of the basic notation
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of [13] and group decompositions of [4] make sense. The Cartan

decomposition g = t EB p is defined relative to a Cartan involution 0,
and mp (6 ap (D np and MpApNp refer to minimal parabolics con-

structed in the standard way from the Cartan decomposition. If 0
denotes a maximal abelian subspace of mp, then ap EB bo is a Cartan
subalgebra of g. Roots relative to this Cartan subalgebra are real on
ap + 1 $o. The a p -roots (roots relative to a p ) are the restrictions to a p of
such roots. If a is an ap-root, the root space for a with g is denoted
ga. We assume given an Ad(G)-invariant, 0-invariant, nondegenerate,
symmetric bilinear form B on g x g such that Be(X, Y) = -B(X, 8Y)
is positive definite, and from B we can construct in the standard way
an inner product (-, .) on the dual space (ap + ib0)’.
As a consequence of the axioms of [4] or [13], we have G = GoMp,

i.e., every component of G meets the compact group Mp. Further
properties and notation are given in [13].

LEMMA 1.1: If z is in ZG(GO), the centralizer of Go in G, then z is in
ZG, the center of G.

PROOF: Let g be in G and write g = x03B6, by (iv), with x in GC and 03B6
in Z(G). Then z commutes with x since Ad(z) = 1, and z commutes
with e since e is in Z(G). Hence z commutes with g.

Define

The group F is compact and abelian, often finite.

LEMMA 1.2: Mp = (Mp)oF, where (Mp)o is the identity component of
Mp.

PROOF: Let m in Mp be given. Then b0 and Ad(m)b0 are two
maximal abelian subspaces of map and are conjugate by Ad((Mp)0).
Adjusting rn by a member of (Mp)o and changing notation, we may
assume that Ad(m)b0 = b0. Since the Weyl group of (Mp)o is transitive
on the Weyl chambers, we may, after introducing an ordering, assume
Ad(m) preserves the set of positive roots of (Mp)o. Now Ad(m)
leaves ap pointwise fixed, and we may assume that (ap + ib0)’ is

ordered with ap before (ib0)’. Then Ad(m) normalizes ap + ib0 and
preserves the set of positive roots. Write m = gz by (iv) with g in G’,
z in Z(G). Then Ad(g) = Ad(m) normalizes ap + ib0 and preserves the
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set of positive roots, so that g = exp H with H in (ap + ib0)C. Since m
is in Mp, Ad(g) has to be unitary on gC, and thus ad H has only
imaginary eigenvalues. Consequently H =Hi+H2 with Hl in b0 and
H2 in i ap. Here exp Hl is in (Mp)o. Thus m, after a left multiplication
by a member of (Mp)o, may be assumed to be of the form (exp H2)z
with H2 in i aP and z in Z(G). This m is in Mp, clearly commutes with
Mp, and is exhibited as in Z(G) exp i ap ; hence it is in F. The lemma
follows.

Let MAN be a parabolic subgroup containing a minimal parabolic
subgroup built from MpAp. The Lie algebra is written tn E9 a (9 n, and
we have M ~ Mp and a C ap. M satisfies the axioms of [13]. We write
ap = a E9 aM, orthogonal sum. Then aM plays the same role for M that
ap does for G, and it is shown in §1 of [ 13] that the Mp group for M is
the same as the Mp group for G.

LEMMA 1.3: M satisfies the present axioms, and M = MoF, where
Mo is the identity component of M.

REMARK: F is central in Mp but often not central in M. This

circumstance is responsible for certain complications in §4 below.

PROOF: Since M is linear and satisfies the axioms of [13], only
axiom (iv) is at issue. Since M satisfies the axioms of [13] and its Mp
group is the same as for G, we have M = MoMp. Then Lemma 1.2
gives

M = MoMp = M0(Mp)0F = MoF.

Now Mo is contained in MC, and F satisfies

Therefore M satisfies axiom (iv).

Roots relative to a are restrictions to a of ap-roots. The root space
for an a-root e is denoted 9E. If HE is the member of a dual to e, then

is a reductive Lie algebra, and one can show that the group GI"I =
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MG&#x26;E) satisfies the axioms. An a-root E is called reduced if cE is not

an a-root for 0  c  1.

We define Weyl groups W(ap), W(a), and W(aM) as the obvious
normalizers-in-K-divided-by-centralizers. Members of W(a) always
have extensions to members of W(ap); cf. Lemma 8 of [11].
Now suppose, as will henceforth be the case in this paper, that m

has a compact Cartan subalgebra (which can be assumed to be in
f fl m). We shall construct a compact Cartan subalgebra 6 of m with
the property that F normalizes 6 (see Proposition 4.5). First we

remark that a + û will have to be a Cartan subalgebra of g, and roots
relative to it will be real on a + ib. Since any two Cartan subalgebras
of q’ are conjugate via G’, we will be able to find a member c of
Ad(Gc) with

It is this map c, the Cayley transform, that we construct. By
Lemma 4 of [11], we can find an orthogonal system 51, ..., 5n of roots
of (mC, (aM + ib0)C) that vanish on b0 and span aM ; such a system may
be constructed so as to be strongly orthogonal (no 5¡:t Si is a root).
For each Si fix a root vector Xj in m so that [Xj, 03B8Xj] = -2|03B4j|-2H03B4j. Set
Cj = exp 03C0i 4(Xj - OXi). The various Cj commute, and then c = II; cj has
the required properties. Note that c leaves a and b0 pointwise fixed.

§2. Odd and even roots of a

Form the decomposition into MpApNp of a minimal parabolic sub-
group of G, compatibility with the Cartan decomposition of g. Fix a
parabolic subgroup MAN containing MpApNp, and let notations be as
in §1. We shall assume that MAN is cuspidal, i.e., that m has a
compact Cartan subalgebra. Let b be the compact Cartan subalgebra
of m constructed in § 1, and let c: ap + ib0 ~ a + ib be the Cayley
transform.

We have a p = a E9 aM, and a dominates aM in the ordering. If a is

an ap-root, we shall often write a = aR + a, as the decomposition into
the projections on a’ and a’ As in §3 of [11], the hypothesis that
MAN is cuspidal implies that ci = aR - aI is also an ap-root. Follow-

ing [11], we say that a is a useful ap-root if 2(a, 03B1~/|03B1|2 ~ + 1.
Whenever Proposition lOb of [11] applies, this notion depends only
on aR (i.e., it holds for all a, or else for none); thus we can speak
unambiguously of useful a-roots. In the remaining cases, we say aR is
useful if it is the restriction to a of some useful ap-root.
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Proposition lOb applies except when g has a factor that is some

form of the exceptional group G2. A group G2 can arise as a complex
group, with minimal parabolics as the only cuspidal ones, or as an
R-split group, with all parabolics cuspidal. All of these cases have all
ap-roots useful except for the two maximal parabolic subgroups in the
R-split G2, in which case a is built from one root and can be examined
directly. When a is built from the long root and aR is the reduced

a-root, then the positive a-roots are aR and 2aR, both of which are
useful; however, there are two not useful ap-roots that restrict to aR.
When a is built from the short root and aR is the reduced a-root, then

the positive a-roots are aR and 2aR and 3aR, with aR and 2aR useful
and 3aR not useful; the only not useful positive ap-roots are those
restricting to 3aR.

Proposition 10c of [11] says that, apart from G2, if aR is useful, so
is cap for every c ~ 0. Moreover the only possible positive multiples
of a reduced a-root that can be an a-root are {1, 2}, according to the
Corollary to Proposition 12. These statements remain valid for G2,
with the exception of the two cases noted above.
By Proposition 12 of [11], the useful a-roots form a root system A

in a subspace of a, and the Main Theorem of [11] says that the group
W(a) is just the Weyl group of A. We shall use these results starting
in §3. But first, we relate usefulness, multiplicities, and properties of
roots relative to a + ib.

If a = aR + aI is the decomposition of an ap-root according to

a EB aM, recall à is defined as aR - aI- It is shown in the proof of
Lemma 9 of [11] that this conjugation is implemented by a member of
W(ap). Consequently if a is an ap-root, ga and g03B1 have the same

dimension.

LEMMA 2.1: The following conditions on an a-root aR are

equivalent :

(i) The multiplicity of aR as an a-root is odd.
(ii) The multiplicity of aR as an ap-root (when extended by 0 on

aM) is odd.
(iii) aR is a root of a + ib when extended by 0 on ib.

PROOF: The root space for aR as an a-root is the sum

and the remarks above show that the sum 03A303B11&#x3E;0(-) on the right is
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even-dimensional. Hence (i) and (ii) are equivalent. According to the
remarks after Lemma 3 of [11], (ii) holds if and only if aR is a root of

ap + 1b0 when extended by 0 on 1 $o. Applying the Cayley transform c, we
see that (ii) and (iii) are equivalent.

We shall call an a-root aR odd or even according as the dimension

of 03A3c&#x3E;0 ac03B1R is odd or even.’

LEMMA 2.2: The following three conditions on an a-root aR are

equivalent :

(i) aR is odd.
(ii) Some multiple of aR is a root of a + ib when extended by 0 on

i6.

(iii) The reductive Lie algebra g(aR) has a compact Cartan subal-
gebra.

PROOF: If (i) holds, then dim gc003B1R is odd for some c0 &#x3E; 0, and then
Lemma 2.1 applied to COAR shows that (ii) holds. Conversely if (ii)
holds, then COAR is a root for some c0 &#x3E; 0. Moreover, caR is not a root
for positive c other than co, since a nontrivial multiple of a root
cannot be a root. Applying Lemma 2.1 to caR for each c, we obtain
(i). For the equivalence of (ii) and (iii), it is well known that g(03B1R) has a
compact Cartan subalgebra if and only if there exists a root of a + ib
that takes on only real values, i.e., vanishes on b. Such a root must be
a multiple of gR, and the equivalence follows.

LEMMA 2.3: If aR ± al are not-useful roots of a p, then aR + al + 03B3

is not a root of ap + 1$o for any 03B3 ~ 0 in (ib0)’. Moreover, 2aI is a root
of ap + ib0 but 2a, + y is not a root of ap + 1$o for any 03B3 ~ 0 in (ib0)’.

PROOF: First suppose that the roots in question are not in any G2
factor. If aR + aI + y is a root, then aR + 03B1I|2 = |03B3|2 by Lemma 2 of
[11], and 03B1R + 03B1I + 03B3 and aR - al - y are both roots because con-

jugation relative to a carries roots to roots. Then

’ The nomenclature inessential and essential was used in [11] but will be abandoned
now since it is misleading.
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with the second equality holding since aR + aI is not useful; hence

which is not an integer, contradiction. Thus aR + a, + y cannot be a
root of a p + ib0.

Since aR + a, is a root of ap, the only remaining possibility is that
aR + ai itself is a root of ap + ib0. Similarly aR - ai is a root, and their
différence 2a, must be a root of a p + ib0. If also 2a, + y is a root, then
the sum

is a root, contradiction. Thus 2a, + y is not a root of ap + 1$o.
If the roots in question are in a G2 factor, the G2 must be split over

R. No roots in the factor then have a component in (ib0)’. If aR ± al
are not useful, then 2a, is an ap-root, hence a root of ap + ib0, and the
rest of the lemma is vacuous.

LEMMA 2.4: Let 03B1R ± 03B2 be roots of a + i b with 03B1R ~ 0, 03B2 ~ 0, and
2aR not a root of a + ib. Then aR is a useful a-root if and only 2j3 is
not a root of a + ib.

PROOF: For both directions of the proof, form the roots of ap + 1$o
given by

If aR is not useful as an a-root, then aR ± a, are not useful as ap-roots.
Hence Lemma 2.3 shows that y = 0 and that 2ci, is a root of ap + ib0.
Thus 203B2 = c(2ai) is a root of a + ib.

Conversely suppose that aR is useful and that 20 is indeed a root.
In the expression a, + y = c-1(/3), we cannot have ai = 0, by Lemma 1
of [11]. Since 03B1R + 03B1I has to be useful (even in G2, under our

hypotheses), the only possibility is that

By assumption the root string 120, aR + 03B2} does not extend to 2aR, and
therefore JaR + 03B2|2 ~ |203B2|2, from which it follows that |03B1R|2 ~ 3|03B2|2.
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Applying (2.1), we obtain

By Lemma 1 of [11] applied to 2(03B1I + y ), 4 y is not a root of a p + ib0,
and thus

Inequality (2.2) shows that the right side is &#x3E;0, and we have a
contradiction.

LEMMA 2.5: If 03B1R ± 03B2 are roots of a + ib with aR useful and with
03B1R ~ 0, 03B2 ~ 0, and 2aR not a root of a + ib, then ~03B1R + 03B2, 03B1R - 03B2~ = 0
and consequently |03B1R|2 = |03B2|2.

PROOF: The différence 20 of aR + 03B2 and aR - j3 is not a root of

a + ib by Lemma 2.4, and the sum 2aR is not a root by assumption.
Hence aR + j3 and aR - j3 are orthogonal. Since aR + 03B2|2 = 1 aR 03B2|2, it
follows that |03B1R|2 = |03B2|2.

LEMMA 2.6: If aR ± 03B2 are roots of a + i6 with 03B1R ~ 0 and if 2aR is
an a-root, then 2aR is a root of a + ib when extended by 0 by ib.

PROOF: Assume on the contrary that 2aR is not a root of a + ib.

Proposition 10c of [11], together with an examination of the various
G2 cases, shows that aR is useful, and hence we conclude from
Lemma 2.5 that IURI2 = Ip 12. Choose 03B3 ~ 0 in (ib)’ so that 2aR + y is a
root of a + ib. Since 4aR is not an a-root (corollary to Proposition 12
of [11]), Lemma 2.5 gives |203B1R|2 = |03B3|2. Form the inner product

and without loss of generality choose the sign of 0 so that

By the Schwarz inequality
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and thus |~03B2, 03B3~| ~ 2|03B1R|2, with equality if and only if 03B2 = cy. From
(2.4), we then have

and we can conclude from (2.3) that

is a root of a + ib. Again we can apply Lemma 2.5, with the result that
|03B1R|2 = I_y _ p 12 or else y = 0. In the former case,

whence 2~03B2, 03B3~ = l03B3l2= 4BaRB2 and equality holds in the Schwarz in-
equality (2.5). Thus 03B2 = cy in both cases.

If c ~ 1, then |03B3|2 = 2~03B2, y) and 03B2 = cy says that c = 1/2 and y = 203B2.
That is, aR + 03B2 and 2(aR + 0) are roots of a + ib, in contradiction to
the f act that twice a root is not a root.

If c = 1, then aR must be a root of a + ib by (2.6); thus 03B2 is a root,
and 203B1R = (203B1R + 03B2) - 03B2 is a root, contradiction. This completes the
proof.

LEMMA 2.7: Let aR be a reduced a-root.

(a) If aR and 2aR are both a-roots, then aR has even multiplicity as an
a-root, 2aR has odd multiplicity as an a-root, 2aR is a root of
a + ib when extended by 0 on ib, aR and 2aR are both useful, and
aR is odd. If also 3aR is an a-root, it has even multiplicity and is
not useful.

(b) If aR is odd and 2aR is not an a-root, then aR is useful and, when
extended by 0 on ib, is a root of a + ib.

(c) If aR is not useful, then aR is even.
(d) W(a) carries odd roots to odd roots and even roots to even roots.

PROOF: In (a), Lemma 2.6 shows that 2aR is a root of a + ib. Since
twice a root is not a root, aR cannot be a root. The conclusions about

multiplicities of aR and 2aR then follow from Lemma 2.1. If 3aR is not
an a-root, then the rest of (a) follows immediately. If 3aR is an a-root,
the roots in question lie in a split G2 factor with a built from a short
root, and (a) follows by looking at this case directly.
For (b), Lemma 2.1 says aR extends to be a root of a + i6, and this

extension exhibits aR as useful. Conclusion (c) follows from (a) and
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(b). Finally in (d), if w represents a member of W(a), then Ad(w)
carries the root space for aR to the root space for waR, and the

conclusion follows.

LEMMA 2.8: If aR and aR are nonorthogonal useful roots of the
same length, then aR and aR are either both even or both odd.

PROOF: We may assume that aR and aR are linearly independent.
Then the hypotheses imply that PaRPakaR = aR, with the indicated root
reflections existing in W(a) since aR and aR are useful. The result
therefore follows from Lemma 2.7d.

§3. Action of W(a) on compact Cartan subalgebra of iri

We continue with the notation of §2. In order to understand the
action of W(a) on discrete series of M, we shall first introduce in

Theorem 3.7 an action of W(a) on the compact Cartan subalgebra b of
m. For this purpose let us recall the main theorem of [11] - that W(a)
is exactly the Weyl group of the system A of useful roots of a.

Ultimately we shall decompose W(a) into a semidirect product, in
order to analyze the action on b, and the semidirect product decom-
position and action will depend upon choices of orderings. Thus we
suppose that a’ and (ib)’ have been ordered lexicographically in some
fashion. Let

ne = f those simple roots of A that are even}

We = subgroup of W(a)(= W(0394)) generated by reflections
in the members of ne.

Notice that simplicity has been defined relative to the set A of useful
roots of a, not to the set of all roots of a. The key result behind the
action of W(a) on 6 is the f ollowing imbedding theorem.

PROPOSITION 3.1: It is possible to choose J3 in (i b)’ corresponding to
each aR in IIe so that aR + (3 is a root of a + ib, so that the reflection P03B2

preserves the set of positive roots of (m,.b), and so that the linear
extension of the mapping given by 03B1R ~ J(03B1R) = J3 is an isometry of aé
into (ib)’.
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Some explanation is appropriate. Suppose q is complex semisimple
and the parabolic subgroup is minimal. Then trtp = i ap, and the action
of W(ap) on mp is just the action on ap transported to mp via i. On the
other hand, if g is real split and if the parabolic subgroup is minimal,
then mp = 0 and W(ap) acts trivially. The general case behaves like a
mixture of these two, with a distinction made according as whether
roots are even or odd. Reflections in even roots are analogous to
those in the complex case, and reflections in odd roots are analogous
to those in real split groups. To capture this action, we first imbed the
even simple roots into (ib)’ by a generalization of the multiplication-
by-i map of the complex semisimple case.

LEMMA 3.2:

(a) Let aR be an odd a-root. Then there is a representative w in Ko
of the reflection paR on a such that w is in the analytic subgroup
corresponding to q(aR) and such that Ad(w) is the identity on m.

(b) Let aR be an even useful a-root, and let aR ± 13 be roots of a + iû
restricting to aR. Then there is a representative w in Ko of the reflection
PaR on a such that w is in the analytic subgroup corresponding to g(03B1R)
and such that Ad(w) is -1 on IRHf3 and is + 1 on the orthocomple-
ment of Hf3 in ib.

PROOF: (a) Since aR is odd, Lemma 2.2 shows that q(03B1R) has a
compact Cartan subalgebra. By Lemma 4 of [11], there exists w, in
the analytic subgroup with Lie algebra g(03B1R) ~  such that Ad(wl) is 1

on g(03B1R) ~ l and -1 on q(aR) ~ p. Applying Lemma 4 of [ 11] to m, we
obtain W2 in the analytic subgroup with Lie algebra m ~ l such that
Ad(w2) is 1 on m n t and -1 on m n p. Then w = w1w2 has the

required properties.
(b) Let a = aR + j3, and let Xa be a root vector in gC. With con-

jugation defined relative to g, Xa is then a root vector for â = aR - 13,
since roots are imaginary on b. The complexification of the Cartan
involution 0 is 1 on i b and - 1 on a, and hence

Thus aXa is a root vector for - a. Now B(X, - 03B8X) is &#x3E; 0 for all X ~ 0

in gC and in particular for Xa. Multiply Xa by a constant so that
B(X03B1, - 03B8X03B1) = 2/|03B1|2, set H = 2Ial-2Ha, and set X-03B1 = -03B8X03B1. Then
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and it follows from the theory of SL(2, C) that

represents the Weyl group reflection for a in (a + ib)’. Similarly

represents the Weyl group reflection for â. The roots a and a are

strongly orthogonal by Lemmas 2.5 and 2.4, from which it follows

that

Consequently w+w- is exhibited as in the (real) analytic subgroup
corresponding to q(03B1R). Evidently Ad(w’w-) is -1 on CH03B1 + CH03B1 and
is + 1 on the orthocomplement in (a + ib)C. Hence Ad(w+w-) is -1 on
RH03B1R + RH03B2 and is + 1 on the orthocomplement in a + ib. Thus w =
w+w- has the required properties.

LEMMA 3.3: Let a, and a2 be distinct members of ne such that
03B11 + 03B12 is an a-root. Then 2(03B11 + 03B12) is not an a-root.

PROOF: An exceptional G2 factor has no even useful roots. Thus
we may disregard these cases in the lemma. If 2(a, + a2) is an a-root,
then al + a2 and 2(ai + a2) are useful (hence in A) by Proposition 10c
of [11]. Without loss of generality let la112 ~ |03B12|2 and form the a,-
string in A through 2(a, + a2). Then

since ai and a2 are distinct and simple within A and since |03B11|2 ~ la212.
Therefore

is a member of A, and a2 must be odd by Lemma 2.7a, contradiction.

LEMMA 3.4: Let a = 03B11 + 03B21 and a’ = a2+02 be roots of a + ib such
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that 03B11 and a2 are useful even a-roots, and suppose 03B1 + a’ is a root of

a + ib but 03B11 + 03B12 is not useful. Then |03B11| = |03B12|,  = + 1, and 03B1 is
orthogonal to a’.

PROOF: Without loss of generality, let |03B12| ~ |03B11|. Since the restric-
tion to a of

is not useful, Lemma 2.4 shows that 2(p, + 03B22) is a root of a + ib.

Moreover,

Expanding the right side and using the equality la B2 = 2|03B11|2 given by
Lemma 2.5, we obtain

That is,

Since a, and a2 are in à and |03B12| ~ lall, the right side is an integer. The
left side is 3/2 of the ratio of the length squared of twô roots. Thus
both sides ’of (3.2) are 3:

Let la212 = nia 112 with 1 ~ n :5 4. Then (3.4) gives 2~03B11, a2)/la 112 = 2 - n,
which is impossible for n = 3 if a2 is long and a, is short. If n = 4,
then a2 = -2a,; hence a, + a2 = -a, is useful, contrary to hypothesis.
Suppose n = 2, so that |03B12|2 = 21a 112. By Lemma 2.5, la ’12 = 21a 12.
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Thus (3.1) and (3.3) lead to the conclusion that

which contradicts the fact that the sum of a short root and a long root
is necessarily short.
Thus n = 1, so that |03B12|2 = Ball2 and 2~03B11, (2)/lalI2 = + 1. By Lemma

2.5, la ’12 = la 12 . Thus (3.1) and (3.3) lead to the conclusion that

Expanding the left side, we see immediately that (a, a’) = 0.

LEMMA 3.5: Let 03B11 + 03B21 and 03B12 + 03B22 be roots of a + ib that restrict
on n to distinct a, and a2 in ne. If a, 1 and a2 are orthogonal, then so
are 03B11 + 03B21 and a2:t 132, If a, 1 and a2 are not orthogonal, then exactly
one of (a, + 01, a2 + 03B22) and (ail + 03B21, 03B12- 03B22~ is 0. The first one is 0 if
and only if ~03B21, 03B22~ is &#x3E;0, and the second one is 0 if and only if
~03B21, 03B22~ is 0.

PROOF: First suppose a, and a2 are orthogonal. Since a, and a2 are

simple for A, al - a2 is not a useful a-root. But nor can 03B11 2013 a2 be an

n-root that is not useful, by Lemma 3.4. Hence (a, + 131) - (a2 ± 132) are
not roots. Also a, - a2 not in 0 and a, orthogonal to a2 imply 03B11 + 03B12
is not in A, and a, + a2 cannot be an a-root that is not useful, again by
Lemma 3.4. Hence (a, + 131) + (a2 ± 03B22) are not roots. Thus ci + 131 is

orthogonal to a2 ± 132.
Now suppose that ai and a2 are not orthogonal. Since they are

simple for A, we must have (al, a2)  0. Then one of the two inner

products ~03B11 + 03B21, 03B12 ± 03B22) is ~ 0. Say ~03B11 + 03B21, 03B12 + 03B22~ ~ 0. We shall
show that this inner product is 0. In the contrary case, (03B11 + 03B21) -
(03B12 + 03B22) is a root and the orthogonality conclusion of Lemma 3.4
shows that a, - a2 is useful, contradicting the fact that a, 1 and a2 are
simple in the system 0 of useful roots of a. Thus (a, + 03B21, a2 + 132) is
 0.

It follows that the sum

is a root of a + ib. By Lemma 3.3, 2(a, + a2) is not an a-root, and we
know 03B11+03B12 is useful since ~03B11, 03B12)  0 and a, and a2 are in A. We
shall show shortly that 03B21 + 03B22 ~ 0. Then it follows from Lemma 2.5
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that la. + 03B12|2 = 113. + 13212. Since Lemma 2.5 also gives la.12 = |03B21|2 and
|03B12|2 = |03B22|2, we conclude that (a., 03B12~ = (13., (32). Therefore the other
inner product under consideration is

In this case (01, 03B22) = ~03B11, a2) is 0. If instead we had started with

(a, + 0 1, a2 - 03B22) ~ 0, we could use this argument with j32 replaced by
- (32 to conclude (ai+j3t,a2+j32)=0 and ~03B21, 03B22~ &#x3E; 0.
Thus to complete the proof, we show (31 + 03B22 ~ 0. If j32 = -01, then

la112 = |03B21|2 = |03B22|2 = la212 says that a, and a2 are distinct nonorthogonal
simple roots in à of the same length; thus 2(a,, 03B12~/|03B11|2 = -1. Hence

and (03B11 + 03B21) - (03B12 - 03B22) is a root. The nonorthogonality of (03B11 + 03B21)
and - (03B12 - 03B22), because of Lemma 3.4, implies that 03B11 - 03B12 is useful,
and then we have a contradiction to the simplicity of a, and a2.

LEMMA 3.6: Let aR be an even useful a-root and choose 03B2 &#x3E; 0 in

(ib)’ so that aR + j3 is a root of a + ib and j3 is as small as possible. If
y is any positive root of (m, b), then p03B203B3 is a root of (m, û) and is
positive.

PROOF: The roots aR + (3 and aR - 03B2 are orthogonal by Lemma 2.5,
and thus

from which it follows that p03B203B3 is a root. This root clearly vanishes on
a and is thus a root of (m, b). We still need to show that ppy &#x3E; 0.

Suppose on the contrary that

Then we must have ~03B3, 03B2~ &#x3E; 0. Now p03B3(03B1R+03B2)=03B1R+p03B303B2 is a root

and so is aR - p03B303B2. The inequality on (y, 03B2~ implies that
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The minimality of j3 implies that P03B303B2 ~ - 0. Therefore

Combining (3.5) and (3.6), we obtain

Now (y, 03B2~ &#x3E; 0 says aR + 03B2 - y is a root. Here (3 - y is not 0 since aR
is even, and thus Lemma 2.5 gives |03B1R|2 = |03B2 - y12. Also |03B1R|2 B |03B2|2 by
Lemma 2.5, and so 2(p, y) = |03B3|2. Substituting in (3.7), we obtain

If N is the coeflicient of y on the right, we conclude N &#x3E; 1. Then

is a root with N &#x3E; 1. Hence 2aR is an a-root. From Lemma 2.7a we

conclude that aR is odd, contradiction. Thus we must have p03B203B3 &#x3E; 0.

PROOF OF PROPOSITION 3.1: For each aR in IIe, let J (aR) = ±j3, with

03B2 as in Lemma 3.6 and with the sign to be determined shortly. The
signs will be determined so that 03B1R ~ aR implies

Here (aR, 03B1’R~ = (JaR, JaR). Since also laRI2 = IJaRI2 from Lemma 2.5,
the isometry will follow. The preservation of the positive roots of m is
immediate from Lemma 3.6.

Thus we want to choose the sign of each JaR so that (3.8) holds.
Since the Dynkin diagram of à has no loops [7, p. 130], we can
number the simple roots of à (including therefore the members of 03A0e)
so that each one is immediately connected with only one previous
one. We choose the signs inductively, following this numbering.
Choose the sign arbitrarily for the first member of 03A0e. Assuming that
the signs have been chosen for the first j -1 members of 03A0e in such a
way that (3.8) holds, look at the jt" case. If ((aR);, (03B1R)i~ = 0, Lemma
3.6 shows that (3.8) will hold for j and i, no matter which sign is used.
There is at most one i  j for which ~(03B1R)j, (03B1R)i~ is ~ 0. For this i,
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Lemma 3.6 says that (aR)i + J(aR)i is orthogonal to either (aR)j + 03B2j or
(03B1R)j - 03B2j. In the first case define J(03B1R)j = -03B2i- In the second case

define J (UR)j = (3j. Then the orthogonality is proved with j signs
chosen, and the choice is completed by induction. This completes the
proof.

Fix J: a’e ~ ib as in Proposition 3.1. Let Wn be the set of simple
reflections relative to A, so that Wn C W(a). Then J defines a map of
Wn into the orthogonal group O(ib)’ as follows: If aR is in IIe, map p«R
into pJ«R. If aR is a simple root in à not in IIe, map p«R into the

identity.

THEOREM 3.7: The mapping of Wn into O(ib)’ defined by J extends
to a group homomorphism of W(a) into O(ib)’. The resulting action of
W(a) on (ib)’ has the properties that
(a) each p in W(a) has a representative w in the normalizer of a in Ko

such that Ad(w) agrees on i b with the action of p.
(b) for w in We, Jw = wJ on aé, and
(c) for w in W(a), if y is a positive root of (m, b), then so is W’Y.

PROOF: The Main Theorem of [11] says that Wn generates W(a).
Let F( Wn) be the free group on Wn. The mapping of Wn into O(ib)’
extends to a group homomorphism ~ of F( Wn) into O(ib)’, and we
shall show that the relation subgroup of F(Wn) maps to the identity.
Then the rest follows from Lemma 3.2 and Proposition 3.1. Thus we
are to show that the basic relations (see [1], pages 11-12, 74)

map to the identity. Clearly CP(Pa)2 = 1. Let i and j be given. If ai and
aj are both in IIe, then

on J(aé) because it is true on Qé; also each factor on the left side of
(3.9) is the identity on J(a’e)~. So (3.9) holds for such i and j. If neither
ai nor aj is in ne, then (3.9) holds because every factor is 1. If, say, ai
is in ne and aj is not, then the left side of (3.9) reduces to

~(pJ03B1i)2, 3, 4, or 6, and this is 1 if the exponent is even. If the exponent is

odd, then it is 3 and cri and aj are nonorthogonal and of equal length.
Lemma 2.8 rules out this situation as a possibility and completes the
proof.
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LEMMA 3.8: Let E be a useful a-root, and fix an ordering on (ib)’.
Then the action of p, on (ib)’ given in Theorem 3.7 is as follows :
(a) it is PE’ if E is even and E’ is minimal among positive elements of

(ib)’ such that E + E’ is a root of a + ib.
(b) it is 1 if E is odd.

PROOF: (a) Let qE be the action on (ib)’ given in Theorem 3.7. Then
Theorem 3.7 and the first part of the proof of Lemma 3.6 show that
p,q,E and pEpE, are both in the complex Weyl group of a + ib. Hence so
is qEpE,. But qEpE, fixes a and by Chevalley’s Lemma must be in the
complex Weyl group of ib. By Theorem 3.7c and Lemma 3.6, q~P~’

leaves the positive roots of ib stable. Hence qEpE- = 1 and qE = pe.
(b) We use the same argument as in (a) except that we use 1 in

place of pe and drop the reference to Lemma 3.6. The element p, is in
the complex Weyl group of a + ib by Lemma 3.2a.

Let S be the subgroup of elements w of W(a) that act as 1 on (ib)’
in the action of Theorem 3.7. Recall that We was defined at the

beginning of §3.

PROPOSITION 3.9: S is normal in W(a), and W(a) is the semidirect

product W(a) = WeS.

PROOF: Clearly S is normal. If w is in S n W,, then w is in We and
w = 1 on J(aé). By Theorem 3.7b, w = 1 on aé and so w = 1. To see
that W(a) = WeS, let w be in W(a). Consider the action of w on (ib)’.
Since w is a product of reflections in even roots that act as members
of We and reflections in odd roots that act as the identity (by
definition of the action), w has the same eff ect on (ib)’ as a member we
of We. Then w-1ew acts as the identity on (ib)’ and so is in S. Thus
W = WeS.

The set à of useful a-roots is a root system, possibly nonreduced.
Let

(3.10) 03940 = {~ in A E has odd multiplicity}.

PROPOSITION 3.10: Ao is a reduced root system, and S is its Weyl
group.

PROOF: In view of Lemma 2.7, Ao picks out one positive multiple
of each reduced odd a-root, together with its negative. If a is a
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reduced odd a-root, the positive multiple is a if 2a is not an a-root,
and it is 2a otherwise. Then it follows from Lemma 2.7d that Ao is
closed under its own reflections. Since it is a subset of a root system,
it is itself a root system. Ao is reduced, according to Lemma 2.7a.

Its Weyl group W(Ao) is contained in S, by Lemma 3.8b. To prove
equality, it is enough to prove that the only w in S that leaves stable the
set of positive roots in Ao is w = 1. By Proposition 3.9 it is enough to
prove that any w in W(a) that leaves stable the set of positive roots in
Ao is in We.
We do the latter by induction on the length (w), the case 1(w) = 0

being trivial. Suppose t(w) &#x3E; 0 and suppose w leaves stable the set of

positive roots in Ao. There must be some member (3 of IIe such that
w03B2  0, since otherwise w permutes the positive roots in A. Then

1(wpT)  ~(w), pp is in We, and we claim wppe &#x3E; 0 for every E &#x3E; 0 in

Ao. [In fact, if E &#x3E; 0 is in Ao, then so is Pf3E since the only positive roots
in à mapped by pp into negative roots are the multiples of 03B2, and E is
not a multiple of (3. Then wppe is positive since we are assuming w
carries positive roots of Ao into positive roots.] These facts reduce the
proof to showing that wpjg is in We, and the induction is complete.

§4. Action of W(a) on discrète séries of M

We continue with the notation of §2. In this section we shall use
Theorem 3.7 to analyze in part the action of W(a) on (equivalence
classes of) discrete series representations of M.
We begin with the identity component Mo. Let e be a discrete series

representation of Mo. Essentially as given in [2], the Harish-Chandra
parameter IL of e is by definition the unique member of (ib)’ such that

(11, 8) &#x3E; 0 for every compact root 8 &#x3E; 0 of (m, b)

and such that the distribution character ee of e is given on exp b as
Oe = ~(03BC)039803BC, where ~(03BC) is a well-defined sign and where 039803BC is the

function

Here ex is the character on exp b corresponding to À, WKM is the Weyl
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group of the compact roots, and p is half the sum of the positive
roots; if p fails to be integral, some of the ingredients of the formula
are not well defined, but the formula as a whole is. The parameter 03BC
is nonsingular (with respect to all roots of (m, b)) and determines e up
to unitary equivalence.

PROPOSITION 4.1: Let cp be an automorphism of Mo leaving f ~ m
stable and 6 stable and the set of positive compact roots of (m, b)
stable. For a discrete series e of Mo with Harish-Chandra parameter
ii, let 03BE~(m) = 03BE(~-1m) and 03BC~(H) = 03BC(~-1H). Then 03B6~ is a discrete

series with Harish-Chandra parameter 03BC~.

We omit the proof. One can give a straightforward proof by means
of characters, or one can give a somewhat shorter proof that uses the
theory of lowest K-types.
To pass to M, recall from §1 that Mo has finite index in M and that

where F = ZMP f1 Z(G) exp i ap. Define a subgroup of M by

where ZM is the center of M.

LEMMA 4.2: M# = M0. (F n ZM )

PROOF: Suppose z in ZM decomposes as z = mof with mo in Mo and
f in F. Then

and f commutes with mo. Since F is abelian, it follows that f is in ZM.
Thus z = mof exhibits z as in Mo - (F fl ZM).

LEMMA 4.3 : ZM(b) C M#.

PROOF: Let m = k exp X be the Cartan decomposition of a mem-
ber of ZM(b). Then (03B8m)-1m = exp 2X is in ZM(b) and so
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f or all b in exp b. Differentiating, we obtain [b, X] = 0 and so X is in b.
Since X is also in p, X = 0. Thus m is in ZKnM(b). By the axioms of
§1, write m = mCz with m C in the connected complex group MC and z
in the centralizer Z(M) of M. Since Ad(m) = Ad(mC) is 1 on b, mc is
in exp bC. Write mC = m lm2 with m in exp(ib) and m2 in exp b. Now
Ad(m2) and Ad(m) are unitary on m’ since m is in K, and Ad(mi) is
unitary only if m 1= 1. Thus m = 1 and mC is in exp û C Mo. Then z
must be in M and so z is in ZM. Thus rn = m’z is in MoZM = M#.

A discrete series representation of M# is scalar on F ~ ZM (since
F fl ZM is central) and therefore determines a central character on
F fl ZM. Moreover the restriction of the discrete series to Mo is still

irreducible. Thus every discrete series representation of M# is

determined by its central character and by the Harish-Chandra

parameter of its restriction to Mo. In the context of the previous
lemma, the following lemma is implicit in the work of Harish-
Chandra. Its proof was communicated to us by G. Zuckerman.

LEMMA 4.4: If e is a discrete series representation of M, then 03BE|M#
splits into the sum of inequivalent discrete series of M*.

REMARK: See Lemma 5.3 of [13] concerning the existence of the
splitting.

PROOF: We are to show that M/M# acts without fixed points on the
discrete series of M#. Thus let w be a discrete series representation
of M#, and let x be in M. Suppose that 03C9x ~ W. We show x is in M#.

Let B = ZM#(b). The groups B and x-1Bx are two compact Cartan
subgroups of M# are thus conjugate: x-’Bx = m#Bm#-1 for some m#
in M#. Then xm# is a member s of the normalizer NM(B), and it is
enough to show that s is in M# under the assumption that w ~ 03C9.
Adjusting s by a member of the compact Weyl group of (m, b), we see
that it is enough to show that if t is in NM(B) and 03C9t ~ W and t leaves
stable the positive compact roots, then t is in M#.
Applying Proposition 4.1, we see that Ad(t) fixes the Harish-

Chandra parameter of w, which is a regular element. Since Ad(t) is in
the connected complex adjoint group, we conclude that Ad(t) cen-
tralizes bc. Thus t is in ZM(b), and the result follows from Lemma 4.3.

We can reinterpret Lemma 4.4 in terms of Mackey theory [14]: If

03BE|M# = 03BE1 + ... + e. is the decomposition into irreducible pieces,
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then

This means that e determines and is determined by its central charac-
ter on F f1 ZM and by the unordered set {03BCj} of Harish-Chandra

parameters of the constituents of 03BE|M#. Lemma 4.4 implies that the 03BCj
are distinct, since the central character is the same for each ej.
The constituents ej can all be expressed in terms of one of them, up

to unitary equivalence, as ei = fiel, where f1, ..., f n is a set of coset

representatives for F/(F fl ZM ). We shall translate this fact into a

conclusion about the parameters {03BCj} in Corollary 4.6 below.

PROPOSITION 4.5: If f is in F, then f normalizes Mo, t fl m, and b,
and in fact f represents a member of the complex Weyl group of
(m, b). If s is selected to represent the member of the compact Weyl
group of (m, 6) such that sf leaves stable the positive compact roots of
(m, b), and if eo is a discrete series representation of Mo with Harish-
Chandra parameter IL, then f03BE0 has parameter sfji, where sfbt(H)
03BC(Ad(sf)-1H).

PROOF: Suppose we can show that f normalizes b. Then the fact
that Ad(f) is in Ad(MC) implies that f represents a member of the
complex Weyl group, and the remaining parts of the proposition
follow from Proposition 4.1.
By construction we have

with c an explicit Cayley transform that carries H,6, in aM into a

multiple of i(X03B4j + 03B8X03B4j) in c(aM)  ib, where {03B4j} is a particular basis
of a M given by strongly orthogonal roots. Now Ad(f ) is in exp(i ada p),
which acts trivially on b0, and we need to see that it normalizes c(aM).
Let Ad(f) = exp( adH), H E a p. Then

This has to be in g, and X03B4j and 03B8X03B4j are in g. Since 9 ~ ig = 0, it
f ollow s that 03B4j(H ) is a multiple of 03C0 and that

This completes the proof.
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NOTATION: We write mf(03BC) for sf03BC in the proposition. Then m f is
a member of the orthogonal group on (i b)’.

COROLLARY 4.6: Let e be a discrete series representation of M with
Harish-Chandra parameter set Iiiil. Then the parameters I£j are

exactly the distinct values that mf(03BC1) assumes as f ranges through
coset representatives of FI(F ~ ZM).

PROOF: This is immediate from Proposition 4.5 since the con-

stituents ei of e are characterized as all fel.

PROPOSITION 4.7: With an ordering for (ib)’ fixed, let e be a discrete
series representation with central character X on F n ZM and with
Harish-Chandra parameter set {03BCj}. If p is in W(a) and w is a

representative of p in the normalizer of a in K, then w03BE is a discrete
series representation with central character pX and with Harish-

Chandra parameter set lpgjl, where pgj refers to the action of W(a)
on (ib)’ given in Theorem 3.7.

REMARKS: Here we(m) is defined as 03B6(w-1mw). In defining pX, the
ambiguity in choosing a representative of p is by an element of M,
and this ambiguity is harmless since X is defined only on central
elements of M.

PROOF: The central character of we is obviously pX. To get at the
parameter set of we, first assume that w is the special representative
of p given in Theorem 3.7a. The automorphism ~(m ) = w -’ m w of Mo
leaves r n m stable since w is in K and normalizes a, it leaves b stable

by Theorem 3.7a, and it leaves the positive roots stable by Theorem
3.7c. Hence Proposition 4.1 implies that the Harish-Chandra

parameter of wejlm. is pgi if gj is the parameter of ej. This proves the
proposition for special w.

For general w, we can write w = m w’ with w’ of the special form
above and with m in K n M. Applying the special case, we see that
we are to show that if 03BE has parameter set litil, then so does me. But
m03BE is equivalent with 03BE and so has the same parameter set.

LEMMA 4.8: Let p be in W(a). In terms of the action of Theorem
3.7, if f is in F, then pm¡p-1 = mg for some g in F.

PROOF: Let p act by its special representative w in Nk(a) and let
mf act by sf with s in NK~N0(b). Since wfw-1 is in M, we can write
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wfw-1 = mog with mo in Mo and g in F. By Proposition 4.5, the
elements w, f, and g all normalize b and are in K. Hence the same

thing is true of mo, so that mo is in NKnm,,,(b). Now w normalizes Mo,
so that wsw-1 is in Mo; since w and s normalize b and are in K, wsw-1
is in NK~M0(b). Thus we can write

with (wsw-1)rno in NK~M0(b) and g in F, and the lemma follows.

PROPOSITION 4.9: With an ordering for (i b)’ fixed, let e be a discrete
series representation of M with central character X on ZMp fl ZM and
with Harish-Chandra parameter set lgjl. Let p be in W(a) and let p
act on (ib)’ as in Theorem 3.7. Then
(a) pe is equivalent with e is and only if pX = X and p03BC1 = 03BCj for some

j, and
(b) p03BE|M0 is equivalent with 03BE|M0 if and only if p03BC1 = ILj for some j.

PROOF: The representation pe has central character py and

parameter set {p03BCj} by Proposition 4.7. Hence the necessity in (a) and
(b) is immediate. By Lemma 4.8 and Corollary 4.6,

p03BCi = pmfl£l pmfp-lpill = mg(PILI).

Hence PILI = ILj implies {p03BCi} = {03BCi}, and then it follows that p03BE|M0 is
equivalent with 03BE|M0. This proves the sufficiency in (b).
Suppose also that px = X. From p03BC1 = 03BCj, we conclude by the same

argument as in Proposition 4.7 that w03BE1|M0 ~ 03BEj|M0, where w is the

special representative of p in Theorem 3.7. Since px = X, we obtain
w03BE1|M# ~ 03BEj|M#. Applying (4.1), we conclude we e, and this proves the
sufficiency in (a).

THEOREM 4.10: Let e be a discrete series representation of M, and
let p be in the subgroup We of W(a). (See 03BE3.) If P03BE|M0 is equivalent with
03BE|M0’ then p is the product of reflections paR in We such that p03B1R03BE|M0 is
equivalent with 03BE|M0.

PROOF: An ordering in a’ has been specified to make We defined,
but an ordering in (ib)’ is at our disposal. First we arbitrarily define
positivity for the compact roots of (m, b), and this definition is enough
to determine the Harish-Chandra parameter set {03BCj} for e. Now
choose the ordering in (ib)’ in such a way that 03BC1 is dominant with

respect to all positive roots of (m, b).
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We are given that p03BE|M0 ~ 03BE|M0. By Proposition 4.9b and Corollary
4.6, pi£l = m¡lJ;l in terms of the action of Theorem 3.7. Now Theorem
3.7 says that p leaves stable the positive roots of (m, b). Thus y &#x3E; 0
implies p-ly &#x3E; 0 and

li, being dominant nonsingular. Thus p03BC1 is dominant and mf03BC1 must
be dominant. According to Proposition 4.5, mf is in the complex Weyl
group, and thus mfiii = 03BC1. Thus p03BC1= iii.
Theorem 3.7b says that the action of We on (ib)’ is isomorphic with

the standard Weyl group action of W,. By Chevalley’s Lemma,
pli, = 03BC1 implies that p is the product of reflections p03B1R fixing iii. But

p03B1R03BC1 = 03BC1 implies that p03B1R03BE|M0 Ø 03BE|M0, by Proposition 4.9b. This com-
pletes the proof.

§5. Plancherel factors for parabolic rank one cases

We continue with the notation of §2. In this section we shall

assemble all the tools needed to reduce the study of the R group to
the case of a minimal parabolic in a group split over R.

For this purpose we recall that we can associate an element y« in

Go to each ap-root a by the definition

Properties of the elements ya are assembled on page 279 of [11]; each
ya satisfies yi = 1 and is in ZMp.
We recall also that if e is an irreducible unitary representation of

M, then we can associate a "Plancherel factor" 1L¡;,aR (v) to each

reduced positive a-root aR. This is a meromorphic function of v in a’C
obtained from intertwining operators and is holomorphic for v im-
aginary. It depends only on the projection of v into (a(03B1R))’C, and it may
therefore be treated as a function of one complex variable. If e is in
the discrete series, it appears in the definition of the R group, and its

vanishing properties are related to reducibility questions. See §§10-13
of [13].
The main result of this section is as follows.

PROPOSITION 5.1: Suppose E is a reduced a-root and e is a discrete
series representation of M.
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(a) If E is even and useful and if p~03BE|M0 ~ 03BE|M0’ then PEÇ e and

03BC03BE,~(0) = 0.
(b) If E is odd and 2E is an a-root, then P~03BE ~ 03BE.
(c) If E is odd and 2e is not an a-root, then 03BC03BE,~(0) = 0 if 03BE(03B3~) = + I

and 03BC03BE,~(0) ~ 0 if 03BE(03B3~) = - I. If ç( ’)’E) = +I, then PEÇ e.
(d) If E is odd and 2E is an a-root and if S is an odd a-root such

that p03B403BE(03B32~) ~ 03BE(03B32~), then 03BCp03B403BE,~(0) is zero if and only if 03BC03BE.~(0) is not
zero.

LEMMA 5.2: Let E be a useful a-root. If z is in ZM fl F, then

where Po the reflection in E, is extended to be in W(ap) and where yE is
the element of ZM n F given by

(5.2) yE = exp 2’TTilel-2He.

I f X is a character of ZM ~ F, then p~~ = X if ~ (03B3~ ) = 1.

REMARK: Formula (5.2) deals with a-roots, and formula (5.1) deals
with ap-roots. Part of the conclusion here is that (5.2) necessarily
leads to an element of ZM ~ F.

PROOF: Since X(z)(p,X(z»-’= ~(zp-1~z-1p~) and since PE normalizes
both ZM and F, the second statement follows from the first. Since z is
in F, write

with z’ in Z(G), Ho in a, and HaM in aM. By Lemma 4 of [11], -1 is in
W(aM); let wm be a representative. Since z is in ZM, we have

and therefore

Hence
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Applying the first of these equalities to a root vector for the a-root E,
we obtain

First suppose E is odd. Since the conclusion of the lemma is

independent of the representative of pE, we may extend p, so as to be
the identity on a M. If we write Ha above as

with H~~ orthogonal to H,, then (5.5) shows n is an integer. Moreover

When we use (5.3) to form zp-1~z-1p~, the z’ cancels and we obtain

as required.
Now let us suppose that E is even and useful. If E, extended by 0 on

aM, is an ap-root, then the argument in the previous paragraph applies
and gives the desired conclusion. Thus we shall assume that e does
not extend by 0 to become an ap-root. From the first paragraph of §4
of [11], we see that there must exist orthogonal aP-roots a = ~ + ~’
and a = E - E’ extending E. If we apply the second equality of (5.4) to
a root vector for the a p -root a, we obtain

Then we have

and

with n and both integers. Lemma 11 of [11] shows that we may use
PaPa as an extension of p~. Then
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Thus

By (5.6), n and m are both integers and thus n + m is congruent to
n - m modulo 2. The element (5.7) must therefore be yay« or 1. When
n = 1 and m = 0, we see from (5.7) that y«yà = -y,, with yE defined as in
(5.2). Hence (5.7) is always either yE or 1, and the proof is complete.

LEMMA 5.3: Let E + E’ be an extension to a + ib of an even useful
a-root E. Then

PROOF: The quotient of the left side by the right side is the element
in GC given by

since lE - E’12 = 21EI2 by Lemma 2.5. This is of the form _y 2for a the
root of GC given by E - E’, and thus it equals 1.

LEMMA 5.4: Suppose that Ho is in ib and z = exp 203C0iH0 is in Zm.
Let e be a discrete series representation of M, and suppose 03BC1 is one of
the Harish-Chandra parameters of e and is dominant. Let pu be half
the sum of the positive roots of (m, b). Then e(z) is the scalar

exp 203C0i(03BC1- pM )(Ho).

REMARKS: This result can be deduced from a careful reading of
Harish-Chandra [2]. However, we give a proof that uses the sub-
sequent work on discrete series by Schmid.

PROOF: Let pn be half the sum of the positive noncompact roots of
(m, b). Then j£l + 2pn - PM is the Blattner parameter (lowest highest
weight) of the component of ÇIMo with Harish-Chandra parameter 03BC1.

From the work of Schmid ([15], Theorem 1.3) there exists a vector in
the representation space on which b acts with weight li, + 2pn - pM. On
this vector e(z) acts by the scalar
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Since z is central, e(z) acts by (5.8) everywhere. In this expression,
exp 2pn(2viHo) = 1 since 2pn is a sum of roots and since z is central.
The lemma follows.

PROOF OF PROPOSITION 5. la: Introduce an ordering in (fb)’ as in the
proof of Theorem 4.10 so that we can obtain the conclusion from
Proposition 4.9b that p~03BC1 = li, 1 for one of the Harish-Chandra

parameters 03BC1 of e. To obtain pe e, we are to prove that the central

character X of e on ZM ~ F has p~~ = X, and Lemma 5.2 shows that it
is enough to show X(yE) = 1. Define E’ as in Lemma 3.8a. Then

Lemma 5.3 shows that

The action of Pe on (ib)’ being by pe, the equality p~03BC1 = 03BC1 1 means that
p~’03BC1 bti. Since pe leaves stable the positive roots of (m, b), we have
p,,pm = pM, where pM is half the sum of the positive roots of (m, b).
Thus E’ is orthogonal to 03BC1 - 03C1M. Applying Lemma 5.4 with Ho =
IEI-2He’ and using (5.9), we find that ç(Ye) is the identity, i.e., X(,y,) = 1.
Consequently P~03BE ~ e.
Now we prove that 03BC03BE,~(0) = 0. In fact, Harish-Chandra’s Lemma 18

in [3] shows that the representation of G(e) induced from MA(~)N(~)
with e on M and trivial on A is irreducible, since G(’) has no discrete
series by Theorem 13 of [2] and by Lemma 2.2. We have just seen
that P~03BE e. Hence Corollary 12.8 of [13] implies that 03BC03BE,~(0) = 0.
PROOF OF PROPOSITION 5.1b: Lemma 3.8b shows that p, fixes the

parameter set of e. In Lemma 5.2 it is clear that 7e = 03B322~ = 1, and
hence that lemma shows that Pe fixes the central character of e. By
Proposition 4.9a, P~03BE is equivalent with e.

Before moving to the next part of Proposition 5.1, let us recall how
Plancherel factors are computed in the spirit of [13]. If e is a discrete
series representation of M, then e can be imbedded infinitesimally as
a subrepresentation of a nonunitary principal series representation of
M, by a theorem of Casselman (cf. §5 of [13]). Say e imbeds in the
nonunitary principal series with parameters (u, ÀM), where u is a

representation of the compact group Mp and ÀM is in aM. Writing p
instead of IL for the Plancherel factor associated to a real-rank one

group and letting E be a reduced a-root, we have from Proposition
10.2d of [13]
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with a in each product denoting ap-roots with the indicated restric-
tions to a. Here c is a nonzero constant independent of ç, and n
assumes the value 3 only in one exceptional case arising from split G2.

LEMMA 5.5: Suppose that H is in aM and z = exp 2TriH is in ZM. Let
03BE be a discrete series representation of M that imbeds in the nonuni-
tary principal series with parameters (03C3, 03BBM), and let 03C1+M be half the
sum of the positive aM-roots, with their multiplicities. Then

PROOF: Since z = Oz = exp(-2’TTiH) = z-’, we have Z 2 =1. Now
recall that the Cayley transform c: (ap + ib0) ~ a + ib is a member

Ad(exp X) of Ad(exp mC), by construction. Let m = exp X in MC.
Since z is in ZM, Ad(z) = 1 on mC and

Then it follows that

Let 03BC1 be a Harish-Chandra parameter for e, and introduce an
ordering for (ib)’ that makes 03BC1 dominant. Since the infinitesimal

characters of e and the nonunitary principal series representation of
M must be the same, we have

for a suitable element w in the complex Weyl group of (m, b), where
039B- is a highest weight of cr and p- is half the sum of the positive roots
of ibo. If we regard w as in MC, then wzw-1 = z since z is in ZM, and
we obtain

from (5.11).
Let pb be half the sum of the positive roots of (m, b). Applying

Lemma 5.4 with Ho = wc(H), we see from (5.13) that e(z) acts as the
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scalar

This scalar must be ± 1 since z2 = 1. In view of (5.12), we therefore
conclude that

and is actually in Z if 03BE(z) = I. Write 03C1- = 03C1aM+ib0 - 03C1+M. Then

wc03C1aM+ib0 - pb is an integral combination of roots and acts as an integer
on wc(H) since z is central. Hence

Since 039B-(H) = 0, the lemma follows.

PROOF oF PROPOSITION 5. lc: Let E + E’ + y be an (ap + 1b0)-root
with ~’ ~ 0. By Lemma 2 of [11] and Lemma 2.5, we have

Since y is orthogonal to E’, y = 0. Thus the ap-roots of the form E + E’
with ~’ ~ 0 all have multiplicity one. Also E must have odd multiplicity
as an ap-root. In (5.10), only the product for n = 1 is present, since 2E
is not an a-root, and we have

Let us set v = 0, remembering that we should really do a passage to
the limit. Each pi ) is an even function and the p’s in braces

correspond to SL(2, R) since the a’s have multiplicity one. Letting
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we therefore have

From the theory of bD(2n, 1) as summarized in §16 of [12], p03C3,~(0) is

zero or nonzero according as 03C3(03B3~) is + I or - l. Also 03BE(03B3~) has to be
the same scalar as 03C3(03B3~) since ye is central. Thus we are to show that
the factor ll,,&#x3E;o 1 - 1 in (5.15) is regular and nonzero.

Letting a = E + E’, we have

From (5.16a),

Also E’ is an (aM + 1$o)-root and the infinitesimal character of e is

nonsingular, so that ~03BBM, 0 0. If 03BE(03B3~) = - I, then (5.14) and (5.17)
show that the tangents in the factor TIE,&#x3E;o 1 - } of (5.15) cancel the
cotangents, and we obtain

as required. If 03BE(03B3~) = +I, Lemma 5.5 and (5.16b) say

That is,

If we show that
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for all E’, then we can conclude that all the tangent-cotangent factors
are evaluated at odd multiples of 03C0/4 and are harmless. Thus (5.18)
holds in this case also, up to sign.
To prove (5.20), first let E + E’ and e ± E" be roots, with ~’ ~ ±~". By

the Schwarz inequality, (~’, E")  |~|2, whence

Thus E’ ± e" are both roots and |~’ ± e"12 = |~ + ~’|2 = 2|~’|2 . Then

and the truth of (5.20) is independent of E’.
If E’ is the smallest positive supplement for e and if 03B4 &#x3E; 0 is a

simple aM -root (~ ~’), then ~ + (~’ - 03B4) is not a root and so ~~’, 03B4~ ~ 0.
Consequently E’ is simple for aM. Then 2(03C1+M, ~’~/|~|2 =1, and (5.20)
follows.

LEMMA 5.6: Let cp be an automorphism of M that leaves stable a
minimal parabolic subgroup S = MpAMNM of M and fixes Haar
measure on M and S. Let T be a representation of S and set r"(s)
T(cp-’(s)). Then inds Î MTlp is equivalent with (inds t M03C4)~.

PROOF: If F is in the first induced space, then F 0 cp is in the

second induced space. The rest consists of diagram-chasing.

PROOF OF PROPOSITION 5.1d: Choose the special representative w
of ps given in Theorem 3.7 and let cp(m) = w-lmw. Suppose e imbeds
in the nonunitary principal series of M with parameters (03C3, ÀM). Then
Lemma 5.6 shows that a representation equivalent with p03B403BE = 03BE~
imbeds in the nonunitary principal series of M with parameters
(03C3~, 03BB~M) = (03C3~, 03BBM).

Let us observe that when n = 3 is possible in (5.10), no 8 satisfies
the hypotheses of Proposition 5.1d. Putting v = 0 in (5.10), we there-
fore see that we are to show that when we replace o, by p03B403C3 in the

expression

then the whole expression switches from zero to nonzero, or vice-
versa.
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The element y2E is in the center of M. Thus the hypothesis
p03B403BE(03B32~) ~ 03BE(03B32~) implies that pse and e are not equivalent. But Lemma
3.8 and Proposition 4.9b together imply that p03B403BE|M0 and 03BE|M0 are

equivalent. Thus y2E is not in Mo.
Let E + f3 be an extension of the a-root E to a root of a + ib. We

must have

We shall show that ± 1 are not possible values for (5.22). Define

03B3~+03B2 = exp 203C0i|~ + 03B2|-2H~+03B2 within the three-dimensional complex
subgroup of G’ corresponding to the root e + (3, and define )’E-/3

similarly. If (5.22) is ± 1, then 2(E - 03B2,2~~/|~ - 03B2|2 is odd and

Hence

exhibits y2E as in exp 6 C Mo. Thus the left side of (5.22) is 0.
Now form c-1(03B2)|03B1M = ~’. We cannot have E’ = 0, since otherwise e

and 2E would be ap-roots and Proposition 5 of [11] would force y2E to
be in Mo. Then we must have c-1(03B2) = E’. In f act, otherwise

and we conclude E is not useful, in contradiction to Lemma 2.7a.
Thus we conclude that if E + E’ is an extension of e to an ap-root, then
~’ ~ Q and E + E’ has multiplicity 1. Moreover, 2E’ is a root of aM + 1 $o,
by (5.22).

Since we are assuming E is an a-root, e + j8 and 2E provide roots of
two lengths for a + ib, and there cannot be a longer root 2e + 03B2’. Thus
2E has multiplicity one as an a-root.

Thus, in terms of (5.14), (5.21) is just

Now
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and similarly for ya,. Thus

Here (AM, 2~’) is not 0 since 2E’ is a root of aM + ib0 and e has
nonsingular infinitesimal character.

Let the expression in braces in (5.23) be P+ and let the correspond-
ing expression for pbe be P-. Since p03B403C3(03B32~’) = 03C3(03B3p03B4(2~’)) = 03C3(03B32~’) and
since (ÀM, 2E’) is nonzero, we see that P- = 1I P + except f or a nonzero
constant. Thus we are to compare

and

both of which must be holomorphic even functions before the evalu-
ation at v = 0. Because of the known behavior of p+(O) and p-(O), P+
must have a double pole or be regular nonvanishing or have a double
zero at v = 0. If P+ has a double pole, then P03BE(03B32~)(0) must have a
double zero (by (5.24a)), and (5.24a) is nonvanishing. In this case

(5.24b) clearly vanishes. Similarly if P + has a double zero, then

(5.24a) vanishes and (5.24b) does not. Finally if P + is regular and
nonvanishing, then we can drop P+ in (5.24a) and (5.24b), and one
factor vanishes and the other does not, by (5.14). This finishes the

proof of Proposition 5.1.

§6. Reduction of R = 03A3 Z2 to split case
and minimal parabolic

We are now in a position to treat questions of reducibility. The R
group deals with induced representations

where e is a discrete series representation of M and exp A is a unitary
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character of A. In the notation of § 13 of [13], let

Each member of We,A leads to a unitary self-intertwining operator for
the representation (6.1), and Theorem 13.4 of [13] says that the

operators corresponding to the subgroup R03BE,039B form a linear basis of
the commuting algebra of (6.1).

THEOREM 6.1: If 03BE is a discrete series representation of M and
exp A is a unitary character of A, then the group Re,A is a finite direct
sum of copies of the two-element group Z2, with the number of copies
bounded above by the dimension of A.

According to Lemma 14.1 of [13], it is enough to prove this theorem
for A = 0, and we shall theref ore limit ourselves to this case for the
remainder of this section. Theorem 15.1 of [13] establishes Theorem
6.1 if G is a connected split semisimple Lie group of matrices, and we
shall proceed by reducing the general case to this special case.

Recall the notation of §§2-4. Let 03BC = {03BCj} be the parameter set of 03BE,
and, by means of the action in Theorem 3.7, define

PROPOSITION 6.2: W03BC, = We,ILS, and We,1L is generated by its own

reflections. Moreover,

PROOF: Proposition 3.9 says W(a) = WeS. Since S C W,.u We,ILS G
W,. Conversely if w in W03BC decomposes as wes, then we is in both W,
and W03BC, hence in We,lL. Thus W03BC = We,ILS.

We,1L is generated by its own reflections, by Theorem 4.10 and
Proposition 4.9b. Each such reflection is in W’03BE,0 by Proposition 5. la,
and hence We,1L Ç W’03BE,0. The inclusion We,o Ç We,o holds by definition,
and the inclusion We,o C W03BC, follows from Proposition 4.9.
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COROLLARY 6.3: If every simple useful a-root is even, then R03BE,0 =

{1}. Consequently the representation (6.1) is irreducible.

PROOF: If every simple useful a-root is even, then We = W(a) and
so We,1L = W,. We then see from the proposition that W03BE,0 = W03BE,0.
Theorem 13.4 of [13] shows that R03BE,0 ~ W03BE,0/ W’03BE,0, and the corollary
follows.

We defined Ao as a subset of à by (3.10), and we let

We may assume that Ao is not empty, since otherwise Corollary 6.3
shows that Re,o = {1}.

LEMMA 6.4: A, is a reduced root system on (a subspace of) a, and
its Weyl group is W03BC,.

PROOF: To show that 039403BC is a root system in the sense of [1, p. 142],
it is enough to show that A, is nonempty and is closed under its own
reflections, since 039403BC is a subset of the root system A. 039403BC is nonempty
since Ao is now assumed nonempty. Lemma 2.7d shows that Ao is
closed under arbitrary reflections. Next, let a be in Ao, s be in S, and
03B2 be in 039403B8,03BC. Then

and s -’a is in Ao. By Proposition 3.10, sps-la is in S. Thus p03B1(s03B2) is in
S0394e,03BC. Finally let r and s be in S and let a and j3 be in 0394e,03BC,. Then

since S is normal in W(a). On the right side rs’ is in S and pa/3 is in

0394e,03BC, since pp03B103B2 = p03B1pbp03B1 is in W,,,,. Thus 039403BC is closed under its own

reflections and is a root system.
We know from Proposition 3.10 that Ao is reduced. Let j8 be in 0394e,03BC.

Then JS is even (Lemma 2.7d) and 2/3 is not an a-root, by Lemma
2.7a. Hence A, is a reduced root system.

Let W(039403BC) be the Weyl group of 039403BC. This group is generated by the
pa for a in Ao and SA,,,,. If a is in Ao, pa is in S by Proposition 3.10; if
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a is in S0394e,03BC, say with a = s03B2, then

In either case, pa is in W,; thus W(039403BC) is contained in W,. For the
reverse inclusion, S is generated by reflections in members of Ao, by
Proposition 3.10, and We,03BC, is the Weyl group of Thus W03BC = We,03BCS
is contained in W(039403BC). That is, W(039403BC) = W,. This proves the lemma.

Let q, be a semisimple Lie algebra split over R with root system
039403BC, let GC03BC be a complex simply-connected group with Lie algebra qc
and let G03BC be the analytic subgroup corresponding to g03BC,. Since G03BC is

split over R, the group Mp for G03BC, which we call M03BC, is spanned freely
over Z2 by the elements 03B303B2 for f3 simple in 039403BC. Define for 03B2 simple in
039403BC

and extend OE, to a character of M,.

PROOF: We proceed by induction on the length ~(p03B1), the case

~(p03B1) = 1 being the definition of o,,. We are to show that if the lemma
holds for a, if j8 is simple in 039403BC, and if psa 0 a, then the lemma holds
for poa. Notice by Lemma 6c of [11] that

where q = 2(a, 03B2~/|03B1|2. Also when i3 is regarded as an a-root, it may
not be reduced.

First suppose that (3 is even. Proposition 5. la shows that 03BC03BE,03B2(0) = 0,
so that 03C303BC(03B303B2) = + 1. Therefore (6.2) gives

Proposition 5.la shows also that p03B203BE ~ 03BE, which proves the second
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equality in

the first equality being trivial. Equations (6.3) and (6.4) combine to say
that if the lemma holds for a, then it holds for p03B203B1.
Next suppose that 1/3 is an a-root (necessarily reduced). Then q has

to be even in (6.2), and (6.3) holds. Proposition 5. lb applied to E = 2 /3
says p03B203BE e, and thus (6.4) holds. So again if the lemma holds for a, it
holds for p03B203B1.
Next suppose that j3 is an odd a-root, that 113 is not an a-root, and

that 03BE(03B303B2) = 1. Proposition 5.1c with ~ = 03B2 gives 03BC03BE,03B2(0) = 0, whence
03C303BC(03B303B2) = + 1 and (6.3) holds. Proposition 5. lc shows also that p03B203BE ~ 03BE,
and thus (6.4) holds. Once again if the lemma holds for a, it holds for
poa.
Next suppose that /3 is an odd a-root, that 113 is not an a-root, that

03BE(03B303B2) = - I, and that q in (6.2) is even. Then (6.3) holds. We need
therefore to prove that

If a is even as an a-root, then so is p03B203B1, and both sides of (6.5) are 0
by Proposition 5.1 a; thus (6.5) holds if a is even. If a is odd as an

a-root, then ia cannot be an a-root. [In fact, 2~1 203B1, (3)/HaI2 would have
to be a nonzero multiple of 4 (since q is even) without (3 being a
multiple of a, and this is impossible.] Thus Proposition 5.1c says

and

Since

equation (6.5) follows.
Finally suppose that /3 is an odd a-root, that !/3 is not an a-root,

that 03BE(03B303B2) = -I, and that q in (6.2) is odd. By Proposition 5.1c, 03BC03BE,03B2(0)
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is not 0 and hence 03C303BC(03B303B2) = -1. Thus (6.2) gives

and the proof will be complete if we show

(6.6) 03BCp03B203BE03B1(0) is zero if and only if
03BC03BE,03B1(0) is not zero.

If a is odd, then we have

Thus if a is odd and la is an a-root, (6.6) follows from Proposition
5.1 d with e = 1 203B1 and 8 = If a is odd and 1 203B1 is not an a-root, then

we can use (6.7) and Proposition 5.1c twice with E = a, once for 03BE and
once for p03B203BE, to obtain (6.6). So we conclude that (6.6) can fail only if
a is even.

In this case, a is even and 0 is odd, so that Lemma 2.8 says that

|03B1| ~ |03B2|. Since q is odd, we have |03B1|2 ~ 2|03B2|2 or else |03B2|2 = 3|03B1|2. Let à
be an extension of a to a root of a+ib. By Lemma 2.5, ||2 = 2|03B1|2.
Hence the two possibilities lead to la 12 ~ 41p 12 or else 21/312 = 31a 12,
both of which are impossible in a reduced root system. This com-
pletes the proof of the lemma.

LEMMA 6.6:

(i) If p is in W03BC, then pg + g implies p03C303BC = U IL.
(ii) If pE is in W03BC, then pE is in W’03BE,0 if and only if PE is in W’03C303BC,0.
Consequently R03BE,0 is isomorphic to a subgroup of R03C3m,0, and Theorem
6.1 reduces to the case of a minimal parabolic in a connected split
semisimple Lie group of matrices.

REMARK: As noted earlier, Theorem 6.1 follows from this lemma
and Theorem 15.1 and Lemma 14.1 of [13].

PROOF: For (i), let p be in W03BC with pe e. If a is in 039403BC,

Therefore
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the last equality following from Lemma 6.5 and (6.8). Since the

elements ya generate M03BC, p03C303BC = 03C303BC. This proves (i).
For (ii), suppose p, is in Wéo. By Proposition 6.2, p, is in W,. By

definition of W’03BE,0, 03BC03BE,~(0) = 0. Then Lemma 6.5 says that 03C303BC(03B3~) = + 1.
The equation preceding (15.1) in [13] then shows that PE is in W’03C303BC,0.

Conversely suppose PE is in W03BC, n W’ ,,,,0. Then 03C303BC(03B3~) = + 1 by § 15 of
[13]. Lemma 6.5 then says 03BC03BE,~(0) = 0. By Lemma 19 of [3], or by [5],
we have p~03BE ~ e. Then p, is in Weo by definition.
To complete the proof, we note that W’03BE,0 and W’03C303BC,0 are both in We

and that (ii) shows they are the same. Since W03BE,0 is contained in W,
(Proposition 6.2), (i) says W03BE,0 can be regarded as a subgroup of W03C303BC,0.
Finally

and the lemma is proved.

§7. Reduction of commutativity to split case and minimal parabolic

The commutativity of the R group, as proved in §6, does not
immediately imply that the commuting algebra for the representation
(6.1) is commutative, only that the standard operators commute
modulo scalar factors. Vogan’s example, cited in the introduction, is
one in which the R group is Z2 E9 Z2 and the standard operators do
not commute; however, the group in question does not satisfy the
axioms of § 1.

THEOREM 7.1: If e is a discrete series representation of M and
exp A is a unitary character of A, then the commuting algebra for the
representation

is commutative.

By Theorem 6.1, the R group is abelian. Let r and s be represen-
tatives in K of members [r] and [s] of R03BE,039B. Then e can be extended to
be defined on r and on s, though not necessarily compatibly. (See
Lemma 7.9 of [13].) By Lemma 14.2 of [13], the commuting algebra is
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commutative if and only if

for each pair [r] and [s] in ReA; this condition is independent of the
choices of representives.

LEMMA 7.2: In order to prove Theorem 7.1, it is sufficient to prove
(7.1) for each pair [r] and [s] in R03BE,0.

PROOF: Equation (7.1) for R03BE,0, together with Lemma 14.2 of [13],
shows that the commuting algebra for A = 0 is commutative. Let [r]
and [s ] be in Re,A. Then [r] and [s ] are in W03BE,039B  W03BE,0, and so the
standard intertwining operators 03BE(r)A(r, 03BE, 0) and 03BE(s)A(s, 03BE, 0) com-
mute. Going over the proof that (a) ~ (b) in Lemma 14.2 of [13], we
obtain (7.1) for these elements r and s. Hence (7.1) holds for R03BE,039B.

LEMMA 7.3: R03BE,0 is contained in S.

PROOF: We recall the construction of §6. We have

by Proposition 6.2. Here W03BC = SWe,1-L is the Weyl group of

by Lemma 6.4. Each a-root a in Sâe,1L is even and its reflection fixes
g. By Proposition 5. la, 03BC03BE,03B1(0) = 0. Since also p03B103BE ~ 03BE (by Proposition
S.la), we conclude that Sâe,1L is contained in A’. Each member of R03BE,0
leaves stable the positive roots of A’. Therefore it is enough to prove:
If r in W03BC satisfies ra &#x3E; 0 for every a &#x3E; 0 in SA,,,, then r is in S.
We prove this statement by induction on the length 1(r) computed

relative to the root system 039403BC and the induced ordering. If 1(r) = 0,
then r = 1 and r is in S. Inductively assume the statement for length
 m and let ~(r) = m &#x3E; 0. We must have re  0 for some 039403BC-simple
root E, and our assumption implies that E is in Ao. By Proposition 3.10,
Pc is in S. The element rpc is in W03BC and has length m - 1. If a &#x3E; 0 is in

Sâe,lL’ then p,a is &#x3E;0 (since a is not a multiple of e) and pEa is in

SA,,,. Our assumption says that r(p,a) &#x3E; 0. Thus (rpE)a &#x3E; 0, and rp,
satisfies rp,a &#x3E; 0 for every a &#x3E; 0 in SA,,,,,. By inductive assumption rp,
is in S. Thus r is in S, and the induction is complete.
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As a consequence of Lemma 7.3 above and Lemma 63 of [12], any
element r of R03BE,0 can be decomposed as a commuting product of
reflections r = p03B11 ... p03B1m with each ai in Ao and with m equal to the
dimension of the -1 eigenspace of r. Such a decomposition we call a
nonredundant decomposition within ào. We shall examine this

decomposition in detail. A set {03B1j} of roots in Ao will be called

superorthogonal if the only roots of Ao that are in the span of the aj’s
are the ± aj’s themselves.

LEMMA 7.4: If r in R03BE,0 decomposes as a nonredundant product
r = pa, ... pam of commuting reflections relative to Ao, then the set

{03B11,..., aml is superorthogonal.

PROOF: Otherwise there would be two positive nonorthogonal,
nonproportional roots a and (3 in the -1 eigenspace of r. Say
1 a | ~ 1 pl. Since a and j3 are in Ao, they are in 039403BC. Since ra = - a and
r(3 = - (3, a and (3 are not in A’. By Lemma 19 of [3], 03BC03BE,03B1(0) = 0
implies p03B103BE ~ 03BE and hence 03B1 ~ 0394’; thus we can conclude that

03BC03BE,03B1(0) ~ 0 and 03BC03BE,03B2(0) ~ 0. By Lemma 6.5

Now 03B3p03B203B1 = 03B303B103B303B2 since a and 03B2 are nonorthogonal with |03B1| ~ |03B2| and
03B2 ~ ± 03B1. Hence 03C3m(03B3p03B203B1) = + 1 and 03BC03BE,p03B203B1(0) = 0. By Lemma 19 of [3],
p03B203B1 is in A’. But r(p03B203B1) = 2013p03B203B1 since p03B203B1 is a linear combination of a
and 0, and we have a contradiction to the defining property of r.

LEMMA 7.5: If r and s in Reo decompose within Ao as nonredundant
products r = Pat ... pam and s = P03B21 ... P03B2n of commuting reflections,
then either 03B11 = ± 03B2j for some j or else 03B11 1 is strongly orthogonal to
03B21, ..., 03B2n within the set of a-roots.

PROOF: First suppose a is not orthogonal to 03B21, ..., 03B2n. We have

since Reo is abelian, and thus sa 1 is in the -1 eigenspace of r. By
Lemma 7.4,
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The decomposition of s gives

and our assumption is that E(-) is not 0. Thus s03B11 ~ 03B11. Also

s03B11= - 03B11 would exhibit a 1 as in the span of {03B21,...,03B2n}, and we
would have 03B11= ±03B2j by Lemma 7.4. Thus, arguing by contradiction,
we may assume i &#x3E; 1 in (7.2). Let us say sa = a2 for definiteness.

Forming the inner product of both sides of (7.3) with a 1, we obtain

Each term on the left is a half-integer or integer ~ 0. Thus at most two
terms are nonzero. If only one term is nonzero, say the jth, then we
obtain 03B12 = 03B11 - cf3j, in contradiction to Lemma 7.4. Thus exactly two
terms are nonzero, say with j = 1 and j = 2, and the two terms are
both 1/2. Replacing 03B21 and/or f32 by their negatives if necessary, we
therefore have

the last equality holding since 03B12 = 03C303B11.

Now the argument yielding (7.2) gives r03B21= ± 03B2p and r03B22 = ± 03B2q.
Applying r to both sides of (7.4), we see that p and q are 1 and 2 in

some order. In fact, the only possibilities are

and

If (7.5a) holds, then the decomposition of r gives
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By Lemma 7.4, 03B21 must be ±ak for some k, and a similar result holds
for 132. This conclusion and (7.4) force either a nontrivial dependence
among the 03B1k’s or a relation a i = ± 03B2j.
Thus (7.5b) holds. Equation (7.4) and our values for inner products

together give

Hence

Consequently ppai is not in A’.
However, we can now argue as in the proof of Lemma 7.4. We

have 03C303BC (03B303B11) = 03C303BC(03B303B21) = -1 and therefore

Hence 03BC03BE,p03B2103B11(0) = 0, and Lemma 19 of [3] shows that reflection in

p/3tal fixes e. Thus p/3tal is in A’, and we have a contradiction.
Hence either 03B11= ± 03B2j for some j or else 03B11 is orthogonal to

/31, ..., /3n. In the latter case we prove a 1 is strongly orthogonal to
03B21, ..., /3n. Thus suppose 03B21 ± a are a-roots. Consideration of lengths
shows 03B21 ± 03B11 are in Ao. What we have shown so far, in combination
with Lemma 7.4, implies that

Hence r03B21 = 131 1 and sa 1 = 03B11, from which we conclude that rs is -1 on

131 ± a 1. Since rs is in R03BE,0, we conclude that neither 03B21 + a 1 nor 03B21 - a 1
is in 0394’.

However, we can again argue as in the proof of Lemma 7.4. We
have 03C303BC(03B303B11) = 03C303BC(03B303B21) = -1 and therefore

03C303BC(03B303B21-03B11) = 03C303BC(03B3p03B11(03B2103B11)) = 03C303BC(03B303B21+03B11)03C303BC(03B303B11) = - 03C303BC(03B303B21+03B11).

Thus 03C303BC(03B303B21+03B11) = + 1 or 03C303BC(03B303B21-03B11) = + 1. Thus one Qf 03B21 ± 03B11 is in 0394’.
and we have a contradiction.

LEMMA 7.6: In order to prove Theorem 7.1, it is sufficient to prove
that each system {p03B11,,.... p03B1n} of mutually strongly orthogonal root
reflections in S has representatives in NK(a) that commute with each
other and with Mo.



80

PROOF: In view of Lemma 7.2, we are to prove (7.1) for [r] and [s]
in R03BE,0, and the validity of (7.1) does not depend on the choice of
representatives. Decompose [r] and [s] within Ao as nonredundant

products of commuting reflections; such decompositions exist by
Lemma 7.3. Lemma 7.5 shows that the union of the two sets of

reflections is pairwise strongly orthogonal. Choose a representative
for each reflection as in the hypothesis of the present lemma, and take
the obvious products of these representatives as representatives of r
and s. In this way, we obtain commuting representatives for [r] and
[s] that commute with Mo.
For these representatives the right side of (7.1) collapses to the

identity, and we must show the same thing happens on the left. Since
r and s commute with Mo, e(r) and e(s) are in the commuting algebra
of 03BE|M0’ which is commutative by Lemma 4.4. Thus e(r) and e(s)
commute, and the left side of (7.1) collapses to the identity. This
proves the lemma.

We shall meet the requirement of Lemma 7.6 by giving a more
constructive proof of Lemma 3.2a. We use the following notation. All
roots will be relative to a + ib, and the members of Ao are regarded as
the roots that vanish on ib. The roots of m are the roots that vanish on
a. For each a in Ao fix a root vector Xa in ) so that

and let X-03B1 = 0X.. We shall call

the standard representative of the reflection p«. Note that w-03B1, = w«

and that w203B1 = ’Ya.

LEMMA 7.7: Let a be in 03940, têt j8 be any root relative to a + ib, and
let X03B2 be in the root space q03B2 in gC.
(a) If a and (3 are strongly orthogorial, then Ad(w03B1)X03B2 = X03B2.
(b) If a and 03B2 are orthogonal but not strongly orthogonal, then

Ad (w03B1)X03B2 = - X03B2.

PROOF: (a) By strong orthogonality, [X«, X03B2] = [03B8X03B1, X03B2] = 0. Thus
for some linear L,
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we have

Hence (ad(Xa + 03B8X03B1))2X03B2 = -4X03B2 and

LEMMA 7.8: Any system {pa03B11, ..., p03B1n} of mutually strongly ortho-
gonal root reflections in S has representatives in NK(a) that commute
with each other and with Mo.

REMARKS: This lemma, in combination with Lemma 7.6, proves
Theorem 7.1.

PROOF: Fix a root a in Ao for which pa is in the given set of

reflections, and let wa be the standard representative of pa. Put

with 03BE03B1 a member of exp b to be specified. If X03B4 is a root vector for a
root 5 of (m, ib), then Lemma 7.7 gives
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We shall arrange that

If there are no roots 8 of m such that a ± 8 are roots, we take

Ca = 1. Otherwise let 03B41, ..., 03B41 be the simple roots of m. We claim
there is exactly one simple root 8b such that a ± 03B4i0 are roots. There is
at least one because the members of the Weyl group of (gC, (a + ib)C)
that fix a send 6’s for which a ± b are roots into 8’s of thé same type
and because every root of m is conjugate to a simple root. There is at
most one because if Si and aj are two such, then we have

and

by the Schwarz inequality; hence 5i - 5j is a root, contradiction.
Now define Ho in ib by the condition

taking the component of Ho in the center of mC as 0, and define

’a = exp iriho. Then 03B603B1 satisfies (7.7) on simple roots 5; for general
positive 8 we write 5 ni8j and proceed to verify (7.7) by induction
on 03A3 nj.
Thus let 8 &#x3E; 0 be given and choose a simple root Si for which 5 - 5i

is a root. Assuming that (7.7) holds for 5 - 8j and Si, we are to prove it
for 8. Changing notation, we see that we are to show that if 8, S’, and
8 + S’ are all roots of m, then

a ± 8 not roots and a ± 8’ not roots

(7.9a) ~ a ± (8 + 8’) not roots

a ± 8 not roots and a 8’ roots

(7.9b) ~ a ± (8 + s’) roots

a ± 8 roots and a ± 8’ roots

(7.9c) ~ a ± (8 + 5’) not roots.
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In (7.9a) we have

if a + 3 + S’ turns out to be a root, one of these equations will give a
contradiction unless both

and

The sum of these is 18 + S,12 0, and (7.9a) follows from this con-
tradiction. For (7.9b), we argue by contradiction, putting ~ = 03B4 + 03B4’

and ~’ = -03B4 and using (7.9a) to obtain the contradiction. In (7.9c) we
use the argument of (7.8) to see that 8 - 8’ is a root. Since a, 8, and 8’
are associated with a simple component of g of rank greater than 2,
we are not dealing with G2. Hence the fact that 8 ± 8’ are roots

implies that 2|03B4|2 = 18 + 03B4’|2. Hence ) a )  03B4 + 8’l, and a + (8 + 8’) cannot
be a root. This completes the verification of (7.9c) and the inductive
argument for (7.7).
By (7.6) and (7.7) the elements m’03B11 ..., m’03B1n commute with Mo. If ai

and aj are two of the roots in question, then w03B1iw03B1j = w03B1jw03B1i as a

consequence of Lemma 7.7a, since ai and aj are assumed to be

strongly orthogonal. Since w,,,i and Waj commute with exp b and since

exp b is abelian, m’03B1i commutes with m’03B1j. Hence m’03B11 ..., m’03B1n have the
required properties.
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