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§0. Introduction

The aim of this note is to give necessary and sufficient conditions for an

Enriques surface over an algebraically closed field of characteristic two
to be unirational. We show that such a surface is unirational if and only if
it is either classical or supersingular in the sense of Bombieri and
Mumford ([1], p. 197).
The method of proof is the following. Following the fundamental

classification paper [1] we consider for every Enriques surface a
double cover which is cohomologically ’K3 like’. We show that if the
Enriques surface is either classical or supersingular then the smooth
model of that double covering is either rational or a supersingular K3
surface. Then using a result of the beautiful paper of Rudakov

and Saf arevic [9] we conclude that such Enriques surfaces are

unirational.

For the remaining type of Enriques surfaces in characteristic two,
namely singular Enriques surfaces, the non-unirationality has been
shown by R. Crew in his 1981 Princeton thesis. R. Crew is a student of N.
Katz. (Previously, T. Katsura proved that result for surfaces defined
over a finite field.) Thus we simply quote R. Crew’s result.

1 heartily thank E. Bombieri, R. Crew, W.E. Lang, M. Levine, J.
Lipman, N. Nygaard and S. Shatz for their comments and encouragement.

1 thank the Institute for Advanced Study for the hospitality shown to me.

§1. Notation and preliminaries

Let k be an algebraically closed field of characteristic p &#x3E; 0. For any
smooth and projective surface V over k we denote by the following:
bi (V) = dim Hiet (V, QI), p( V) = rank of Pic V/numerical equivalence,
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À (V) = b2( V) - 03C1(V) = Lefschetz number. We have 03BB(V)~0 (Igusa’s
inequality). V is called supersingular iff 03BB(V) = 0. Alb V denotes the
Albanese variety of V. We recall that dim Alb V = 2bi(V). Following
[1], p. 197-216, we call V an Enriques surface iff V has Kodaira

dimension zero and b1(V) = 0, b2( V) = 10, X(CV) = 1. In characteristic
two there are three types of Enriques surfaces, namely

(i) classical, characterized by the property that dim H 1( V, 6v) = 0,
(ii) supersingular, characterized by the properties that

dim H1(V, tv) = 1 and the Frobenius map is zero on H l(V, 6v),
(iii) singular, characterized by dim H’( V, Cv) = 1 and the Frobenius

map is bijective on H’( V, Cv).
V is called a Zariski surface if there exists a generically surjective,
purely inseparable rational map g: P i - V of degree p where P k is the
projective plane over k. For any projective Cohen-Macauley scheme Y
of equidimension n over k we denote by wy the dualizing sheaf on Y.
(See [6], p. 242.) We will also use an alternative description of wy in
terms of rational differential forms. We refer the reader to Kunz’s

papers [3], [4] for the details of this description. Everywhere in this
paper we will assume that the characteristic of k is p = 2 except in
Lemma 1 and in Corollary 1.1 where the characteristic p &#x3E; 0 is arbitrary.
We begin with a simple lemma for which we could not find a ready
reference.

LEMMA 1: Let g : W~ Z be a generically surjective purely inseparable
rational map of non-singular surfaces. Then

(i) À (W) = À (Z) 
(ii) dim Alb( W) = dim Alb(Z).

PROOF oF (i): Shioda has shown that À(Z) ~ À(W) (see [10], p. 234).
To prove the opposite inequality, consider the schemes (W, piw) = W;,
i &#x3E; 0. First, let us take the map 03B1i: W - W corresponding to the
inclusion piw C Cw. Now ai is a map of smooth surfaces over k. It is finite
and radicial, therefore bi(W) = bi(Wi) by [8], VIII, 1.2. On the other

hand, if i ~ 0 the rational map ai factors

where y is some dominant rational map over k. Thus, by Shioda’s result
quoted above, we have 03BB (W) ~03BB (Z) ~ 03BB(Wi). To complete the proof we
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only need to show that p( W) = 03C1(Wi). For this we use another map, 03B2i:
W - W, which corresponds to the pi-th power map w ~ piw. Although
Pi is not a map of k-schemes, still Mi is an isomorphism of abstract
schemes and as such it induces an isomorphism of the abstract groups
Pic Wi with Pic W. It is not hard to see that this isomorphism preserves
the intersection numbers. Hence p( W) = 03C1(Wi).

PROOF oF (ii): The diagram (*) shows that 12b1 (W) = dim Alb(W) ~
dim Alb(Z) ~ dim Alb(Wi), but we also have dim Alb(W) = 12b1(W) =
12b1(Wi) = dim Alb(W). q.e.d.

COROLLARY 1.1: In the assumptions of Lemma 1, if Z is an Enriques
surface, then W is supersingular and Alb W is trivial.

PROOF: It is shown in [1] that À(Z) = 0 and we also have b1(Z) = 0
from the definition of Enriques surface. q.e.d.

REMARK 1.2: In the assumptions of Lemma 1, if Z is simply
connected, then so is W. (The proof is standard and we omit it.)

Also see [1] and [7].

§2. Unirationality

Our main result is the following theorem.

THEOREM 2: An Enriques surface over an algebraically closed field of
characteristic two is unirational if and only if it is either classical or

supersingular.

PROOF: First of all, R. Crew has shown that a singular Enriques
surface is never unirational (see [2]). Therefore, we only have to prove
that all supersingular and classical Enriques surfaces in characteristic
two are unirational. For the remainder of the proof let X be a classical or
a supersingular Enriques surface. Let 7T: ~ X be the purely insepar-
able covering of degree two constructed in [1], p. 220. By Pro-

position 9, page 221, X is ’K3 like’, namely
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and 03C9 ~  (where 03C9 denotes the dualizing sheaf on ). Also X is
locally of codimension one in a smooth threefold, so that it is

Cohen-Macauley and Gorenstein (i.e., wg is locally free). Thus X is
normal iff it is nonsingular in codimension one. We consider two cases.

CASE 1: X is normal. Let X1~~ X be a minimal desin-1

gularization of X. We have the injective map j: 03C1*03C9x1~ wfc . If all
the singularities of X are rational, then j is an isomorphism. Thus 03C1*03C9x1
and also Wx, has a nowhere vanishing section. Therefore, Xi is a minimal
model and it has Kodaira dimension zero. Also Hi(X1, x,) ~ Hi(X, )
for all i. From the table in [1], page 197, it follows that Xi is a

supersingular K3 surface. Now Saferevic and Rudakov have shown in
[9] (Corollary, page 151) that any supersingular K3 surface in

characteristic two is unirational; in fact, it is a Zariski surface. Thus Xi
and also X are unirational. We still have to consider the possibility that
X has an isolated singularity which is not rational. Since 03C9~ X let us
take a to be a nowhere vanishing section of 03C9. Because wg is

isomorphic to the sheaf of rational differential two-forms on X with no
polar curves on X, we can think of o, as a rational differential two-form.
Now it is well-known that u has a polar curve on Xi because of the
nonrational singularity. Let KX1 be the divisor of cr on Xi. Let us show
that InKx.1 = 0. If not, there is an f E k(X1) = k(g), f~ 0, such that
( f ) + nKx1 ~ 0 on Xi. But then f ~ (0) on X because KX1 is entirely
supported on curves which are contracted to singular points of X.
Therefore, f must be a constant so that nKx1 ~ 0 which contradicts the
fact that u has a polar curve on X1. We conclude that Pn(Xi) = 0 for all
n - 1 so that Xi is ruled by [1], and therefore rational by Corollary
1.1. Thus X is unirational; in fact, it is a Zariski surface in this situation.

CASE 2: X is not normal. Following Kunz [3], [4], we identify wg
with a certain sheaf of rational differential two-forms. Since w g --- 0 let
(r be the differential form in wg(g) which corresponds to 1 in OX. Let
N   be the normalization. Let L be the common function field of X
and XN. We wish to study the divisor of a on XN to be denoted (u)N (for
the definition of the divisor of a differential, see Zariski [12], page 31).

LEMMA 2: (03C3)N  0.

PROOF: Since or corresponds to 1 in Ox, the divisor (0’)N is supported
only on such curves in XN which map onto a multiple curve of X. Let Dl
be any irreducible curve on ZN whose image C = 03C1(D1) is an irreducible
multiple curve of X (there exists at least one such curve). Let v be the
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discrete valuation of L which corresponds to Di. It is enough to show
that v1(03C3)  0. Assume the contrary, i.e., v1(03C3) ~ 0. Let Di, D2, ..., Dn be
all the irreducible curves on ÎN which map onto C. Let v1, v2, ..., vn be
the corresponding discrete valuations of L. Now we have assumed that
v1(03C3)~0. Let vk(03C3) = mk for k ~ 1. There exists a f unction f in L such that
v1(f) = 0 and vk (f) = - mk for k~ 1 by [ 13], Theorem 18, p. 45. It follows
from this that the differential fu has no polar curves among the curves
Di. Now we apply Zariski’s theory of subadjoints, [12], page 85, which
applies without any essential changes since X is a local complete
intersection, to conclude that f belongs to the conductor ideal of the
local ring of the curve C on X. (See also Kunz [4], pages 69-70.) But in
our case that conductor ideal is a proper ideal. Thus f also belongs to the
maximal ideal of the local ring of the curve Don XN. Therefore,
v1(f) &#x3E; 0 contrary to our choice of f. This contradiction shows that
v1(03C3)  0 and thus proves the Lemma.
Let g: X1~ XN be a desingularization. Using Lemma 1 we now show

that Pn(X1) = 0 for n - 1. Let K be the divisor of u on Xi. Then
K = T + E where E is supported on curves which g contracts to points
and T is the strict transform of (u)N so that r  0 by Lemma 2. Since K is
a canonical divisor on Xi it is enough to show that |nK|= 0. Suppose
f E L, f~ 0, and ( f ) + nK &#x3E; 0 on X but then on XN we have ( f )N +
(u)N * 0 where ( f )N is the divisor of f on XN so that (f)N ~- (03C3)N &#x3E; 0
which is impossible. Thus Pn(X1) = 0 and we conclude that Xi is rational
by Corollary 1.1. Therefore X is unirational, in fact a Zariski surface in
this case. q.e.d.

REMARK 2.1: Unirationality of certain, but not all, supersingular
Enriques surfaces in characteristic two follows also directly from
[1], Proposition 15, and [9]. 

-

REMARK 2.2: The proof of Theorem 2 and Remark 1.2 shows that all
supersingular and classical Enriques surfaces in characteristic two are
simply connected. This is also well-known by other methods.

COROLLARY 2.3: Shioda’s conjecture that supersingular and simply
connected surfaces are unirational (see [11], p. 167) is now established
for all surfaces in characteristic two whose Kodaira dimension is ~0.

PROOF: It follows from [1] that every such surface in charac-

teristic two is either rational, or K3, or a supersingular or classical
Enriques surface. Thus the corollary follows from [9] and from our
theorem.
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OPEN PROBLEM 1. Are all supersingular and classical Enriques
surfaces surfaces in characteristic two Zariski surfaces?

Our proof does not show this in the case when the purely inseparable
cover X has rational singularities only.

OPEN PROBLEM 2. To determine all the unirational Enriques surfaces
over an algebraically closed field of characteristic p &#x3E; 2.

We recall that Shioda [11], p. 161, gave examples of both unirational
and non-unirational (classical) Enriques surfaces in every characteristic
p &#x3E; 2.
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