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0. Introduction

In this paper a loop L is said to be a cyclic extension of its nucleus
N provided that N is normal in L and that the quotient loop LIN is a
group of prime order’. For such a loop L the authors are concerned with
the structure of L, which is not associative since 1 LIN &#x3E; 1, as well as
with inherent properties of the group N. In this regard, the main result
(see Theorem 1.1) gives a necessary and sufficient condition for a group
N to be the nucleus of a loop L which is a cyclic extension of N with
|L/N| = p, where p is any prescribed prime. (The reader will see that
Theorem 1.1 stands in contrast to an analogous group-theoretic result
of M. Hall [6, p. 225] on cyclic extensions.) It will be interesting to note
that only groups N with nontrivial centers can serve as such nuclei. For

p &#x3E; 2 every such group N is the nucleus of such a loop (see Corollary
1.4). For p = 2 the situation is quite diff erent; although Abelian groups

*This author wishes to thank most sincerely the faculty and staff of the School of
Mathematics at the Georgia Institute of Technology for many kindnesses during his
1979-80 visit and also the Natural Sciences and Engineering Research Council of Can-
ada for its support, Grant No. A9087.

1 
Throughout this paper the authors assume that the reader is familiar with the basic

results, terminology, and notation of loop theory (see, for instance, the comprehensive
works of V.D. Belousov [1] and R.H. Bruck [2] as well as the less comprehensive, but
very readable, article by R.H. Bruck [What is a loop? Studies in Modern Mathematics,
M.A.A. (1963), 59-99]). Loops, for the most part, are multiplicatively written here, and
so the authors speak merely of a loop L, only resorting to the more cumbersome notation
(L, -) to avoid possible confusion in the presence of more than one binary operation. In
the same vein, the authors shall frequently, in order to circumvent excessive verbiage,
make concessions like the following: "the group N is the normal nucleus of some loop
L" means "there exists a loop L whose nucleus is normal and whose nucleus is

isomorphic to N".

0010-437X/82030341-16$00.20/0
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with exponent different from 2 as well as certain carefully selected
groups which are not Abelian (see the remarks following Corollary 1.4)
are index 2 nuclei of a loop, there do exist groups which cannot be index
2 nuclei of any loop.
The authors’ present investigation was motivated to a great extent by

their search (see the authors [5]) for finite G-loops2 of composite order
n &#x3E; 5 which are not groups. It is not surprising, therefore, that in §2
attention is focused on G-loops. It is shown that, by imposing some
additional conditions (see Theorem 2.1) on the loops studied in §1,
examples of G-loops can be obtained.

1. Structure

The left, middle, and right nuclei of a loop L are denoted by NÀ, N,,
and Np respectively and are defined by N03BB = {x E L 1 x(yz) = (xy)z for
all y, z ~ L}, N, = {y E L ) | x(yz) = (xy)z for all x, z E L, and

N03C1 = {z E L x(yz) = (xy)z for all x, y ~ L}. The nucleus N of a loop L
is then defined by N = N03BB rl N03BC, n NP.

THEOREM 1.1: Let N be a group whose identity element is denoted by
1 and let p be a prime. Then there exists a loop L with normal nucleus
N such that LIN is a group of order p if and only if there exist elements
k;; E N for integers i, j with 1~i, j ~ p - 1 and an automorphism 6 of N
so that

and, furthermore, at least one of the following three conditions holds :

PROOF: Let N be a group whose identity element is denoted by 1 and
let p be a prime.

2 The term G-loop seems to have originated with V.D. Belousov [1] and is used to
designate any loop which is isomorphic to all of its loop isotopes.
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(1) For the sufhciency, assume that N has an automorphism 0 and

elements k;; so that (1), (2), (3) hold and at least one of (4), (5), (6) holds.
Now let G be a cyclic group of order p and let a be a generator of G.
Let L be the Cartesian product N x G and define a product for L by

with the understanding that ki0 = koj = 1 for all i, j. To show that any set
L on which a binary operation has been defined is a quasi group one
needs only establish that whenever any two of x, y, z (not necessarily
distinct) are given as elements in L the third can be uniquely determined
in L so that xy = z. In the present context, (ni, ai)y = (n2, ai) has the
unique solution y = (n, as) where 0 ~ s S p - 1 with s = j - i (mod p)
and n = (n Il . n2 - k-1is)03B8-i. Likewise, the equation x(nl, ai) = (n2, aj) has
the unique solution x = (m, a ‘) where 0 S t S p - 1 with t = j - i
(mod p) and m = n2 - k-’ - n-1103B8t. Using the same symbol 1 for the iden-
tity element of G (i.e., 1= a°), one can easily verify that (1, 1) is the
identity element of L. Hence, L is a loop relative to the binary operation
given in (7).
Now let N (L) = {(n, 1) 1 n ~ N}. It is clear that N (L) is a subloop of

L and that N and N (L) are isomorphic. It will now be shown that N (L)
is the nucleus of L. For this purpose let x = (n,1) ~ N (L) and let
y = (nl, ai) and z = (n2, a’) be any elements in L. Then, by a direct com-
putation, one sees that x(yz) = (xy)z = (nni . n203B8i. kij, ai+j) and also that
(yx)z = (n1· n03B8i· n20i - kij, ai+j) and y(xz) = (n1. (nn2)03B8i· kij, ai+j). But
since 03B8i is an automorphism of N it follows that (yx)z = y(xz). Thus, it
is seen that N (L) Ç NÀ fl N03BC where N03BB and N03BC are, respectively, the left
and middle nuclei of L. Now note that

whereas

If i + j  p, then condition (2) together with the fact that e is an auto-
morphism of N guarantees that y (zx) = (yz)x. If i + j ? p, condition (3)
permits one to write kij· n03B8i+j-P· kijl = (nOi+j-P)8P = n03B8i+j = (n03B8j)03B8i, and
so, in this case, it is also true that y(zx) = (yz)x. Thus, one now has
N (L) Ç N, where Np is the right nucleus of L. Putting together what is
available at this point, one concludes that N (L) Ç NÀ rl N03BC~N03C1.
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For convenience in this paragraph let D(L) = NÀ fl N03BC n Np. It was
established above that N (L) Ç D(L). To show that N (L) is, in fact, the
nucleus of L it will sujRHce to show that D(L) C N (L). Suppose that
D(L) ~ N(L) and let w = (n, ai) be an element such that w E.D(L) but
w~ N(L). Necessarily one has i ~ 0 (mod p). Note that (n-’, 1) E N(L)
implies that (n -’, l)w = (1, ai) E D(L). Then (1, ai)2 = (kii, a2i) must also
be in D(L). But then (kilt, 1) ~ N (L) implies that (kilt, 1)(1, ai)2=
(kilt, 1)(kii, a2i) =(1, a2i) is also in D(L). Continuing in this fashion (i.e.,
successively multiplying on the left by (1, a i)), one can show that
(1, ati) E D(L) for all integers t. Since i ~ 0 (mod p) there is an integer
t so that ti = 1 (mod p). Hence, (1, a) must be an element of D(L). But
D(L) is associative, and so powers of (1, a) are well-defined. Using (1)
in conjunction with (1, a)"’ =(1, a)(1, a)i and proceeding inductively,
one obtains

Now, if i, j, and i + j are all less than p, it follows that

(1, ai+j)= (1, a)i+j = (1, a)’(1, a)j = (1, a’)(1, ai) = (kii, ai+j) and so in this
case kij = 1. If i + j = p, it follows that (kl,p-,, 1) = (1, a)P =
(1, a)’(1, a)j = (kij, 1) and so in this case kii = ki,p-,. Also (1, a)(1, a)P =
(1, a)P(1, a) implies that k1,p-103B8 = ki,p-,, and so finally, if i + j &#x3E; p (with
i  p and j  p), it follows that (k1,p-1, ai+j)=(k1,p-103B8i+j-p, ai+j)
= (1, a)i+j = (kii, ai+j) and so kij = kl,p-I. Hence, none of (4), (5) or (6)
holds and so a contradiction has been reached. Thus, N (L)=
N03BB ~ N03BC ~ N03C1 and so N (L) is the nucleus of L.

Now let x = (n, a’) be any element in L and let y = (nl, 1) be any
element in N(L). Then it is clear that yx = x(n2, 1) where n2 =

(n -1 . n, - n)03B8-i. Hence, one sees that N (L)x C xN(L). Likewise, one
can show that xN (L) Ç N (L)x. Since N (L) is the nucleus of L and
xN (L) = N (L)x for all x E L, it follows that N (L) is a normal subloop
of L. At this point it is easy to see also that LIN (L) is isomorphic to
G. Identifying (n, 1) and n and thereby writing N for N (L), one sees that
N is the nucleus for a loop L so that N is normal in L and L/N is a group
of order p.

(II) For the necessity, assume that N is the nucleus of some loop L
so that N is normal in L and LIN is a group of order p. Now select a
to be any element of L such that a ~ N. For any integer n define a"
recursively as follows: a0 = 1, ai+1= a . ai. Since (Na)i = Na and LIN
is associative, it follows that (Nai)(Naj) = Nai+j or Nai+j-p according as
i + j  p or i+j ~p respectively. Hence, there exist elements kij ~ N,
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for 0 ~ i, j ~ p - 1, such that

Note that klj = 1 for j  p - 1. Thus, condition (1) holds. Note also that

koi = ki0 = 1 for 0~i, j ~ P - 1. Since N is normal in L, it follows that
aN = Na, and so for each n E N there is a unique n8 E N so that
an = nO - a. One can show easily that 0 is a bijection of N. Also note
that a2n = a · an = a · n03B8· a = n03B82· a2 for all n EN and, more gener-
ally, that ain = n03B8i· a for all integers i and all n E N. In fact, paying
close attention as to which elements are in the nucleus N of L, one can
show that nIai. n2aj = (ni. n203B8i)aiaj and that

for all nl, n2 E N and all i, j with 0 ~ i, j ~ p - 1. Since N is the nucleus
of L, it now follows that (nln2)0 a = a(nln2) = (anl)n2 = (n18 . a)n2 =

n18. an2 = n103B8(n203B8· a) = (n,O - n203B8) · a for all nl, n2 E N. Thus, appealing
to the cancellation property of loops, one sees that (n1n2)03B8 = n103B8· n20
for all nl, n2 E N. Thus, the bijection 0 of N is, in fact, an automorphism
of N.

If i + j  p, it follows that (kij. n03B8i+j)ai+j = kii - a’+in = kija i+j . n =
aiaj·n = a i(n8j)aj = (n8j)8ia iaj = (n03B8i+j· kij)a i+j for all n E N.

Thus, with cancellation, one sees that kij · n03B8i+j = n03B8i+j · k;; for all n E N.
But, since 8i+j is a surjection of N, it is clear that kij E Z(N) and
condition (2) is established. Now, if i + j ~ p, one shows similarly that
n8i+j. kij = kii - n8i+j-p. Applying 8P to both sides and appealing to the
surjectivity of 8i+j, condition (3) is established.

One can show by a tedious, but straightforward argument, that the
denial of (4), (5), and (6) implies that a must be an element of N, which
contradicts how a was selected. Specifically, one shows that, with
neither (4) nor (5) holding, a ~ N03BB ~ a ~ N03BC ~ a ~ N03C1 ~ kl,p-,O = ki,p-,.
Consequently, at least one of (4), (5), and (6) must hold and the proof
of Theorem 1.1 is complete.

It seems worth observing at this point that the loop L of Theorem 1.1
cannot be power-associative. Suppose, on the contrary, that L is
power-associative. It is then immediate from the way the kij’s arise that
kij = 1 if i + j  p and k;; = kl,p-l if i + j &#x3E;_ p. But in the presence of power-
associativity it is also true that ap - a = a · ap which, in turn, guarantees
that ki p-i . a = a . ki,p-l = ki,p-,O - a and, by cancellation, that k1,P-1 =
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kl,,-10. Hence, none of (4), (5), and (6) can hold and a contradiction has
been reached.

Theorem 1.1 has direct bearing on a variety of situations as is in-
dicated by the corollaries below. 
Although the nucleus of a Moufang loop is normal (see R.H. Bruck

[2, p. 114]), it is not known whether or not the same is true for the nu-
cleus of a Bol loop. (For basic information concerning Bol loops and
their relation to Moufang loops, see D.A. Robinson [9].) In this regard
the following corollary is significant.

COROLLARY 1.2: Let p and q be primes, let L be a Bol loop of order
pq which is not a group, and let N be the nucleus of L. If N is normal
in L, then |N|=1.

PROOF: Since lN divides ILI (see R.H. Bruck [2, p. 92]) and N ~ L,
it follows that |N| = 1, p, or q. Suppose that lN 1 i:. 1. There is no loss of

generality if one takes |N| = q. Then LIN is a Bol loop (every ho-
momorphic image of a Bol loop which is a loop is also a Bol loop) of
prime order p. But a Bol loop of prime order is a group (see R.P. Burn
[3]) and, hence, is power-associative. But LIN being power-associative
is in conflict with the observation above. Consequently, one must con-
clude that IN 1 = 1.

In view of the preceding corollary any search for Bol loops of order
pq with p and q prime having non-normal nuclei would have to be
restricted to such loops with non-trivial nuclei. Recently Harald
Niederreiter and Karl Robinson [7] constructed entire classes of Bol

loops of order pq for some pairs of distinct odd primes p and q.

Unfortunately, all of their loops have trivial nuclei.
Recall that a loop L is said to satisfy the weak inverse property

provided that xy - z = 1 if and only if x - yz = 1. A loop L is called here
completely weak provided that every loop isotopic to L satisfies the
weak inverse property. Such loops have been studied by J. Marshall
Osborn [8].

COROLLARY 1.3: If L is a completely weak loop of order pq where p
and q are odd primes (not necessarily distinct), then L is a group.

PROOF: Let L be any loop which satisfies the hypothesis of this
corollary and let N denote the nucleus of L. Then N is normal in L and
LIN is a Moufang loop (see J. Marshall Osborn [8]). If IN |= 1, then L
is a Moufang loop of order pq and so L must be a group (see Orin Chein
[4]). Also, if N = L, it is obvious that L is a group. Since |N| divides ILI
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(see again R.H. Bruck [2, p. 21]), the only cases left to consider are
|N| = q and |N| = p. Without loss of generality, now let |N| = q. With
(N = q, the loop LIN is a Moufang loop of order p and, hence, LIN is
a group (see again Orin Chein [4]). Thus, Theorem 1.1 is available. Since
1 LIN = p it is clear that for any a E L all p th powers of a are in N.
Suppose that for some a E L with a~ N one of the pth powers of a is
not the identity element of N. Then this p th power of a generates the
group N and, since Na generates L/N, one sees that a generates L.
Thus, L is a completely weak loop which is generated by one element.
As such L must be a homomorphic image of Osborn’s free completely
weak loop on one generator (see J. Marshall Osborn [8]). But Osborn’s
loop has all squares in the nucleus and so also must L. Thus, it is clear
that if for some a~ N any p th power of a is not thé identity element of
N then LIN has exponent 2 and order p &#x3E; 2, which is quite impossible
for the group LIN. Thus, it must be true that all pth powers of all a E L
with a~ N are equal to the identity of N. Then it follows immediately
that a’is well-defined for 0 ~ i ~ p and so, by (8), all kij = 1. Thus, none
of (4), (5), and (6) can hold. In other words, the case |N| = q cannot
occur and the proof of Corollary 1.3 is complete.

In speculating as to the existence of G-loops of order 3q which are
not groups, R.L. Wilson [11(c)] asks whether or rot there might exist
loops of order 3q which satisfy an identity of Eric Wilson [10] without
being groups. It suffices to assume that q is an odd prime. Since loops
which satisfy Eric Wilson’s identity are known to be completely weak
(see Eric Wilson [10]), the preceding corollary shows that any such loop
of order 3q with q an odd prime must be a group. Thus, in such
situations the Eric Wilson identity must be abandoned. The existence
of G-loops of order 3q is taken up again in the next section.

If Theorem 1.1 is to be of any use in the actual construction of loops
L which are cyclic extensions of given groups N, it is essential that one
be able to select groups N which satisfy the conditions listed in

Theorem l.1. In other words what groups N can serve as normal nuclei

of loops L with |L/N| = p with p a prescribed prime? This question is
easily answered if p &#x3E; 2.

COROLLARY 1.4: Let p be a prime with p &#x3E; 2. Then a group N

satisfies the requirements set forth in Theorem 1.1 if and only if N has
a non-trivial center.

PROOF: Let N be a group which satisfies (1), (2), and (3) of Theorem
1.1. Suppose that |Z(N)| = 1. Then with p &#x3E; 2 and (2) holding it is clear
that (4) cannot be satisfied. Note that with Z(N) trivial one must
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conclude that a = b whenever a, b E N and ana -1 = bnb -’ for all

n E N. This last observation in conjunction with (3) shows that (5)
cannot hold. Now, using (3), one sees that

for all n E N. Thus, ki,p-,O = ki,p-l and so (6) does not hold. Con-
sequently, in the presence of (1), (2), (3) for at least one of (4), (5), and
(6) to hold it is necessary that the center of N be non-trivial.

Conversely, let N be any group with a non-trivial center. Select k12
(note that p &#x3E; 2) to be any element in Z(N ) with k12 ~ 1. For all i, j with
i ~ 1 and j ~ 2 let k;; = 1 and select 0 to be the identity automorphism
of N. Then N satisfies the requirements of Theorem 1.1 and the proof
of Corollary 1.4 is complete.
When p = 2 the situation is quite different because neither (4) nor (5)

can hold. In this case a group N conforms with the requirements of
Theorem 1.1 if and only if N has an automorphism 0 and an element
k = kii so that n03B82 = knk-’ for all n E N and k03B8 ~ k. Thus, one is

deprived of the selection 0=1, which was so conveniently available in
the proof of Corollary 1.4, and it is not very difficult to see that 0 cannot
even be an inner automorphism of N. If N is any Abelian group of
exponent différent from 2, one can choose k E N so that k2 ~ 1 (i.e.,
k ~ k-1) and let 0 be defined by n03B8 = n-1 for all n E N. There also exist
acceptable groups N which are not Abelian. Using a computer,
Professor J.G.F. Belinfante has determined that the smallest such

groups which are not Abelian have order 16 and that there are two such

groups of order 16. These two groups of order 16 can be identified as
the smallest members of two well-known infinite families which are
now described: (1) The dicyclic group of order 4n with n &#x3E; 0 and

divisible by 4 has generators a and b and relations a4 = b2n = 1,
ba = ab -’, a2 = b ". If one defines 0 by a0 = ab and b03B8 = b "-’ and
chooses k b "/2@ then one sees that e2 is conjugation by b n/2 and
k03B8 = a2bn/2 ~ k. (2) Consider now those groups of order 2n where n &#x3E; 4

is divisible by 4 which are generated by elements a and b subject to
the relations a2 = b" - 1 and ba = ab n/2+1. For such groups define 8 by
a03B8 = a and b03B8 = b/2-1 and choose k = b 2 Then 0 is an automorphism,
03B82 is conjugation by k, and k03B8 ~ k.

Before leaving the present section it is tempting to formulate a
generalization of Theorem 1.1 which would include non-prime cyclic
extensions. A little work reveals that for such a generalization condi-
tions (1), (2), and (3) remain intact while conditions (4), (5), and (6) must
be replaced by ones which are considerably more complicated. The
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authors have not pursued this line of investigation because of its lack
of relevancy in the context of G-loops.

2. Applications to G -loops

Recall that a loop L is called a G-loop provided that L is isomorphic
to all of its loop isotopes. Any finite loop of order n  5 is a group and,
as such, is automatically a G-loop. R.L. Wilson [11(a), (b), (c)] proved
that every finite G-loop of prime order is necessarily a group; he also
constructed for each even integer n &#x3E; 5 a G-loop of order n which is
not a group. An intriguing question is the following: For each com-
posite integer n &#x3E; 5 does there exist a G-loop of order n which is not
associative? The authors [5] have recently produced examples of
G-loops of many composite orders and their constructions stem from
the observation that any loop L for which

and

hold for all x, y, f, g E L must be a G-loop. It is, therefore, natural to
see whether or not any loops of the type considered in § 1 can satisfy
(9) and (10).

THEOREM 2.1: Let N be a group and let p be a prime. Then there
exists a loop L so that N is the nucleus of L, N is normal in L, LIN
is a group of order p, and L satisfies (9) and (10) for all x, y, f, g E L
if and only if N has an automorphism 0 and elements ki; which satisfy
the conditions set forth in Theorem 1.1 and also satisfy

and

for all integers i, j, 1 with 1 ~ i, j, 1 :5 p -1 (with the tacit understanding
that subscripts in (11) and (12) are to be reduced or interpreted modulo
p whenever necessary and that k0j = kio = 1).

PROOF: With Theorem 1.1 available one needs only to show that (9)
and (10) give rise to (11) and (12), and, conversely, that (11) and (12)
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imply (9) and (10). Actually (9) holds for all x, y, f E L if and only if the
system of equations in (11) is satisfied, and a similar result links (10) and
(12). Adopting the notation used in the proof of Theorem 1.1 and noting
that (9) is trivially satisfied whenever any of x, y, f is 1, let x = nIa i,
y = n2a , and f = n3a1 with none of i, j, 1 equal to 0. There are several
cases which need to be considered by the reader. The details associated
with one case will serve to illustrate what can be done routinely in all
cases. For this purpose let i + j  p and i + l ~ p. Then, keeping in mind
that kij is central, one sees that

On the other hand, one has

But note that

Thus, the expression above for (xf) · (yf)L(f)- becomes

and (11) follows.
With the other cases dealt with in similar fashion Theorem 2.1 is

proved.
The G-loops of even order constructed by R.L. Wilson [11(a), (c)]

are actually G-loops because of the following.

COROLLARY 2.2: Any loop with index 2 nucleus is a G-loop3.

PROOF: Let L be a loop such that [L : N] = 2 where N denotes the
nucleus of L. It is easy to see that [L : N] = 2 implies that N is normal

3 This result has aiready appeared in the literature (see, for instance, V.D. Belousov
[1]). What is of interest here is that this result can, in fact, be viewed as an immediate
consequence of Theorem 2.1.
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in L and that LIN is a group of order p = 2. There is only one kij,
namely, ki,p-l = kl1 and (11) and (12) are satisfied for any 0. Thus, by
Theorem 2.1, L satisfies (9) and (10), so L is a G-loop.

In view of R.L. Wilson’s concern (see [11(a), (c)]) about the possible
existence of finite G-loops of orders divisible by 3 which are not
groups, the following result is of interest.

COROLLARY 2.3: There exists a G-loop having a normal nucleus of
index 3 if there exists a group N with three elements k12, k2h and k22, not
all equal, and an automorphism 0 such that

f or all n E N.

PROOF: Note that (11) holds for all i, j, 1 with 1 ~ i, j, 1 S p - 1 if and
only if (11) holds, more specifically, for all i, j, 1 so that 1~j~l~p-1.
(Clearly (11) is trivially true whenever j = 1 and the validity of

equations (11) with j &#x3E; 1 is an immediate consequence of their validity
with j  1.) In other words, one need only be concerned with system
(11) in the case j  1. Similar observations indicate that only the case
i  j is relevant when examining system (12). Taking advantage of this
reduction and taking p = 3, one sees that systems (11) and (12) are
equivalent to

Applying 0 to the last equation, using the first equation to substitute
for (k12k-121)03B8, and noting that kl20’= k12, one obtains k2203B82= k22. Ap-
plying 0 to both sides of this last expression, one sees that k22 is fixed
by 0. Thus, in the presence of (i), systems (11) and (12) are equivalent
to (ii), (iii), and (iv). Thus, using Theorems 1.1 and 2.1, one obtains a
loop L having N as nucleus of index 3 and satisfying (9) and (10) for



352

all x, y, f, g E L. Since L satisfies (9) and (10), the loop L is a G-loop,
and the proof is complete.

It is not difficult to find groups which do meet the requirements set
forth for N in the preceding corollary. Let q be any prime such that
q ~ 1 (mod 3), let (q) denote the principal ideal generated by q in the
ring Z of integers, and for each m e Z let m denote the additive coset
ni = rn + (q) in the ring Z/(q). Now let N be the additive group of the
ring Z/(q). Since q --- 1 (mod 3), it follows from elementary number
theory that there is an integer s so that s3 ~ 1 (mod q) and s ~ 1

(mod q). Define à0 = sa for all a E N and note that 0 is an auto-

morphism of N. Now select k22 = 5, k21= l, and k12 = 1 + s. The condi-
tions of Corollary 2.3 hold for N and so there does exist a G-loop L
of order 3q which is not a group. It might be interesting to see what
L actually looks like. Returning to the proof of Theorem 1.1 and

adopting a notation consistent with the present discussion, it is clear
that L is the Cartesian product Z/(q) x Z/(3) with a binary operation
for L defined by

which is merely expression (7) rewritten. Since the ordinary direct
product of G-loops is a G-loop (see R.L. Wilson [11(a)] and since all
groups are G-loops, one can use the loop L constructed above to
obtain the following result: For each positive integer m which has at
least one prime divisor q with q m 1 (mod 3), there exists a G-loop of
order 3m which is not a group.
For primes p &#x3E; 3 systems (11) and (12) are much more complicated

even though the reduction mentioned at the start of the proof of
Corollary 2.3 is still available. Setting i = 1 and keeping j and 1

arbitrary, but subject to the restraints j  p - 1 and j + 1  p - 1, one
obtains from (12) that kj,l+1 = kj1 · kjl03B8 from which it follows that

for all r such that 0  r ~ p - j - 1. Again with i = 1 and j  p - 1, but
now with j + l ~ p - 1, one obtains from (12) in similar fashion that

for all r with r ~ p - j. Now, examining (12) with i = 1, j = p - 1, and
1  p - 1, one obtains kl,,-, - k-1 1,1 - kp-1,l+1 = kp-1,10 - k1,p-1+l= k,,-1,10 (with
the understanding always that subscripts are to be reduced modulo p);
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so with k = k1,p-1 · k-1p-1,1 one has

for all r such that r S p - 1.

Setting i = 1 = 1 and keeping j  p - 1 in (11), one obtains

But k2j = k21 · k2103B8 · k2103B82···k2103B8j-1 if j =5p - 3 because of (13). Hence,
one obtains from (16) that

for all j such that j S p - 2. Since p &#x3E; 3 one sees from condition (2) of
Theorem 1.1 that k21 is a central element of N. Consequently, setting
i = j = 1 and 1 = p - 2 in (11) and using (17), one obtains

Comparing this expression for k2,p-2 with the one which can be obtained
from (14), one sees that

Now set i = 1, j = 2, and 1 = p - 1 in (12) and use (14) to get

Thus, an important relationship has been discovered, namely,

Now let j = 1, 1 = 3, and i = p - 3 in (11) to get

In view of (14) one can replace kp-3,3 in (20) by kp-3,1· k,-3,10 -
kp-3,103B82· ki,p-,- Making this replacement and noting that kp-3,1 is a central
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element of N, one has

where the last equality can be justified by setting i = 1, j = p - 2, and
1 = 2 in (12). Now with j = 1, 1 = 2, and i  p - 3 in (11) and with ki1 and

ki+2,1 computed by (17) one obtains ki,1,2 = ki2103B8i-1 · k’10’. ki2 and so it

follows that

Setting j = 1, 1 = 2, and i = p - 3 in (11), using the above expression for

kp-3,2, and employing an expression for kp-3,1 obtainable from (17), one
obtains

It now follows directly from (21) that

It should be noted at this point that, if N is a group with an

automorphism 0 and elements kl,,-,, k,-,,,, and k21 satisfying (18), (19),
and (22), then the set of k¡/s defined by (13), (14), and (15) provide a
common solution to systems (11) and (12). Consequently, if p is a prime
with p &#x3E; 3, one gets a corollary analogous to Corollary 2.3. Specifically,
one can establish

COROLLARY 2.4: Let p be a prime with p &#x3E; 3. Then there is a G-loop
having a normal nucleus of index p if there exists a group N, elements
ki,p-,, kp-,,,, k21 E N (k21 central), and an automorphism 8 such that
n8 = k1,p-1nk-11,p-1 = kp-,,Ink-11,1 for all n E N and such that (18), (19), and
(20) hold.

Let p be any prime with p &#x3E; 5. Now let q be any prime such that
q m 1 (mod p) and note that there must exist an integer s so that sp ~ 1
(mod q) and s ~ 1 (mod q). Using the notation and strategy from the
discussion immediately following the proof of Corollary 2.3, one
chooses N to be the additive group of the ring Z/(q). Just as before,
define 0 by àO = sa for all a E N. Then 0 is an automorphism of N.
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Since

it is clear that k21 can be selected to be any element in N and (19) will
be satisfied. Suppose that one can find an element kl,p-i in N satisfying

If one then selects kp-,,, by

it is easy to see that (18) and (22) also hold. Thus, one will meet with

success, if one can select an element kl,,-, in N so that (23) holds. But
note that (23) has a solution of the form

if and only if ao, aI,..., ap-2 are integers so that

Adding, one easily deduces from (24) that

The assumption that q ~ 1 (mod p) guarantees that p ~ 0 (mod q) and,
hence, ap-2 ~ 12 (p - 1) (mod q). Having obtained ap-2, one can return to
(24) and, in succession, obtain ap-3, ap-4,..., a0. Consequently, the
group N satisfies the conditions of Corollary 2.4. Then, just as in an
earlier argument, one is now in a position to make the following
assertion: If p is a prime with p &#x3E; 5 and if m is any positive integer with
at least one prime divisor q such that q - 1 (mod p), then there exists
a G-loop of order pm which is not a group.
The authors conclude this paper with a corollary which serves as a



356

word of practical advice to those readers who may wish to exploit
Theorem 2.1 to obtain additional examples of G-loops.

COROLLARY 2.5: Let p be a prime with p &#x3E; 3 and let N be a finite
group with an automorphism 0 and elements kij satisfying the condi-
tions of Theorem 2.1. If p does not divide the order of N, then

necessarily 8 cannot be the identity automorphism of N.

PROOF: Suppose that 0 = I. Then it follows from (19) that kp21 = 1.
But with p |N| 1 one must then conclude that k21= 1. It follows from
(17) that kj1 = 1 for j  p - 1; it follows from (13) that kjr = 1 for

j + r  p ; it follows from (14) that kjr = kl,,-, for j + r ~ p and j  p - 1.

Consulting (18), one sees that kp-1,1= ki,p-l and so it follows that

kp-l,r = kp-,,,. Thus, none of (4), (5), and (6) holds and a contradiction
is reached.
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