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§0. Introduction

The purpose of this article is to show how the periods of abelian
varieties with complex multiplication by an abelian extension of Q
can be evaluated up to algebraic factors in terms of logarithmic
derivatives at s = 0 of Dirichlet L-functions. Our principal result

(stated in §2) generalizes the following consequence of the Kronecker
limit formula: The complex number

where 03B6K is the Dedekind zeta-function of the imaginary quadratic
field K, has the property that for any elliptic curve

defined over the algebraic closure Q of Q in the comptex numbers and
admitting complex multiplication by K and for any 1-cycle c not

homologous to zero on E(C),

where here and elsewhere, given two complex numbers a and j8 we
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write a - 13 if (03B2/03B1) E Q. Notably, the Kronecker limit formula is not
used in the proof of the principal result. Instead, we use results of
Weil [W], Gross (and Rohrlich) [GR], Shimura [S], and Deligne. As
the results of Deligne that we need (concerning the relationship of
periods of abelian varieties and the r-function) are unpublished, they
will be formulated and proved here in a form suited to our purposes.
In the final section of the paper we give a p-adic analogue of the
principal result.

Acknowledgements: 1 would like to thank B. Gross, G. Shimura
and G. Washnitzer for helpful conversations.

§1. Definition of the period distribution

’rhe central concept of the paper is that of the period distribution.
It is essential to the formulation of the principal result and provides
an interpretation of crucial results of Shimura [S] and so we begin
with its definition.

By a number field we always mean a subfield of C finite over Q. We
write Q for the compositum of all number fields and G for the galois
group Gal(Q/Q). We write xP instead of x to denote the complex
conjugate of a complex number x. A number field K will be called
CM if K03C303C1 = KU for ail (T E G and the restriction of p to K is not the

identity.
An abelian variety with complex multiplication is a triple (A, K, L)

consisting of an abelian variety A defined over Q, a CM number field
K of degree 2dimc(A) over Q and a representation L : K~
Q Q End(A) which makes the first homology group of A with rational
coefficients into a one-dimensional vector space over K. For each CM

abelian variety (A, K, L) we define the CM type 03A6(A, K, i) to be the
isomorphism class of K Q9Q C-modules containing H’(f2’(A» (on
which K acts via L). We have

which is nothing but the Hodge decomposition of H%R(A) into

holomorphic and antiholomorphic parts.
The period P(A, K, t) e C’IQ’ of a CM abelian variety is defined as

follows: Since the de Rham cohomology groups of A have a natural
purely algebraic definition, we can speak of a de Rham cohomology
class as being Q-rational. So now, choosing any nonzero Q-rational
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one-dimensional de Rham cohomology class w satisfying

for all x E K and any 1-cycle c not homologous to zero on A we put

Since w is defined up to a factor in Q’ and K" acts transitively on the
set of nonzero one-dimensional homology class with rational

coefficients, P(A, K, (,) is well defined. By the Hodge-Riemann bil-
inear relations

in view of this, periods are computable in terms of the periods of
Q-rational holomorphic 1-forms alone.

For each number field K let IK denote the Grothendieck group
generated by the finitely generated K QQ C-modules; it is the free

Z-module on the complex embeddings of K. Let (·, ·)K denote the

pairing

which is clearly bilinear, symmetric and nondegenerate. For each
extension L/K of number fields we have a restriction map

ResLIK : IL ~ LK ; the induction map IndL/K : Ix ~ IL is uniquely
defined by requiring

for all O E IK, 1/1 E IL.
For each CM number field K let 1 K be the subgroup of IK

generated by the CM types of abelian varieties with CM by K. 10 can
also be described as the subgroup of modules CP satisfying

for a suitable integer n ; here p acts on IK in such a way as to

exchange each complex embedding of K for its complex conjugate. It
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is useful to note that for any pair K C L of CM number fields

The main properties of the invariants P and 0 are summarized by

THEOREM 1.3:

(i) If (A, K, i) and (B, L, K) are CM abelian varieties such that

K C L and O(B, L, 03BA) = IndL/K03A6(A, K, t), then P(B, L, 03BA) =

P (A, K, 03C4).
(ii) Given a collection «Ab K, L¡)i=l of abelian varieties all with CM

by a number field K, any relation

in IK implies a relation

Parts (i) and (ii) of Theorem 1.3 are proposition 1.4 and Theorem
1.3 of [S] respectively. As the notations of [S] and this paper differ
somewhat we relate them for the reader’s convenience: Given a CM

abelian variety (A, K, 03C4,), the CM type 03A6(A, K, i) viewed as a f ormal
linear combination of complex embeddings of K is the CM type 0
assigned by Shimura to (A, K, 1,), while in terms of Shimura’s symbol
"pK (03C4, 03A6)" we have

accordingly as idK appears or does not appear in e.
Each 4Y E I’ can be regarded as a locally constant Z-valued func-

tion on G by the rule

for all OE E G. Now given an inclusion of CM number fields K C L we
have

Hence lim- I0K can be regarded as a subgroup of the group of locally
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constant Z-valued functions on G. The reader will have little difficulty
verifying

PROPOSITION 1.4: A locally constant function ~: G ~ Z belongs to
lim~ I0K if and only if f or all fT, T E G

Let M denote the space of locally constant Q-valued functions on
G satisfying (i) and (ii) of Proposition 1.4. From Theorem 1.3 and

Proposition 1.4 one easily deduces

PROPOSITION 1.5: There exists a unique Q-linear map

W : M ~ CX/Qx (which we call the period distribution) such that for
all CM abelian varieties (A, K, t)

REMARK 1.6: We have, from (1.2),

§2. Formulation of the principal result

Let Ô denote the group of continuous homomorphisms of G into
Cx. For each rational prime p let Frobp E G be a fixed choice of
arithmetic Frobenius element. In what follows we shall identify Ô
and the set of primitive Dirichlet characters by rule

for all sufficiently large rational primes p. Note that X(p) = X( - 1).
Let Gab denote the galois group of the maximal abelian extension

of Q in C and Mab denote the subspace of M consisting of functions
factoring through Gab. The set

is a basis over C for Mab ~C and so each ç E Mab has a unique
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Fourier expansion

where the summation need only be extended over a finite list of odd
Dirichlet characters. We define

For each cp E M we define

for all u E G. The principal result of this paper is

THEOREM 2.1: For all cp E Mab,

The proof of Theorem 2.1 is deferred to §5.

REMARK 2.2: Since exp(03B6’(0)/03B6(0)) = 21r, Theorem 2.1 is consistent
with our earlier observation that W(1) ~ 21ri.
Let us see how to recover relation (0.1) from Theorem 2.1. To make

the elliptic curve E into an abelian variety with CM in the sense
defined above, let L : K ~ End(E) Q Q be the unique representation
such that

for all a E K. Then 03A6(E, K, ) is the characteristic function of

Gal(/K) C G, and by definition

for any 1-cycle on E not homologous to zero. By definition of the
period distribution
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Let X be the quadratic Dirichlet character attached to K. We have

and since eK(s) = ’(s)L(s, X), we finally obtain, by Theorem 1.2,

§3. A set of generators for Mab

Let functions ~ ~, {}: Q/Z ~ Q be defined according to the rules

and a function @ : Q/Z ~ Mab according to the rule

where cr runs through G and exp(203C0ia)03C3 = exp(203C0ib). The following
theorem is due to Deligne.

THEOREM 3.1: The image of ffl : Q/Z ~ Mab spans Mab over Q.

The key to the proof is

LEMMA 3.2: Let j  f be relatively prime positive integers. Then

where cp(f) = #((Z/(f))*) and the summation is over odd Dirichlet
characters X of conductor dividing f.

As the case f = 2 is trivial, we may assume f &#x3E; 2. Let it denote
normalized Haar measure on G. For each pair 0/, ’Tl : G - C of locally
constant functions we write
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It is easy to see that

where the summation is over odd Dirichlet characters of conductor

dividing f. Fix an odd Dirichlet character x of conductor dividing f.
To prove the lemma it will be enough to compute (X, R(j/f)). Now the
Hurwitz zeta function

has the well-known Taylor expansion

a proof of which can be found in [ WW, § 13.21]. We have the easily
verified identity

Finally, we have

This proves the lemma.

To prove the theorem, we first observe that it is equivalent to prove
that the image of @ spans Mab ~ C over C. Now as observed in §2,
ô fl (Mab Q C) is a basis over C for Mab Q C. Supposing the theorem
false, let Xo E ô n (Mab Q C) be a character not expressible as a
linear combination of functions in the image of (M with smallest
possible conductor f. Since R(12) ~ 12, we can assume ~0(-1)=-1
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(and f &#x3E; 2). Let Vf be the subspace of Mab @ C spanned by charac-
ters of conductor strictly less than f. By Lemma 3.2 we have

where the summation extends over odd Dirichlet characters X of
conductor exactly f. Multiplying both sides of this relation by
~03C10(j)/~(f) and summing over j such that 0  j  f and (j, f) = 1 we
obtain

now since Xo( - 1) = - 1, L(O, x8) -:f:. 0. We have therefore obtained a
contradiction. This proves Theorem 3.1.

§4. The r-function and the period distribution

This section is devoted to a brief exposition of an unpublished
result of Deligne’s characterizing the period distribution restricted to
Mab in terms of the values modulo Q" of the classical r-function at
rational values of its argument. The required explicit computation of
the periods of Fermat curves in terms of special values of the

r-function sketched here (perhaps too) briefly is given in more detail
in [W] and [GR, appendix].

Let a function F : QIZ - C’/O’ be defined by the rule

From the easily verified relations

it follows that f satisfies
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relations closely analogous to those satisfied by the classical r -

function :

The following theorem is due to Deligne.

REDUCTION LEMMA: If for all a, b, c E Q/Z such that

we have

then the theorem is true.

Let e E Q/Z of order m be fixed. Using the hypothesis of the
lemma and (4.2, 3, 5, 6) it can be verified that

for j = 0, ..., m - 1. By forming the product over j of these relations
and applying (4.1, 4) we obtain

This concludes the proof of the reduction lemma.
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Let a, b, c E Q/Z be given so as to satisfy (4.8). Let m be the order
of the subgroup of Q/Z generated by a, b, c. Let x be an in-

determinate, Q(x) the rational function field over Q and L =

Q(x, ~a(1- x)b) a Kummer extension of Q(x) with cyclic galois group
Z. Let t/1 E Z be the character defined by the relation

for all u G Z. The character tp gives an isomorphism between Z and
the m th roots of unity. Let K be the extension of Q obtained by
adjoining the values of 03C8. Since (4.8) forces m &#x3E; 2, K is CM. Let X
be the nonsingular complete curve defined over Q to which L gives
rise, which is a quotient of a Fermat curve. Let J(X) be the Jacobian
of X, choose a Q-rational basepoint eo on X and let cp : X - J(X) be
the morphism sending 03BE ~ X to the divisor class of (e) - (eo). J(X)
and cp are defined over Q. The group Z acts upon J(X) in such a
fashion that cp induces a Z-isomorphism between H0(03A91(J(X))) and
H0(03A91(X)). The action of Z extends in Q-linear fashion to a

representation

The character tp extends in Q-linear fashion to a surjective
homomorphism 03C8: Q[Z]~ K which has a unique section

E : K~ Q[Z] embedding K as an ideal. For a suitable positive integer
N, NK 0 e(l) belongs to End(J(X)). To abbreviate we write q instead
of N03BA 03BF ~(1). Let A be the image of q, an abelian variety defined over
Q, and let t : K~ End(A) 0 Q be the unique representation such that
for all a E K, ~ 03BF (03BA 03BF ~ (03B1)) =(03B1)03BF q. Note that i(1) = idA. For each
u E G we have

the last step being justified by an application of the Weil-Chevalley
formula [CW]. By summing the relation immediately above over
cosets of Gal(Q/K) in G we find that dim(A) = dimc H’(f2’(A» =
2[K : Q]. Hence (A, K, ) is an abelian variety with complex multi-
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plication, 03A6 (A, K, ) = R(a) + R(b) + R(c) - 1, and we have

Now the differential of the first kind

forms a basis over Q of the space

To compute P(A, K, t) directly, we have only to compute the integral
of W,,b, on any intégral cycle such that the value of the integral is

nonzero. For a cycle C constructed by lifting a commutator of loops
around 0 and 1 on Pl - {0, 1, ~} to X (the "Pochhammer contour"
discussed in [WW, § 12.43]) we have

and hence (after applying (4.6) once)

The comparison of (4.9) and (4.10) concludes the proof of Theorem
4.7.

§5. Proof of the principal result

In view of Theorem 3.1 and Theorem 4.7 it will suffice to verify that

Since (5.1) is readily verified for a = 0, t we may assume that a = (j/f )
with j and f relatively prime integers satisfying 0  j  f and f &#x3E; 2. In

the calculations that follow, X runs through the odd primitive Dirich-
let characters of conductor dividing f and k runs through the integers
satisfying 0  k  f, (k, f ) = 1. We have
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where the summation is over odd characters X with conductor divi-

ding f, and where by Lemma 3.2

Hence

Diff erentiation of (3.4) at s = 0 and an application of (3.3) yield the
relation

Multiplication of both sides of (5.3) by X03C1(j)/~(f) and summation over
X yield

Exponentiation of both sides of (5.4) and an application of (4.5) yield
the desired relation. This completes the proof of Theorem 2.1.

§6. p -Adic complements

In this section we will try to show how Theorem 2.1 fits into a

larger pattern involving not only the Dirichlet L-functions but the
p-adic L-functions of Kubota and Leopoldt as well. Fix an odd

rational prime p and an isomorphism À : CpC under which p-adic
and complex numbers are henceforth identified; in particular, we
regard Q as a subfield of both C and Cp. Following Honda [H] we say
that an algebraic a is of type Ao if for a suitable nonnegative integer f
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and all OE E G,

Let Up be the smallest subgroup of Q" containing all the numbers of
type Ao and closed under root extraction. Let 1 - Ip denote the p -adic
absolute value (normalized so that |p|p = p -1). We define

and

To each a E 2Ip we assign a locally constant function 03A603B1 : G ~ Q by
the rule

The following proposition serves to define the p-adic analogue of the
period distribution.

PROPOSITION 6.1:

(i) For all a ~Up, cfJa E Mp.
(ii) There exists a unique Q-linear map Wp : Mp ~ Up/03BC~ with the

property that for all a E %p,

Wp(03A603B1) = a mod poe.

Part (i) is readily checked. Part (ii) is equivalent to the assertion
that the sequence

is exact, where the second arrow is the map a - CPa defined above.
Exactness at the middle follows from the theorem of Kronecker

asserting that a global unit in a number field of absolute value 1 at all

complex embeddings is a root of unity. Exactness at the right is

essentially Theorem 1 of [H].

REMARK 6.2: We have
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Let logp : Cxp ~ Cp be the Iwasawa logarithm (defined by the usual
power series on the principal units and extended to C p by requiring
logp xy = logp x + logp y and logp p = 0). Let 03C9 : Z ~ Cp be the Teich-
müller character (the unique primitive Dirichlet character of conduc-
tor p satisfying |03C9(n)-n|p  1 for all integers n). The Q-linear map
logp Wp : Mp - Cp has a unique Cp-linear extension to Mp 0 Cp which
we again call logp Wp. Now Mp 0 Cp fl ô = {1} U lx |~(- 1) = - 1
and X(p) = 1} and forms a basis of m,l = Mp n Mab. Therefore the
following theorem, a p-adic analogue of Theorem 2.1, determines the
restriction of logp Wp to Mabp.

THEOREM 6.3: For all 1~~ E Mp 0 Cp fl G we have

The proof of Theorem 6.3 will take up the rest of this section,
proceeding along lines parallel to those followed in the proof of
Theorem 2.1. The analogue (and immediate consequence) of Theorem
3.1 is

PROPOSITION 6.4: Let a E (Q n Zp)/Z and a positive integer m be
given so that (p m - 1)a = 0. Then

and the set of all such functions spans Mpb over Q.

Let’ be a primitive pth root of unity in Cp. Fix a and m as above
and put q = p m. We define the Gauss sum

Let rp : Zp - Zzp be the Morita p-adic gamma function. For its definition
and properties we refer to [B]. The formulas of which have particular
need are

where a and m are as above.
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The following theorem provides a p-adic analogue of Theorem 4.7.

THEOREM 6.5: Let a, m and q be as above. Then

The first equality is a restatement of the factorization of Gauss sums
due to Stickelberger, while the second is obtained by taking the Iwasawa

logarithm of both sides of the formula proved in [GK].
Let f be a positive integer prime to p and X a primitive Dirichlet

character of conductor f such that X( - 1) = - 1 and ~(p) = 1. Then
according to [FG]

A mild generalization of (6.6) is required, namely

LEMMA 6.7: Let f be a positive integer prime to p and X a primitive
Dirichlet character of conductor g dividing f, such that X( - 1) = - 1
and X(p ) = 1. Then

Choose a positive integer m so that f|(pm-1), and let 03BC denote
the usual Môbius function. We compute
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This calculation concludes the proof of Lemma 6.7.
Let q: Mabp Q Cp - Cp be the unique Cp-linear map such that

~(1) = 0 and for all 1 ~ ~ ~ Mabp @ Cp n G,

To finish the proof of Theorem 6.3 we will show that q and logp Wp
coincide by checking on the generating set provided by Proposition
6.4. Fix a pair j  f of relatively prime positive integers with f prime
to p. Let m be a positive integer such that f |(pm- 1). By Lemma 3.2
we have

where the summation is over the set of odd primitive Dirichlet

characters x of conductor dividing f and satisfying X(p) = 1.
We have

This concludes the proof of Theorem 6.3.
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