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1. Introduction

It is the aim of this paper to study the asymptotic distribution
modulo 1 of the sequence of powers of a real (or complex) s x s-
matrix A from a metrical point of view; more generally for a strictly
monotone sequence (p(n))~n=1 of positive integers the sequence

(Ap(n))~n=1 is considered. Obviously a real s x s-matrix can be regarded
as an element of R2 (by componentwise identification). Similarly a
complex s x s-matrix (real symmetric, triangular or Hermitian s x s-
matrix) can be regarded as an element of IR 2s2 (R(s(s+1)/2), R(s(s+1)/2, Rs2).
So the sequence (A n of matrices can be regarded as a sequence
(xn)~n=1 with elements xn E Rd.

In the theory of uniform distribution the discrepancy (see [6] and
[8]) of a sequence (xn) with elements xn E Rd is defined by

where I runs through all subintervals of the d-dimensional unit

interval [0,1)d;~I denotes the indicator function of I;03BC(I) the

Lebesgue measure of I and {xn} the fractional part of xn, com-

ponentwise. (xn)~n=1 is uniformly distributed modulo 1, if and only if

In [7] it is proved that the sequence (x n ) is uniformly distributed for
almost all real numbers x with Ixl - 1 (in the sense of the usual
Lebesgue measure). This result was generalized to the sequence (z")
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of complex numbers by Le Veque [10], and to the sequence (z") of
quaternions in [15]; in [11] an estimation of the discrepancy is

established. Furthermore special types of matrix-sequences (Ap(n))~n=1
are investigated in the papers [5], [12] and [13].
We use the abbreviations 039B(a) = max|03BBi| and 03BB(A) = min|03BBi|, where

the maximum and minimum is taken over all eigenvalues of the
matrix A; our main theorem says.

THEOREM I: Let p(n) be a strictly monotone sequence of positive
integers. Then for almost all real s x s-matrices A with 039B(A) ~ 1 (in
the sense of the s2-dimensional Lebesgue measure) and all E &#x3E; 0 a

positive constant C(A, E) exists such that the discrepancy DN(Ap(n))
can be estimated by

REMARK 1.4: For complex s x s-matrices A one can prove similarly
the following estimate for almost all matrices A with A (A) - 1 (in the
sense of the 2s2-dimensional Lebesgue measure):

Furthermore we prove

THEOREM II: Let p(n) be given as above and 9t the family of all real
s x s -matrices. A having at least one real eigenvalue with modulus larger
than 1. Then for almost all A E 9t (in the sense of the s2-dimensional
Lebesgue measure) the discrepancy of (Ap(n))Nn=1 1 can be estimated by

Similarly we can prove

THEOREM III: Let p(n) be given as above. Then for almost all real
symmetric s x s-matrices A with 039B(A) ~ 1 (or almost all s x s-Her-

mitian matrices A with 039B(A) ~ 1, respectively) a positive constant
C(A) exists such that
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where d(s) = s(s+1) 2 in the case of real symmetric and d(s) = s’ in the
case of Hermitian matrices.

For real triangular matrices we obtain

THEOREM iv: Let p(n) be given as above. Then f or almost all real

s x s-trian g ular matrices with 03BB(A) ~ 1 (in the sense of the s(s + 1) 2
dimensional Lebesgue measure) a positive constant C(A) exists such
that

In the case of complex triangular matrices we only obtain an
estimate as in Theorem I:

THEOREM v : Let p (n) be given as above. Then for almost all complex
s x s-triangular matrices A with 03BB(A) ~ 1 (in the sense of the s(s + 1)-
dimensional Lebesgue measure) and all E &#x3E; 0 a positive constant C(S, E)
exists such that

We want to remark that the asymptotic distribution of (Ap(n)~n=1 is
completely described for the class of all s x s-matrices by Theorem 1
from a metrical point of view; in the case 039B(A)1 the sequence
(AP("» tends to zero and so it cannot be uniformly distributed.

2. Auxiliary results

In this chapter we state some auxiliary results, the first of it is a

generalization of Chintchin’s metric result on diophantine ap-

proximation going back to Sprindzuk and Kovalevskaja.

2.1 PROPOSITION: For almost all elements a,b,c,d E IR s, a = (ai),
b = (bi), c = (ci), d = (da), (a, d) = (b, c&#x3E; = 0 (with (a, d&#x3E; = 03A3i aidi, the
ordinary inner product), there exists a constant C = C(a, b, c, d) such
that the following inequalities hold for all non-zero integer vectors
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REMARK: Since c and d do not appear in (i) and (ii), the statement
means simply that (i) and (ii) hold for almost all (a, b) and almost all a
respectively. In (ii) one clearly needs maxi~j |tij| &#x3E; 0.

PROOF: (i) and (ii) follow from [14], chapter 2, theorem 8, p. 106

together with Chintchin’s transfer principle [9], §45, theorem 6, p. 392.

We will now sketch a proof for (iii). It is based on the following
observations: if x E Rs is arbitrary, a, j6 E R, then:

(ms denotes the ordinary Lebesgue measure on Rs; the estimate holds
because the set is contained in a parallelepiped of height 203B1 (max Ixd)-I
and base lengths (2s )112).
Assume that ci, d1 ~ 0 are fixed. Then (a, d) = (b, c) = 0 implies

It follows that:

We consider only the case where all numbers ai, bj, ci, dj have modulus
not greater than 1. If E &#x3E; 0 is arbitrary, it follows from Chintchin’s
classical result that for almost all d there exists a constant C1 =
Ci(d) S 1, such that tiil - (di/d1)t11| ~ C1|t11|-1-~ if til 4 0. We fix such a
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vector d. By (2.2)

If ti1= t11 = 0 and (tij,t1j) ~ (0,0), then the set is empty for

max(|tij|,|t1j|~C1/51.
By the Borel-Cantelli-lemma, we conclude that

has zero measure in Rs-1. This means that for almost all c there exists
a constant C2 = C2(c, d), such that

if the coefficients do not vanish. We fix such a vector c and by
repeating this argument we deduce that for almost all b there exists a
constant C3 = C3(b, c, d), such that

if the coefficients do not vanish. In the last step, it follows that for

almost all b there exists a constant C4 = C4(a, b, c, d), such that

Taking E = 1/4 gives the result.

2.2 PROPOSITION: Let MI, M2 be C’-manifolds (with countable base),
f : M1~ M2 a surjective mapping, E = f x E Ml : (df)x is not surjectivel.
Then the following holds: 

(i) I f B1 is a subset o f MI such that M1BB1 1 is negligible, then M2Bf(B1)
is also negligible.
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(ii) If E is negligible and B2 is a subset of M2 such that M2BB2 is
negligible, then M1Bf-1(B2) is also negligible.

PROOF: If x ~ E, then there exists charts (U,~) (( V, 03C8) respec-

tively) in Mi (M2 respectively) with x E U, such that f ( U) = V and
03C8°f°~-1(u1, ..., um)=(u1,..., un ), m = dim M1 and n = dim M2 (see
[1], 16.7.4). ~(UBB1) is a null set and, by Fubini’s theorem, it follows
that

03C8°f(U)B03C8°f(B1 n U) == t/1 0 f 0 ~-1(~(UBB1))

is a null set, too. Consequently f(U)Bf(B1) is a null set. Similary one
shows that UBf-1(B2) is a null set. Since there exists a countable

family of charts (U,~) (( V, 03C8) respectively) with the properties men-
tioned above and covering Mi (or M2 respectively), we deduce that
(M2Bf(E»Bf(Bl) and (M1BE)Bf-1(B2) are negligible. Finally by Sard’s
theorem ([1], 16.23.1), f (E) is a null set in M2 and in the second case E
is a null set in Mi. This proves that M2Bf(B1) and M1Bf-1(B2) are
negligible.

REMARK: The assumption that E is negligible is satisfied, if Mi and
M2 are connected, analytic manifolds and f is analytic. Indeed,
considering again local charts (U,~), the set U~E can be represen-
ted as the set of common zeroes of a finite number of analytic
functions (the subdeterminants of order n of df). If U is connected,
it follows that U~E can be non-negligible only if U C E. But since
Mi is connected one would get (by repeating this argument) that
E = Mi and this contradicts Sard’s theorem.
Now we formulate two well known theorems without proof, the

first of it is the inequality of Erdôs-Turan-Koksma in Rd (see [2] and
[8], p. 116). We use the abbreviations e(x) = e203C0ix and r(h) =
03A0di=1 max(|hi|, 1), ~h~=maxi=1,...,d|hi| for the d-dimensional integer
vector h E ZdB{0}; (.,.) denotes the ordinary inner product on Rd.

2.3 PROPOSITION: Let (xn) be a sequence with elements Xn E Rd,
then for all positive integers H the following estimation of discrepancy
holds :

with an absolute constant cd.
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The following result is a special of a theorem of Gal and
Koksma (see [3] and [4]). 

2.4 PROPOSITION: Assume that f or all M, N E No a function y ~

F(M, N)(y) is defined on the interval [a, b] such that F(M, N)
belongs to the class L2[a, b] and f or all (M, N, Ni) E N30 the following
inequality holds :

Furthermore, we assume the existence of a constant CI (independent
of M, N) such that

Then for all 3 &#x3E; 0 and for almost all y E (a, b) there exists a constant
C2 = C2(y, 3) such that

3. Proof of theorem 1

First we show that we can restrict our investigations to the matrices A
with pairwise distinct eigenvalues Xi. Let 3K G Rs2 be the set of

s x s -matrices A with A (A) &#x3E; 1 and pairwise distinct eigenvalues Ài 7é Ài
for i ~ j. The matrix A = (aji) is contained in 3M if 0394(aij) = 0, where à is
the discriminant of the characteristic polynomial of A.,à is a polynomial
in the s2 variables aij (i, j = 1, ..., s). If we suppose that à vanishes
identically, then all s x s-matrices A would have two equal eigenvalues.
Therefore 0394 is different from the null polynomial andà = 0 defines an at
most (s2 - l)-dimensional algebraic manifold, and so T? is an open set
and its complement Rs2BM an s 2-dimensional null set.

For a matrix A OE 8R we denote by ÀI, ..., Àp the real eigenvalues of
A and by ÀP+K = AP+K+z (1 ~ K ~ T, p + 2T = s) the (pairwise conjugate)
complex eigenvalues of A. For fixed p (and T) 9YP denotes the subset
of 3K with p real eigenvalues and A (A) &#x3E; 1; Y denotes a matrix of the
type
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with

and

The set of all such matrices with max {|03BB1|, ..., |03BB03C1|, |r03C1+1|, ..., |r03C1+03C4|} &#x3E; 1

and cpP+K E (0, 03C0) (for 1:5 K ~ T) is denoted by 03A903C1. Now for all A E e,
a matrix Y E R03C1 exists such that a = X -1 YX with a certain invertible
transformation matrix X ; we have for v E N

with Pi(X) = X-1IiX, where Ii denotes a matrix as in (3.1) and

or

and Qi(X) = X-1JiX ( p + 1 ~ i ~ p + T), where Ji denotes a matrix as
in (3.1) and

We define for an integer-valued s x s -matrix G = (gij) (different from
the null matrix) and a fixed X :

Now the family of all invertible transformation matrices X is an

s2-dimensional C~-manifold; we denote it by M*; of course ûp is an
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s-dimensional manifold. The mapping ep : M* x Sfp - M03C1 defined by

is an analytic mapping of the product manifold M*  R03C1 onto the
manifold M03C1.
For 1 ~ i ~ p we consider the mapping ~i : M* - 1R2s, defined by

where a = (ak) E Rs is the i-th row of the matrix X and b = (bk) E Rs
the i-th column of X-’. The image M(i) = ~i (N*) is open in 1R2s and the
mapping ~i : 8R* - M(i) is surjective and analytic. Similarly we consider
for 03C1 + 1 ~ 1 ~ 03C1 + 03C4 the mapping ~i : 8ll* ~ 1R4s defined by

and

~i : M* ~ M(i) is surjective and analytic; M(i)={a,b,c,d&#x3E;:a,d&#x3E; =
(b, c) = 0} is the image of M* as above.
An immediate consequence of Proposition 2.1 and Proposition 2.2

is the following

3.7 LEMMA: For almost all X ~ M (in the sense of the S2_dimen-
sional Lebesgue measure) there exists a positive constant C(X) such
that

with G = maxi,j|gij|: L denotes the set of all X ~ M such that (i) and
(ii) are valid.

PROOF: Let 1 ~ i ~ p, then 03B1i(G,X) = 03A3sij=1 aibjgji with ~i (X) =
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(a, b) and a = (ak), b = (bk) as in (3.5). By Proposition 2.1 we obtain

for almost all (a, b) E R2s. Now we obtain by Proposition 2.2, because
M(i) is open in R2s:

for almost all X E M(i).
In the case 03C1 + 1 ~ i ~ 03C1 + 03C4 the lemma follows by similar

arguments using Proposition 2.1 (iii) because of

and

We consider a matrix A = X-1YX, such that the modulus of at least
one complex eigenvalue is larger than 1 (the case that the modulus of
a real eigenvalue is larger than 1 is discussed in chapter 4); w.l.o.g. let
this eigenvalue be À,,, = (r03C1+1, ~03C1+1). In the following we shall prove.

3.8 PROPOSITION: Let X ~ L (see lemma 3.7) be a fixed trans -

formation matrix and all eigenvalues Ai (i ~ p + 1) and rp+I are fixed
too. Then for all E &#x3E; 0 a positive constant Û = Û(X, Y, E) exists such
that

for almost all ~03C1+1 E [0, 7r]; there DN(X, Y) denotes the discrepancy
of (AP(n» for A = X-’YX.

First we show that Theorem 1 is an immediate consequence of

Proposition 3.8. Let 4p denote the subset of M* X Ûp such that an
estimate (3.9) holds. Because of



283

where the function (X, Y) - D(N, X, Y) is measurable it follows

that 03C1 is a measurable subset of M* x Up. Let I = Q x (0, 7r) be an
s2 + s-dimensional interval with I C 8ll* x Up and B = I ~ 03C1; then B is
measurable and we can apply Fubini’s Theorem to the indicator function
1C, where C = IBB :

Now we consider a countable covering of 8ll* x R03C1 consisting of such
intervals I = Q x (0, 1T); by (3.8) we have

for almost all (X, Y) E I. Obviously the mapping e, : (X, Y)HX-’YX =
A has all properties required in Proposition 2.2 and so

for almost all A E 03C1(I) C M03C1. Since the countable union of null sets is
X-’ YX = A has all properties required in Proposition 2.2 and so

for almost all A E M03C1.
s

Because of 3K = U M03C1 the proof of Theorem 1 is complete.
p=i

In the following we give a proof of Proposition 3.8. For this purpose
we consider the Weyl sum as a function of ~03C1+1:

with ai, 03B2i, y; as in (3.3) and yi = yi(G, X) with

The following lemma leads to an estimate of the Weyl sum:

LEMMA 3.15: Let G = (gij) be an integer valued matrix and 1 ~

IIGII = max|gij|~N; furthermore let Àp+I = (rP+n ~03C1+1) be a complex
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eigenvalue with 1  u ~ r03C1+1 ~ v and X Ei (25. Then two positive con-
stants CI(u, X) and C2(u, x) independent of G exist such that

for all k, 1 with |k - l| ~ C2(u, X), N ~ k ~ N, N ~ No(u, X).

PROOF: In order to simplify the notation we omit in the following
the index and write y, cp, y, r instead of cpP+,, y03C1+1, r03C1+1, 03B303C1+1(G). Fur-
thermore we define

An elementary calculation shows for f(~) = d (g(~)) : (k &#x3E; 1 w.l.o.g.)

Easily an estimation of the numbers of zeroes of f and f’ in [0, 03C0] can
be established. f and f’ are polynomials ( 0) of degree 0(p(k)) in
sin cp and cos cp with the property

(3.17) The number of zeroes of f and f’ in [0, 1T] is 0(p(k)).

Now we dissect the interval (0, 1T) into two disjoint sets U and V
defined by

U is an open set and therefore the union of 0(p (k)) (compare (3.17))
open intervals Ii. We obtain by (3.16):
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hence for all k ± N z-- No(u, X) by 3.7

and so  p(k)2. Using (3.18) we get for the measure of I

and with 3.7 : 03BC(Ij) = O(k8s2+2p(k)-I ,-p(k». Now each Ij contains 0 or ir or a
zero of f, because f is monotone on Ij; so

by (3.17). Now we dissect V in 0(p(k)) intervals I’j such that f has
constant sign on I’j and is monotone there. By the second mean value
theorem and 3.16 we obtain

hence together with 3.7.

and the lemma is proved.

Because of

we obtain for an integer valued matrix G with 1 ~ IIGII:5 N

for [u, v] n (-1,1) = Ø with a positive constant C by estimating the
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exponential terms for ||k - 11  C2(u, X) and k  x/N trivially by 0(1)
and by Lemma 3.15 otherwise.
Now we apply Cauchy’s inequality and obtain for all integer valued

matrices G, G’ with 0  IIGII, ~G’~ ~ N:

We obtain by setting H = N and taking the square of DN (X, Y)
and the integal (r(G) = IIi,; max(|gij|, 1)):

This estimation is independent of the sequence p(n), so it remains

valid for all "shifted" sequence p’(n) : = p (M + n) with M E N ; for
the discrepancy D(M, N, X, Y) of such sequence we obtain

Now we apply Proposition 2.4 with F(M, N)(Y) : = D(M, N, X, Y)
and it follows (2.4(i) is valid for 03C3 = 2s2 and 2.4 (ii) trivially is valid for
the discrepancy):

for almost all ~03C1+1 E (0, 03C0); so Proposition 3.8 is proved.

4. Proof of theorem II

We now consider the case that A possesses at least one real

eigenvalue with modulus larger than 1. W.l.o.g. we may assume the
real eigenvalues of A to be ordered according to the magnitude of
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their moduli so that |03BB1| &#x3E; 1. As in the previous chapter it suffices to
prove inequality (1.5.) for a fixed matrix X, fixed eigenvalues
À2,..., Às and for almost all À == À, from a compact interval I disjoint
to [ - 1, 1] containing none of the other eigenvalues À2,..., À,. So the
Weyl sum in (3.14) can be expressed in the form

with

where the constant C does not depend on À, and therefore is fixed for
fixed X, G, 03BB2, ..., 03BBs. Employing a method developed by Erdôs and
Koksma in [2] we now define (dropping the index 1 of 03BB1 for short)

for n = 1, 2,..., Nu := [(N - 03C3)q-1] + 1, 03C3 = 1, ..., q, where the posi-
tive integer q is defined (for sufficiently large N) by

Ào being the element of I with smallest modulus. We further define
another positive integer w by

and get by a straightforward calculation

Here [ni,..., nW] denotes the quivalence class of all w-tuples which
can be obtained from the special w-tuple (ni, ..., nw) with n1 ~···~
nw ~ Nu by a permutation of the entries; P[nI,..., nw] is the car-

dinality of this equivalence class. [n,, ..., nw] &#x3E; [m,, ..., mW] means
that for some k ~ {1,..., w} we have nk &#x3E; Mk, nj = mj for k  j ~ w



288

and 03C8(03BB) is defined for each pair ([ni,..., nw], [m1,..., mw]) by

In order to establish a lower estimate for 1t/1’(A)1 on I we first conclude
from (4.2), (4.3), (4.4) and (4.5)

for sufficiently large N. So we get for [ml,..., mw] &#x3E; [m i, ..., m’w] :

with k(s) = 4s2 for ~G~~N1/2 by lemma 3.7 (of course we may
suppose that the fixed matrix X is not chosen from the null set for

which inequality (i) of this lemma is false.) So we have for arbitrary
fixed [n l, ..., nW 

(by a similar argument as in [8], p. 35, (4.4)) and therefore the second
mean-value theorem yields from (4.6) (the monotony of 03C8’(03BB) on I
follows by repeating the above argument for |03C8"(03BB)|):

Here m (I) denotes the Lebesgue measure of I and the obvious

combinatorical facts
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have been used. We now consider subsets of I defined by

with ~(X) : = (log x2)1/2e(1/4)(2k(s)+s2+5). For their Lebesgue measure we
get by (4.11)

Forming the union

we get for its measure

and therefore by the definitions of q = q(N), w = w(N) and X after a
short calculation

m(M(B))  C4N-2

for sufficiently large N. So the series YIN m(M(N)) converges and the
Borel-Cantelli-lemma implies that for almost all AGI there exists a
positive integer No(À) such that for all integers N &#x3E; No(À) the in-
equality

holds for all 03C3 = 1, ..., q(N) and for all matrices G with integer
entries and with 0  IIGII  N 1/2. We finally conclude by (4.1) and (4.3)

for N &#x3E; No(À). The inequality of Erdôs-Turan (with H = [N1/2]) now
immediately yields the desired result.
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5. Remarks on the Theorems III, IV and V

The further results formulated in the introduction can be proved in
a completely analagous way by minor modifications of the proofs
given in the previous sections. To establish theorem III (on real

symmetric resp. complex Hermitatian matrices) one can adopt the
proof of chapter 4 (all eigenvalues being real in this case.) The only
necessary change is to replace the lower estimate for lai(G, X)l of
lemma 3.7 by the corresponding result following from part (ii) of
proposition 2.2. Obviously the value of the exponent k(s) (which
changes in this case) is of no importance.
On the theorems IV and V (dealing with real resp. complex trian-

gular matrices) it should be pointed out that the more stringent
condition 03BB(A)~1 (with 03BB(A) = min |03BBj| = min lajjj) is necessary
because otherwise in the sequence of powers of A at least one

component (corresponding to the k-th diagonal entry, where lakkl  1)
converges to zero and so the sequence is not even dense in [0, l]d(s).
On the other hand the coefficients 03B1i(G, X) occuring in the Weyl sum
(3.8) now reduce to

where (aj), (bk) are again the i-th row of X resp. the i-th column of
X -’ (X, X -’ being also (upper) triangular matrices in this case) and
G = (gk;) is an (upper) triangular matrix not vanishing identically with
integral entries. Let gk; be an integer with gkj ~ 0, then k:5 j and so
there exists i with k :5 i, j ~ i. So at least this 03B1i(G, X) does not vanish
identically and therefore can be estimated as in lemma 3.7. The rest of
the proof follows identically the lines of section 4 (for theorem IV)
resp. (after an analogous reasoning on the coefficients in the Weyl
sum) the method of section 3 for theorem V.
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