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Introduction

In a series of papers we intend to give a general method of

constructing harmonic forms on locally symmetric spaces as special
values of certain families of forms depending on complex parameters,
somewhat analogous to Eisenstein series. These harmonic forms will
be the Poincaré duals of certain totally geodesic cycles in the locally
symmetric space. On the other hand, for the locally symmetric spaces
which arise from the action of certain arithmetic groups on the

symmetric spaces associated to SO(p, q) and SU(p, q), the global
Weil representation provides a method of constructing automorphic
forms, and, in particular, harmonic forms in some cases. We will
show that, in certain cases, there is a coincidence of the duals of

geodesic cycles and the harmonic forms coming from the Weil

representation (Corollary 10.1). As a consequence of this coincidence,
we will show that the results of Hirzebruch and Zagier [7] for the
Hilbert modular surfaces and of Kudla [12] for certain arithmetic
quotients of the complex 2-ball, relating intersection numbers of

cycles and Fourier coefficients of elliptic modular forms, are special
cases of a general formula relating intersection numbers of cycles in
certain arithmetic quotients of the symmetric spaces of SO(p, q) and
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SU(p, q) to the Fourier coefficients of Siegel modular and Hermitian
modular forms respectively.

In this paper we carry out the above program for certain discrete

subgroups of SO(n, 1).
In the first part of this paper, we generalize the results of [13] to

quotients of hyperbolic n-space. More precisely, let M be a compact,
oriented, Riemannian n-manifold with constant negative curvature, so
that we may realize M as a quotient M = fBD of hyperbolic n-space
D by a torsion free group r of orientation-preserving isometries.
Suppose that N is a totally geodesic, oriented (n - k)-dimensional
submanifold of M, and let [N] E Hn-k(M, Z) be the corresponding
homology class. We then obtain an explicit formula for the harmonic
k-form which is the Poincaré dual to N by the following procedure:
We realize N as a quotient, N = 03931BD1, where Dl C D is an (n - k)-
dimensional hyperbolic space, totally geodesic in D, and FI C r is the
fundamental group of N (Section 1). Then we reduce the problem of
finding a Poincaré dual à) to N in M to the problem of constructing a
smooth closed k-form 03C8 having certain properties (Lemma 2.1), on
the ’tube’ 03931BD. A Poincaré dual form is then obtained by averaging:

In Section 3 we construct a family I/Is of such k-forms, depending on a
complex parameter s, such that the series

is absolutely convergent, and hence defines a Poincaré dual form,
provided s lies in the half-plane Re(s) &#x3E; 12(k -1). In Section 4 we
show that the family of forms w, satisfy the ’shift’ equation:

As a consequence, we obtain a meromorphic analytic continuation of
l1Jn which is analytic at s = so = max{0, k - 1 2 m 2}. The form l1Jso is then
the desired harmonic dual form to N (Theorem 4.3).

In the second part of the paper, we consider the case where r is a

congruence subgroup of the unit group of an anisotropic quadratic
form over a totally real number field 4. In this case, we establish a
relationship between the harmonic dual forms l1Jso to totally geodesic
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cycles of codimension k in M and the harmonic forms on M which
arise from the Weil representation for the dual reductive pair Sp(k) x
O(n, 1) in the sense of Howe [8], [4].
More precisely, let V be a h vector space with dim, V = m, and let

(,) be a nondegenerate, symmetric, k-bilinear form on V such that
(V(h,), (,)) is anisotropic, and

where k03BB, 03BB = 1,..., r = |h : Q|, are the archimedian completions of ae,
and VA = V ~h 4,.

Let G = SO( V) be the special orthogonal group of V, viewed as an
algebraic group over 4. Let 0 be the ring of integers of ae, and let
L C V be an 0-lattice such that the dual lattice

contains L. We then let r be a torsion free congruence subgroup of

and let

where we view D as the space of negative lines in V,.
Then, in Section 6, we associate to each frame X = (X1, ..., Xk) E

Vk, with (X, X) = ((Xi, Xj)) totally positive definite, an oriented,
totally geodesic cycle 03C0X:NX~M of codimension k, and hence a
homology class Cx = (03C0X)*(1X) ~ Hn-k(M, Z).

In Sections 7 and 8 we construct a certain type of theta-function.
Specifically, for T = (T,, ..., Tr) ~Jrk, TÀ = UÀ + iv03BB; Z E D, W =

(W1, ..., Wk) E Vk1 with Wi E Z~ and 03BC E (L*)k/Lk, we define

where
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with (,)z the majorant of (,) associated to Z, and, for Y E Mk(cC)r,

If we identify the tangent space TZ(D) ~ Z 1. C VI, then as a f unc-
tion of Z and WEI TZ(D)k, 03B803BC, determines a k-form on D which is
easily seen to be r-invariant. On the other hand, we prove (Pro-
position 8.4) that, as a function of 03C0 ~ Hrk, 03B803BC has a transformation law

like a Hilbert-Siegel modular form of weight m and a certain 03B8-

multiplier with respect to a certain congruence subgroup r C Sp(k, 0).
In Section 9 we use the theta-kernel 03B803BC to define a lifting Yk from

Sm/2(), the space of holomorphic Hilbert-Siegel cusp forms which
transform as 0, does, to differential k-f orms on M, and we give an
explicit formula (Theorem 9.1) for the lifting Jk of the (generalized)
Poincaré series, P*03B2,s. In fact, if 03B2 = t03B2 ~ Mk(h) with 03B2 ~ 0 (totally
positive definite), we let

so that C(03B2; IL) E Hn-k(M, Z), and we let

where (J)x,s is the family of Poincaré dual forms to Cx constructed in
part 1. Then we find that

In Section 10 we obtain several consequences of this identity. In
particular, if k  1 4 m, we obtain (Corollary 10.1)

which shows that, in this case, the image of the lifting 5fk is the

complex span of the harmonic dual forms to the cycles C(P; ju). We
also show (Corollary 10.4) that if C e Hk(M, C), then the generating
function for the intersection numbers
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where Y* is a certain lattice, lies in Sm/2(). This generalizes the main
result of Hirzebruch and Zagier [7].

Finally, in Section 11, we use a slight generalization of the non-
vanishing theorem of Millson-Raghunathan [15] to prove that, for
suitable L, t£, and r the cycle C(03B2; g) 0 0 (Corollary 11.3). Thus our
mappings Yk and I0k will, in general, be nontrivial. The required
generalization of [ 15] is proved in the appendix.
Our initial interest in this question was sparked by the work of

Hirzebruch and Zagier [7] and Zagier [24]. Our approach is different
in that we find a formula for the Poincaré dual of a geodesic cycle,
then prove the intersection formula. Also, we believe that our use of
the Weil representation results in a better understanding of the nature
of the intersection number formula. This use of the Weil represen-
tation was inspired by Shintani [21], who constructed the map I, in
the split case for n = 2, although he stated his result in terms of
periods rather than intersection numbers. A similar mapping occurs in
the work of Oda [18].
We have greatly profited from the ideas of Roger Howe about the

Weil representation.
The first author would like to thank Professor A. Borel for the

opportunity to present the results of this paper in his seminar at the
Institute for Advanced Study during the fall of 1980.
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§1. Totally geodesic cycles in quotients of hyperbolic n -space

Let V be a real vector space, dimR V = m, and let (,) be a non-
degenerate symmetric R-bilinear form on V such that

with m = n + 1. Let

be the connected component of the special orthogonal group of V, (,),
and let

be the space of all negative lines in V with respect to (,). Then G acts
transitively on D, and the isotropy subgroup of any point of D is a
maximal compact subgroup of G.
We identify D with one sheet of the hyperboloid of two sheets in

V:

and thus we have a natural identification

where Tz(D) is the tangent space of D at Z, and

The bilinear form (,) induces a positive definite inner product on
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each Tz(D), and hence defines a G-invariant Riemannian metric on D.
The geodesics in D with respect to this metric are just the inter-
sections of D with hyperplanes in V, and, for Z, Z’ E D, the geodesic
distance d(Z, Z’) is given by

Also D has constant curvature -1.
Let r C G be a discrete, torsion free subgroup such that the

quotient space

is compact. Thus M is a compact orientable Riemannian n-manifold
with constant curvature -1.
We now consider totally geodesic cycles in M. For k ~ Z with

1 «5 k  n, let U C V be a subspace with dim,, U = k and such that
(,)u &#x3E; 0.

Define an involution u    U E O(V) by

Let

be the centralizer of or in G, and let

be the fixed point set of u in D. Note that Du = D n U~, so that D, is
a totally geodesic submanifold of D with dim D, = n - k.

Let 039303C3 = r n G,, and let N = r u B Du. We then obtain the diagram

where the map t is induced by the inclusion of D, into D. In general,
F, will be the identity, and the image L(N) of D, in M will be dense.
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Thus to obtain nice cycles we assume the compatibility condition :

The following lemma is then proved in Millson-Raghunathan [15].

LEMMA 1.1: Assume that the involution u defined above satisfies
(*). Then

(i) the quotient N = 039303C3BD03C3 is compact, and
(ii) (Jaffee) the map L is an embedding with locally finite image.

Now let G’ be the connected component of G,, and assume that

so that N is orientable. We then obtain a compact embedded totally
geodesic n - k cycle

and hence, choosing an orientation 1N E H,,-k(N, Z), a homology class

When r is a group of units of an indefinite quadratic form over a
totally real number field, we will construct a large f amily of subspaces
U C V for which the corresponding involution o-u satisfies (*) and
(**). In this case Millson and Raghunathan [15]2013see also Prop. 11.1
and Appendix2013hâve shown that, after passing to a suitable con-

gruence subgroup, we can obtain nonvanishing classes [N] in all

dimensions. We do not know, however, if it is possible to obtain
similar results for other types of discrete subgroups r c G.

§2. Poincaré dual forms

In this section we begin the construction of a Poincaré dual form to
the cycle N considered in § 1.

Recall that if M is a compact, smooth oriented n-manifold and if
03C0:N~M is a smooth singular cycle with N oriented of dimension
n - k, then a Poincaré dual form to N is a smooth closed k-form w on
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M such that, for all smooth closed n - k forms ~ on M we have

Any two Poincaré dual forms to N are cohomologous, and, by Hodge
theory, there exists a unique harmonic dual form which we call the
Poincaré dual form to N. If N’ is any smooth oriented k-cycle in M
and w is a Poincaré dual of N, then

where [N’]· [N] is the intersection number of the classes [N] E
Hn-k(M, Z) and [N’] E Hk(M, Z).
We now return to the situation of §1, and we assume that 03C3 satisfies

conditions (*) and (**). We then consider the partial quotient E =
039303C3BD and obtain the diagram

Note that the projection E ~ M is a non-normal covering.
For convenience we will identify differential forms on M (resp. E)

with r(resp. r CF) invariant forms on D.

LEMMA 2.1: Suppose that 03C8 is a smooth closed k-form on E such
that

(i) Ji is integrable on E, i.e., E~03C8~dv  00,

(ii) for any closed, bounded, n - k form 11 on E

and

(iii) the series
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is absolutely convergent, uniformly on compact subsets of E. Then the
r-invariant form

is a Poincaré dual form to N in M.

PROOF: By (Hi) úJ is closed, smooth, and r-invariant. Moreover, if F
is a measurable fundamental domain for r in D, we have

where we observe that U yF is a fundamental domain for 039303C3 in D.
03B3~039303C3B0393

By (iii) the interchange of summation and integration is justified, and
the lemma is proved.

§3. A family of dual forms

In this section we will construct a family of 039303C3-invariant forms 1p,
depending on a complex parameter s, such that, for Re(s) sufficiently
large, t/ls satisfies the conditions of Lemma 2.1. Thus we obtain a

family of Poincaré dual forms to N.
First observe that there is a natural projection
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defined as follows. Write V = U + U~ where U’ is the orthogonal
complement to U in V, and let 7r : V ~ U~ be the orthogonal pro-
jection. Then the image of 1 E D under 7r is again a negative line in
U~; hence we have

Moreover, if g E G,, then

i.e., 03C0 is G, equivariant. Therefore 7r induces a fibration:

which we also denote by 03C0.

Observe that if t’e Du, then

and so the fibers of 1T are totally geodesic hyperbolic subspaces of D
of dimension k.

REMARK: In fact, E is diffeomorphic to the normal bundle of N in
M, and we want to construct, in effect, a form ~ on E representing
the Thom class of this bundle, i.e., the dual form to the zero section.
However, such a form is usually taken to have compact support.
Since we want to construct a harmonic form, we must proceed in a
different way.
We may describe the fibration 1T: E - N a little more explicitly. If

Z, E D03C3, Z2 E U with (Z2, Z2) = 1, and t E (0,00), then

and 03C0(Z)=Z1. Conversely, every Z E 1T-I(ZI) has this form, so we
obtain a parametrization:
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where Sk-’ C U is the unit sphere. Note that

so that t is the geodesic distance from f (Z,, Z2, t) to D,. To compute
the metric in these coordinates, we first make identifications:

and

Then it is easy to check that if w, E TZt(Da) and W2 E Tq(Sk-I), then

and

Thus we have:

LEMMA 3.1: Let ds2, dsi, and ds’ be the metrics induced by (,) on D,
Du and Sk-I. Then, in the coordinates given by f,

and the corresponding volume form is

We may now construct the required family of forms. Let li be the
volume form on D,, and let

where * is the Hodge * operator with respect to our metric. Then ~ is
a k-form on D which is, in fact, G03C3-invariant since 7r is G,-equivari-
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ant. Now for s ~ C we define

LEMMA 3.2: In the coordinates given above on D - D,, we have:

and so

Moreover, d’Ps = 0 for all s.

PROOF: First we have

Since ch(t)n-kdv1 is the volume form on the ’horizontal’ subspace at
distance t from D,, we must have

where Sh(t)k-Idvl A dt is the volume form on the fiber at distance t. Of

course, ~ and ~s are G03C3-invariant, so we may view them as forms on
E.

REMARK: The f orm cps is square integrable on E provided

In particular, ~ is itself square integrable provided

We next want to normalize ~s so that it has integral 1 over the
fibers of 03C0 : E ~ N.

LEMMA 3.3: If Re(s) &#x3E; k - 1 2 m, then ’Ps is integrable over the fibers
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of 7r: E ~ N. Explicitly, if F is such a fiber, and we let

then

PROOF: We compute

and this integral converges for Re(s) &#x3E; k - 1 2(n + 1) and is easily
evaluated, yielding the value above.
For Re(s) &#x3E; k - 1 2 m, define

so that f/ls is G-invariant, closed for all s and has fiber integral 1.

PROPOSITION 3.4: If Re(s) &#x3E; 1 2(k -1), then f/ls satisfies conditions (i),
(ii) and (iii) of Lemma 2.1 and hence determines a dual form

toNinM.

PROOF: Since

is finite provided r=Re(s)&#x3E;1 2(k - 1), condition (i) is satisfied in this
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range. To check condition (ii) we note that

But now, if we let

then

and we may consider the projection onto F:

Note that, if (Z2, t) E F, then

We write

and observe that, in E the cycles N(Z2, t) are all homotopic to N via

Now we apply ’fiber integration’ to 7r’. Since the fibers of 7r’ are

compact, fiber integration gives a mapping [5, Chapt. VII, §5],

Then it is easily checked that

Since the N(q,t)’s are homotopic to N and q is closed, we have
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simply,

and so

This proves (ii). Finally, (iii) follows by a standard argument like that
of [13, p. 199, Lemma 2.3].

§4. The shift équation, analytic continuation, and the harmonic dual
form

We now want to construct the harmonic dual form to N.
First we compute the Laplacian A applied to ~s. Note that by

Lemma 3.1

and

LEMMA 4.1: 

where m = n + 1.
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PROOF: We compute

as claimed.

COROLLARY 4.2: (the shift equation).

PROOF: We observe that

and so

as claimed.
Thus we see that at s = 0 and s = k - 1 2m 2 the form o/s will be

harmonic. Neither of these values is in the range allowed in Pro-

position 3.4 and so we must obtain the harmonic dual form by first
averaging o/s over 03931B0393 and then constructing an analytic continuation.
The analytic continuation will follow from the shift equation. This
method of continuation was inspired by Selberg [20] and exploited in
[13].
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THEOREM 4.3: Let

Then:

(i) This series is absolutely convergent for Re(s) &#x3E; 1 2 (k - 1) and
defines a holomorphic family of closed k-forms dual to N.

(ii) Ws has a meromorphic analytic continuation to the s-plane and
satisfies the ‘shift equation’ :

(iii) if k :5! m, then the function s H ws, valued in fi k (M) is holomor-
phic at s = 0, and Wo is the harmonie dual form to N. If n &#x3E; k ~ 1 2 m, then
the function s ~ 03C9s is holomorphic at s = k - 1 2 m, and ú)k-I/2m is the
harmonic dual form to N.

PROOF: Part (i) is just a restatement of Proposition 3.4. To obtain
an analytic continuation of Ws we expand in terms of eigenforms. Let
0 ~ 03BB1 ~ À2,..., be the eigenvalues of 0394 on flk(M), repeated according
to their multiplicity, and let {fj}j=1,2,... be a corresponding orthonormal
basis for flk(M). Thus 0394fj=03BBjfj. For Re(s) &#x3E; 2(k -1) we have the
expansion

where

In the half plane,of absolute convergence, the shift equation for 4p,
given in Corollary 4.2 implies that

and therefore

We may write this as
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with

Iterating this formula, we obtain

First observe that, if 03BBj = 0, we obtain simply

and so a;(s) is an entire, periodic function of s in this case. Next, if
03BBj~ 0, we see that aj(s) has a meromorphic analytic continuation to
the whole s-plane with possible poles at points

Now the roots of P;(x) = 0 have the form

and these occur in pairs: (a) symmetric about the line Re(s) =
1 2(k-1 2m) and strictly inside the strip 0  |Re(s)|e|k-1 2m| (these
occur if 03BBj1 4(2k-m)2), or (b) complex conjugates lying on the line
Re(s) = 1 2 (k - 1 2 m ). Moreover, since we have taken care of the case
Àj = 0 above, there is no pole at the point s = 1 2 (k - 1 2 m ). Thus we have
the following picture depending on the codimension k:
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where the line of possible poles repeats at integer translates to the
left.

REMARK: The condition k  1 2m 2 is precisely that required for

square integrability of the form 03C80 on E.

Thus we have obtained an analytic continuation of the coefficients
a;(s) of the eigenfunction expansion. We now want to show that the
series Lj aj(s)fj is absolutely convergent uniformly on any compact
set in the s-plane from which we have deleted the possible poles of
the a;(s)’s. If K is any such compact set, then there exists an E &#x3E; 0
such that K does not meet any E-disk about any of the points
{xj - ~}xj is a root of P;(x) = 0 and 1 Ei Z, ~ ~ 01. Moreover, we may
choose r E Z, r ~ 0, such that the set K + r lies within the half plane
Re(s ) &#x3E; 1 2 (k -1 ) + ~. Applying the above shift formula for aj(s) we
obtain

where, since Àj ~ ~ as j - 00, we may choose C uniformly with respect
to j. Now to obtain convergence in the Hilbert space norm on fl’(M)
we observe the following :

LEMMA 4.4: Suppose that s lies in some compact set K’ in the half
plane Re(s) &#x3E; !(k - 1). Then

1) VI E Z&#x3E;o, 3Ct &#x3E; 0 such that

where Cl is uniform on K’.
2) (Gaffney [3]) asymptotically

for some constant C’.
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Then

and by the Schwarz inequality for forms

Thus we may take Cl = max ~0394~03C9s~.
Now on our original set K we obtain uniform convergence in the

Hilbert space norm as follows:

which is, by 2) of the lemma, convergent provided 4(~ - r) &#x3E; n 1. We
choose such an 1 and obtain convergence of úJs to a holomorphic
03A9k(M) valued function on K. Of course, 03C9s continues to satisfy the
shift equation, so we have proved (ii).

Finally, from what was shown above about the possible poles of
the aj(s)’s, it is clear that lJ)s is holomorphic at s = 0 if k ~ 1 2 m and at
s = k - 1 2 m. Moreover, there are no poles to the right of these values,
i.e., at s = 1 (resp. s = k - 1 2 m + 1), and so via the shift equation, wo
(resp. Wk-I/2 m) is the harmonic dual form to N.

§5. Additional remarks

5.1. In this section we make two variations in our previous con-
structions which will be needed in part II.

First we want to weaken condition (*) of § 1. Suppose that M is a
smooth, compact, oriented n -manifold, and let
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be a finite covering. Suppose that

is a smooth (n - k)-cycle in M’ with N’ compact and oriented.

LEMMA 5.1: Suppose that w’ is a Poincaré dual form to (N’, L’) in
M’, and let

so that

Then w is a Poincaré dual form to (N’, 1r 0 L’) in M.

PROOF: Let r be the degree of the covering 1r. Then for any closed
n - k form 11 on M we have:

But it is easy to check that

as required.
Now suppose that there exists a compact oriented n - k manifold

N, a finite covering 03C01:N’~ N of degree d and a smooth mapping
03C0 : N ~ M such that the diagram

commutes.



229

COROLLARY 5.2: If w’ is a Poincaré dual form to (N’, t’) in M’,
then

is a Poincaré dual form to (N, t) in M.

PROOF: If 11 is any n - k form on M, we have

and so Lemma 5.1 gives the result.
Corollary 5.2 allows us to extend our construction of Poincaré dual

forms to any cycle (N, L) which is ’covered’ by a cycle (N’, t’) of the
type considered in §1. In particular, we may replace condition (*) of
§ 1 with the weaker condition:

where ’-’ means commensurable. If (*)’ holds for r, then (*) holds
for the subgroup

which has finite index in r.

5.2: We now want to find a formula for the function ~s which will
allow us to vary U and which will be essential in making the link with
0-functions. We will use the following notation: If X = (X,, ..., Xk) E
Vk and Y = ( Y,, ..., Yl) E V~, then

Note that if A E GL(k, R) and B E GL(~, R), then

Also, if X E Vk, we let
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Now choose a k-frame X E Vk such that span X =

spanfx,, ..., Xk} = U. We will now give a formula for ’Ps in terms of

X, and we write Dx for D, and ~s,X for ’Ps to emphasize this

dependence. If Z E D, let

be the projection of the k-frame X into the tangent space Tz(D) = Z~,
and let

PROPOSITION 5.3: In the notation above, if W = (Wh..., Wk) is a
k-tuple in Tz(D), then

Also, if g E G, then

and finally,

PROOF: Recall that the fiber of 1T: D ~ Dx through Z was

In particular, the tangent space to the fiber of ir through Z is

If we view the components X; of X as vector fields on D and let q; be
the dual 1-form to X;, then the volume form to the fibers of ir is

This was the form sh(t)’-’dV2 A dt in the coordinates of §3. Moreover,
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we have

Next observe that if

is the component of Z orthogonal to X, then

and so

Also

But it is easy to check that

and so

Putting these facts together we find that

and since, for W = ( Wl, ..., Wk), Wi E Tz(D), we have

the first part of the proposition is proved. The rest of the proposition
is immediate.
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Part II

§6. Families of cycles

In this section we will construct, for a certain type of r, families of
cycles to which our previous results may be applied.
Let 4 be a totally real number field with |k:Q|=r, and let /tA’

À = 1,...,r, be the real completions of h. Let V be a h vector space,
dim, V = m, and let (,) be a nondegenerate, symmetric, k-bilinear form
on V. We assume that

where V03BB = h03BB 0k V.
Let G = SO(V, (,)) be the special orthogonal group of V, (,),

viewed as an algebraic group over h, and let G03BB = G(h03BB) and G~=
03A0r03BB=1 GA. Let

be the symmetric space associated to Gi, so that G~ acts transitively
on D via projection on the first factor.
Let  be the ring of integers of h, let L C V(h) be an -lattice, and

let

be the group of units of L. We then take a congruence subgroup
r C G*(L) such that

1) r is torsion free,

and

2) the image of r in G1 lies in G°, the connected component of the
identity in Gl.
The existence of such a congruence subgroup follows from:

PROPOSITION 6.1: (Millson-Raghunathan [15]): There exist infinitely
many prime ideals p of 0 such that the principal congruence subgroup

lies in the kernel of the spinor norm, and hence has image in Gl.
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Having chosen such a r we obtain an orientable n-manifold M =

rBD as in § 1. We further assume that either

1) z = Q, n ~ 3 and V(Q), (,) is anisotropic,

or

These conditions guarantee that M is compact.
We next construct families of cycles in each codimension. For

k ~ Z, 1 ~ k ~ n, we choose an auxiliary h-vector space E with

dim,E = k, and we let

For X E V we define a subspace

as follows: Choose any basis el, ..., ek for E, and write

Then let

Of course, span X is independent of the choice of basis for E. Let

and le

where (span X)1 is the span of {X1, ..., Xk} in VI. For X E Fr’(V) we
let
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and

where we let G act on V via its action on V; we view Gx as an
algebraic subgroup of G defined over h, and we let (Z, X) =
I, i (Z, Xi ) 0 ei E E. We then obtain a cycle, as in § 1,

Since we must now consider the whole family of cycles
parameterized by X E Fr+k(V), it is important to orient these cycles in
a coherent way.

Fix an orientation of VI and of E, and define orientations of D and
Dx as follows:

(i) Let Z E D. Then an n-frame W = (Wi,..., Wn), Wi E Tz(D) =
Z~ is properly oriented if the m-frame {W, Z} is properly oriented for
VI.

(ii) Choose a properly oriented basis el, ..., ek for E, and for X E V
write

Let Z E Dx. Then an (n - k)-frame W = (WI, ..., Wn-k), Wl E
TZ(DX) = Z~~X~ is properly oriented if the m-frame

{W, XI, ..., Xk, Z} is properly oriented for VI.

The orientations thus defined have the following properties:
1) The orientation of Dx depends on the orientation of the frame

{X1, ..., Xk} in (span X), but not on the choice of properly oriented
basis for E.

2) The group Gx(/li) ~ G°, and hence 0393X, preserves the orientation
of Dx, and we may define

3) Suppose that there exists y E r such that y(span X) = span X,
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but the orientation of yX is opposite to that of X. Then we have a
commutative digram

and so

hence

4) Fix some X E Frt(V), and let

This is the analogue of G03C3 of §1. Then Proposition 6.1 guarantees the
existence of a congruence subgroup r’ C r such that

For such a r’, [Ni x 1 doesn’t vanish for the trivial reason 3), and, in
fact, we shall see-Proposition 11.1-that the result of Millson-

Raghunathan [15] provides the existence of a further r" c r’ such that
[N"X] ~ 0.

§7. Thêta f unctions: local constructions

7.1: We begin by recalling a few facts about the oscillator

representation.
Let V be a real vector space, V* = Hom( V, R), and let
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be the natural pairing. We let dim, V = m, and let dx and dx* be Haar
measures on V and V*, dual with respect to [,]. Define an alternating
form A on the vector space V x V* by

where z = (x, y) and z’ = (x’, y’). Note that the subspaces V x {0} and
{0} x V* determine a complete polarization of V x V* with respect to
A.
Let Sp(V) = Sp(V x V*, A) be the symplectic group of V x V*, A,

where we let g = a b E S , with a ~ End(V), b E

Hom(V, V*), c E Hom( V*, V) and d E End( V*), act on V x V* by
right multiplication.

It is well known that there is a projective unitary representation-
the oscillator representation-of Sp(V) on L2(V), and this projective
representation lifts to a unitary representation of the metaplectic
group Mp(V). Moreover, the action of this group preserves the
Schwartz space J(V). For g E Sp(V) we let R(g) be some choice of
the unitary operator on L2( V) associated to g.
Let

be the Siegel space associated to Sp( V). If g = a b E Sp( V) and
T ~ H(V), we have

and we let

where c03C0 + d EG(V*C). Note that, if we write v= v (03C0) = Im(03C0) ~
Hom(V, V*) and let |v| be the module of v with respect to the
measures dx and d*x*, i.e.,

then
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We define a mapping

by

for x E V. The following lemma is then well known:

LEMMA 7.1: For each g E Sp(V), choose a continuous branch of
J(g, 03C4)1/2 on h(V). Then the unitary operator R(g) on L2(V) can be
chosen so that

PROOF: See [9, p. 175].
For this choice of operators R(g) we have

where the cocycle c(gl, g2) is given by

In particular, the twofold covering of Sp(V) is

with multiplication

and the unitary representation of Mp(V) in L 2( V) is given by

where g = (g,,E) and R(g) is the operator normalized as in Lemma 7.1.

7.2: Now suppose that V is a real vector space with dim V = m, and
let (,) be a nondegenerate, symmetric bilinear form on V. Assume, for
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the moment, that

Later V will be one of the completions of our h-vector space of §6,
so that (p, q) will be either (m, 0) or (n, 1). Let

and let

be the symmetric isomorphism corresponding to (,).
For a positive integer k, let E be a real vector space with dim E = k.

Let E* = Hom(E, R), and let

be the natural pairing. Then let

so that

via Q, and

where [,] : V x * ~ R is the natural pairing.
We define an alternating form AE on E x E* as in the first part of

this section, and we obtain an alternating form

on

Then we have a natural homomorphism

whose image is a dual reductive pair in the sense of Howe [4], [8].
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Let

and let

Then

D ~ {I E GL(V)| 1) (X, IY) is symmetric and positive definite, and
2) 12 = Il

where the involution Iz corresponding to Z is defined by

and we have an embedding

which is equivariant:

for g E O(V) and h E Sp(E).
Now, via p, the oscillator representation of Sp(V) restricts to a

projective representation-the Weil representation-of O(V) x Sp(E)
on L2( V). Explicitly, for g E G C O( V) we have

Also, if T E H() and if f03C4 E 9’(V") is as in the first part of this section,

LEMMA 7.2: For h E Sp(E),
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PROOF: An easy calculation which we omit.

For T = u + iv ~h(E) and Z E D we let

and we find that, for a suitable choice of branch of J(h, 03C4)1/2:

COROLLARY 7.3: 

for g E G and h E Sp(E).

Therefore, if we let Cy and CE be the 2-cocycles defining Mp( V) and
Mp(E), we have:

and so p lifts to a homomorphism

where h = (h, e) E Mp(E). We then obtain a representation of Mp(E)
in L2( V) given by

where h = (h, e) E Mp(E). If we let

then

The particular Schwartz function of interest to us is defined as
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follows: There is a natural pairing

given by

Then for T E Sj(E), Z E D, and W E Z~~ E* C V* we define

where (X, W) E End(E).

PROPOSITION 7.4: For h E Mp(E),

PROOF: Since the automorphy factor j(h, r) satisfies

it is sufficient to check the required relation for a set of generators of
Mp(E). For the central subgroup {(l, ~)~=±1} the relation is

immediate, and so we need only check that it holds for elements of
the f orm h = (h, 1) where h runs over a set of generators for Sp(E).
For convenience we choose a basis e¡,..., ek for E and let

e*, ..., e*k be the dual basis for E*. Then  ~ Vk and * ~ Vk. Also
we have Sp(E) = Sp(k, R), so that we may take generators (a ),
a E GL(k, R), et), b = ’b E Mk(R), and (-11). For f E L2( V) we find
that

and

where dY is the self-dual measure on Vk ~  ~ V*. Also J((a ),
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’T)I/2 = (det a)-1/2 determines the branch of (det a)I/2, and y is a scalar
of absolute value 1. Note that we are using the ’matrix notation’
(X, X) E Mk(R), etc., as in §5 and à = t a 1.
The relation of the proposition is then obvious for the first two

types of generators, so we need only check it for (-11).
For W E V* we view det(X, W) as a homogeneous polynomial of

degree k in X E V and let

be the corresponding constant coefficient differential operator of
order k on V. If W~Z~~E*~*, then by a straightforward
calculation we have

and

Recalling that

we have, on the one hand,

while applying V(W) to the integral gives

Thus

as claimed, and the proposition is proved.
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§8. Thêta functions: global constructions

8.1: We now return to the global situation of §6 and the notation
defined there. For k E Z with 1 - k  n we have a h-vector space E

with dimçe = k. Let E* = Hom,(E, 4) be the dual space of E, and let
[,]E : E x E*~h be the natural pairing. We have

and

and the natural pairing [,] : V x *~h is given by

where we view

Then for the alternating forms AE on E E* and A on V x V*

defined as in §7, we have

and, viewing Sp(E) = Sp(E x E*, AE) and Sp() = Sp( V x V*, A) as
algebraic groups over h, we obtain a h-homomorphism

just as in §7. For convenience we let H = Sp(E) and il = Sp( BÍ).
We now restrict scalars from 4 to Q and obtain ideal vector spaces:

and

Also let
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and

so that p induces a homomorphism

Moreover, there is a natural inclusion

where Sp( V’) = Sp(’  V’*, A’) and

for [,]’ : V’ x ’* ~ R the natural pairing. Note that

and

where 03BB = ~h h03BB is the 03BB-th completion of V, and that

Also HA = Sp( VA) and

There is an obvious p"-equivariant embedding
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For this we have

Now, as in §7.1, there is a projective unitary representation of
Sp(V) on L2( V) which lifts to a representation of the twofold cover-
ing Mp(’) if we choose normalized operators R(h) as in Lemma 7.1.
If for each À we choose a continuous branch of J(h,, 03C403BB)1/2 on H(03BB)
for all hÀ E Sp(03BB); then, for each h E fI’, there exists a unique
continuous branch of J(p"(h), T)1/2 on (’) such that

Then, by Lemma 7.1, there is a unique operator R(03C1"(h)) such that

for T E h(’). On the other hand, we know that, on the dense

subspace  the subgroup p"(H’) acts

componentwise by the corresponding projective representations of
SP(VA) on Y( VA); i.e.,

for h’(h1,... , hr)~H’ and f == fI ~ ··· ~ fr E ~03BB Y(VA), where

RA(hA) is some unitary operator on L2(VA) associated to h, E Sp(03BB).
In particular, if T = (03C41, ..., Tr) E 03A003BB H(03BB), and we let

then
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Thus we conclude that, on the dense subspace ~03BB J(03BB)

where RA (hA) is, in fact, the normalized operator determined by our
choice of J(h03BB, 03C403BB)1/2.
Now for T = (03C41,..., r,) E nA H(E03BB), Z E D, and W E Z~~ E*1 C *1

define a function f*03C4,Z,W ~ Y(V’) by

where f*03C41,Z,W is the Schwartz function defined in §7.

LEMMA 8.1: If h = (hi,..., hr) E H’ = nA Sp(E,), then

where

and the branch of J(hA, 03C403BB)1/2 is determined as in Corollary 7.3.

PROOF: As observed above,

by Proposition 7.4 and Corollary 7.3, respectively.

8.2: We now want to construct certain theta-functions.
For convenience we fix a h-basis e,, ..., ek for E and let e*1,..., e*k

be the dual basis for E*. Thus we obtain identifications

with

in the matrix notation of §5.2.
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Let 0 be the ring of integers of 4, and let L C V be an C-lattice
such that the dual lattice

contains L, i.e., L* D L. Let

so that

and we have

under the identification of V and V*.
By restriction of scalars, we obtain Z-lattices

Now for any g ~(*)’/’ we define a theta-distribution 03B803BC on J(’)
by

We recall the generalized Poisson summation formula for the 0,,’s
as formulated in Shintani [21]. For h~Sp(’) and z = (x, y) ~
’ (’)*, let

where (x’, y’) = zh. Then let

For any h E Sp( V’, L’) and f E Y(V’), Proposition 1.1 of [21] implies
that
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with a certain unitary matrix Ch = (Ch(03BC, v)), independent of f and
satisfying

where

as in §7.1.

LEMMA 8.2: Consider the subgroup Sp(k, 0) C H(h), and let

rL = {03B3 E Sp(k, 0) the image of y in Sp(’) lies in Sp( V’, É’)I.
Then

where D-1 is the inverse different of 4/0.

PROOF: This follows easily from the definition of Sp( V’, L’) and of
Fh, and the fact that

We can give a more explicit formula for Ch on a certain congruence
subgroup of rL.

PROPOSITION 8.3: Choose N E Z&#x3E;0 such that

and let

Then f or y E ro(N) and for the choice of R(p" 0 03C1’(03B3)) made in §8.1,
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where

and

Finally 03C8(03B3) is a root of unity determined as follows:

where

with (p., q03BB) = sgn(V03BB(,)). Finall y, for h, h’ E Sp(k, 4), cA(hA, h’03BB) is the

cocycle for Mp(E03BB) as in §7.1. Note that the choice of root in EA(hA)
and c03BB(h03BB, h’03BB) is determined by our choice of operators for  E H’ in
§8.1.

where d*Y is the self-dual measure on 03BB ~ Vk03BB ~ Ùjj,

with (p03BB, q03BB) = sig V03BB(,) and the choice of root depends on our choice
of J(h, 03C403BB)1/2.
Next suppose that h = a b E r with det c ~ 0. Then by Pro-

position 1.1(iii) of [21], we find that
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with |c|=03A003BB|det c03BB|m and E(h) = 03A003BB~03BB(h03BB). Observe that if y E

ro(N), then the condition a td - btc = Ik implies that det d ~ 0. Write
w = (-Il) E Sp(k, C), and write

so that, by Lemma 8.1

Then, by the same argument as in [21, p. 96], we obtain:

If y = 1 we obtain

and so ~(03C9)-1E((03C9-1)-1Nh(C(03C9, 03C9-1)m) = 1 and vol(’/’)/)= 1.
Finally, as in [21, p. 97],

which completes the proof.
We can now construct the theta-functions which we need. For

TEllA H(E03BB), Z E D, and W~Z~~E*1, define

where i£ E L*/L and f*03C4,Z,W is as in §8.1.

PROPOSITION 8.4: Let N E Z&#x3E;0 and 03930(N) C Sp(k, 0) be as in Pro-

position 8.3. Then Vy= a :)Efo(N),
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PROOF: We have, via Lemma 8.1 and Proposition 8.3,

since 03BCatd ~ 03BC mod L.

§9. The main theorem

In this section we will show that the theta-functions constructed in

§8 provide a link between Hilbert-Siegel modular forms and certain
collections of the cycles constructed in §6.
We use the same notation as in §8.2. Since we have chosen a basis

for E, we have an isomorphism

where S)k is the Siegel space of genus k.
For N E Z&#x3E;o as in Proposition 8.3, let

Then for y E r(N), Proposition 8.4 gives:

03B803BC(03B303C4, Z, W) = 03C8(03B3)H(b, d; L)NIt(J(y, 03B3)m/2)03B803BC(03C4, Z, W).

Set

Let Sm/2(0393(N)) be the space of Hilbert-Siegel cusp forms of weight
1 2 m and multiplier À (y) with respect to r(N). Let

let



252

and let

Then any function ~ E Sm/20393(N)) has a Fourier expansion

where, for convenience, we write

Also the condition 0 ~ 0 means that 03B203BB E Yk(aeA) is positive definite
for all À.
Now for 03B2 E J* with /3 » 0 and f or ~ C, define the Poincaré

series:

By the argument of Klingen [10], this series is absolutely convergent
for Re(s) &#x3E; k - 1 4 m, and, if k  1 4 m, the holomorphic functions

{P03B2,0 1 f3 ~ J*, 03B2 ~ 0} span the space Sm/2(0393(N)). In particular, for CPI,

~2~Sm/2(0393(N)), we let

be the Petersson inner product, where F is a fundamental domain for
r(N) in Sjk and d03BC(03C4) = N,(det v-k-ldudv). Then for ~ E S,,12(1r(N»,

where
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and

Note that the first pole of 039Bk(03B1) occurs at s = k - 1 2 m. We normalize
P03B2,s by setting:

so that

If Re(s) is sufficiently large, P ;,s is rapidly decreasing on a fun-
damental domain for f(N), and so we may define the inner product
P*03B2,x’03B803BC&#x3E;. Our main result is an explicit formula for this inner product in
terms of the dual forms constructed in §6.

THEOREM 9.1: Let 03B803BC(03C4, Z, W) be the theta-function defined in §8.2,
and let P*03B2,s be the normalized Poincaré series. Then if

where K(S) is as in Lemma 3.3, ~~ and Il Ilz are as in Proposition 5.3,

X denotes the image of the frame X in 1 ~ B1, and a = s +n 2-k 2. In
particular, we have

where, in the notation of §6, r C G(L) is any congruence subgroup
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satisfying conditions 1) and 2) of §6 and such that, Bf ’Y Er,

and 03C9X,s is the dual form to the cycle Nx defined in §6.

PROOF: By the usual unfolding argument we have:

where F~ is a fundamental domain for 0393(N)~ in hrk. Taking

we obtain:

Now we have

where

with X, the image of X in 03BB~Vk03BB, and (,)z the majorant of (,)
associated to Z E D. Therefore, computed term-by-term, the inside
integral is just

For Re(s) as stated in the theorem we can compute the remaining
integral termwise. This gives a sum of terms each of which is a

product over À of the integrals:
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for À &#x3E; 1. Now recalling Siegel’s formula:

we find that these factors become

for À &#x3E; 1, with a = s +n 2-k2. Here 039Bk(03B1) is the product of r-factors

above. Observe that al = a + 2 and that

Also recall that

in the notation of Proposition 5.3. Therefore, we obtain

as claimed.
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Using reduction theory for Rh/QGL(k) and arguments similar to
those of Maass [14], p. 285, we find that the above calculation is valid

for Re(s)&#x3E;k+1 k if mr is even, and for Re(s)&#x3E;k+1 2r if mr is odd,
and the theorem is proved.

§10. Consequences of the main theorem

In this section we show that Theorem 9.1 implies generalizations
and analogues of results of Hirzebruch and Zagier [7], Zagier [24],
Kudla [12], Shintani [21] and Oda [18]. We retain the notation of §9.
By Theorem 4.3 the form wx,, has a meromorphic analytic con-

tinuation to the whole plane, and, if k ~ 1 2 m. the value 03C9X,0 is the
harmonic Poincaré dual form to the cycle Cx. On the other hand, if
k  1 4 m, then the series P ;,s is a holomorphic function of s in the half
plane Re(s) &#x3E; k - 1 4m whose value at s = 0 lies in Sm/2(0393(N)). For
cp E Sm/2(0393(N)) and for jLL E L*/L let

and, for 03B2 ~ J* with 03B2 ~ 0, define a ’composite’ cycle

80 that C03B2 ~ Hn-k(M, Z).

COROLLARY 10.1: If k  1 4 m, 5tk defines a lifting

where ¡¡ek(M) is the space of harmonic k-forms on M, and the image
of Jk is precisely the span of the harmonic dual forms to the totally
geodesic cycles C03B2 for 0 e Y* with 0 ~ 0.

PROOF: By continuation to s = 0, Theorem 9.1 yields

where 03C903B2,0 is the harmonic dual form to C03B2.
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Now consider the series

LEMMA 10.2: Assume that k  4 m. Let

Then K(T, T’) is the reproducing kernel for the space Sm/2(r(N» and

Finally, if cp E Sm/2(0393(N)), then

PROOF: The fact that ~,K(·, 03C4’)&#x3E; = ’P( T’) follows from the fact that
~, P*03B2,0&#x3E; = a(03B2). The relation between K(T, T’) and Q then follows
from Theorem 9.1. Finally,

as claimed.

REMARK: As a function of 03C4~Hrk, O(T, Z, W) belongs to

Sm/2(r(N», and this function is an analogue of the function

03A9(03C4, Zt, Z2) considered by Zagier [23], [24].
Observe that Q defines a C-valued, r-invariant harmonic k-form on

D, hence a harmonic k-form on M. For q E Hn-k(M)C, define

COROLLARY 10.3: If k  1 4m, Ik defines a mapping
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and

In particular, the Fourier coefficients of the Hilbert-Siegel modular
forms Ik(~) are the periods of the harmonic form q over the composite
cycle C03B2.

PROOF: This follows immediately from the fact that

and the defining property of the dual form.

REMARK: Corollary 10.3 is the analogue of a theorem of Shintani
[21]. An analogous result was obtained by Oda [18] for certain type
(p, 0) forms for SO(2, p).
By Poincaré duality, Hk(M, C) ~ Hn-k(M)C. For C E Hk(M, C) let 17

be the corresponding harmonic (n - k)-form. Then Corollary 10.3 may
be reformulated as follows:

COROLLARY 10.4: Assume that k  4m. Then there is a mapping

where C. C03B2 is the intersection number of C E Hk(M, C) and C03B2 E
Hn-k(M, C). In particular, the generating function f or the intersection
numbers is a Hilbert-Siegel modular f orm.

PROOF: Apply Corollary 10.3 to YI, the harmonic dual of C.

REMARK: Corollary 10.4 is the analogue of the results of Hirzebruch
and Zagier [7] and Kudla [12]. Note that if C~Hk(M,Z), then the
Fourier coefficients of Ik (C) are integers.

For ~ E Hn-k(M)C and YI’ E Hk(M)C, let
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COROLLARY 10.5: Assume that k  1 4m. Then for ~ E Sm/2(r(N»
and q E Hn-k(M)C,

Thus Ik and Jk are adjoints with respect to the appropriate inner products
(up to the constant 2k/2).

PROOF: Immediate.

REMARK: Corollary 10.5 is the analogue, in our situation, of the result

conjectured by Hirzebruch and Zagier [7] and proved by Zagier [24].

COROLLARY 10.6: Assume that k  1 4 m, and let C~Hk(M,R) and
~ E Sm/2(0393(N)).

In particular, the periods of the lift Jk(~) are given by a Petersson inner

product.

PROOF: Let 1J E yn-1 (M) be the Poincaré dual form of C. Then

by Corollary 10.5 and the fact that q = ~.

§11. Non-vanishing

In this section we will use the results of Millson-Raghunathan [15]
to show that the lifting Yk, and hence its adjoint Ik, is nonzero for a
suitable congruence subgroup. Actually we will use a slight general-
ization of their result, which will be proved in an appendix. We
continue to use the notation of §9.
We assume that dim V ~ 4, and, as in §6, we fix an (9-lattice
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L C L* C V and let

Also let

For any (7-ideal C 0, let

We now choose an ideal 2Io C (J such that r = G(L, 2Io) satisfies:
1) r is torsion free,

and

2) r is in the kernel of the spinor norm 03B8:G(h)~h /h /(h )2.
For any integral (J-ideal U, let

be the reduction map. Also let

and let

For X E L* with (X, X) » 0, let

and let

where 1X,U is the orientation class of NX(U). Thus C(X ; U) ~
Hn-k(M(U), Z). Finally, for (3 E Jk(h) with 8 ~ 0 and for IL E */U,
we let

so that C((3; 03BC; U) ~ Hn-k(M(U), Z).
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PROPOSITION 11.1: For any X E L with (X, X ) ~ 0, there exists an
integral C-ideal 21 such that

PROOF: This is a slight generalization of a result of [15], and we will
give its proof in the appendix below.
On the other hand, Theorem 9.1 says that, for k  1 4 m and for the

theta-kernel 03B803BC associated to 03BC E */U C U-1*/U, the lift of the
normalized Poincaré series 2/’P*o is the harmonic dual form to the
’composite’ cycle C«(3; g; N). Therefore, to show the nonvanishing of
Yk it will be sufficient to show the following:
Assume that dim V ~ 4 and that 1 - k  n - 1. Then,

THEOREM 11.2: For an y X E * with (X, X) = 03B2 ~ 0, there exists an
integral 0-ideal b such that

where d(X; b) E Z&#x3E;0 and where

is the natural projection.

COROLLARY 11.3: Assume that dim V ? 4 and that 1 ~ k  1 4 m. Let
13 E 9k(k) with 13 ~ 0 such that there exists X E L* with (X, X) = f3.
Then there exists an ideal b and an element IL E */bB C b-1/b
such that

where 5fk is the lifting defined with respect to 0,,.
The proof of Theorem 11.2 is based on the following lemma:

LEMMA 11.4: For f3 E 9k(4) with 03B2 ~ 0, let

Then there exists an integral (J-ideal b such that the reduction map Rb
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induces an injection on r-orbits :

PROOF: It is sufficient to show that for any two elements Xl and X2
in É* such that r - XI n F - X2 = ~, there exists an ideal b such that

Suppose that no such ideal exists, so that we have

Moreover, since (Xl, X1) = (X2, X2) = 03B2, there exists an element ~ E
G(h) such that

Let H = GXI viewed as an algebraic group over 4. Since dim Xi 2:: 3,
we may apply the result of §101.8 of O’Meara [17] and conclude
that

Thus we may assume that q E G(4)’== ker 0.
Let S C G(Af) be a compact open subgroup of the finite adeles of G

such that

Since we have taken r = G(L; U0) for some 2to, we may assume that

for compact open subgroups S, C G(4,). Then let

where q E G(4)’ is as in (2) above, and let
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Then, by (1), for each m ~ Z&#x3E;0, there exists an element ym ~0393 such
that

The set 1 -y,, 1 C S’ = S fl G(Af)’ has a limit point 03BC C S’. Here G’(Af)’ =
ker 0 where 0 : G(Af) ~ (ae A)/(h ;)2 is the spinor norm. Then

for each p EL. Define tt’ ~S’ by

so that

for all p.
Now consider the element

By the strong approximation theorem applied to H, there exist

and

such that

Thus

and so
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and

This contradicts the assumption that r. XI n F - X2 = ~, and the
lemma is proved.

COROLLARY 11.5: For an y X E *03B2 there exists an ideal b such that

PROOF: The inclusion " C " is clear for any b. If we take b as in
Lemma 11.4, then for Y E *03B2 the condition Rb(Y) E Rb(0393 · X) implies
that Fer-X

PROOF oF THEOREM 11.2: Let (X, X) = 03B2, and take an ideal b such
that R6 is injective on r-orbits in *03B2 as in Lemma 11.4. Consider the
cycle

so that, by Corollary 11.5,

On the other hand, if Y = yX with y E r, then y induces an orien-
tation-preserving isomorphism

Thus, if

is the natural projection,
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But

so that

with

and the theorem is proved.

Appendix

In this appendix we will give a proof of Proposition 11.1. In idea
this proof is essentially that given in [15] for certain diagonal forms
over 0(Vd), d &#x3E; 0, but, as we are only concerned with the case of
SO(n, 1), we may use rather elementary arguments. Moreover, we
obtain the stronger result as stated in Proposition 11.1, and we can
give more precise information about eliminating degenerate inter-

sections, Lemma A.3.
We retain the notation of Section 11.
We have, then, a frame X E L* with (X, X) ~ 0. Choose a frame

Y E (L*)n-k C Vn-k such that

and

so that we have an orthogonal decomposition:

where V1 = span X, V2 = span Y, and V3 = vt n V~2. Note that

dim, V3 = 1. We will also let
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and

and we note that

We assume that our congruence subgroup r C G(L) is obtained as

where

is a compact open subgroup of G(Af), the finite adèle group of G. We
will then prove the following:

THEOREM A.l: There exists an ideal 2( C (J such that the inter-
section number

where C(X; U) E Hn-k(M(U), Z) and C( Y; 2I) E Hk(M(U), Z) as in
Section 11.

PROOF: Let

and, for any ideal 21, let

Then A = F2àFl where

and
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and, as observed in [15, p. 16], the double coset space F2BA/Fl is in
one-to-one correspondence with the set of components of Nx n Ny.
Also write

where

and

Since Dx and Dy are totally geodesic, all intersections will be proper.
Also note that each of the sets A, and Ao is itself a finite union of
double cosets, and there are natural inclusions:

and

Now letting

we have:

LEMMA A.2: Let X’ E 0394’, and suppose that 21 C (J is an ideal such
that

Then
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According to this lemma, if we can find an ideat 3t such that

Ru(03932X’) n Ru(03932X) = 0, whenever r2X’ ~ 03932 X = ~, then

so that all intersections of NX(U) and Ny(2t) will be transverse and
positive, and Theorem A.l follows.

PROOF OF PROPOSITION 11.1: 

For X’ E 11’, let

in the matrix notation of Section 5.2. Then, for y2 E F2

and also

Thus B is constant on r2-orbits in 0’, and if X’ E 0’ with B(X’) ~ 0,
then we can find an ideal lll such that RU(03932 · X’) n R9!(f2 . X) = 0. On
the other hand, if X’ = y’X E 0’ and B(X’) = B(X) = 0, then there
exists g E G(h) such that

as n-frames. Since gY = Y, we have g = g2 E G2(d). But then

g-12 yX = X, so that g-1203B3 = gt E G1(h). Thus, if B(X’) = 0, we can
write

Note that such a decomposition is unique.
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Similarly, suppose that X’ E A’ is such that, for each prime p and for

each j ~Z&#x3E;0, there exists 03B32(j) = y2( j, p) E r2 with

Then the infinite set {03B32(j)} C F2 C Sp n G2(aep), and so we can conclude
that there exists a limit point v-103B2 ~ Sp n G2(aep), and that

But then

and we obtain a decomposition for every p:

with vp E Sp n G2(hp) and JLp E Sp n G1(hp). But since G1 n G2 = {1}, we
must have

and

for all p! Hence g2 E G2(h) fl G~·S = 03932 and 91 E G2(h) ~ G~ · S = ri
and

Thus we have shown that if F2x, nF2X = 0, then there must exist an
ideal such that Ru(03932 · X’) n Ru(03932 · X) = ~, and the proof of Pro-
position 11.1 is complete.
The degenerate intersections, which correspond to double cosets in

Ao, can be very easily eliminated as follows: Let Z be a nonzero
vector in v3nL*, and let

be the O-sublattice of L* spanned by the frame {X, Y, Z}. Now we
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have y E Ao if and only if

for (,), but

LEMMA A.3: Let p be any prime ideal such that

Then

PROOF: Let y E r(p) so that Rp(yX) = Rp(X). By our choice of p,
the /p vector space R,(t - yX + 0 . Y) = Rp( · X + O. Y) C L*/pL
has dimension n over til p, and this implies that

Thus ào n r(p) = 03940(p) = ~ as claimed.
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