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Introduction

An affinoid space X over a complete, non-archimedean, valued field
k has a natural Grothendieck-topology. There are several sheaves
(with respect to this topology) of special interest. For instance (9, Co,
(r), * and A. The sheaf  of holomorphic functions on X has
trivial cohomology groups, i.e. Hi(X, ) = 0 for i~0, according to a
result of J. Tate [8]. The sheaf C", defined by 6°(U)=
If E 0(U)||f(a)| ~ 1 for all u ~ U}, is far more complicated than 6.
Its cohomology groups are in general not zero.

If X has dimension one and if X has a stable reduction Z

then one can show (under some conditions) that H1(X, 0)~k =
H’(Z, C,). Here k denotes the residue field of k. The stable

reduction Z is an algebraic variety over k with structure sheaf

Cz. The cohomology group H’(Z, Oz) is taken with respect to the

Zariski-topology on Z. For higher dimensions almost nothing is

known.

For a positive real number r, the sheaf (r), is defined by
(r)(U) = {f ~ (U)||f(U)|  r for all u Cz Ul. This sheaf is very
much like 6° but seems more manageable in higher dimensions. The
results of W. Bartenwerfer [1] can be stated as H’(X, 0(r» = 0 for i ~ 0

and for a polydisk X. From this he derives the solution of the

Corona-problem [2, 7]. We will show for a wider class of affinoid spaces
that C(r) has no cohomology (3.15).
The interest of 6*, the sheaf of invertible holomorphic functions,

lies mainly in the group H’(X, 6*). This group classifies the line

bundles on X and coincides with the usual class group if X is regular
(see also [6]). According to L. Gruson [5] and L. Gerritzen [3] the
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group H 1(X, C*) is trivial if X is a polydisk (or some generalization of
that). In (3.25) we will extend the result to a wider class of affinoid

spaces.

Finally A, the constant sheaf with stalk A, is of interest because
H’(X,A) tells something about the reductions of X. For an algebraic
curve X over k (seen as a k-analytic space) the cohomology group
H’(X, Z) is a free Z-module of rank h ~ g = genus of X. One can

show that h = g holds if and only if X is a Mumford curve. The

equality h = 0 holds if and only if the Jacobian variety of X has good
reduction.

Our main results on the cohomology of the constant sheaves are
stated in (3.10), (3.13).
The method of calculation of the H’ is based upon a base change

theorem (2.3) for morphisms ~ : X ~ Y of affinoid spaces. For a

"point" p of Y a fibre X x p of the map ç is constructed. It turns out
that the information of the fibres X x p is not sufficient to evaluate

the cohomology groups H’(X, S) if one takes only the ordinary points
p of Y. In fact one has to consider geometric points p of Y

(introduced in (1.1)). Only for closed geometric points (1.1) one can
give X x p the structure of an affinoid space. It is an affinoid space
over some field extension Kp of k.
Our base change theorem will therefore only work for a certain

class of sheaves, the constructible sheaves (1.4). A constructible
sheaf is determined by its stalks at the closed geometric points.
The constant sheaf A is constructible. The sheaves 6(r) and * are

approximated by constructible sheaves.
Another feature of our method is that we have to do a careful

analysis in dimension one over a field k which is not algebraically
closed.

We remark that our approach works also for sheaves of non-

abelian groups. In particular one can show for a class of affinoids X
that H1(X, Glm (0» = 0. This means that any analytic vectorbundle on
X is trivial. Finally, we refer to [4] for Inore details on affinoid spaces
and analytic spaces.

§1. Geometric points and constructible sheaves

The field is supposed to be complete with respect to a non-

archimedean valuation. Let A be an affinoid algebra over k. The set
X = Sp(A) of all maximal ideals of A is called an affinoid space over
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k. It is a topological space for a topology derived from the topology
of the field k.

A subset Y of X is called a rational subset of X if there are

f o, ... , fs ~ A, generating the unit ideal of A, such that

We write Y = R(f0, ..., f,). We associate with Y the affinoid algebra
AT1,...,Ts&#x3E;/(f1-f0T1,...,fs-f0Ts&#x3E;. On X we introduce a Gro-

thendieck topology by:
(1) the allowed subsets are the rational subsets of X
(2) the allowed coverings are the finite coverings by allowed sub-

sets

The structure sheaf 6x or 6 on X is given by

This is not the only possibility for a Grothendieck-topology on X.
From time to time it is easier to use the finite unions of rational

subsets of X as allowed subsets. For more details we refer to [4] Ch.
III.

For any sheaf (of abelian groups) S on X and for any point x E X
we can form the stalk Sx = lim{S(U) 1 x E U, U allowedj. One can
easily construct sheaves S ~ 0 such that all Sx = 0. This means that X
does not have enough points to "separate" sheaves. We introduce a
notion of generalized point.

(1.1) Definitions
A geometric point of X is a family p of allowed subsets of X such

that (i) X ~ p, ~~ p ; (ii) if Y1, Y2 E p then Y, rl Y2 E p ; (iii) if YI E p
and YI C Y2 then Y2 E p ; (iv) if {Y1, ..., Y, 1 is an allowed covering of
Y E p then Yi E p for some i. The geometric point p is called closed
if p is maximal among the collection of all geometric points (with
respect to inclusion).
For any sheaf (of abelian groups always) S on X and any geometric

point p the stalk Sp is defined as {S(U)| U E p}.

(1.2) An ordinary point x E X can be regarded as geometric point.£
in the following way: Je = JU |x E U, U allowed subset of X}. Of
course S = Sx. So we have indeed generalized the notion of point X. We
show now a number of results on geometric points. The results imply
that we have chosen the correct family of generalized points.
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(1.2.1) Let S be a presheaf (of abelian groups) on X. The presheaf
S+ is defined by 8+( Y) = H°(Y, S) = lim 0(U, S), the limit is taken
over all allowed coverings of Y. As usual, S++ is a sheaf and it is the
sheaf associated with the presheaf S.

PROOF: Let U G p and let ~U : S(U)~ S+(U) denote the canonical
map. For any element 03BE ~ ker ~U there is an allowed covering
{U1, ..., Un} of U such that the image of e in each S(Ui) is equal to
zero. Some U; belongs to p. Hence the image of e in Sp is zero. This
shows that Sp ~ S+p is injective. A similar argument shows that Sp -
S’ is also surjective.

(1.2.2) LEMMA: For any sheaf S on X, and any allowed U C X the
map S(U) ~ 03A0p~U Sp is injective.

PROOF: It suffices to show the lemma for U = X. The family X of
all geometric points of X is seen as a subset of 2T = fall maps
~ :  ~ {0, 1}}, where T denotes the family of all allowed subsets of X.
A geometric point p E X is identified with ~ :  ~ {0, 1} given by
~(A) = 1 if and only if A E p. The subset X is closed in 2T with its
product topology since X consists of the cp E 2T satisfying:

(a) if A C B and cp (A) = 1 then ~(B) = 1.
(b) if ~(A) = ~(B) = 1 then ~(A ~ B) = 1.
(c) ~(~) = 0, ~(X) = 1.
(d) if cp (A) = 1 and {A1, ..., A, 1 is an allowed covering of A then

~(Ai) = 1 for some i.

Let e E S(X) have image zero in each Sp. For each p E X there
exists a U E p such that the image of e in S( U) is zero. Put

Û = f q E X |U E q}. Then Û is an open neighbourhood of p in X
(with respect to its topology induced by X C 2). Since X is compact,
we find that X is covered by finitely many such U ; say X =

UI ~ ··· U Ûd. Then also X = U, U ... U Ud since any point of x
corresponds to a geometric point x E X. Since S is a sheaf we must
have e = 0.

(1.2.3) LEMMA: A sequence of sheaves 0 ~ S’ ~ S ~ S" ~ 0 on X is
exact if and only if for every geometric point p the sequence 0 - S’p ~
Sp - S§ - 0 is exact.

PROOF: This follows in the usual way from (1.2.2) and (1.2.1).
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(1.2.4) Let p be a geometric point. Define the sheaf S by: S(U) = Z
if U E p and S(U) = 0 if UÉ p. Then one easily calculates Sq = Z if
q Ç p and Sq = 0 otherwise. This means that our collection of

geometric point is not too big.

(1.3) Description of the closed geometric points
Let p be a geometric point on X. We associate with p a semi-norm

~p on 6(X) as follows: lflp = inf{~f~U 1 U E p} where Ilf Ilu denotes

max{|f(x)~| x ~ U}.

(1.3.1) LEMMA ||p has the properties
(i) ||p ~ 1111x.
(ii) If + g|p ~ max(|f|p, |g|p).
(iii) if9ip = |f|p|g|p.
(iv) |03BB|p = |03BB| for every À E k.

PROOF: Only (iii) is non-trivial. If |f|p = 0 or lglp = 0 then certainly
|fg|p = 0 and (iii) follows. Let |f|p ~ 0 and choose pl, 03C12 ~ ~|k*| =
{r &#x3E; 01 rn E Ik*1 for some n &#x26; 1} such that 0  p,  If Ip  P2. Define the

rational subsets

and

Certainly X1, X3 ~ p and since {X1, X2, X3} is an allowed covering of
X we have X2 E p. Similarly Y2 = {x ~ X |03C1 ~ |g(x)| ~ 03C1’2} ~ 03C1
where 0  p;  Iglp  03C1’2 and p2, P2 E VJk*1. Since X2 n Y2 E P we find

The equality (iii) follows because v!k*1 is a dense subset of R&#x3E;0.

(1.3.2) A map ||:(X) ~ R~0 satisfying the properties (i), (ii), (iii)
and (iv) of (1.3.1) is called a valuation (of rank 1) on C(X). We can
associate with every valuation 11 on 6(X) a geometric point q given
by: U belongs to q if there are f0, f1, ...., fn ~ (X), without common
zero’s, such that

(i) U ~ {x ~ X ||f0(x)| ~ |fi(x)| for i = 1, ..., n}
(ii) |f0| ~ ifil (i = 1, ...,) (II denotes the valuation on (X)).
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(1.3.3) LEMMA: Let 11 be a valuation (of rank 1) on C(X) and let q
be the family of rational subsets of X defined above.

(1) q is a closed geometric point.
(2) If p is a geometric point such that || = ||p then q is the unique

closed geometric point containing p.
(3) Let p be any geometric point. The unique closed geometric point

q containing p is given by : R(fo, f1, ..., fn) E q if and only if for
every p E Vfk*1, 0  03C1  1, the rational set R(fo, pf l, ..., pfn)
belongs to p.

PROOF:

(1) We write R(fo, f1, ..., fn) for the rational subset lx ~ X |
Ifo(x)1 ~ |fi(x)| for i = 1, ..., nl. Suppose that R(fo, fl,.. *, fn) = 0.
Then (X)T1,..., Tn&#x3E;/(f1-f0T1,...,fn-f0Tn) is 0 and hence

1 = 03A3ni=1 gi(fi-f0Ti) for some gl, ..., gn belonging to (X)T1, ..., Tn&#x3E;.
Put gi = 03A3 gi,03B1T03B111 ... T nn with g,. E (X) and limlgi,al | = 0.

After collecting the terms of total degree t in T1, ..., Tn and

substituting fi for Ti (i = 1,..., n), one obtains (for ~ &#x3E; 0)

Repeated use of this yields

Since limlgi,al = 0 one finds for t » 0:

So the valuation 11 on (X) must satisfy |f0||fi| for some i. This

proves that ~~ q. Certainly X E q. So we have verified property (i)
of the definition (1.1) of geometric point.

Property (ii) follows from R(f0,...,fn) rl R (go, ..., gm) =
R(f0g0, ..., fngm).

Property (iii) is trivial.

PROOF OF PROPERTY (iv): It suffices to consider a covering of X by
rational sets Ri=R(a(i)0,...,a(i)n) with 1 ~ i ~ ~. Consider all the

products a(1)03BB1...a(~)03BB~, with 0 ~ 03BBi ~ n, and denote this set by
{f0, f1, ..., ft}. Then X has a covering {R(fi, f0, ..., ft)| 0 ~ i ~ t} such
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that each Ri is a finite union of elements in that covering. Hence for
some subset J C {0, ..., t} the covering {R(fi, /0, ..., ft) 1 i ~ J} refines
the given covering {Ri|1 ~ i ~ el of X. Suppose now that 0 ~ J, then
|f0(x)| ~ maxi~J|fi(x)| holds for every x E X. Then R(fi, f0, ..., ft) =
R(fi,f1,...,ft) f or all i E J and we can skip f o everywhere.
By induction on t we may assume that J = {0, ..., t}. Let |fi| ~ |fj|

for all j. Then R (fi, f o, ..., f t ) E q. This proves (iv).
Finally we want to show that the geometric point q is maximal. Let

R(ao, a,,..., an) ~ q. Then maxlad | = |a1| &#x3E; |a0| can be assumed. Take
pl, P2 E Vlk*1 with laol  Pl  P2  |a1|. Then {x ~ X ||a0(x)| ~ pi and
|a1(x)| ~ 03C12} = U ~ q. Clearly U ~ R(a0, a1, ..., an) = Ø. This means

that q is maximal. The rest of statement (1) is easily verified.
(2) Let R (fo, f 1, ..., f,,) belong to p. Then clearly |f0|p ~ |fi|p for

i = 1,..., n and so R(f0, ..., fn) ~ q. Hence p C q. Let q’ be a closed
geometric point containing p. Then for any / E C(X) one

has |f|p ~ |f|q’. Suppose that |f|p &#x3E; PI &#x3E; p2 &#x3E; If Iq’ is possible for

some f ~ (X) and 03C11, 03C12 ~ ~|k*|. Then X is the union of

{x E X ||f(x)| ~ 03C11} and {x E X ||f(x)| ~ 03C11}. From the definition of

geometric point it follows that {x E X ||f(x)| ~ pll E P Ç q’. Similarly
{x E X ||f(x)| ~ P21 E q’. One obtains the contradiction

~ = {x ~ X||f(x)| ~ 03C11} ~ {x ~ X||f(x)| ~ 03C12} ~ q’. Thus ~p = ~q = ~q’
and as before one finds q’ Ç q. Hence q’ = q.

(3) This follows easily from the definition of the closed geometric
point associated with ~p. We note that the notation R ( f o, 03C1f1, ..., pfn)
is slightly incorrect. R(f0, 03C1f1, ..., pf n) denotes the rational set {x E X |
Ifo(x)1 ~ 03C1|fi(x)| for i = 1,..., n}.

(1.3.3) COROLLARY: There is a one-to-one correspondence between
the closed geometric points on X and the valuations (of rank 1) on
(X).

REMARK: Non-maximal geometric points of X correspond to

valuations on C(X) with rank &#x3E;1. The description is more com-

plicated and we will not use it in the sequel.

(1.4) Constructible sheaves

(1.4.1) DEFINITIONS: Let U be a rational subset of the affinoid

space X, given by U = {x ~ X ||f0(x)| ~ |f1(x)|, i = 1,...,n}=
R(f0,...,fn). A neighbourhood U’ of U in X is a rational subset
which contains R(fo, 03C1f1, ..., Pfn) = {x E X ||f0(x)| ~ 03C1|fi(x)| for

i = 1,..., nl for some p E vfk*1, p  1.
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(1.4.2) The definition above does not depend on the chosen

representation of U = R(fo, ..., fn). This follows from:

LEMMA: Let R (ao, ..., an ) = R(b0, ..., bm). Then for any p E Vfk*1,
p  1 there exists a p* ~ ~|k*|, p*  1 with

PROOF: For p and p* close to 1, R(a0, 03C103B11,...,03C1an) and

R(b0, 03C1*b1,..., 03C1*bm) are contained in some rational subset of X

where ao and bo are invertible. After replacing X by this rational
subset we may suppose ao = bo = 1.
Let a denote any of the ai (i = 1, ..., n). The rational subset

Z = {x ~ X | |a(x)| ~ p-1} satisfies Z n R(1, bl, ..., bm) = 0. As in the
proof of lemma (1.3.2) we find

This implies that Z rl R(l, p*bl, ..., p*bm) == 0 for p* close enough to
1. In another formulation |a(x)| ~ 03C1-1 for x ~ R (1, 03C1*b*1, ...,03C1*bm)
and p* close to 1. Since a can be any of the ai (i = 1, ..., n) it follows
that

(1.4.3) We write U C C U’ (or better U C C U’) to denote that U’ is
x

a neighbourhood of U within X. A (pre-)sheaf S of abelian groups on
X is said to be constructible if S( U) = lim{S(U’)| U C C U’I for

every allowed U C X. 

We gather now some properties of sheaves. First of all we prove
that Cech-cohomology coincides with sheaf-cohomology on reason-
able analytic spaces.

(1.4.4) PROPOSITION: Let X be an analytic space over k which has
an allowed covering (Xi)iEI such that

(i) every Xi is an affinoid space.
(ii) Xi ~ Xj is an affinoid subspace of Xi.

(iii) I is at most countable.

Then for every sheaf S on X the canonical maps i (X, S) - H’(X, S)
are isomorphisms.
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PROOF: We consider the most difficult case: I = N. A geometric
point p of X is defined to be a geometric point of some Xn. Let for
any geometric point p an injective group A(p) be given. Define the
sheaf G on X by G(U) = Ilp3u A(p). The sheaf G on X is easily seen
to be an injective sheaf. Moreover for any sheaf S on X there is a
choice of the groups A(p ) such that S is a subsheaf of G. Define the
presheaf P on X be the exactness of 0 ~ S(U) ~ G(U) ~ P(U) ~ 0
for every allowed U in X. The map P(U) ~ P+( U ) = 0(U, P ) is seen
to be injective. This implies that P+ = P++ and P + is the sheaf
associated with P. Consider the exact sequence of presheaves 0-P -
P+-K-0. Then K+ = 0. Suppose that we have shown that

i(X, K ) = 0 for all i ~ 0. Then Hi(X, P ) = Hi(X, P +) for all i. So we
find an exact sequence 0 ~ H0(X, S ) ~ 0(X, G ) ~ 0(X, P+) ~
1(X, S) ~ 0 and isomorphisms i(X, P+) ~ Hi+1(X, S) for i ~ 1. A

comparison with the sheaf cohomology yields 1(X, S) ~ H1(X, S).
Induction on i proves that all i(X, S) ~ H’(X, S). So the proposition
follows from the following lemma.

(1.4.5) LEMMA: Let X be as in (1.4.4) and let K be a presheaf on X
with K+ = 0. Then Hi(X, K) = 0 for all i ~ 0.

PROOF: Let e be an element (of degree k - 1) in the Cech-
complex of K with respect to an allowed covering K of X. It suffices
to find a refinement H" of T in which e is mapped to zero.
The covering T is refined by ~n~1 (H ~ Xn) and each H ~ Xn

admits a finite subcovering of Xn. Hence T can be refined by some
allowed covering aeI = (X1n)n~1 such that each X n is an affinoid sub-
space of X. The element e is mapped to 03BE’ ~ IIK (X Il ~ ··· ~ X1i~). For
each (il, ..., if) there exists a covering 6JJil,...,if of XII ~··· ~ Xlf such
that the component of e’ in K(X1i1 ~ ··· f1 X If) is mapped to zero and
the sets of yi1,..., if. We construct H" by replacing each Xl by the
elements of a suitable finite covering Tn of X’. The covering Tn of
X1n is chosen such that yn fl X1i1 ~ ··· f1 X1i~ is finer than yi1,..., if for all
ie with max(i,, ..., if) = n. This is possible since one can easily
show the following: Let U be an affinoid subspace of an affinoid
space V and let 6!J be an allowed covering of U. Then there exists an
allowed covering 6JJ’ of V such that 6JJ’ H U is finer than 6JJ.

Finally, one easily verifies that the image of 1’ in the ëechcomplex
with respect to T" is zero.

(1.4.6) If S is constructible then so is S+.
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(1.4.7) If S is a constructible sheaf, then U - H’(U, S) are con-
structible presheaves.

(1.4.8) If u : S1 ~ S2 is a morphism of constructible sheaves, then
ker(u), coker(u), im(u) are constructible sheaves.

(1.4.9) If ~ X ~ Y is a morphism of affinoid spaces and if S is a
constructible sheaf on Y then ~*S is constructible.

(1.4.10) Let ~ : X ~ Y be a morphism of affinoid spaces and let S be
a constructible sheaf on X then ~*S and all Ri~*S are constructible
sheaves.

(1.4.11) Let S be a constructible sheaf on an affinoid space X and
let p be a geometric point of X. Then Sp  Sq where q is the closed

geometric point with 1 Ip = ||q.
(1.4.12) For every constructible sheaf S on an affinoid space X there

is a sheaf G such that
(i) S is a subsheaf of G.
(ii) H’(U, G) = 0 for 1 &#x26; 1 and any allowed U C X.

(iii) G is constructible.

PROOFS: Most of the proofs are straight forward (and somewhat
tedious to carry out). We mention only some steps in the proofs.

(1.4.7) It is rather obvious that U - H’(U, S) is a constructible

presheaf. So (1.4.7) follows from (1.4.4).
(1.4.10) Ri~*S is the sheaf associated with the presheaf

U H Hi(~-1U, S). Those presheaves are constructible according to
(1.4.7). Using (1.4.6) one finds (1.4.10).

(1.4.11) Let U E q then it can easily be verified that any U’~~ U
belongs to p.

(1.4.12) S is a subsheaf of the sheaf 2t defined by 2t(U) = llp3U Sp.
The sheaf âe has trivial cohomology, but is in general not con-
structible. The sheaf G defined by G(U) = lim{H(U’)|U’~~U},
contains S as a subsheaf, and is constructible. It is easily seen that G
has trivial cohomology.

(1.4.13) For later use we insert the following:

LEMMA: Let X be an affinoid space of dimension n and let S be a
sheaf on X. Then H’(X, S) = 0 for i &#x3E; n.

SKETCH OF THE PROOF: According to (1.4.4), H’(X, S) ~ i(X, S).
Any allowed covering u’ of X can be refined to a pure covering OU
(see [4], p. 116, 117). Let r = ru : X ~ u denote the reduction w.r.t.
this pure covering. It follows that H’(X,S) is isomorphic to

lim i(Xu, r*S) where the limit is taken over all pure coverings OU of
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X and where i(Xu, r* S) denotes the Cech-cohomology groups of
the sheaf r* S on Xu provided with the Zariski-topology. The affine
variety Xw over k (i.e. the residue field of k) has dimension n and it is
well known that *)Hi(Xu, -) = 0 for i &#x3E; n. In general
i(Xu, -) ~ Hi(Xu, -), but a proof similar to that of *) yields also
i(Xu, -) = 0 for i &#x3E; n. This proves the lemma.

(1.5) Examples

(1.5.1) Constant sheaves.
Let A be an abelian group. The constant presheaf P associated

with A is defined by P(U) = A for every U ~ Ø, U allowed in X. The
sheaf associated with P is denoted by Ax. It is a constructible sheaf
according to (1.4.4).

(1.5.2) Let 0  r  s ~ ~, r a real number and s a real number or 00.
We define some sheaves on X by:

The sheaf OX(r, s) = 6(r, s) is defined by the exactness of the

sequence 0 ~ OX(r) ~ OX(s) ~ OX(r,s) ~ 0.

LEMMA: Ox(r, s) is a constructible sheaf.

PROOF: Let P be the presheaf defined by the exactness of 0-
O(r)(U) ~ O(s)(U) ~ P(U) ~ 0 for every allowed U in X. Let U =
R(f0, f1,..., fn) and let e E P(U). Then e is the image of an element

a03B1 ~ O(X) and lim~a03B1~ = 0, with Ig(x)1  s for all x E U. We may

replace g by a finite sum

Still h has image e in P ( U), h is defined on some neighbourhood of
U, lh(x)l  s holds on some neighbourhood of U. (Compare the proof
of (1.4.2)).

This shows that the map lim {P(U’)|U’~~U} ~ P(U) is sur-

jective. Further let U’ ~~ U and let e E P(U’) be represented by an
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element f E O(S)(U’). If e has image zero in P(U) then |f(x)|  r for

all x E U. This property holds then also for some neighbourhood
U"~~U. Hence the image of e in P(U’ ~ U ") = 0. So the map
lim{P(U’)|U’~~ U} ~ P(U) is also injective.
(1.5.3) C* (or 6R) denotes the sheaf given by O*(U) =

f f E 6( U) ) |f(u) ~ 0 for all u ~ U}. This sheaf is not constructible.
Its subsheaf O*(1), given by O*(1)(U) = {f E 6( U ) ) 1 If (u) - 1|  1 for

all u E } is not constructible. We define the sheaf S by the exact
sequence 0 ~ O*(1) ~ O* ~ S ~ 0. As in (1.5.2) one shows that S is a
constructible sheaf. The sheaf S = Sx has a subsheaf the constant sheaf
Ax where A = k */ f 1 + h |h e k, ihl  1}. The sheaf T = Tx defined by
the exact sequence

is again a constructible sheaf.

REMARK: Our main object in §3 will be to show that the sheaves in
(1.5.1) and (1.5.3) have trivial cohomology on a polydisk. For dimen-
sion 1 this is not too difficult to show. For dimension &#x3E; 1, we will use
a "Base-Change theorem" in order to make induction on the dimen-
sion. This base-change theorem seems only to work for closed

geometric points. This is the reason why we have introduced a family
of sheaves, the constructible sheaves, which are determined by their
stalks at closed geometric points.

§2. Base change

Let (p : X - Y be a morphism of affinoid spaces over k and let p be
a closed geometric point of Y. We associate with p a complete valued
field extension Kp of k in the following way: ||p on C(X) induces a
valuation (in the ordinary sense) on the field of fractions Lp of

6(X)/lf E O(X)||f|p = 01. The completion of Lp is denoted by Kp..

(2.1) LEMMA: O(X )O(Y)Kp is an affinoid algebra over Kp.

PROOF: O(X)~O(Y)Kp is given the usual norm of the tensor

product. The completion with respect to this norm is denoted by
O(X)O(Y)Kp. The map ~*:O(Y) ~ O(X) can be extended to a sur-
jective map ip: O(Y)~T1,..., Tn~ ~ C(X). We find an induced surjective
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Kp -linear map

03C8  idKp : O(Y)~T1, T,, 0o(y) K, = Kp(T1, ..., Tn~ ~ C(X) 0o(y) Kp.

As a consequence O(X) 0o(y) Kp is an affinoid algebra over Kp.

(2.2) DEFINITIONS: We write Z = X y p for the Kp-affinoid space
with algebra O(X)O(Y)Kp. The natural map O(X)~O(Z) =
C(X) 0o(y) Kp does not induce a morphism Z ~ X since the image of
a point in Z would, in general, be a geometric point of X. This
problem is solved by replacing X (and likewise Y, Z) by X = the
family of closed geometric points of X. According to corollary (1.3.2)
we find maps a : 2 - À and :~. The set X (and in the same
manner Y, Z) is given a topology and a Grothendieck topology as
follows:

(i) For every rational domain U C X, we denote {p E X U ~ p}
by Û.

(ii) {Û|U C X, U rational} is a base for the topology on X.
(iii) { | U C X, U rational} is the family of the allowed subsets of

X.
(iv) {Ûi}i~I is an allowed covering of Û if I is finite and U Ûi = Û.

Since X and X have the "same" Grothendieck topology they also
have the same collection of sheaves and pre-sheaves. We will in the
sequel identify any sheaf S on X with the corresponding sheaf on X.
Our aim is to prove the following result.

(2.3) THEOREM (Base Change): Let ~ : X ~ Y be a morphism of
affinoid spaces over k, and let p be a closed geometric point of Y. Let
Z denote the affinoid space over Kp, defined in (2.2) (i.e. Z = X x p).
Then we have a diagram :

For any sheaf S on X, there are canonical maps

If S is a constructible sheaf then the maps are isomorphisms.
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PROOF: The sheaf a*S is associated with the presheaf P, P(Â) =
lim{S(Û)|03B1-1(Û) ~ Â}. The natural map (~ * S)p = lim S(~-1V) ~ P(Z)

extends to a natural map (~*S)p ~ H0(Z, 03B1*S). Using a suitable

resolution of S (see also (2.8)) one finds canonical morphisms
(Ri~*S)p ~ H’(Z, lX*S).
We start the proof with some lemma’s.

(2.4) LEMMA: Let V be a rational subset of X. Then a -1() = Â for
some rational subset A of Z. Moreover Oz(A) ~ X(V) O(Y) Kp.

PROOF: Put V = R (fo, f 1, ..., f n ) and let 0, ..., n denote the images
of the elements f in 6(Z). Put A = R(0,..., n). Then 03B1-1() = Â ;

and

Since O(X)~T1,...,Tn~O(Y)Kp ~ O(Z)~T1,..., Tn~ the result fol-

lows.

(2.5) LEMMA: Let f ~ O(X) have image  ~ (Z) such that

max{|(z)|| z E Z}  1. Then there exists a V E p such that

lif v = max{|f(x)|| x ~ ~-1V}  1.

PROOF: Let the surjective map O(Y)~T1,..., Tn~ ~ O(X) in-

duce the norm on O(X). The kernel of a is an ideal generated by
some elements f 1, .., fs. For any V E p we have an induced sur-

jective map 03B1V:O(V)~T1,...,Tn~ and a surjective map
ap : Kp (T,, ..., Tn~ ~ O(Z). For each of those maps the kernel is an

ideal generated by f1,..., fs.
On Kp(T,, ..., Tn) we use the spectral norm as norm and on C(Z)

the norm induced by the map ap. The spectral norm of f on Z is  1.
So a suitable power f N has norm  1 and is the image of some
G E Kp(T¡,..., Tn) with IIGII  1. Take an element F with a(F) = f N
and let Fp denote the image of F in Kp (Ti , ..., Tn ) and write Fv for the
image O(V)~T1, ..., Tn~.
Then

with a03B1,i E Kp and Hml aa,i = 0.
We note that the image of lim(6(V) ) V E p} in Kp is a dense subfield
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Mp. Further for any m E Mp and any E &#x3E; 1 there exists an element

V E p and a 03BE ~ O(V) with image m and such that e has spectral
norm ~~|m|p on V.

In the expression (*) we truncate G and the infinite sums. The

remaining coefficients in Kp are approximated by elements in Mp and
then replaced by elements in a suitable 6(V). This yields

with all bi,a’ ra E 6( V) and all ra with spectral norm  1 on V. The image
03B1V(FV) E O(~-1V) has spectral norm  1 and is equal to the restriction of
f N on ~-1V. It follows that the spectral norm of f on ~-1V is less than
one.

(2.6) KEY LEMMA: Let A be a rational subset of Z. There exists a
rational subset B of X such that

(i) 03B1-1 () = Â.
(ii) For any rational U C X with a-l Û ::J Â and for any U’D D U,

there exists a V E p with U’ D cp-1(V) ~ B.

PROOF: There are f0, ..., fn-1 ~ O(Z) with A = R(f0, ..., fn-1). A
small change of the f0,...,fn-1 does not affect A. We may then

assume that each fi is the image in 6(Z) of an element gi E

O(X) ~O(Y)Lp. There exists an element h ~ O(Y) with |h|p ~ 0 such
that hgi is the image of some element Fi ~ O(X). The elements
Fo,..., F,,-, E O(X) may have a common zero in X. Take Fn = p E k

with 1 pl &#x3E; 0 and small. Let Po, ..., Ê, denote the images of Fo, ..., F,
in 6(Z). Then A = R(Fo, ..., Fn) and B = R(Fo, ..., Fn) satisfies

03B1-1() = Â. This proves (i).
Using lemma (2.4) we may replace X by B in the proof of (ii). So

we may assume that X = B and A = Z. Let U = R(f0,...,fn) satisfy
03B1-1(Û) ~ Z. The image Io of f o in C(Z) has an inverse h. This element
can be approximated by a suitable h’ E O(~-1V). So h’ f o = 1 + 03B4 holds
on ~-1V, where 5 E O(~-1V) has a spectral norm  1 on Z. Using (2.5)
one obtains a V’ ~ p with V’ C V such that b has also on V’ a spectral
norm smaller than one. This means that f o is invertible on V’. Upon
replacing X by V’ we may suppose that f o = 1. Take some 03C0 ~ k,
0 |03C0|  1, and take an integer N ~ 1. The elements (or rather their
images in 6(Z)) 03C0fN1, ..., 03C0fNn have spectral norms  1 on Z. So by
(2.5) we find a V E p such that 03C0fN1, ..., 03C0fN1 have spectral norms  1
on ~-1V. This shows that any neighbourhood of R(1, f1,...,fN)
contains some ~-1V.
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(2.7) LEMMA: For any constructible sheaf S on X, the presheaf P
on Z is given by P(Â) = lim{S(Û) |03B1-1Û ~ Â} is a constructible sheaf.

PROOF: P is clearly a constructible presheaf. Using (2.4) one sees
that it suffices to show that P() = 0(A, P) where A = {Â1, ..., Ân}
is a finite covering by rational subsets. Choose Bi,..., Bn as in (2.6).
For any (io, ..., ip) one gets from (2.6) P(Â0 ~ ··· ~ Âip) =
lim S (Bb n - .- fl Bi, n ~-1V) where the limit is taken over all V E p.
For V small enough, V E p the sets f B 1 n ~-1 V, ..., Bn n ~1V} form
an allowed covering of cp-1V. So 0 ~ S(~-1V) ~
~ijS(Bi ~ Bj ~~-1V) is exact. Since lim preserves exactness one
finds indeed P(Z) = 0(A, P). 

~

(2.8) END OF THE PROOF OF THEOREM (2.3): According to (2.7) the
sheaf a * S is equal to P. Using (2.6) and the constructibility of P one
obtains P (Z) = lim{S(~-1V) |V E p} and the last group equals (~*S)p.
So we have shown (2.3) for i = 0.

Following (1.4.12) we have an exact sequence 0 ~ S ~ G ~ S’ ~ 0,
with G and S’ constructible; G with trivial cohomology on every
allowed subset of X.

Then 0 ~ ~*S ~ ~*G ~ ~*S’ 1~*S ~ 0 is exact and Ri~*S’ ~
Ri+1~*S. The same holds for their stalks at p. On Z (or Z) we have an
exact sequence 0 ~ 03B1*S ~ 03B1* G ~ 03B1* S’ ~ 0. The sheaf a * G on Z is

according to (2.7) equal to the presheaf P : Â H lim{G(Û)| 03B1-1Û ~ Â}.
Following the argument of (2.7) one sees that P has trivial

cohomology (on any allowed subset of Z).
Hence 0 ~ H0(Z, 03B1*S) ~ H0(, 03B1*G) ~ H0(, 03B1*S’) ~ 1(, 03B1*S) ~ 0

is exact. This implies H1(Z, 03B1* S) ~ (R1~*S)p. Induction on i-1

ends the proof.

(2.9) COROLLARY: Let (p X ~ V be a morphism of affinoid spaces
over k and let S be a sheaf on X.

(1) If Ri~*S = 0 for all i ~ 0 then H’(X, S) = H’(Y, ~*S) for all i.

(2) If S is constructible and if H’(X X p, 03B1*S) = 0 for i ~ 0 and

every closed geometric point p of Y, then

PROOF: A sheaf G on X is called flabby if the map G(X) ~ G( U) is
surjective for every allowed U C X. A flabby sheaf has trivial

cohomology. Moreover every sheaf S is a subsheaf of a flabby sheaf.
Indeed the sheaf U - IISP (where the product is taken over all
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geometric points p, which contain U ) is flabby and contains S as a
subsheaf.

Using a flabby resolution of S, the result (1) follows Part (2) follows
from (1), theorem (2.3) and the fact that ~*S is a constructible sheaf.

§3. Cohomology on polydisks

In this section we study the cohomology groups of the sheaves Ax,
OX(r) etc. on polydisks and on some generalizations of polydisks. We
will use §2, in particular (2.3) to decrease the dimension. Even if one
starts with an algebraically closed field one will find in the induction
process complete fields which are not algebraically closed. So we
have to consider the sheaves mentioned above on E1k or the pro-
jective line P’ k over a complete field k which is not necessarily
algebraically closed. We start with an investigation on Ek and IP L

(3.1) Dimension one
We denote Sp(k~T~) by EL A rational subset of E1k given by

inequalities: 1 t - a 1:5 p and 1 t - ai pi for i = 1, ..., s, in which we

assume that

is called a standard subset of Ek. We write st(k) for the family of all
standard subsets and we write T(k) for the family of all finite unions
of elements in st(k). We observe that for any R1, R2 ~ st(k) either
Ri n R2 E st(k) or Ri ~ R2 = 0. If Ri n R2:;é 0 then also R1 U R2 E st(k).
So any R E T(k), R 0 0, can uniquely be written as a union R1 ~ ··· U Rs
with Ri E st(k) and Ri ~ Rj = Ø for i ~ j.

If k happens to be algebraically closed then it is well known that

T(k) is the family of all rational subsets of Ek and that st(k) is the

family of all connected rational subsets.
For a field k which is not algebraically closed the situation is more

complicated. We consider a finite Galois-extension K of k with Galois
group G. It gives a finite map of k-affinoid spaces 1T : E k - E1k and there is
a natural action of G on E K considered as a k-affinoid space. Any E G
permutes the elements of st(K) and also permutes the elements of T(K).
For any R E T(K), R ~ 0, which is invariant under the action of G,

we can consider R’ = 03C0(R). This is a rational subset of E k and its
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algebra of holomorphic functions O(R’) is equal to O(R)G. Further
7r-’(Rl) = R.
Conversely, for any rational subset R’ of E k there exists a finite

Galois-extension K of k such that R = 03C0-1(R’) is a G-invariant

element of T(K). Moreover 6(R) = O(R’) Q9k K.
Let R, a G-invariant element of T(K), decompose into the disjoint

union R1 ~ ··· ~ Rs of elements of st(K). Then G permutes
{R1, ..., R, 1. The rational subset R’ = 03C0(R) of E1k is connected if and
only if G acts transitively on {R1,..., RJ. The proof of the statements
above is left to the reader.

(3.2) LEMMA: Let D’ and E’ be connected rational subsets of Ek
such that D’ rl E’:5g- 0. Then also D’U E’ and D’ fl E’ are connected
rational subsets of Et

PROOF: As in (3.1) we take a suitable finite Galois extension K of k
with Galoisgroup G such that 1T-I(D’) = Dl U ... U D, and 7r-’(E’) =
E1 ~ ··· U Et are decompositions into disjoint standard subsets of Elk.
The union 1T-l(D’) U 7T-l(E’) is a G-invariant element of T(K) and
consequently D U E is a rational subset of Ek. We may suppose that
D1 ~ E1 ~ Ø Then set U,,EG 03C3(D1 U El) is clearly equal to 1T -I(D’) U
7r-’(E’), moreover Dl U E1 E st(K) and so D’ U E’ is connected. It is
more difficult to see that D’ ~ E’ is also connected. We will show that

U aEG 03C3(D1 n E1) = 03C0-1(D’ nE’). Suppose that Dl is given by the in-
equalities 1 t - a| ~ p and 1 t - ai pi for i = 1,..., a (with the additional
conditions stated in (3.1)).

Since any E G is an isometry 03C3(D1) is given by the inequalities:

Since Di n E1 ~ Ø the set E, is described by inequalities:

Moreover we assume that p &#x26; li. One draws from this the following
conclusion: if a(Di) n E1 ~ Ø (or if Di n 03C3-1E1 ~ 0) then uDI = D,. Let
now Di n Ej ~ Ø for some i and j. There is a 03C3 E G with D; == u(D,).
Now Di n 03C3-1Ej ~ Ø and o--’Ei = TE, for some T E G with TDI = D,.
This implies Di n Ej = uT(Di ~ El). As a consequence

~03C3~G u(Di n EO = 03C0-1(D’) n 03C0-1(E’).

(3.3) COROLLARY: The constant sheaf AX has trivial cohomology
for any rational X C Ek.
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PROOF: Let D1,..., Dm be rational connected domains in Ek with
union X. Then we want to show that the Cech complex with respect
to this covering of X has trivial H’ (i &#x3E; 0). For m = 2 this follows at
once from (3.2). For m &#x3E; 2 a combinatorical argument and induction
on m yields the result. For m = 3 we will only sketch the proof and
we will leave the remaining steps to the reader. For m = 3 the result is
trivial if Di ~ Dj == 0 for all i ~ j. Suppose now that Di ~ D2 ~ 0. Then
DI U D2 is again connected and we have a commutative diagram

The columns in the diagram are exact and two of the rows are exact.
Hence the middle row, which is the augmented Cech-complex for the
covering IDI, D2, D31 is also exact.

(3.4) REMARK: Instead of working on EL we might work on ?L A
rational subset of Pl k is defined by a finite number of inequalities
If 1:5 p where f~k(z) is a non-constant function and 03C1|k*|. In

analogy with (3.1) we can define standard subsets of P1k, etc. In

particular the corollary (3.3) above becomes:
For every rational subset X of Pl, the cohomology groups

H’(X, Ax) are zero for i ~ 0.

(3.5) PROPOSITION: Let X1,..., Xn be rational subsets of Ek with
union X. The augmented Cech-complex of O0 with respect to the

covering {X1,..., Xn} of X is homotopic to zero with a homotopy
which is k°-linear and continuous.

PROOF: As in the proof of (3.3) the general case follows from the
case n = 2. So we have to show that the map

has a right-inverse which is k°-linear and continuous.
For any rational X in P = pt the complement P - X is the union of

(infinitely many) rational subsets. It is given the Grothendieck
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topology defined by the family of all its rational subsets (Compare [4]
Ch. IV, § 1). For this Grothendieck topology P - X splits as a disjoint
union of finitely many analytic subspaces V1,..., V, of PÀ. For every
Vi the complement P - Vi is again a rational subset of P’. We note
that Vi need not stay connected if we enlarge the field k.
Let now X be rational in E’; put P - X == VI ~ ··· U Vs where Vi is

the component which contains 00. Using the decomposition of Mittag-
Leffler, every f E O(X) can uniquely be written as fi + ··· + f, S where
fi E C(P - Vi) and fi(~) = 0 for i ~ 1. Moreover ~f~X = max(~fi~P-Vi).

In the special case that X C Ek is connected one easily verifies that
Vi remains connected after any field extension and that Vi (i ~ 1)
decomposes in a field extension of k into a finite union of open disks.

In proving the case n = 2 we may suppose that Xi and X2 are
connected and that Xi n X2 ~ 0. We decompose into components:

and

In a suitable Galois extension K of k (with group G) each Ui and Vj
(i ~ 1 ~ j) decomposes into a union of open disks on which the group
G acts transitively. Using this one can easily verify the following
statements:

(a) If Ui rl Vj ~ Ø and i ~ 1 ~ j) then Ui C Vj or Ui ~ Vj.
(b) If UI ~ Vj ~ Ø (and j ~ 1) then Ui D Vj.

It follows that Wi = U, U VI and in fact WI = U, or Wi = V1.
Any Wh with h ~ 1 is equal to some Ui with i ~ 1 or to Vj with j ~ 1.

Using the Mittag Lefner decomposition of O(X1)0, C(X2)’ and 6(Xi n
X2)" the desired right-inverse of d is constructed on each factor

6(P - Wi)0 of C(Xi ~ X2)°. This ends the proof.

(3.6) REMARKS:
(3.6.1) The proposition (3.5) remains valid if one replaces 6° by the

sheaf C(r).
(3.6.2) A more natural way to prove (3.5) would be to extend k to a

field K such that all 7T-I(X¡) belong to T(K) and to prove the splitting of
the ëech-complex in that situation. There are however two series
difficulties involved in that. First of all O0(X x K) is not isomorphic to
0(X)~k0K0 in general. Secondly, the G = Gal(K k)-module 0"(X x K)
can have a H1(G, 6°(X x K» gé 0.
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(3.7) PROPOSITION: Let XI,..., Xn be rational subsets of Ek with
union of X. The augmented Cech-complex of 0* with respect to the
covering IXI, ..., Xn} of X is exact.

PROOF: We may suppose that all the Xi’s are connected. As in the

proof of (3.3) we have only to consider the case n = 2. So we have to
verify that

is surjective, where X and X2 are connected and X n X2 ~ 0.
Let X be any rational subset of P1K (or Ek). An invertible function f

on X can be approximated by a rational function g. Then g has no
poles or zeros on X and f = g(1 + h) where h E 6(X) has 11h11  1. Let

P - X = VI U ... U Vs then g can be written as gi... gs where gi has
all its poles and zeros in V;. So gi e O*(P - Vi). Using Mittag-Leffler
we decompose h = h1 + ··· + hs with hi ~ O(P - Vi) and llhill:5 11h11.
Then (1 + h) = (1 + h1) ... (1 + hs)(1 + h*) where h* E 6(X) has Ilh*11 ~
Ilh112. We can continue with a decomposition (1 + h*) =
(1 + h*1) ... (1 + h*)(1 + h**) and ~h**~x ~ ~h*~2X.

In the limit of this process we find a decomposition

This shows that the map ~si = 1 O*(P - Vi) ~ O*(X) given by
(fI, ..., fs) ~ fi ... fs is surjective.
Now we copy the final part of the proof of (3.5). It yields that

is surjective. Hence also d is surjective.

(3.8) We conclude our discussion of the dimension one case with:

COROLLARY: The sheaves Ax, O0X, Cx(r), Ok have trivial

cohomology groups for any rational subset X of P1k.

(3.9) Our aim in the rest of this section is to extend the results (3.8)
to some affinoid spaces of higher dimension.
A generalized polydisk over k is a rational subspace of Emk =

Sp(k(zl,.. -, Zn~) of the form Dl x ... x Dn where each Di is a standard
subset of Ek.
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A rational subset X of Ek is said to be monomially convex if X is
given by a finite number of inequalities |z03B1| ~ r03B1, a E A, A a finite
subset of NS and ra E Vfk*1. We start to investigate a monomially
convex X. With X we associate a convex subset [X ] in Rlo. Let
(xi,..., xn) denote the coordinates of x in Rn~0 then [X] is given by the
inequalities 03A3ni=1 03B1ixi ~ log r03B1 for all a E A. A point z = (z, ..., zn) E
Ek with all its coordinates ~ 0 belongs to X if and only if

(-Iogizll,..., -log|zn|) belongs to [X]. The finite sums f = 03A3 a13z13 lie

dense in C(X). Only easily calculates that -log/lz13llx =
minfl ni=1 f3iXi |(x1, ..., xn) E [X]}.
A small calculation shows that

It follows that {z03B2 1 f3 E Nn0} is an orthogonal base of the Banach
space 6(X) (with respect to the spectral norm ~ lix on X). The natural
injection O(X) ~ k[[z1,..., zn] shows that O(X) has no zero-divisors.
In particular X is connected.

(3.10) The constant sheaves

THEOREM: If X C Ek is monomially convex or if X is a generalized
polydisk then H’(X, Ax) = 0 for i ~ 0 and for any constant sheaf AX.

PROOF: Suppose first that X is monomially convex. Let (p : X - D

denote the projection on the last coordinate. The image D is a rational
subset of E1k given by |zn| ~ r (where 0  r - 1).
We apply (2.3) to the map cp. For any closed geometric point p of

D, the space X  p ~ En-1Kp is again monomially convex. By induction
Ri~ AX = H’(X x p, a *Ax) = 0 for i ~ 0, since the natural map Axxp -
a *Ax is an isomorphism. The natural map AD - ç*Ax is an isomor-
phism since (~*AX)p = H’(X x p, Axxp) = A. (X x p is again con-

nected !)
By (2.9) and (3.3) we have H’(X, Ax) = H’(D, ç*Ax) = 0 for i ~ 0.

In the case where X is a generalized polydisk, X = Di  ··· x Dn, we
use the same method for the projection ~ : X ~ Dn. Again
Hi(X, AX) ~ Hi(Dn, ~*AX) follows. We need to see that the natural
map ADn ~ ~*AX is an isomorphism. However for a connected
rational subset E C Dn we have that ~*AX(E) =
Ax (Di x ... x Dn-, x E) = A according to the next lemma.

(3.11) LEMMA: Let Di,. - -, Dn be connected rational subsets of Ek.
Then Dl x... x Dn is also connected.
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PROOF: For connected affinoid spaces X and Y over an algebraic-
ally closed field it is well known (and easily verified) that the product
X x Y is also connected.

Let K D k be a finite Galois extension with Galois group G and let

03C0 : E1K ~ E1k denote the map induced by k~T~ ~ K~T~.
For a suitable K D k each 03C0-1(Di) = ~m(i)j = 1 Dij, is a disjoint union of

standard subsets of EK. In any further extension of K standard
subsets remain standard subsets. In particular standard subsets

are absolutely connected. This implies the following: choose for

every i, 1--5i--5n, an integer 03B1(i) with 1 ~ 03B1(i) ~ m(i), then

DI,a(l) X D2,a(2) x ... x Dn,a(n) is connected.
We note further that O(D1  ··· x Dn) = C(D,) k ··· 0k O(Dn)

and that (O(DI x ... x Dn ) Q9k K)G = e(DI  ··· x Dn). From the above
it follows that any idempotent t E O(D1 x ’ ’ ’ x Dn) has considered as
element of 6(Di x ... x Dn) Q9k K uniquely the form ti 0 ’ ’ ’ Q9 ~n
where each ti is an idempotent of C(Di) Q9k K. Sincee is invariant under
G also each "component" ~i is invariant under G. Since O(Di) =
(C (Di) Q9k K)G contains no other idempotents that 0 and 1 it follows that
t = 0 or 1. This proves the lemma.

3.12 Examples. Not every rational subset of a polydisk has trivial

cohomology for the constant sheaves. Indeed,

EXAMPLE 1: X = the rational subset of E 2defined k by the inequality
|y2 - x(x - 03C0)(x - 1)(x - 1 - n)| ~ |03C0|2 in which 1T E k satisfies

0  |03C0|  1. Then Hi(X, AX) = A for i = 0, 1 and 0 for i ~ 2 (if k has
characteristic ~ 2).

PROOF: We apply theorem (2.3) to the surjective map ~ ~ ~ E1k
given by ~(x, y) = x. For any closed geometric point p of E1K one has
again X x p C EKp and a*Ax=Axxp has trivial cohomology. So

Hi(X, AX) ~ Hi(E1K, ~*AX). The sheaf ~*AX on E1k is however not
the constant sheaf. Let p E ~|k*| satisfy 1 ~ p &#x3E; |03C0| and let U03C1 denote
the subset of E’ k given by the inequalities Ixl ~ p and |x - 1| ~ p.
A small computation shows that x(x - 1T)(X - 1)(x -1- 1T) is the

square of some f E O(U03C1). Further one computes that ~-1(U03C1) has two
components, namely:

and
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Hence ~*AX(U03C1) = A2. A further investigation shows that for any
connected rational U C Ek one has either ~*AX(U) = A2 and Ï7 D UP
for some p or ~*AX(U) = A and U contains no Up.
From this one calculates (for instance by using the covering Up,

{x ~ E1k| |x| ~ 03C1}, {x ~ E1k||x - 1| ~ 03C1}) that Hi(E1k, ~*AX) is equal to A
for i = 0,1 and to 0 for i ~ 2.

EXAMPLE 2: Let X be the subset of E2k given by the inequality
|xy| ~ |03C0| where 7r E k and 0  |03C0|  1. Then H’(X, AX) = A for i = 0

and 0 for i ~ 0. (This is a special case of (3.10)).

PROOF: We apply again (2.3) to the map ~ : X ~ E1k given by
~(x, y) = x. One follows the same arguments as in the example 1. But

now ~*AX = AE1. The easiest way to show this is to verify that for
any closed geometric point p of Ek the space Xxp C E kp is con-

nected. But X x p is given by the single inequality |x|p|y| ~ |03C0| where
Ilr denotes the valuation of Kp.

EXAMPLE 3: Let X be the subset of E2k given by the inequalities
|x(x - 1)y| ~ |03C0|2 and |(x - 03C0)(x - 1)y| ~ |03C0|2 in which 03C0 ~ k satisfies

0  |03C0|  1. Then Hi(X, AX) = A for i = 0, 1 and = 0 f or i ~ 2.

PROOF: Applying (2.3) to the map ~ : X ~ E1k given by ~(x, y) = y
one finds Hi(X, AX) ~ Hi(Eik, ~*AX). The sheaf ~*AX is not a con-
stant sheaf. For a closed geometric point p of Ek one finds (~*AX)p =
A if |y|p ~ |03C0|2 or if l’TTI  Iylr ~ 1 (~*AX)p = A2 if 11T12  Iylr ~ |03C0|.

Let 03C11, 03C12 ~ ~|k*| satisfy |03C0|2  03C11  03C12  |03C0|. We produce the fol-

lowing covering 6U of Ek:

An easy inspection yields that ~-1(U1) and ~-1(U3) are connected and
that ~-1(U2), ~-1(U1 ~ U2) and ~-1(U2 ~ U3) have each two cor’n-

ponents. It follows that i(u, ~*AX) = A for i = 0, 1 and ==0 for
i ~ 2.

One can further verify that ~*AX has no cohomology on U,, U2, U3
and Ul n U2, U2 n U3. With Leray’s theorem it follows that

Hi(El, ~*AX) is isomorphic to Û’(IU, ~*AX).

(3.13) Another result on the cohomology to constant sheaves is :
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THEOREM: Let X be an affinoid space over k and let D be a

standard subset of EL Then, for all i ~ 0, H’(X  D, AX  D) ~
Hi(X, AX).

PROOF: We apply (2.3) to the projection ~:X  D ~ X. For any
closed geometric point p of X the space p x D is a standard subset of

ËKp. In particular p x D is connected and its cohomology for the
constant sheaf is trivial. This implies that ~*AX  D ~ Ax and the
theorem follows in the usual way.

(3.14) REMARK: One would like to calculate the cohomology
groups of X x Y in terms of the groups on X and Y. A difficulty in a
direct approach with (2.3) is the following problem :
Suppose that the aflinoid space X (over an algebraically closed field

k) has the property

for every constant sheaf Ax. Let K D k be a valued field extension. Does
the affinoid space X k K over K, still have the same property?

(3.15) Our next subject is the cohomology of the sheaves O(r) and
C(r, s). The main result is:

THEOREM: Let X C Ek be either a generalized polydisk or a

monomially convex subset. Then

PROOF: We will first of all make the induction step. Let ~ : X ~ K1k
denote the projection on the last coordinate. We fix a closed

geometric point p of E’. Then X x p ~ En-1Kp 1 is either a generalized
polydisk or a monomially convex subset. The exact sequence of

sheaves 0 ~ OX(r) ~ OX(~) ~ OX(r, ~) ~ 0 induces an exact sequence
on X x p :

The next lemma will imply a*Ox(r, ~) ~ OX p(r, ~).
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(3.16) LEMMA: Let ~ : X ~ Y be a morphism of affinoid spaces over
k. Let po be a geometric point of Y with corresponding closed

geometric point p of Y. Then
(1) The kernel and the cokernel of the natural map (~*OX(r))p0 ~ 

OX p(r)(X x p) do not depend on r.
(2) a *OX(r, s) ~ OX p(r, s).

PROOF: (1) As seen in (2.5) the map 03C4 : lim{OX(~-1V)|V~p0} ~
O(X p) has a dense image. An element f ~ OX p(r)(X  p) can be
written as f = f + f2 where

(a) fi is the image of some g E OX(~-1V); V E po.
(b) f2 ~ Oxxp(5)(X x p) with 5 positive and small.
Using (2.5) and the fact that any neighbourhood of an element in p

lies in po one finds that actually g can be chosen in OX(r)(~-1W) for
a suitable W E po. This shows that the cokernel of the map in (3.16.1)
does not depend on r. A similar argument shows that also the kernel

does not depend upon r.

(2) Let P (r) denote the presheaf on X x p defined by P(r)(A) =
lim{OX(r)(U)| 1 aÂ C Û}. As in (1) one shows that the kernel K(A) and
the cokernel C(A) of the canonical map P (r)(A) - OX p(r)(A) do not
depend on r. So we find an exact sequence of sheaves:

and we note that the sheaf P(r)++ is equal to 03B1*OX(r). From the
exactness of the sequence

we draw the conclusion 03B1*OX(r, s) ~ Cx., (r, s).

(3.17) We continue now our proof of (3.15). The exact sequence

induces a long exact sequence of sheaves on Ek:

The sheaf OX(~) = OX has no cohomology on the affinoid subsets of
X, so Ri~*OX(~) = 0 for i ~ 0. Further the constructible sheaf

Ri~*OX(r, ~) has stalks ~ Hi(X x p, úxxp(r, 00». By induction we have
that Hi(X  p, OX p(r, ~)) = 0 for i ~ 0. This implies that

Ri~*OX(r, ~)=0 for i ~ 0. As a consequence Ri~*OX(r) = 0 for i ~ 2.
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In order to show that R1~*OX(r) = 0 we have to see that for every
geometric point po of D (with p as unique closed geometric point
containing it) the map (~*OX(~))p0 ~(~*OX(r, oo»po is surjective. Con-
sider the following commutative and exact diagram:

According to (3.16.1) the maps y,, y2 have the same kernel and

cokernel. The map y3 is bijective since (~*OX(r, oo»po ==
(~*OX(r, ~))p = H’(X x p, 03B1*OX(r, 00» and 03B1*OX(r, ~) = Cx x, (r, ~). It

follows that 8 is surjective. So we have verified that also

R1~*OX(r) = 0. As a consequence we have Hi(X, OX(r)) ~
H’(E k 1, ~*OX(r)). Our next step in the proof will be to identify and
analyse the sheaf ~*OX(r).

(3.18) LEMMA: Let X be a reduced affinoid space over k such that
O(X) has an orthonormal base {en} with respect to the spectral norm
on O(X). Suppose that for any finite field extension K of k the set
{en~1} remains an orthonormal base with respect to the spectral
norm on C(X xk K) = C(X) ~k K.

Then for any affinoid space Y over k and any r &#x3E; 0 one has

O(r)(X x Y) = C"(X) k0 C(r)(Y).

PROOF: f E C(X x Y) = C(X) k C(Y) can be written as f =

03A3~n = 1 en ~ an where an ~ O(Y) and limllanll = 0. The spectral norm of f
is

From this (3.18) follows.

(3.19) We can now finish the proof of (3.15) for a generalized
polydisk X = DI X ... x Dn. Using (3.18) it follows that ~*OX(r) is

isomorphic to the sheaf U - C’(DI x... x Dn-1) 0kO O(r)(U) on Dn.
Indeed, one easily verifies that 6(D) has an orthonormal base, which
remains orthonormal after any field extension. The same holds for

6(Di  ··· x Dn-i). That ~*OX(r) has trivial cohomology groups fol-
lows finally from (3.5) and its variant (3.6).
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(3.20) COROLLARY: Let Y be an affinoid space over k and let D be
a standard subset of EL Then

PROOF: We apply our machinery to cp : Y x D ~ Y. It implies that
Hi(Y x D, OY  D(r) ~ H’(Y, ~*OY  D(r)). Using (3.18) one finds that

~*OY D(r) is isomorphic to the sheaf U H OY(r)(U)k0O0(D).
Since 6°(D) is a flat k°-module with respect to 0kO, the result

follows.

(3.21) REMARK: Suppose that the rational domain D C Ek has the
properties: (i) (9(D) has an orthogonal base; (ii) For any finite field
extension K D k the spectral norm on 6(D Xk K) is equal to the tensor
product norm on O(D) 0k K. (An example of this situation is D =

{z E E1k| 1 Izl = 03C1} with p E Vfk*1 and possibly 03C1 ~ |k*|). An easy variant
of (3.18) and (3.20) will prove the following: "Suppose that the

affinoid space Y over k satisfies H’(Y, OY(r)) = 0 f or all i ~ 0 and all

r &#x3E; 0. Then H’(Y x D, OY D(r)) = 0 for all i ~ 0 and all r &#x3E; 0."

(3.22) The proof of (3.15) for a monomially convex subset X of Ek.
According to the end of (3.17) we have to show that

Hi(EL ~*OX(r)) = 0 for i ~ 0. A difficulty here is that ~*OX(r) is in

general not isomorphic to a sheaf of the form U H M0koO(r)(U). By
(1.4.13) it suflices to consider i = 1. Using the exactness of

one finds that U - H1(U, ~*OX(r)) is a constructible presheaf on Ek
and that all its stalks are zero. Further H1(U, ~*OX(r)) = 0 is

equivalent with 03B2(U):H0(U, ~*OX(~)) ~ H0(U, ~*OX(r, ~)) is sur-

jective.
Let p ~ ~|k*|, 0  03C1 ~ 1, then X, = {(z1, ..., zn)~ X ||zn| = 03C1} is a

product X’03C1 x Iz, E Ek ||zn I - 03C1} where X’03C1 C En-1k is again monomially
convex. Using the variant (3.21) of (3.20) and using induction on n it
follows that H1({z ~ E1k ||z| = 03C1}, ~*OX(r)) = 0. In a similar way

H1({z ~ E1k||z| ~ 03C1}, ~*OX(r)) = 0 for small enough p. Take now a

p E R, 0  p  1 and 03C1~ v’1k*1 (if possible!). We associate with p the
closed geometric point p corresponding to the valuation on C(E’)
given by Il anzn|p = maxlanlpn. One easily computes that every V E p
contains some {z E Ek |03BB1 ~ |z| ~ 03BB2} for suitable Ai, À2 E v’lk*1 with
03BB1  03C1  03BB2. Let now 03BE~H1(E1k, ~*OX(r)) and let f E
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H0(E1k, ~*OX(r, 00» have image 03BE. From the above it follows that El
has a covering {V0,..., Va} given by a sequence 0  r,  r2 ... ra  1

of elements in Vlk*1 in the following way:

such that the restriction of e with respect to each V, is zero. Let

f E H0(Vi, ~*OX(~)) have image f|vl in H0(Vi, ~*OX(r, 00». We have to
glue the fo, ..., fa to an element of HO(Ek, ~*OX(~)) in order to show
that e = 0. The obstruction to that is the 1-cocycle (f; - fj) of ~*OX(r)
with respect to {V0,..., Va}. For a = 1 the next lemma shows that the
1-cocycle above is trivial. For a &#x3E; 1 a repeated use of the lemma
shows the triviality of the 1-cocycle. So the next lemma ends the
proof of (3.15).

(3.23) LEMMA: Let X C Ek by monomially convex; let p E Vfk*1,
0  p  1. Then the map from

given by (f1, f2) ~ fl - f 2 is surjective.

PROOF: Let [X] C Rn~0 be the convex subset associated with X (see
(3.9)). This set is divided into two convex sets CI and C2

and

Further C3 = ci ~ C2 = {x E [X]|xn = -log pl. For each of the three
affinoid spaces a subset of {z03B2 |03B2 E Znl is an orthogonal base. The
lemma amounts to the following:

For f3 E Zn we can define three norms:

The values are allowed to be 00. Then ~z03B2~3 = min(~z03B2~1, ~z03B2~2). Let
L : Rn ~ R be the linear map L(x) = 03A3ni = 1 03B2ixi. Then -log~z03B2~i =
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inf(L(x) ) 1 x E Cil for i = 1, 2, 3. So we have to show inf L(C3) =
max(inf L(C1), inf L(C2)). The inequality ~ is trivial because C3 C CI
and C3 C C2. Further for e1 E C1 and e2 E C2 there is a t, E [0, 1] with

e3 = te1 + (1 - t)e2 ~ C3.

This shows inf (C3) ~ max(inf L(Ci), inf L(C2)).

(3.24) REMARK: The theorem (3.15) does not exhaust all the pos-
sible cases where a rational subspace X of Ek has trivial cohomology
for the sheaves Cx(r), Ox(r, s). However one can not expect that

every rational X in Enk has trivial cohomology. We will give an
example.

Let Z be the 1-dimensional affinoid space over an algebraically
closed field k given by:

Z = {(x, y) E E21 1 y2 = x(x - 03C02)(x - 203C02)} (where 121 = 1 is assumed).

Let Z1 = {(x, y) ~ Z ||x| ~ |03C0|2} and Z2 = {(x, y ) ~ Z||x| &#x3E; |03C0|2}. One

can show that H’(T, 0°) = 0 for i ~ 0 and T = Z1, Z2 or ZI n Z2. It

follows that

is exact. A computation gives H’(Z, (0) = k0/03C0k0. In a similar way one
finds H’(Z, O(1)) = koo/7rko ¥- 0.

For n E N sufficiently big the rational domain

in Ek has then also a H’(Xn, C(l» 7é 0.
(3.25) We conclude this paragraph by a calculation of the

cohomology groups of O*. The main result will be:
THEOREM: If X C Ek is monomially convex or if X is a generalized

polydisk then

(3.26) We start with some lemmata. Let D be a standard subset of
E k 1 given by the inequalities |z - a| ~ p and | z - ai| ~ pi (i = 1, ..., s )
as in (3.1). Then every f E O*(D) has the form *)
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03BB(1 + h)(z - a1)n1 ... (z - as)nz, where n1,...,ns ~ Z; 03BB~k* and

h E fi(D) has norm ~h~  1.

Indeed f can be approximated by a rational function g such that
f = (1 + h1)g and h ~ C(D) has norm 1. For g one easily computes
the form *). We note that the integers n1, ..., ns are uniquely deter-
mined by f. The À and the (1 + h) are not unique since one can change
À by a constant IL E k with |03BC - 1  1. We have to change then (1 + h)
in (1 + h)03BC-1.
We will suppose for convenience that D contains the rational point

a. In that case we can normalize the expression *) by imposing
h(a) = 0.

LEMMA: Let Y be a connected affinoid space over k. Then every
f E 6*(Y x D) has the form

in which f ~ C*(Y); n1,..., ns E Z and h E C(Y x D) has norm  1.

PROOF: For every y e Y the element f (y, .) is an invertible func-

tion on D xk k(y). This function can be decomposed as in *) and we
find integers nI(Y),..., ns(y). The connectedness of Y implies that
n (y), ..., ns(Y) do not depend on y E Y. We define f1 by f1(y) =
f (y, a)(a - al)-nl ... (a - as)-ns E C(Y) and the result follows.

DEFINITIONS: On any affinoid space we define sheaves C*(I), S
and T in the following way:

O*(1) is the subsheaf of O* consisting of the functions f with
|f(x) - Il  1 for all x. Let A denote the group k * / f 1 + h |h E k, Ihl  1}
and let A also denote the constant sheaf with stalk A.

The sheaves S and T are defined by the exact sequences

REMARKS: If the residue field of k has characteristic zero then the
sheaf C*(I) is isomorphic to O(1) (use the logarithm). In any case one
easily verifies that O*(1) has trivial cohomology groups on some X if
for all r &#x3E; 0, O(r) has trivial cohomology groups.

In the two cases of the theorem (3.25), O(1)* and A have trivial
cohomology. So (3.25) will follow from: H’(X, Tx) = 0 for i ~ 0.
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(3.27) LEMMA: Let Y be any affinoid space and let D denote a

standard subset of EL The map ~ : Y x D ~ Y is the projection on the
first factor. Then ~*TY D ~ TY ~ ZsY.

PROOF: For a connected aflinoid U C Y we have a map

(9(U)* x Zs ~ O(U x D)* given by

This induces a map

and finally a map f3 : SY~ZsY ~ ~*SY D. In order to show that /3 is an

isomorphism we have to verify that for each closed geometric point p
the map 03B2p is an isomorphism. We know that (~*SY D)p =

H"(p x D, a*SyxD). As in the proof of (3.16) one can show that

ei*SY-D::-- SpxD. Then (~*SY D)p = 6*(p x D)IC(I)*(p x D) and every
element of this group has a unique expression À(z - al)nl ... (z - as)",
with n1,..., ns E Z and À E Kp/{1 + h 1 h E Kp, Ihl  1}. The stalk Sy,p
equals O*Y,p/O(1)*Y,p. Further Cy,p is a dense subfield Mp of Kp and

O*Y,p = M*p; O(1)*Y,p = {1 + h | h ~ Mp; Ihl  Il. So f3p is an isomor-

phism. The exact sequence 1 ~ AY D ~ SY D ~ TyxD - 0 induces

From (Ri~*AY D)p = Hi(p  D, 03B1*AY D) and 03B1*AY D is the constant

sheaf on p x D with stalk A = k*/{1 + h | h E klhl  1} (N.B. not Kp
but k in this case !) it follows at once that TY~ ZsY ~ ~*TY D.

(3.28) COROLLARY: Let D be a standard subset of EL Then for any
affinoid space Y over k one has :

(3.29) COROLLARY: Suppose that the affinoid space Y over k has
trivial cohomology groups f or O(r) and the constant sheaves. Then f or
any standard subset D of Ek one has :

(3.30) COROLLARY: For a generalized polydisk X the groups

Hi(X, O*X) are zero for i ~ 0.

(3.31) We investigate now the case where X is monomially convex.
An element f E O(X), f = 03A3 a03B2z03B2, is invertible if and only if 1 aol &#x3E;
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|a03B2|~z03B2~X for all 03B2~0. This means that T(X ) = 0. As before we
consider the projection ~ : X ~ E1k on the last coordinate. By in-

duction one has Hi(X, TX) ~ Hi(E1k, ~*TX). The sheaf ~*TX can be
rather complicated. Arguments similar to those in (3.22) imply that it
suffices to show that i(u, ~*TX) = 0 (i~0) for covering U =

{U1, U2} for E1k given by U1 = {z ~ Ek||z| ~ r} and U2 =

{z ~ E1k||z| ~ r}, where r ~ ~|k*| and 0  r  1. This amounts to

showing that the map T (~-1U1) ~ T(~-1 U2) ~ T(~-1(U1 n U2)) is sur-
jective. We note that ~-1(U1~U2) = X’r  {zn ~ E1(k)||zn| = r} for

some monomially convex X’r ~ En-1k. From (3.26) it follows that

T(~-1(U1~2U2)) = Z and this group is generated by the image of
zn ~ O*(~-1(U1 ~ U2)). Since zn ~ O*(~-1U2) the map T(~-1U2) ~
T(~-1(U1 ~ L/2)) is already surjective.
This finishes the proof of (3.25).

(3.32) We end the paper with a more detailed version of (3.29). This
version can be compared with [9].

PROPOSITION: Let Y be an affinoid space over k, let D be a

standard subset of E1k having a rational point a and let ~ : Y x D ~ Y
be the projection. Then

(1) H’(Y x D, O*Y D) ~ H’(Y, ~*O*Y D) for all i.

(2) ~**Y D ~ O*Y ~ ZsY ~ G f or some sheaf G depending on D. In
case D = Ek we write Go for this sheaf. One has G ~ Gs + 10.

(3) Hi(Y  D, O*Y D) = ~ Hi(Y, ot) ~ Hi(Y, ZsY) ~ Hi(Y, G0)s+1.
(4) If the characteristic of k is 0 then Hi(Y, Go) is the completion of

a countable direct sum of copies of H’(Y, Y(1)).

PROOF: Using 1 ~ *Y D(1)~*Y D ~ 0 and Ri~*SY D = 0 for
i ~ 0 (see (3.27)) one sees that it suffices to show that Ri~**Y D(1) = 0
for i ~ 0. If k has characteristic 0 then *Y D(1) = Y D(1) (use exp. and

log.). So the required result follows from (3.17). If the characteristic
of k is ~0 then one can give a proof of Ri~*Y D(1)=0 for i ~ 0

along the lines of (3.17). This shows (1). The lemma (3.26) shows that
for a connected U C Y every invertible function on U x D can

uniquely be written as f(u) · (z - a1)n1 ... (z - as )ns . (1 + h) with f E
(U)* and h e (1)(U) x D) such that h(u, a) = 0 for all u E U. This
yields the decomposition. The sheaf G consist of the elements h E
~**Y D(1) with h(u, a)~1. Using the Mittag-Leffler decomposition
for functions on D one calculates easily that G = GÔ+I. Part (3) of the
proposition is now clear. Finally, if k has characteristic 0 then

~**Y E1(1) is isomorphic to ~*Y E1(1). Using this and the result
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(3.20) one finds H’(Y, Go) = Hi(Y, Oy(1»0koM with

The statement (4) follows. We note that every element of

Hi(Y, Y(1)) is a torsion element. If some 1T E kO, 03C0~0, annihilates

all of Hi(Y, Y(1)) then Hi(Y, Go) is simply the direct sum of a countable
number of copies of H’(Y, Y(1)).

REFERENCES

[1] W. BARTENWERFER: Die höheren metrischen Kohomologiegruppen affinoider

Räume. Math. Ann. 241 (1979) 11-34.
[2] W. BARTENWERFER: Die Lösung des nichtarchimedischen Corona-Problems für

beliebige Dimension. Journal für die reine und angewandte Mathematik Bd 319
(1980) 133-141.

[3] L. GERRITZEN: On non-archimedean representations of abelian varieties. Math.
Ann 169 (1972) 323-346.

[4] L. GERRITZEN and M. VAN DER PUT: Schottky groups and Mumford curves.
Lect. Notes in Math. 817 (1980).

[5] L GRUSON: Fibrés vectoriels sur un polydisque ultramétrique. Ann. Scient. Ec.

Norm. Sup. 4e série, t.1 (1968) 45-89.
[6] M. VAN DER PUT: The class group of a one-dimensional affinoid space. (to appear

in Ann. de. l’Inst. Fourier 1980).
[7] M. VAN DER PUT: La conjecture de la couronne en analyse complexe et p-adique.

Séminaire de Théorie des Nombres. Bordeaux oct. ’79,
[8] J. TATE: Rigid Analytic Spaces. Invent. math. 12 (1971) 257-289.
[9] L. GERRITZEN: Zerlegung der Picard-Gruppe nichtarchimedischer holomorpher

Räume. Compositio Math. 35 (1977) 23-38.

(Oblatum 1-XII-1980 &#x26; 20-111-1981) Mathematisch Instituut
Postbus 800

9700 AV Groningen
The Netherlands


