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MINIMAL MODELS FOR ELLIPTIC CURVES
WITH COMPLEX MULTIPLICATION

Benedict H. Gross

Let R be the ring of integers in an algebraic number field F. An
abelian variety A of dimension g over F determines an element c, in
the ideal class group R in the following manner. Let N denote the
Néron model of A over R [4]; the space wynr of invariant differentials
on N is a projective R-module of rank g. We may define c, to be the

class of Awwg in Pic(R).

When dim A = 1 Tate has given an alternate description of the class
c4 in terms of minimal Weierstrass models [5]. We use this for-
mulation, and some classical results of Deuring [1] and Hasse, to
calculate c, for some elliptic curves with complex multiplication.

§1. Minimal models of elliptic curves

Let A be an elliptic curve over F, a number field with ring of
integers R. The space war = H%A, 2'/F) of invariant differentials is
an F-vector space of dimension 1. Associated to any non-zero
differential  we have its discriminant A, € F* [5]. If o’ = u ' then
A, = u'A,; hence A determines a coset A, € F*/F*'2,

For any discrete valuation v of F, let 0, and A, =A4,, be the
differential and discriminant of a minimal Weierstrass equation for A
at v [5]. We define the discriminant ideal 9, by the formula:

(l.l) @Azng;zmv)’

v

where @, is a prime ideal at the place v. For any non-zero differential
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o on A over F we define the ideal §, by the formula:

(1.2) 8, =[Pyl

v

One then has the equality of ideals in R:
(1.3) (4,)8.7 = Da.

The class of the ideal 8, in Pic(R) is independent of the choice of
. We denote this class by 84; then A has a global differential o with
(4,) =9, if and only if 6, ~ 1 in Pic(R). In this case one can find a
global minimal model for A: i.e., an equation for A over R which is
simultaneously minimal at all places v.

By (1.3) one has:

(1.4) 8X~%Pa in Pic(R).

Hence a necessary condition for the existence of a global minimal
model is that the ideal %, be principal. By (1.4) this is also sufficient
when the group Pic(R) has no 12-torsion.

It is not difficult to compare 64 with the class cs of Néron
differentials defined in the introduction. Let X be the minimal regular
model for A over R,; X is a regular projective scheme over R, which
can be obtained by resolving the possible singularity on a minimal
Weierstrass equation for A over R, [4, pp. 94-101]. The Néron
minimal model N is a smooth group scheme over R,; it is obtained by
removing all fibres of multiplicity greater than one on X and all
singular points in the remaining fibres. The pull-back of a minimal
Weierstrass differential w, on A/R, is everywhere non-zero on N.
Hence we find:

(]-5) WN/R, = vau Cc WAJF,s
so globally we have the identity:
(1.6) onr = 08, C ok

To sum up, we have the following
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ProrosITION 1.7:
(1) ca~ 624 in Pic(R).
(2) The following statements are equivalent
(a) ca~ 864~ 1 in Pic(R).
(b) A has a global minimal Weierstrass model over R.
(c) A has a non-zero differential o with (4,) = D a.
(d) wnjg is a free R-module of rank 1.

§2. Elliptic curves with complex multiplication

We now assume that A is an elliptic curve with complex multi-
plication by the ring of integers 0 of an imaginary quadratic field K.
We assume further that the field F of definition for A is H, the
Hilbert class field of K. Then all endomorphisms of A are defined
over H, and the curve A is determined up to isomorphism by its
modular invariant j, and the associated Hecke character y, on the
ideles Iy of H [2; 9.1.3].

PROPOSITION 2.1: Both the ideal 9, and the class 54 depend only
on the character xa, and not on the modular invariant j,.

ProoF: Let B be another elliptic curve over F with xg = xa; then
jp = ja with o € Aut(H). The group Homy(B, A) is described in [2,
9.4.2]: for any integral ideal a of K such that o = o;' in Aut(H) we
have an isogeny ¢,:B —> A with kernel isomorphic to O/a. More
precisely, we may choose an embedding of H into C so that the
following diagram commutes:

B(C) -2 A(Q)

2.2) [ou] l [

Ccla —2— c/00

where w is a non-zero differential on A, ) € C* is a fixed integral period
of w, and p is the natural projection.

Now let v be a fixed place of H and choose a with o,'= ¢ and Na
prime to v (this is always possible). Then the induced map ¢¥: wgr, >
war, on the spaces of local Néron differentials is an isomorphism.
Hence to show that 9, = 9 it suffices to show that v(4,,) = v(4A41.,).
But by (2.2), if we compute over C,

@ 5.4,
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It is well-known that A(0)/A(a) is an algebraic integer in H which
generates the ideal a' [1, p. 33], [3, p. 165). Since this is prime to v,
the minimal discriminants have the same valuation.

Now let w be any non-zero differential on A over H and put
v = ¢ %¥(w). Then by (1.3) and the above paragraph:

(Am)ﬁl)2 =Pa=Dp= (A»)fsllzz-
Since A./A, = A(0)/A(a) by (2.3), we have
(8,/8.,)% = (A(0)]A(a)) = '

Hence 8, = §, - a as ideals of H. But the ideal a of K capitulates in
H ; hence 84 ~ 8z in Pic(R).

Note: If we assume that the Hecke character ya:Iy— K* is
Gal(H/K)-equivariant, then by Proposition 2.1 the ideal @, is fixed by
Gal(H/K). Since H is unramified over K, any fixed ideal is represen-
ted by an ideal of K. But all ideals of K capitulate in H, so %4 ~ 1 in
Pic(R). Is 84 ~ 1 in Pic(R)? We will show this is the case when K has
prime discriminant.

§3. A global minimal model for A(p)

We now specialize to the case where the multiplication field K =
Q(V~p) has prime discriminant.

LeEmmMA 3.1: For any fractional ideal a of K, the ratio A(0)/A(a) is
a 12™ power in H*.

PrOOF: By Deuring [1, p. 14, 41] the ratio A(0O)/A(b?) is a 24™
power in H* when (6,0) =1. When K has prime discriminant, its
class group has odd order. Hence we may find an ideal b prime to 6
such that («)a = b2 Then

AO)A(@)=a"-A0)/ADB) =1 (mod H*").

We can now answer affirmatively a question posed by D. Zagier.
Assume that p >3 and let A(p) denote Q-curve over the field F =
Q(jag)) studied in chapter 5 of [2]. Recall that A(p) has good reduc-
tion outside p and has minimal discriminant ideal %4, = (—p’). The
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fact that this ideal is principal raises the possibility of a global
minimal model.

PROPOSITION 3.2: The curve A(p) has a global minimal model over
the field F = Q(jap) with discriminant A =—p®. The associated
differential w(p) is determined up to sign.

Proor: In §23 of [2] we constructed a pair (A, w) over F with

ja=lapy A, =—D°, and sign c4= (%) Recall that A is given by the

equation
2
2_ 3, Mmp _ np
¢ O T
where
m’ = jap)
(3.9 nt= (apy—1728)/ —p, signn = (_12)_>,

The differential = dx/2y on A has A, = —p°>. To prove Proposition
3.2 we will show that A is isomorphic to A(p) over F. We will then
have a global minimal model by Proposition 1.7, as (4,) = Pa(,). The
differential » = w(p) with A, =—p® is determined up to sign, as
p(F*)=(x1).

In summary, we are reduced to proving:

PROPOSITION 3.5: The elliptic curve A defined by equations (3.3—
3.4) is a Q-curve which is isomorphic over F to the curve A(p).

Proor: Consider the map

fa:Gal(H/Q) - Hom(Iy, K¥)
o xa!
where all Homs refer to continuous homomorphisms of topological
groups. Then f4 is a l-cocycle, which takes values in the group
Hom(Iy/H*, K*). Since K* is totally disconnected, this group may be
identified with the group Hom(Gal(H/H),K*) via the Artin
homomorphism of global class field theory. Since Gal(H/H) is com-
pact and K* is discrete, any continuous homomorphism takes values



160 B.H. Gross [6]

in the finite group w(K*) = (=1). Finally, we may identify
Hom(Gal(H/H), 1) = H*/H*?,

by Kummer theory, and view f, as a map

3.5 fa:Gal(H/Q)—> H*/H*2.

To show A is a Q-curve is equivalent to showing that f4(c) =1 for all
o € Gal(H/Q). Since A is defined over F we have fa(7) = 1. Hence, it
suffices to show fa (o) =1 for all o € Gal(H/K).

For this, we need a concrete description of fa(o) in H*/H*
Embed F in C via its real place, and let a be an integral ideal of K
with o = o;'. There is an isogeny ¢, defined over Q which makes the
following diagram commutative:

A"TA
fﬂ«»J Uw
C/.Qa—;» Cc/Q0.

If we write ¢ *(w) = h, - 0’ with h, € Q*, then the isogeny ¢, is defined
over the extension H(h,). The identities:

ci(0)caa)=hi-ci™”

ce(0)cg(a) = h3 - ¢
show that h2€ H* [3, p. 158]. In fact, we have the formula
(3.6) fa(e)=h} (mod H*?).

On the other hand, we have the identity:
AO)A(@)=h?- A" =h]

as A = —p’is fixed by Gal(H/Q). By Lemma 3.1, h;? is a 12" power in
H*. Since h’e H*, we must have h,€ H*u, and fs(o)==*1
(mod H*?). But f, is a cocycle and the order of Gal(H/K) is odd.
Hence f4(o)=1 and A is a Q-curve.

Since vz(A,) =3 we see A= A(p)? with (p,d)=1 [2, 12.3.2]. But
Da=b2(—p> and Dagy =c*(—p>d®) where b and ¢ are ideals of H.
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Hence (d) = (b/c)? is the square of an ideal of H. Since H is un-
ramified over K and d is a quadratic discriminant, there are only two
possibilities: d =1 and d = —4. But the curve A(p)™* has the wrong
sign of cg, so A = A(p).

§4. Global minimal models for K-curves

Let w(p) be one of the differentials on A(p) given by Proposition
3.2. For any integral ideal a of K we may define h, in H*/*1 by the
formula:

4.1) ¢¥(@(P) =he- 0 (p)*

The ambiguity in sign is caused by the ambiguity in the choice of
isogeny ¢,; we will discuss a choice of the sign in §5. In H*/*+1 we
have the cocycle relations

hy=hov - hy
ha‘r = h;

4.2)

We have seen in §3 that when F is embedded into C via its real place
we have the complex identity:

h: = A(0)/A(a).

Hence h, is integral in H and generates the ideal a. The same is true
for hy for any o € Gal(H/K).

LEMMA 4.1: For all ¢ € Gal(H/K), hi'=1(mod H*?).

Proor: First note that this identity makes sense, independent of
the choice of sign for h,. We have seen, in the proof of Lemma 3.1,
that A(0)/A(b?) = hy: is a 24" power in H*. Hence hy = =1 (mod H*?).
Since we may find b such that a =(a)b?, we find from (4.2) that

.=*a (mod H*?). Hence h{™'= (mod H*? for any o € Gal(H/K).

LEMMA 4.2: Let K’ be a quadratic extension of K with conductor
a. Then we may choose the sign of h, so that HK'= H(Vh,).

PROOF: Write K'= K(Va). Since a is the discriminant ideal of
K'[K and « is the discriminant of the specific K-basis (1, Va/2) we
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find (a)b*=a with b an ideal of K. Raising this identity to the h™
power and writing (8) = b" we find («"B?) = a* = (Nyh.). Since h is
odd and 0% =(*=1), we may choose the sign of h, so that a = Ngh,
(mod K*?). Then K’ = K(VNgxh,) and HK' = H(VNgh,).

By Lemma 4.1, h,=h{ (mod H*? so multiplying over the entire
Galois group we find h" = Ngxh, (mod H*?). Since h is odd, h,= h" =
Nykhe (mod H*?) and HK' = H(V'h,) as claimed.

Now let A be an elliptic curve over H such that y, is Gal(H/K)
equivariant. By [2, 12.3.1] we may write A = A(p)* with

¢ € Hom(Gal(H/H), £1)%*® ~ Hom(Gal(K/K), +1).

Let a be the conductor of ¢ and write the associated quadratic
extension H'= H (\/71:) as permitted by Lemma 4.2. For simplicity,
assume that a is prime to p. Let p be a generator of Gal(H'/H); we then
have the identification

wan ={w € @apm': 0° = o}
Hence the differential wa = (1/V'ho) - @(p) descends to A over H.

PROPOSITION 4.3: Either wa or 2wa is a global minimal differential
on A/H.

PrOOF: We clearly have A,, =—p’h$ so (A,,) = (—p*)a’ This is
equal to 9, except in the case when (%) =—1and 8 | a[2,14.1.1]. In
that case it is equal to (2')P4.

CoROLLARY 4.4: If K has prime discriminant and the Hecke
character x4 of A is Gal(H/K) equivariant, then 85 ~ c, ~ 1 in Pic(R).

Indeed, the minimal differential given in Proposition 4.3 is deter-
mined up to sign.

§5. The sign of h,

When the ideal a of K is prime to (p), we may normalize the sign of
h, by insisting that Ngxh, is a square (mod V=p). Then the following
identities hold in H*:

hy = h&';lhb
(5.1 ha = h]
hw=a if a=1(mod V-p).
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Hence there is a unique continuous 1-cocycle
¢:Ix>H*

which is the identity on principal ideéles and satisfies ¢(a)=
I, e h;’:“i for all ideéles which are trivial at © and congruent
to 1 (modV—p). (The group Iy acts on H* via its quotient
I/ K* - (C* X II, 0%) = Gal(H/K), and the cocycle ¢ is T-equivariant.)

Recall the elements t, in T*/=1 defined in [2, 15.2.5]. Again, when a
is prime to (p) we may normalize the sign of t, by insisting that t" is a
square (mod V—p). We then have the identities in T*:

tas = taty
(5.2) tor=1t]
tw=a if a=1(V-p).

Since (t,) = a we find:

PROPOSITION 5.3: The elements u, = t,/hi* are units in the field HT
which satisfy the identities

Ta

Ugh = Uq * Up
ua‘r = u;
U@) = 1.

Since u, depends only on the class of a in Pic(0) it is convenient to
write u,, for the unit u,. By Proposition 5.3 the assignment

o= U,

T>1

gives a l-cocycle f on Gal(HT/T*)=Gal(H/Q) with values in the
units U of (HT)*.

QUESTION 5.4: Is f ~ 1 in H(Gal(HT/T"), U)?

As a stronger question, one can ask if € =2, u, is a unit of HT.
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