Compositio Mathematica ### BENEDICT H. GROSS # Minimal models for elliptic curves with complex multiplication Compositio Mathematica, tome 45, nº 2 (1982), p. 155-164 http://www.numdam.org/item?id=CM 1982 45 2 155 0> © Foundation Compositio Mathematica, 1982, tous droits réservés. L'accès aux archives de la revue « Compositio Mathematica » (http://http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 45, Fasc. 2, 1982, pag. 155–164 © 1982 Martinus Nijhoff Publishers – The Hague Printed in the Netherlands # MINIMAL MODELS FOR ELLIPTIC CURVES WITH COMPLEX MULTIPLICATION #### Benedict H. Gross Let R be the ring of integers in an algebraic number field F. An abelian variety A of dimension g over F determines an element c_A in the ideal class group R in the following manner. Let N denote the Néron model of A over R [4]; the space $\omega_{N/R}$ of invariant differentials on N is a projective R-module of rank g. We may define c_A to be the class of $\mathring{\Lambda}\omega_{N/R}$ in Pic(R). When dim A=1 Tate has given an alternate description of the class c_A in terms of minimal Weierstrass models [5]. We use this formulation, and some classical results of Deuring [1] and Hasse, to calculate c_A for some elliptic curves with complex multiplication. #### §1. Minimal models of elliptic curves Let A be an elliptic curve over F, a number field with ring of integers R. The space $\omega_{A/F} = H^0(A, \Omega^1/F)$ of invariant differentials is an F-vector space of dimension 1. Associated to any non-zero differential ω we have its discriminant $\Delta_{\omega} \in F^*$ [5]. If $\omega' = u^{-1}\omega$ then $\Delta_{\omega'} = u^{12}\Delta_{\omega}$; hence A determines a coset $\Delta_A \in F^*/F^{*12}$. For any discrete valuation v of F, let ω_v and $\Delta_v = \Delta_{\omega_v}$ be the differential and discriminant of a minimal Weierstrass equation for A at v [5]. We define the discriminant ideal \mathcal{D}_A by the formula: $$\mathscr{D}_A = \prod_v \mathscr{P}_v^{v(\Delta_v)},$$ where \mathcal{P}_v is a prime ideal at the place v. For any non-zero differential 0010-437X/82020155-10\$00.20/0 ω on A over F we define the ideal δ_{ω} by the formula: (1.2) $$\delta_{\omega} = \prod_{v} \mathcal{P}_{v}^{v(\omega/\omega_{v})}.$$ One then has the equality of ideals in R: $$(1.3) (\Delta_{\omega})\delta_{\omega}^{12} = \mathcal{D}_{A}.$$ The class of the ideal δ_{ω} in $\operatorname{Pic}(R)$ is independent of the choice of ω . We denote this class by δ_A ; then A has a global differential ω with $(\Delta_{\omega}) = \mathcal{D}_A$ if and only if $\delta_A \sim 1$ in $\operatorname{Pic}(R)$. In this case one can find a global minimal model for A: i.e., an equation for A over R which is simultaneously minimal at all places v. By (1.3) one has: (1.4) $$\delta_A^{12} \sim \mathcal{D}_A \quad \text{in Pic}(R).$$ Hence a necessary condition for the existence of a global minimal model is that the ideal \mathcal{D}_A be principal. By (1.4) this is also sufficient when the group Pic(R) has no 12-torsion. It is not difficult to compare δ_A with the class c_A of Néron differentials defined in the introduction. Let X be the minimal regular model for A over R_v ; X is a regular projective scheme over R_v which can be obtained by resolving the possible singularity on a minimal Weierstrass equation for A over R_v [4, pp. 94–101]. The Néron minimal model N is a smooth group scheme over R_v ; it is obtained by removing all fibres of multiplicity greater than one on X and all singular points in the remaining fibres. The pull-back of a minimal Weierstrass differential ω_v on A/R_v is everywhere non-zero on N. Hence we find: $$(1.5) \qquad \underline{\omega}_{N/R_v} = \omega_v R_v \subset \underline{\omega}_{A/F_v},$$ so globally we have the identity: $$(1.6) \omega_{N/R} = \omega \delta_{\omega}^{-1} \subset \omega_{A/F}.$$ To sum up, we have the following Proposition 1.7: - (1) $c_A \sim \delta_A^{-1}$ in Pic(R). - (2) The following statements are equivalent - (a) $c_A \sim \delta_A \sim 1$ in Pic(R). - (b) A has a global minimal Weierstrass model over R. - (c) A has a non-zero differential ω with $(\Delta_{\omega}) = \mathcal{D}_A$. - (d) $\omega_{N/R}$ is a free R-module of rank 1. #### §2. Elliptic curves with complex multiplication We now assume that A is an elliptic curve with complex multiplication by the ring of integers \mathcal{O} of an imaginary quadratic field K. We assume further that the field F of definition for A is H, the Hilbert class field of K. Then all endomorphisms of A are defined over H, and the curve A is determined up to isomorphism by its modular invariant j_A and the associated Hecke character χ_A on the idèles I_H of H [2; 9.1.3]. PROPOSITION 2.1: Both the ideal \mathcal{D}_A and the class δ_A depend only on the character χ_A , and not on the modular invariant j_A . PROOF: Let B be another elliptic curve over F with $\chi_B = \chi_A$; then $j_B = j_A^{\sigma}$ with $\sigma \in \operatorname{Aut}(H)$. The group $\operatorname{Hom}_H(B, A)$ is described in [2, 9.4.2]: for any integral ideal \mathfrak{a} of K such that $\sigma = \sigma_{\mathfrak{a}}^{-1}$ in $\operatorname{Aut}(H)$ we have an isogeny $\phi_{\mathfrak{a}}: B \to A$ with kernel isomorphic to \mathcal{O}/\mathfrak{a} . More precisely, we may choose an embedding of H into \mathbb{C} so that the following diagram commutes: (2.2) $$B(\mathbb{C}) \xrightarrow{\phi_{\mathfrak{a}}} A(\mathbb{C}) \\ \int_{\phi_{\mathfrak{a}}^* \omega} \bigvee_{\mathfrak{C}/\Omega \mathfrak{a}} \bigvee_{p} \bigvee_{\mathfrak{C}/\Omega \mathcal{O}} \omega$$ where ω is a non-zero differential on A, $\Omega \in \mathbb{C}^*$ is a fixed integral period of ω , and p is the natural projection. Now let v be a fixed place of H and choose a with $\sigma_a^{-1} = \sigma$ and Na prime to v (this is always possible). Then the induced map $\phi_a^* : \underline{\omega}_{B/R_v} \to \omega_{A/R_v}$ on the spaces of local Néron differentials is an isomorphism. Hence to show that $\mathcal{D}_A = \mathcal{D}_B$ it suffices to show that $v(\Delta_{\omega_v}) = v(\Delta_{\phi_a^*\omega_v})$. But by (2.2), if we compute over \mathbb{C} , (2.3) $$\Delta_{\omega} = \frac{\Delta(\mathcal{O})}{\Delta(\mathfrak{a})} \Delta_{\phi_{\mathfrak{a}}^*\omega}.$$ It is well-known that $\Delta(\mathcal{O})/\Delta(\mathfrak{a})$ is an algebraic integer in H which generates the ideal \mathfrak{a}^{12} [1, p. 33], [3, p. 165]. Since this is prime to v, the minimal discriminants have the same valuation. Now let ω be any non-zero differential on A over H and put $\nu = \phi_a^*(\omega)$. Then by (1.3) and the above paragraph: $$(\Delta_{\omega})\delta_{\omega}^{12} = \mathcal{D}_A = \mathcal{D}_B = (\Delta_{\nu})\delta_{\nu}^{12}.$$ Since $\Delta_{\omega}/\Delta_{\nu} = \Delta(\mathcal{O})/\Delta(\mathfrak{a})$ by (2.3), we have $$(\delta_{\nu}/\delta_{\omega})^{12} = (\Delta(\mathcal{O})/\Delta(\mathfrak{a})) = \mathfrak{a}^{12}.$$ Hence $\delta_{\nu} = \delta_{\omega} \cdot \mathfrak{a}$ as ideals of H. But the ideal \mathfrak{a} of K capitulates in H; hence $\delta_A \sim \delta_B$ in Pic(R). Note: If we assume that the Hecke character $\chi_A: I_H \to K^*$ is Gal(H/K)-equivariant, then by Proposition 2.1 the ideal \mathcal{D}_A is fixed by Gal(H/K). Since H is unramified over K, any fixed ideal is represented by an ideal of K. But all ideals of K capitulate in H, so $\mathcal{D}_A \sim 1$ in Pic(R). Is $\delta_A \sim 1$ in Pic(R)? We will show this is the case when K has prime discriminant. #### §3. A global minimal model for A(p) We now specialize to the case where the multiplication field $K = \mathbb{Q}(\sqrt{-p})$ has prime discriminant. LEMMA 3.1: For any fractional ideal $\mathfrak a$ of K, the ratio $\Delta(\mathcal O)/\Delta(\mathfrak a)$ is a 12^{th} power in H^* . PROOF: By Deuring [1, p. 14, 41] the ratio $\Delta(\mathcal{O})/\Delta(\mathfrak{b}^2)$ is a 24th power in H^* when $(6, \mathfrak{b}) = 1$. When K has prime discriminant, its class group has *odd* order. Hence we may find an ideal \mathfrak{b} prime to 6 such that $(\alpha)\mathfrak{a} = \mathfrak{b}^2$. Then $$\Delta(\mathcal{O})/\Delta(\mathfrak{a}) = \alpha^{12} \cdot \Delta(\mathcal{O})/\Delta(\mathfrak{b}^2) \equiv 1 \pmod{H^{*12}}.$$ We can now answer affirmatively a question posed by D. Zagier. Assume that p > 3 and let A(p) denote Q-curve over the field $F = \mathbb{Q}(j_{A(p)})$ studied in chapter 5 of [2]. Recall that A(p) has good reduction outside p and has minimal discriminant ideal $\mathcal{D}_{A(p)} = (-p^3)$. The fact that this ideal is principal raises the possibility of a global minimal model. PROPOSITION 3.2: The curve A(p) has a global minimal model over the field $F = \mathbb{Q}(j_{A(p)})$ with discriminant $\Delta = -p^3$. The associated differential $\omega(p)$ is determined up to sign. PROOF: In §23 of [2] we constructed a pair (A, ω) over F with $j_A = j_{A(p)}$, $\Delta_{\omega} = -p^3$, and sign $c_6 = \left(\frac{2}{p}\right)$. Recall that A is given by the equation (3.3) $$y^2 = x^3 + \frac{mp}{2^4 \cdot 3} x - \frac{np^2}{2^5 \cdot 3^3}$$ where $$m^3 = \mathbf{j}_{A(p)}$$ (3.4) $$n^2 = (j_{A(p)} - 1728)/-p, \quad \text{sign } n = \left(\frac{2}{p}\right),$$ The differential $\omega = dx/2y$ on A has $\Delta_{\omega} = -p^3$. To prove Proposition 3.2 we will show that A is isomorphic to A(p) over F. We will then have a global minimal model by Proposition 1.7, as $(\Delta_{\omega}) = \mathcal{D}_{A(p)}$. The differential $\omega = \omega(p)$ with $\Delta_{\omega} = -p^3$ is determined up to sign, as $\mu(F^*) = \langle \pm 1 \rangle$. In summary, we are reduced to proving: PROPOSITION 3.5: The elliptic curve A defined by equations (3.3–3.4) is a \mathbb{Q} -curve which is isomorphic over F to the curve A(p). PROOF: Consider the map $$f_A: \operatorname{Gal}(H/\mathbb{Q}) \to \operatorname{Hom}(I_H, K^*)$$ $$\sigma \mapsto \gamma_A^{\sigma-1}$$ where all Homs refer to continuous homomorphisms of topological groups. Then f_A is a 1-cocycle, which takes values in the group $\operatorname{Hom}(I_H/H^*, K^*)$. Since K^* is totally disconnected, this group may be identified with the group $\operatorname{Hom}(\operatorname{Gal}(\bar{H}/H), K^*)$ via the Artin homomorphism of global class field theory. Since $\operatorname{Gal}(\bar{H}/H)$ is compact and K^* is discrete, any continuous homomorphism takes values in the finite group $\mu(K^*) = \langle \pm 1 \rangle$. Finally, we may identify $$\operatorname{Hom}(\operatorname{Gal}(\bar{H}/H), \pm 1) \simeq H^*/H^{*2},$$ by Kummer theory, and view f_A as a map $$(3.5) f_A: Gal(H/\mathbb{Q}) \to H^*/H^{*2}.$$ To show A is a Q-curve is equivalent to showing that $f_A(\sigma) \equiv 1$ for all $\sigma \in \operatorname{Gal}(H/\mathbb{Q})$. Since A is defined over F we have $f_A(\tau) \equiv 1$. Hence, it suffices to show $f_A(\sigma) = 1$ for all $\sigma \in \operatorname{Gal}(H/K)$. For this, we need a concrete description of $f_A(\sigma)$ in H^*/H^{*2} . Embed F in $\mathbb C$ via its real place, and let $\mathfrak a$ be an integral ideal of K with $\sigma = \sigma_{\mathfrak a}^{-1}$. There is an isogeny $\phi_{\mathfrak a}$ defined over $\bar{\mathbb Q}$ which makes the following diagram commutative: If we write $\phi_a^*(\omega) = h_a \cdot \omega^{\sigma}$ with $h_a \in \bar{\mathbb{Q}}^*$, then the isogeny ϕ_a is defined over the extension $H(h_a)$. The identities: $$c_4(\mathcal{O})/c_4(\mathfrak{a}) = h_{\mathfrak{a}}^4 \cdot c_4^{1-\sigma}$$ $$c_6(\mathcal{O})/c_6(\mathfrak{a}) = h_{\mathfrak{a}}^6 \cdot c_6^{1-\sigma}$$ show that $h_a^2 \in H^*$ [3, p. 158]. In fact, we have the formula $$(3.6) f_A(\sigma) \equiv h_a^2 \pmod{H^{*2}}.$$ On the other hand, we have the identity: $$\Delta(\mathcal{O})/\Delta(\mathfrak{a}) = h_{\mathfrak{a}}^{12} \cdot \Delta^{1-\sigma} = h_{\mathfrak{a}}^{12}$$ as $\Delta = -p^3$ is fixed by $Gal(H/\mathbb{Q})$. By Lemma 3.1, h_a^{12} is a 12^{th} power in H^* . Since $h_a^2 \in H^*$, we must have $h_a \in H^*\mu_4$ and $f_A(\sigma) \equiv \pm 1 \pmod{H^{*2}}$. But f_A is a cocycle and the order of Gal(H/K) is odd. Hence $f_A(\sigma) \equiv 1$ and A is a \mathbb{Q} -curve. Since $v_{\mathcal{P}}(\Delta_{\omega}) = 3$ we see $A \simeq A(p)^d$ with (p, d) = 1 [2, 12.3.2]. But $\mathcal{D}_A = \mathfrak{b}^{12}(-p^3)$ and $\mathcal{D}_{A(p)^d} = \mathfrak{c}^{12}(-p^3d^6)$ where \mathfrak{b} and \mathfrak{c} are ideals of H. Hence $(d) = (b/c)^2$ is the square of an ideal of H. Since H is unramified over K and d is a quadratic discriminant, there are only two possibilities: d = 1 and d = -4. But the curve $A(p)^{-4}$ has the wrong sign of c_6 , so $A \approx A(p)$. #### §4. Global minimal models for K-curves Let $\omega(p)$ be one of the differentials on A(p) given by Proposition 3.2. For any integral ideal $\mathfrak a$ of K we may define $h_{\mathfrak a}$ in $H^*/\pm 1$ by the formula: (4.1) $$\phi_{\mathfrak{a}}^*(\omega(p)) = h_{\mathfrak{a}} \cdot \omega(p)^{\sigma_{\mathfrak{a}}^{-1}}.$$ The ambiguity in sign is caused by the ambiguity in the choice of isogeny ϕ_a ; we will discuss a choice of the sign in §5. In $H^*/\pm 1$ we have the cocycle relations $$\begin{aligned} h_{ab} &= h_a^{\sigma_b^{-1}} \cdot h_b \\ h_{a\tau} &= h_a^{\tau} \end{aligned}$$ We have seen in §3 that when F is embedded into \mathbb{C} via its real place we have the complex identity: $$h_{\mathfrak{a}}^{12} = \Delta(\mathcal{O})/\Delta(\mathfrak{a}).$$ Hence h_a is integral in H and generates the ideal a. The same is true for h_a^{σ} for any $\sigma \in Gal(H/K)$. LEMMA 4.1: For all $$\sigma \in Gal(H/K)$$, $h_{\mathfrak{a}}^{\sigma-1} \equiv 1 \pmod{H^{*2}}$. PROOF: First note that this identity makes sense, independent of the choice of sign for h_a . We have seen, in the proof of Lemma 3.1, that $\Delta(\mathcal{O})/\Delta(\mathfrak{b}^2) = h_{\mathfrak{b}^2}^{12}$ is a 24th power in H^* . Hence $h_{\mathfrak{b}^2} = \pm 1 \pmod{H^{*2}}$. Since we may find \mathfrak{b} such that $\mathfrak{a} = (\alpha)\mathfrak{b}^2$, we find from (4.2) that $h_a \equiv \pm \alpha \pmod{H^{*2}}$. Hence $h_a^{\sigma-1} \equiv \pmod{H^{*2}}$ for any $\sigma \in \operatorname{Gal}(H/K)$. LEMMA 4.2: Let K' be a quadratic extension of K with conductor a. Then we may choose the sign of h_a so that $HK' = H(\sqrt{h_a})$. PROOF: Write $K' = K(\sqrt{\alpha})$. Since α is the discriminant ideal of K'/K and α is the discriminant of the specific K-basis $\langle 1, \sqrt{\alpha}/2 \rangle$ we find $(\alpha)b^2 = \mathfrak{a}$ with \mathfrak{b} an ideal of K. Raising this identity to the h^{th} power and writing $(\beta) = \mathfrak{b}^h$ we find $(\alpha^h \beta^2) = \mathfrak{a}^h = (\mathbb{N}_{H/K} h_{\mathfrak{a}})$. Since h is odd and $\mathcal{O}_K^* = \langle \pm 1 \rangle$, we may choose the sign of $h_{\mathfrak{a}}$ so that $\alpha \equiv \mathbb{N}_{H/K} h_{\mathfrak{a}}$ (mod K^{*2}). Then $K' = K(\sqrt{\mathbb{N}_{H/K} h_{\mathfrak{a}}})$ and $HK' = H(\sqrt{\mathbb{N}_{H/K} h_{\mathfrak{a}}})$. By Lemma 4.1, $h_a \equiv h_a^{\sigma} \pmod{H^{*2}}$ so multiplying over the entire Galois group we find $h_a^h \equiv \mathbb{N}_{H/K} h_a \pmod{H^{*2}}$. Since h is odd, $h_a \equiv h_a^h \equiv \mathbb{N}_{H/K} h_a \pmod{H^{*2}}$ and $HK' = H(\sqrt{h_a})$ as claimed. Now let A be an elliptic curve over H such that χ_A is Gal(H/K) equivariant. By [2, 12.3.1] we may write $A = A(p)^{\psi}$ with $$\psi \in \text{Hom}(\text{Gal}(\bar{H}/H), \pm 1)^{\text{Gal}(H/K)} \simeq \text{Hom}(\text{Gal}(\bar{K}/K), \pm 1).$$ Let \mathfrak{a} be the conductor of ψ and write the associated quadratic extension $H' = H(\sqrt{h_{\mathfrak{a}}})$ as permitted by Lemma 4.2. For simplicity, assume that \mathfrak{a} is prime to p. Let ρ be a generator of Gal(H'/H); we then have the identification $$\underline{\omega}_{A/H} = \{ \omega \in \underline{\omega}_{A(p)/H'} : \omega^{\rho} = -\omega \}.$$ Hence the differential $\omega_A = (1/\sqrt{h_a}) \cdot \omega(p)$ descends to A over H. PROPOSITION 4.3: Either ω_A or $2\omega_A$ is a global minimal differential on A/H. PROOF: We clearly have $\Delta_{\omega_A} = -p^3 h_a^6$ so $(\Delta_{\omega_A}) = (-p^3) a^6$. This is equal to \mathcal{D}_A except in the case when $\left(\frac{2}{p}\right) = -1$ and $8 \mid a \mid [2, 14.1.1]$. In that case it is equal to $(2^{12})\mathcal{D}_A$. COROLLARY 4.4: If K has prime discriminant and the Hecke character χ_A of A is Gal(H/K) equivariant, then $\delta_A \sim c_A \sim 1$ in Pic(R). Indeed, the minimal differential given in Proposition 4.3 is determined up to sign. #### §5. The sign of h_a When the ideal a of K is prime to (p), we may normalize the sign of h_a by insisting that $N_{H/K}h_a$ is a square $(\text{mod }\sqrt{-p})$. Then the following identities hold in H^* : (5.1) $$h_{ab} = h_a^{\sigma_b^{-1}} h_b$$ $$h_{a^{\tau}} = h_a^{\tau}$$ $$h_{(\alpha)} = \alpha \quad \text{if } \alpha \equiv 1 \pmod{\sqrt{-p}}.$$ Hence there is a unique continuous 1-cocycle $$\phi:I_K\to H^*$$ which is the identity on principal idèles and satisfies $\phi(a) = \prod_{v \not \mid p,\infty} h_{a_v}^{v(a)}$ for all idèles which are trivial at ∞ and congruent to 1 (mod $\sqrt{-p}$). (The group I_K acts on H^* via its quotient $I_K/K^* \cdot (\mathbb{C}^* \times \Pi_v \mathcal{O}_v^*) = \operatorname{Gal}(H/K)$, and the cocycle ϕ is τ -equivariant.) Recall the elements t_a in $T^*/\pm 1$ defined in [2, 15.2.5]. Again, when a is prime to (p) we may normalize the sign of t_a by insisting that t_a^h is a square (mod $\sqrt{-p}$). We then have the identities in T^* : (5.2) $$t_{ab} = t_a t_b$$ $$t_{a^{\tau}} = t_a^{\tau}$$ $$t_{(\alpha)} = \alpha \quad \text{if } \alpha \equiv 1 \ (\sqrt{-p}).$$ Since $(t_a) = a$ we find: PROPOSITION 5.3: The elements $u_a = t_a/h_a^{\sigma_a}$ are units in the field HT which satisfy the identities $$u_{ab} = u_a \cdot u_b^{\sigma_a}$$ $$u_{a^{\tau}} = u_a^{\tau}$$ $$u_{(\alpha)} = 1.$$ Since u_a depends only on the class of a in $Pic(\mathcal{O})$ it is convenient to write u_{σ_a} for the unit u_a . By Proposition 5.3 the assignment $$\sigma \to u_{\sigma}$$ $\tau \to 1$ gives a 1-cocycle f on $Gal(HT/T^+) \simeq Gal(H/\mathbb{Q})$ with values in the units U of $(HT)^*$. QUESTION 5.4: Is $f \sim 1$ in $H^1(Gal(HT/T^+), U)$? As a stronger question, one can ask if $\epsilon = \Sigma_{\sigma} u_{\sigma}$ is a unit of HT. #### REFERENCES - [1] M. DEURING: Die Klassenkörper der Komplexen Multiplication. Ency. der Math. Wiss. Band I, 2. Teil, Heft 10, Teil II (1958). - [2] B. GROSS: Arithmetic on elliptic curves with complex multiplication. Springer Lecture Notes 776 (1980). - [3] S. LANG: Elliptic functions. Reading: Addison-Wesley (1973). - [4] A. NÉRON: Modèles minimaux des variétés abéliennes sur les corps locaux et globaux. IHES Publ. Math. No. 21 (1964) 361-483. - [5] J.T. TATE: Algorithm for determining the type of singular fiber in an elliptic pencil. Springer Lecture Notes 476 (1975) 33-52. (Oblatum 2-X-1980 & 27-III-1981) Dept. of Mathematics Princeton University Fine Hall – Box 37 Princeton, N.J. 08540 U.S.A.