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Let R be the ring of integers in an algebraic number field F. An
abelian variety A of dimension g over F determines an element cA in
the ideal class group R in the following manner. Let N denote the
Néron model of A over R [4]; the space 03C9N/R of invariant differentials
on N is a projective R-module of rank g. We may define cA to be the

g 

class of AWNIR in Pic(R).
When dim A = 1 Tate has given an alternate description of the class

cA in terms of minimal Weierstrass models [5]. We use this for-

mulation, and some classical results of Deuring [1] and Hasse, to
calculate cA for some elliptic curves with complex multiplication.

§ 1. Minimal models of elliptic curves

Let A be an elliptic curve over F, a number field with ring of
integers R. The space wA/F = H°(A, f2’IF) of invariant differentials is
an F-vector space of dimension 1. Associated to any non-zero

differential we have its discriminant 039403C9 E F * [5]. If w’ = u-103C9 then
039403C9’ = u’2aw; hence A determines a coset àA E F* J P * 12.
For any discrete valuation v of F, let wv and 039403C5 = 039403C903C5 be the

differential and discriminant of a minimal Weierstrass equation for A
at v [5]. We define the discriminant ideal 2A by the formula:

where P03C5 is a prime ideal at the place v. For any non-zero differential
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M on A over F we define the ideal 03B403C9 by the formula:

One then has the equality of ideals in R :

The class of the ideal ôw in Pic(R) is independent of the choice of
w. We denote this class by 03B4A; then A has a global diff erential w with
(039403C9) = DA if and only if SA - 1 in Pic(R). In this case one can find a

global minimal model for A: i.e., an equation for A over R which is
simultaneously minimal at all places v.
By (1.3) one has:

Hence a necessary condition for the existence of a global minimal
model is that the ideal qj) A be principal. By (1.4) this is also sufficient
when the group Pic(R) has no 12-torsion.

It is not difficult to compare SA with the class cA of Néron

differentials defined in the introduction. Let X be the minimal regular
model for A over Ru; X is a regular projective scheme over Ru which
can be obtained by resolving the possible singularity on a minimal
Weierstrass equation for A over Rv [4, pp. 94-101]. The Néron
minimal model N is a smooth group scheme over Rv ; it is obtained by
removing all fibres of multiplicity greater than one on X and all

singular points in the remaining fibres. The pull-back of a minimal
Weierstrass differential wv on A/Rv is everywhere non-zero on N.
Hence we find:

so globally we have the identity:

To sum up, we have the following
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PROPOSITION 1.7:

(1) cA -,- BAI in Pic(R).
(2) The following statements are equivalent

(a) cA ~ 03B4A ~ 1 in Pic(R ).
(b) A has a global minimal Weierstrass model over R.
(c) A has a non-zero differential ú) with (039403C9) = DA.
(d) QJN/R is a free R-module of rank 1.

§2. Elliptic curves with complex multiplication

We now assume that A is an elliptic curve with complex multi-
plication by the ring of integers C of an imaginary quadratic field K.
We assume further that the field F of definition for A is H, the
Hilbert class field of K. Then all endomorphisms of A are defined
over H, and the curve A is determined up to isomorphism by its
modular invariant jA and the associated Hecke character XA on the
idèles IH of H [2; 9.1.3].

PROPOSITION 2.1: Both the ideal 2A and the class SA depend only
on the character XA, and not on the modular invariant jA.

PROOF: Let B be another elliptic curve over F with XB = XA; then
jB = j03C3A with a E Aut(H). The group HomH (B, A) is described in [2,
9.4.2] : for any integral ideal a of K such that 03C3 = 03C3-1 in Aut(H) we
have an isogeny 0,: B A with kernel isomorphic to 61a. More
precisely, we may choose an embedding of H into C so that the

following diagram commutes:

where w is a non-zero differential on A, fi E C* is a fixed integral period
of w, and p is the natural projection.
Now let v be a fixed place of H and choose a with 03C3-1 = 03C3 and Na

prime to v (this is always possible). Then the induced map ~* : l2BIRv ~

WAIRv on the spaces of local Néron differentials is an isomorphism.
Hence to show that DA = DB it suffices to show that v (L!wv) = 03C5(0394~*03C903C5).
But by (2.2), if we compute over C,
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It is well-known that à(6)/à(a) is an algebraic integer in H which
generates the ideal 12 [1, p. 33], [3, p. 165]. Since this is prime to v,

the minimal discriminants have the same valuation.

Now let w be any non-zero difFerential on A over H and put
v = ~*(03C9). Then by (1.3) and the above paragraph:

Since 039403C9/039403BD = 0394()/0394() by (2.3), we have

Hence 8, = 03B403C9· as ideals of H. But the ideal a of K capitulates in
H ; hence SA - SB in Pic(R).

Note: If we assume that the Hecke character ~A: IH ~ K* is

Gal(H/K)-equivariant, then by Proposition 2.1 the ideal 2A is fixed by
Gal(H/K). Since H is unramified over K, any fixed ideal is represen-
ted by an ideal of K. But all ideals of K capitulate in H, so 2A - 1 in
Pic(R). Is SA - 1 in Pic(R)? We will show this is the case when K has
prime discriminant.

§3. A global minimal model for A(p)

We now specialize to the case where the multiplication field K =

OCV - p) has prime discriminant.

LEMMA 3.1: For any fractional ideal a of K, the ratio 0394()/0394() is

a 12 th power in H*.

PROOF: By Deuring [1, p. 14, 41] the ratio 0394()/0394(2) is a 24th

power in H * when (6, ) = 1. When K has prime discriminant, its

class group has odd order. Hence we may find an ideal b prime to 6
such that (03B1) = 62. Then

We can now answer affirmatively a question posed by D. Zagier.
Assume that p &#x3E; 3 and let A(p) denote Q-curve over the field F =

(jA(p)) studied in chapter 5 of [2]. Recall that A(p) has good reduc-
tion outside p and has minimal discriminant ideal DA(p) = (-p3). The
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fact that this ideal is principal raises the possibility of a global
minimal model.

PROPOSITION 3.2: The curve A(p) has a global minimal model over
the field F = Q(jA(p)) with discriminant 0394 = -p3. The associated

differential w(p) is determined up to sign.

PROOF: In §23 of [2] we constructed a pair (A, 03C9) over F with

jA = jA(p), 039403C9 = -p3, and sign c, =(2). Recall that A is given by the
equation

where

The difierential w = dx/2y on A has 039403C9 = -p3. To prove Proposition
3.2 we will show that A is isomorphic to A(p) over F. We will then
have a global minimal model by Proposition 1.7, as (039403C9) = 9i)A(p). The
differential 03C9 = 03C9(p) with 039403C9 = -p3 is determined up to sign, as

03BC(F*) = ± 1).
In summary, we are reduced to proving:

PROPOSITION 3.5: The elliptic curve A defined by equations (3.3-
3.4) is a 0-curve which is isomorphic over F to the curve A(p).

PROOF: Consider the map

where all Homs refer to continuous homomorphisms of topological
groups. Then fA is a 1-cocycle, which takes values in the group

Hom(IH/H *, K*). Since K* is totally disconnected, this group may be
identified with the group Hom(Gal(H/H), K*) via the Artin

homomorphism of global class field theory. Since Gal(H/H) is com-
pact and K* is discrete, any continuous homomorphism takes values
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in the finite group 03BC(K*) = (±1). Finally, we may identify

by Kummer theory, and view f A as a map

To show A is a Q-curve is equivalent to showing that fA(03C3) ~ 1 for all
u E Gal(H/Q). Since A is defined over F we have fA() = 1. Hence, it
suffices to show fA(03C3) = 1 for all u E Gal(H/K).
For this, we need a concrete description of fA(03C3) in H*/H*2.

Embed F in C via its real place, and let a be an integral ideal of K
with (r = U;I. There is an isogeny ~ defined over Ô which makes the
following diagram commutative:

If we write ~(03C9) == ha . W CI with ha E Q*, then the isogeny ~ is defined
over the extension H(ha). The identities:

show that h2 ~ H* [3, p. 158]. In fact, we have the formula

On the other hand, we have the identity:

as 0394 = -p3 is fixed by Gal(H/Q). By Lemma 3. l, h " is a 12th power in
H*. Since h2 ~ H*, we must have h ~ H*03BC4 and fA(03C3) ~ ±1
(mod H*2). But fA is a cocycle and the order of Gal(H/K) is odd.

Hence fA(03C3) ~ 1 and A is a 0-curve.
Since v(039403C9) = 3 we see A = A(p)d with (p, d) = 1 [2, 12.3.2]. But

2A = bI2(_p3) and DA(p)d = C12(_p3dl) where  and c are ideals of H.



161

Hence (d) = (b/C)2 is the square of an ideal of H. Since H is un-

ramified over K and d is a quadratic discriminant, there are only two
possibilities: d = 1 and d = -4. But the curve A(p)-4 has the wrong
sign of c6, so A = A(p).

§4. Global minimal models for K-curves

Let 03C9(p) be one of the differentials on A(p) given by Proposition
3.2. For any integral ideal a of K we may define ha in H*/±1 by the
formula:

The ambiguity in sign is caused by the ambiguity in the choice of
isogeny ~; we will discuss a choice of the sign in §5. In H*/±1 we
have the cocycle relations

We have seen in §3 that when F is embedded into C via its real place
we have the complex identity:

Hence ha is integral in H and generates the ideal a. The same is true
for h03C3 for any u E Gal(H/K).

LEMMA 4.1: For all u E Gal(H/K), h03C3-1 ~ 1 (mod H*2).

PROOF: First note that this identity makes sense, independent of
the choice of sign for ha. We have seen, in the proof of Lemma 3.1,
that 0394(O)/0394(2) = h12b2 is a 24th power in H*. Hence h62 = ±1 (mod H *2).
Since we may find 6 such that a = (a)b2, we find from (4.2) that
ha ~ ±03B1 (mod H*2). Hence h03C3-1 ~ (mod H*2) for any (rEGal(H/K).

LEMMA 4.2: Let K’ be a quadratic extension o f K with conductor
a. Then we may choose the sign of ha so that HK’ = H(~h).

PROOF: Write K’ = K(~03B1). Since a is the discriminant idéal of
K’/K and a is the discriminant of the specific K-basis (l,Va/2) we
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find (03B1)2 =  with b an ideal of K. Raising this identity to the h"
power and writing (03B2) = h we find (03B1h03B22) = ah = (NH/Kh). Since h is
odd and 6k = (±1), we may choose the sign of ha so that a ~ NH/Kh
(mod K*2). Then K’ = K(~N/Kha) and HK’ = H(NH/Kh).
By Lemma 4.1, ha ~ h03C3 (mod H*2) so multiplying over the entire

Galois group we find hh = NHIKha (mod H*2). Since h is odd, ha ~ hh ~
NH/Kh, (mod H*2) and HK’ = H(~h]) as claimed.
Now let A be an elliptic curve over H such that XA is Gal(H/K)

equivariant. By [2, 12.3.1] we may write A = A(p)tfi with

Let a be the conductor of tp and write the associated quadratic
extension H’ = H(h) as permitted by Lemma 4.2. For simplicity,
assume that a is prime to p. Let p be a generator of Gal(H’/H); we then
have the identification

Hence the differential (VA = (1/h)· w (p) descends to A over H.

PROPOSITION 4.3: Either WA or 203C9A is a global minimal differential
on A/H.

PROOF: We clearly have 039403C9A = -p3h6 so (039403C9A)= (-p3)6. This is

equal to 9l1A except in the case when 2 - -1 and 8la [2, 14.1.1]. In
that case it is equal to (212)DA.

COROLLARY 4.4: If K has prime discriminant and the Hecke

character XA of A is Gal(H/K) equivariant, then SA - cA ~ 1 in Pic(R).

Indeed, the minimal differential given in Proposition 4.3 is deter-

mined up to sign.

§5. The sign of ha

When the ideal a of K is prime to (p), we may normalize the sign of
h, by insisting that NH/Kh is a square (mod ~-p). Then the following
identities hold in H*:
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Hence there is a unique continuous 1-cocycle

which is the identity on principal idèles and satisfies 0(a) =
03A003C5|p,~ h (a5 for all idèles which are trivial at 00 and congruent
to 1 (mod -p). (The group IK acts on H* via its quotient
IKIK*. (C* x IIv C*) = Gal(H/K), and the cocycle 0 is T-equivariant.)

Recall the elements t in T*/±1 defined in [2, 15.2.5]. Again, when a
is prime to (p ) we may normalize the sign of t by insisting that th is a
square (mod -p). We then have the identities in T* :

Since (ta) = a we find:

PROPOSITION 5.3: The elements u, = t/h03C3 are units in the field HT
which satisfy the identities

Since u, depends only on the class of a in Pic( 0) it is convenient to
write ull for the unit ua. By Proposition 5.3 the assignment

gives a 1-cocycle f on Gal(HT/T+) ~ Gal(H/0) with values in the

units U of (HT)*.

QUESTION 5.4: Is f - 1 in H’(Gal(HT/T+), U)?

As a stronger question, one can ask if E = 1, u03C3 is a unit of HT.
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