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Cp − E-movable and C − E-calm compacta
and their images
Compositio Mathematica, tome 45, no 1 (1982), p. 115-141
<http://www.numdam.org/item?id=CM_1982__45_1_115_0>

© Foundation Compositio Mathematica, 1982, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1982__45_1_115_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


115

Cp-E-MOVABLE AND C-E-CALM COMPACTA
AND THEIR IMAGES*

Zvonko 010Cerin**

COMPOSITIO MATHEMATICA, Vol. 45, Fasc. 1, 1981, pag. 115-141
© 1982 Martinus Nijhoff Publishers - The Haque
Printed in the Netherlands-

to George

Abstract

In this paper we shall introduce classes of Lp-e-movable and
L-e-calm compacta which generalize both the class of compact
absolute neighborhood retracts and the class of locally n-connected
compacta. We prove a number of characterizations of these classes
and thus get as corollaries new methods of recognizing compact
ANR’s that are inspired by Borsuk’s shape theory. With this approach
we identify certain classes of maps related to refinable and ap-

proximately right invertible maps which preserve many invariants of
the theory of retracts.

1. Introduction

The notion of an absolute neighborhood retract (ANR) was exten-
sively studied by many authors ever since 1931 when Borsuk [2]
defined it. There are many characterizations of ANR’s (see [3], [20])
but recent theorems and current open problems in the infinite-dimen-
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sional topology [18] suggest the need for still more methods of

recognizing ANR’s particularly among infinite-dimensional spaces.
The main theorems in the present paper give new necessary and

sufficient conditions for a compactum X to be an ANR. Our con-
ditions can be described as positional or shape theoretic because they
depend on properties of embeddings of X into an ANR.
The key idea of our approach is taken from [8] and is here applied

to strong movability ([4], p. 263) instead of to movability. By requiring
control on the size of maps and homotopies in the definition of strong
movability we introduce a more restrictive positional property called
strong e-movability. It turns out that a compactum X is an ANR iff X
is strongly e-movable. This is clearly analogous to Borsuk’s theorem
([4], p. 264) which says that a compactum X is an FANR iff X is
strongly movable. We shall investigate in this paper strongly e-

movable compacta (and hence compact ANR’s) using the above
analogy. A similar method gives us a class of e-calm compacta from
the class of calm compacta [5]. The two classes are closely related to
each other. Ever strongly e-movable compactum is e-calm but the
converse is an open question.

In order to cover at the same time ANR’s and LC" compacta we shall
take a slightly more general point of view (without obscuring notation
and results but with an obvious danger of diminishing the interest of
prejudiced readers) by introducing (Cp-e-movable and E-e-calm com-
pacta. Here Lp is an arbitrary class of pairs of metrizable spaces and
L is an arbitrary class of topological spaces. Of course, when Lp is

the class of all pairs of compact ANR’s and (6 is the class of all

compact ANR’s, then a compactum is Lp-e-movable «C-e-calm) iff it
is strongly e-movable (e-calm).
The paper is organized as follows. In §2 we collect definitions and

set out our notation. The §3 studies Lp-e-movable compacta. The §4 is
concerned with L-e-calmness. In §5 we consider classes of maps
which preserve Lp-e-movability. Our results give partial answers to
problems (CE2) and (CE3) in [18].
We assume that the reader is familiar with the theory of retracts

[3], [20], shape theory [4], and elements of infinite-dimensional

topology [12].

2. Preliminaries and notation

Throughout the paper, if not stated otherwise, L and 2 will be

arbitrary classes of topological spaces while Lp and Sp will be
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arbitrary classes of pairs of metrizable spaces. By Ln (Lnp) we denote
all K ~ L ((K, Ko) E Lp) with (covering) dimension dim K ~ n. We
reserve P, K, J, Pp, Kp and 9’p for classes of all compact ANR’s,
all finite CW-complexes, all finite simplicial complexes, all pairs of
compact ANR’s, all pairs of finite CW-complexes, and all pairs of finite
simplicial complexes, respectively.
A map f : K ~ Z is called a 16-map provided K ~ L. Similarly, a

map of pairs f : (K, Ko) - (Z, Zo) is a Lp-map if (K, Ko) E Lp.
We shall say that maps f and g of a space Z into a metric space

(Y, d) are e-close provided d(f (z), g(z))  e for every z E Z. If Z is a
subset of Y and f : Z - Y is e-close to the inclusion iz,y of Z into Y,
we call f an e-map.
Fundamental sequences f = {fk, A, B}M,N and g = {gk, A, BIM,N are

E-close if for some neighborhood U of A in M restrictions f k |U and
gk |U are E-close maps for almost all k. A fundamental sequence

f = {fk, A, B}M,M is an e-fundamental sequence provided there is a

neighborhood U of A in M such that fk U is an e-map for almost all k.
Two maps f, g : Z ~ Y of a space Z into a metric space (Y, d) are

E-homotopic (and we write f =E g) if there is a homotopy ht : Z - Y,
(0 ~ t ~ 1), between f and g (called an e-homotopy) such that ho and
ht are E-clos e for all t E I = [0, 1].
Fundamental sequences f = {fk, A, B}M,N and g = lgk, A, B}M,N are

e-homotopic (in notation, f =E g) provided for every neighborhood V
of B in N there is a neighborhood U of A in M with fk U
e-homotopic in V to gk | U for almost all k.
Let X be a subset of a metric space M, let U and V, V C U, be

open subsets of M which contain X, and let E &#x3E; 0 and 8 &#x3E; 0 be given.
Then L~p(U, V; X) and L~h (V, 03B4; X ) will denote the following state-
ments.

L~p(U, V; X) ) For every neighborhood of W of X in M there is a
neighborhood Wo of X in M, Wo C V n W, such that for every
Lp-map f:(K,Ko)-(V,Wo) there is an e-homotopy ft : K ~ U,
(0 ~ t ~ 1), with f o = f, f1(K) C W, and f1 | K0 = f |Ko.

L~h(V,03B4;X) For every neighborhood W of X in M there is a

neighborhood Wo of X in M, Wo C V n W, such that every two
L-maps f, g : K - Wo which are 3-homotopic in V are e-homotopic
in W.

For a compact ANR M and an e &#x3E; 0, let r(M, e) denote the set of
all 8 &#x3E; 0 such that, for any two 8-close maps f, g : X ~ M defined on
a metrizable space X and any 8-homotopy jt:A ~ M, (0 ~ t ~ 1),
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defined on a closed subspace A of X with jo = f 1 A and ji = g I A, there
exists an E-homotopy ht : X ~ M, (0 ~ t ~ 1), such that ho = f, hl = g, and
hr |A = jt for every t ~ I ([20], p. 112).
For a map f : A ~ B between metric spaces, let 039B(f, E) be the set of

all 8 &#x3E; 0 with the property that d(x, y)  8 in A implies d(f (x), f (y» 
e in B.

Let A and B be compacta lying in AR spaces M and N, respec-
tively. A fundamental sequence f = {fk, A, B}M,N is called a f un-
damental e-sequence [8] provided the family {fk} satisfies the follow-
ing condition. For every E &#x3E; 0 there is a 8 &#x3E; 0 and there is a neigh-
borhood V of A in M such that 5 E 039B(fk |V, ~) for almost all k.

In our proofs in §§3-5 we shall always consider compacta as
subsets of the Hilbert cube Q unless explicitely required otherwise.

3. Lp-e-movable compacta

By requiring that the homotopies in the definition of (weak) Lp-
movability in [6] are small we shall introduce a class of %p-e-movable
compacta which generalizes the notions of an absolute neighborhood
retract and a locally n-connected compactum.

(3.1) DEFINITION: A compactum X is Lp-e-movable if for some

(and hence for every) embedding of X into an ANR M the following
holds. For each neighborhood U of X in M and every e &#x3E; 0 there is a

neighborhood V of X in M, V C U, such that L~p(U, V; X) is true.
The Pp-e-movable compacta are also called strongly e-movable.

(3.2) PROPOSITION: For a compactum X in a compact Q-manifold
M and a class %p of pairs of metrizable spaces the following are
equivalent.

(i) For each neighborhood U of X in M and every E &#x3E; 0 there is a

neighborhood V of X in M, V C U, such that for every neighborhood
W of X in M there is a neighborhood Wo of X in M, Wo C V n W, with
the property that for every Lp-map f : (K, K0) ~ ( V, Wo) there is an

E-homotopy ft : K - U, (0 ~ t ~ 1), with f0=f, fi(K)CW, and

ft|K0 = f |K0 for all tEl.
(ii) X is LP-e-movable.
(iii) For every E &#x3E; 0 there is a neighborhood V of X in M such that

for every neighborhood W of X in M there is a neighborhood Wo of X
in M, Wo C V n W, with the property that every Lp-map f : (K, K0) ~
(V, Wo) is E-close to a map f’ : K ~ W which agrees with f on Ko.
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(iv) For every E &#x3E; 0 there is a neighborhood V of X in M such that
for every neighborhood W of X in M and an arbitrary 8 &#x3E; 0 there is a

neighborhood Wo of X in M, Wo C V fl W, with the property that every
Lp-map f : (K, Ko) - (V, Wo) is E-close to a map f’ : K ~ W such that
f’ I Ko and f Ko are 8-close.

PROOF: Clearly, (i) ~ (ii), (ii) ~ (iii), and (iii) ~ (iv). Hence, it

remains to see that (iv) ~ (i). Let a neighborhood U of X in M and
an E &#x3E; 0 be given. We can assume that U is a compact ANR. Pick an
q E T(U, e/3), 0  ’Tl ,E/6. Then every neighborhood V of X in M,
V C U, which satisfies (iv) for ~ will also satisfy (i).
Indeed, let W be an arbitrary compact ANR neighborhood of X in

M and let s E 0393(W, ~). Pick a neighborhood Wo of X in M, Wo C V n
W, such that for every Lp-map f:(K, K0) ~ (V, Wo) there is a map

f’ : K ~ W which is ~-close to f and f’ Ko is 8-close to f |K0. By the
choice of 8 and ~, there is an q-homotopy Gt:K0~W and an
(E/3)-homotopy Ft:K ~ U, (0 ~ t ~ 1), with G0=f|K0, Gl = f’ 1 Ko,
Fo = f, Fl = f ’, and Fj Ko = G, for all t ~ I. On the product K0  I  I
define a map E into W by the formula E(x, t, s) = Gt(1-s)(x). Let
D:K  {1}  I ~ W be an 2~-homotopy obtained by applying the
homotopy extension theorem in W to a map of K x {1} into W which
maps (x, 1) into f’(x) and a partial homotopy E |K0 {1} I. Finally,
we apply the homotopy extension theorem in U to a map F : K x I ~
U and a partial homotopy on the closed subset K x 101 U Ko x I U
K x {1} of K x 1 defined as f on each level of Ko x {0} x I, as E on
Ko x I x I, and as D on K x {1} x I and get an e-homotopy H*: K x
I x I ~ U. The restriction H = H*|K I {1} shows that (i) holds
for U and V.

Let Lp and 2p be two classes of pairs of metrizable spaces. The
class Lp approximately dominates the class Dp provided for every
(K, Ko) E 2p and every open cover U of K there exists an (L, Lo) E
C(6p and there exist maps of pairs f : (K, K0) ~ (L, Lo) and g : (L, L0) ~
(K, Ko) such that g 0 f is OU-close to idK (i.e., for every x E K, some
member of OU contains both x and g(f (x»). By an argument similar to
the proof of Theorem 1 in [24], one can prove.

(3.3) Each of the classes Pp, Kp, and 9p approximately dominates
the other two. Similarly, each of the classes Pnp, 3t), and Y) ap-
proximately dominates the other two.

(3.4) THEOREM: If a class Lp of pairs of metrizable spaces ap-
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proximately dominates another such class qj)p and a compactum X is
Lp-e-movable, then X is also 2p-e-movable.

PROOF: Consider X as a subset of Q and let E &#x3E; 0 be given. Select
a neighborhood V of X in Q such that (3.2)(iv) holds for E/2 and the
class (6p. We claim that V will also satisfy (3.2)(iv) for E and the class
2p.

Indeed, let W be an arbitrary neighborhood of X in Q and let
5 E (0, e). Let Il be an open cover of V with sets of diameter  8/2.
Pick a neighborhood Wo, Wo C V n W, with the property that every
Lp-map 03C8:(L, L0) ~ (V, W0) is (E/2)-close to a map 03C8’:L ~ W such
that 03C8’ |L0 is (8/2)-close to oi ) Lo.

Consider a qj)p-map ,Cp : (K, K0) ~ (V, Wo). Observe that OU = cp -1(11)
is an open cover of K. Since the class 16P approximately dominates
the class qj)p, there is an (L, Lo) E (Cp and maps of pairs f : (K, K0) ~
(L, Lo) and g : (L, L0) ~ (K, Ko) such that g 0 f is U-close to idK. Put

t/1 = cp 0 g and select 03C8’:L ~ W as above. One can easily check that cp
is e-close to t/!’ 0 f : K - W and that cp I Ko is 5-close to t/1’ 0 f |K0.

(3.5) EXAMPLE: In ([16], p. 199) R. Edwards suggests the idea of an
e-version of Siebenmann’s open regular neighborhood theory [29].
The basic property that a compactum X in a manifold M with these

neighbôrhoods would satisfy is the following compression property:
For any E &#x3E; 0 there is a 03B4 &#x3E; 0 and an ambient e-isotopy ht : M ~ M,
(0 ~ t ~ 1), having support in the open E-neighborhood N~(X) of X in
M and fixing some neighborhood of X, such that hi(N8X)) lies

arbitrarily close to X. It is clear that such an X must be Lp-e-movable
for every class (gp (and hence, by (3.6) below, an ANR).

(3.6) THEOREM: A compactum X is an ANR iff X is Yp-e-movable
(or, equivalently, iff X is strongly e-movable).

PROOF: Let X be a compact ANR in the Hilbert cube Q. Let N be
a neighborhood of X in Q for which there is a retraction r : N - X.

Observe that for every E &#x3E; 0 there is a neighborhood NE of X in N
such that r| NE is an E-map. For a given E &#x3E; 0, V = NE will satisfy
(3.2)(iv) because Wo = Ns., where 03B4* ~ 5 is so small that Ns. C V n W, is
the required neighborhood for a neighborhood W of X in Q and a 03B4 &#x3E; 0.

Hence, X is (gp-e-movable for every class ICP of metrizable pairs.
Conversely, suppose that X is an Pp-e-movable compactum in Q.

By (3.3) and (3.4), X is also J’p-e-movable. Hence, by (3.2) (iii), there
is a sequence Vi D V2 ~ ··· of compact ANR neighborhoods of X in
Q such that X = ~~n=1 Vn and for every n = 1, 2,... there is a (1/2’)-
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map rn : Vn ~ Vn+1 which is the identity on X. Then r =

limn~~ rn  ··· o ri is a retraction of VI onto X. Hence, X is an ANR.

(3.7) THEOREM: A compactum X is LCn-l iff X is Pnp-e-movable.

PROOF: Assume that X is an F)-e-movable compactum in Q. We
shall prove that for every e &#x3E; 0 there is a 8 &#x3E; 0 such that 8-close maps

f, g : Sk ~ X, 0 ~ k ~ n - 1, are e-homotopic (in X). This clearly im-
plies that X is LCn-1.

Let an E &#x3E; 0 be given. Select a decreasing sequence Vo =
Q D V1 ~ V2 ~··· of compact ANR neighborhoods of X in Q such
that X = ~~n=0 Vn and (Pnp)~/2i+1(Vi-1, Va ; X) holds for each i &#x3E; 0. Pick a

8 E T(V1, E/2).
Suppose that f, g:Sk ~ X are 8-close maps, 0 ~ k ~ n - 1. Let

H : Sk x I ~ VI be an (E/2)-homotopy joining f and g. By the choice of
V., we see that there is a map H1 : Sk x I ~ V2 which is (E/22)-close to
H and Hl Sk  {0, 1} = H I Sk  {0, 1}. Now, by the choice of V2,
(E/23)-close to Hl there is a map H2 : Sk  I ~ V3 satisfying H2 |Sk x
{0,1} = H1 1Sk x {0,1}. Continuing in this way, we can construct an
e-homotopy Hoc : Sk x I ~ X between f and g.
Conversely, assume that X is an LCn-1 compactum in Q. Let our be

an open cover of Q with sets of diameter  E/2. Since X is an LCn-1
compactum, the inclusion 1 :X - Q is a strong local connection in
dimension n - 1 [21]. Hence, there is a refinement V of our for which
the assertion E(V, W, n) holds [21]. In other words, given an at most
n-dimensional finite simplicial complex K, a subcomplex L of K, and
maps g:L ~ X and h:K ~ Q where h|L = i  g and h maps every
simplex 03C3 of K into some member of the collection {V ~ V V n
X ~ 0}, then there is an extension h’ : K ~ X of g such that for every
simplex 03C3 of K, some element of out contains i 0 h’(03C3) U h(O’). Let

V = ~ {V’ ~ V|V’ ~ X ~0}. Then the neighborhood V satisfies

(3.2)(iv) for the class Jnp.
Consider a compact ANR neighborhood W of X in V and a

5 E (0, T(W, e/2». Choose a neighborhood Wo of X inside V n W
with respect to 5 in the same way as V was chosen with respect to

~/2. Then every Jnp-map f:(K, K0) ~ ( V, Wo) is (E/2)-close to a map
f1: (K, K0) ~ (V, X) because f 1 Ko is (E/2)-homotopic in V to a map
f’1: K0 ~ X which is 5-close to f I Ko so that we can use the homotopy
extension theorem to get fi from f’1. But, by the choice of V, fi is

(E/2)-close to a map f2 : K - X with f 2 Ko = f i. Hence, f is e-close to
f2 and f ) Ko is 5-close to 121 Ko.
Theorems (3.4), (3.6), and (3.7) and ([20], pp. 122 and 156) suggest
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the following characterization of Fp-e-movable and Y"-e-movable
compacta (and hence of compact ANR’s and LCn-1 compacta).

Let K denote a finite simplicial polytope and Ko a subpolytope of K
which contains all vertices of K. By a partial E-realization of K in a
metric space Y defined on Ko, we mean a map f : Ko- Y such that,
for every closed simplex 0’ of K, diam f (Ko fl u)  E. In case Ko = K,
then f will be called a full E-realization of K in Y.

(3.8) THEOREM: A compactum X in Q is 9’p-e-movable (np -e-
movable) iff for every E &#x3E; 0 there is a 03B4 &#x3E; 0 such that for every
neighborhood W of X in Q there exists a smaller neighborhood Wo of
X in Q with the property that every partial 03B4-realization of any finite
simplicial polytope K (which has no simplex of dimension &#x3E; n + 1) in
Wo extends to a full E-realization of K in W.

PROOF: Suppose that X is an 9’p-e-movable compactum in Q and
let E &#x3E; 0. Select a compact ANR neighborhood V of X in Q such that
(3.2)(iii) holds for V and E/3. By ([20], p. 122), there is a 8 &#x3E; 0 such

that every partial 8-realization of any finite simplicial polytope K in V
extends to a full (E/3)-realization of K in V.
Let W be an arbitrary neighborhood of X in Q. Pick a neighbor-

hood Wo of X in Q, wo c V n W, using (3.2)(iii). Consider a partial
8-realization f : K0 ~ Wo of a finite simplicial polytope K in Wo. Let
f’: K ~ V be a full (E/3)-realization of K in V. But, there is a map

f " : K - W extending f which is (E/3)-close to f’. Hence, f extends to a
full E-realization f " of K in W.

Conversely, assume that X satisfies the condition in the statement
of the theorem. For an e &#x3E; 0, pick a 8, 0  8  E, with respect to E/3
using the assumption. Let V = N813(X). We claim that V satisfies

(3.2)(iii).
Indeed, if W is a neighborhood of X in Q, choose a neighborhood

Wo of X in Q, Wo C V n W, such that every partial 8-realization of
any finite simplicial polytope K in Wo extends to a full (E/3)-realiza-
tion of K in W. Consider an p-map f : (K, K0) ~ (V, Wo). Without
loss of generality we can assume that diam f(03C3’)  8/3 for every closed
simplex u of K. For every vertex v of K not in Ko pick a point
f’(v) E X which is (8/3)-close to f(03C5). Hence, we can define a partial
8-realization f ’ : Ko U K(O) -+ Wo of K in Wo (K(0) denotes the 0-dimen-
sional skeleton of K). Let f": K ~ W be an extension of f’ to a
full (E/3)-realization of K in W. Clearly, f" is E-close to f and

f"|K0=f|K0.
The proof of the second statement in the theorem is analogous. All
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we have to do is restrict to polytopes which have no simplices of
dimension &#x3E; n + 1.

The following characterization is motivated by Chapman’s com-
plement theorem [11] and shows that p-e-movability of a Z-set in Q
can be described in terms of certain properties of its complement.
A noncompact, locally compact, metric space (M, d) is %p-e-mov-

able at 00 provided for every compactum A in M and every E &#x3E; 0

there is a compactum B in M, B ~ A, such that (6’(M - A, M - B ; ~)
holds (i.e., such that for every compactum C in M there is a

compactum D in M which contains B U C and has the property that
for every Lp-map f : (K, K0) ~ (M - B, M - D) there is an E-homotopy
ft : K - M - A, 0~t~1, with fo= f, fl(K)CM-C, and

f1|K0 = f|K0).

(3.9) THEOREM: Let (gp be a class of pairs of compact metric spaces
and let d be a metric on the Hilbert cube Q. A Z-set X in Q is

Lp-e-movable iff (Q - X, d (Q - X) x (Q - X)) is Lp-e-movable at 00.

PROOF: Suppose first that X is a Lp-e-movable Z-set in Q. Let
M = Q - X and let a compactum A in M and an e &#x3E; 0 be given.
Choose an open neighborhood V of X in Q, V C Q - A, such that

L~/2p(Q - A, V; X) is true and put B = Q - V. We claim that (6’(M -
A, M - B ; ~) holds.

Indeed, if C is a compactum in M, let W = Q - C and select an

open neighborhood Wo of X in Q, Wo C W n V, with respect to W

using cg12(Q - A, V ; X). Let D = Q - Wo. Note that D ~ B U C.
Consider a cgp-map f : (K, K0) ~ (M - B, M - D). Since M - B C V

and M - D C Wo, there is an (E/2)-homotopy ft : K ~ Q - A, 0 ~ t ~ 1,
with f o = f, f1(K) C W, and f1 I Ko = f |K0. Observe that ~ =
d(f1(K), C) &#x3E; 0. But, since X is a Z-set, by Lemma (4.1) in [ 11], there is a

min{~/2, ~}-homotopy À, : Q - Q, 0 ~ t ~ 1, with Ào = idQ, 03BBt(Q) C Q - X
for all t &#x3E; 0, and Àt(Q - A) C Q - A and 03BBt |f(K0) = id for all t E [0,1].
Define ht : K ~ M - A by ht(x) = (Àt 0 ht)(x) for x E K and t E [0, 1].
Clearly, ht is an e-homotopy in M - A, ho = f, hl(K) C M - C, and

h1|K0 = f|K0.
Conversely, assume that X is a Z-set in Q and that (M, d |M x M)

is (gp-e-movable at 00, where M = Q - X. Let an open neighborhood U
of X in Q and an E &#x3E; 0 be given. Put A = Q - U and choose a
compactum B in M, B ~ A, such that L~/3p (M - A, M - B ; ~) is true.
Let V = Q - B. We claim that L~p(U, V; X) holds.

Indeed, let W be an arbitrary open neighborhood of X in Q.
Choose another open neighborhood Wl of X in Q such that Wi C
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W1 C W. Let C = Q - Wi and let 1= d(Q - W, Wi). Select a com-
pactum D in M, DDBUC, with respect to C using L~/3p(M -A,
M - B; (0) and put Wo = Q - D.
For a C(6p-map f : (K, K0) ~ (V, Wo), let ~2 = d(f(K), B). By Lemma

(4.1) in [11] again, there is a min{~/3, ~1, ~2}-homotopy 03BBt:Q ~ Q,
0 ~ t ~ 1, with Ào = idQ, 03BBt(Q) C Q - X for all t &#x3E; 0, and 03BBt(W0) C Wo
for all t E [0, 1]. Let ft : K ~ M - A, 1 ~ t ~ 2, be an (E/3)-homotopy
satisfying f = 03BB1f, f 2(K) C M - C, and f2| Ko = 03BBf| Ko. Let gt : K
W, 2 ~ t ~ 3, be an extension to an (E/3)-homotopy of the partial
homotopy 03BBt-2  f |K0 on Ko of the map 03BB1f = f2. Clearly, the join
ht : K ~ U, 0 ~ t ~ 3, of homotopies 03BBt  f (0 ~ t ~ 1), ft (1 ~ t ~ 2), and gt
(2 ~ t ~ 3) is an e-homotopy in U which satisfies ho = f, h3(K) C W, and

h3 Ko = f |K0.
The next result generalizes the well-known theorem: A compactum X

is an ANR iff for every E &#x3E; 0, X is e-dominated by an ANR ([20], p. 140).
Let le be a class of compacta in Q. We say that the class (6 strongly

e-dominates a compactum X in Q if for every E &#x3E; 0 there is Y E C(6 and

fundamental e-sequences f = {fk, X, Y}Q,Q and g = {gk, Y, X}Q,Q such
that g  f and idx = {idQ, X, X}Q,Q are e-homotopic.

(3.10) THEOREM: If a class of Lp-e-movable compacta in Q
strongly e-dominates a compactum X in Q, then X is also Lp-e-
movable.

PROOF: Let a neighborhood U of X in Q and an e &#x3E; 0 be given.
Select a C(6p-e-movable compactum Y in Q and fundamental e-

sequences f = {fk, X, Y}Q,Q and 9 = {gk, Y, X}Q,Q such that g  f and
idX are (E/4)-homotopic. Then pick a neighborhood U * of X in Q and an
index ko such that gk  fk| U* is (E/4)-homotopic in U to the inclusion
U* ~ U for all k ~ ko. Next we choose a neighborhood U’of Y in Q, an
~’ &#x3E; 0, and a ki a ko such that gk |U’ maps E’-close points of U’ into
(e/4)-close points of U*. Since Y is Lp-e-movable, there is a neighbor-
hood V’ of Y in U’ such that (3.2)(i) holds for U’, V’, and E’. Finally, pick
a neighborhood V of X in U * and an index k2 ~ kl with the property that
fk(V) C V’ for all k ~ k2. We claim that L~p( U, V; X) is true.
Suppose that W is an arbitrary open neighborhood of X in Q. Let

k3 ~ k2 and a neighborhood W’ of Y in Q be such that gk(W’) C W for
all k ~ k3. Now, we pick a neighborhood Wo of Y inside V’ n W’
using the choice of V’. At last, we take a neighborhood Wo of X,
Wo C V ~ W, and an index k ~ k3 so that fk(W0) C Wo and gk  fk |W0 is
(E/4)-homotopic in W to the inclusion W0 ~ W.
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Consider a cgp-map ~:(K,K0)~(V,W0). For a lp-map 03C8 =
fk  ~ : (K, K0) ~ (V’, W’0), there is an E’-homotopy G : K x [1/3, 2/3] ~
U’ with G1/3 = 03C8, G2/3(K) C W’, and Gt 1 Ko = 03C8|K0 for all t E

[1/3, 2/3]. Then H = gk  G : K  [1/3, 2/3] ~ U * is an (E/4)-homotopy
satisfying H113 = gk  fk  cp, H2/3(K) C W, and Ht I Ko = gk  fk  ~ | Ko for
all t E [1/3, 2/3]. The choice of U* and ko gives us an (E/4)-homotopy
D : K x [0, 1/3] ~ U with Do = cp and DI/3 = gk  fk ° cp. Similarly, there
is an (E/4)-homotopy E’ x [2/3, 1] - W such that E2/3 = gk ° f k ° ~ |Ko
and E = cp |K0. By applying the homotopy extension theorem we see
that there is also an (E/2)-homotopy E:K  [2/3, 1] ~ W satisfying
E2/3 = H2/3 and E I Ko x [2/3, 1] = E’. The join of homotopies D, H, and
E shows that %§(U, V ; X) holds.

In the statement of the next theorem we shall use the notion of a

strong fundamental convergence defined as follows. Let X[A] denote
all compacta in a metric space X shape equivalent,to a compactum A.
A sequence {An}~n=1 in X[A] converges strongly fundamentally to a
compactum A0 ~ X[A] if for some (and hence for every) AR space M
which contains X the following holds. For every e &#x3E; 0 there is an

index no such that for every n ~ no there exist e-fundamental

sequences f n = {fnk, An, Ao}M,M and gn = {gnk, Ao, An}M,M with

9n ° f n =E ldpn and fn  gn =E idA0.
Observe that on the hyperspace of all e-movable compacta [8] in

X(A) (the set of all compacta in X homotopy equivalent to a

compactum A), the strong fundamental convergence agrees with the
strong homotopy convegence defined in [7] as follows. A sequence
{An}~n=1 in X(A) converges strongly homotopically to a compactum
Ao E X(A) provided for every E &#x3E; 0 there is an index no such that for

every n ? no there exist e-maps fn : An ~ A0 and gn : A0 ~ An with

gn  fn ~~ idAn and fn ° gn ~~idA0. Clearly, the strong homotopy con-
vergence implies the strong fundamental convergence.

(3.11) THEOREM: Let X be a metric space and let A be a com-

pactum. If a sequence {An}~n=1 of Lp-e-movable compacta in X[A]
converges strongly fundamentaly to a compactum Ao E X[A], then Ao
is also Lp-e-movable.

PROOF: Without loss of generality, we can assume that X is a

subset of Q [10]. For a given e &#x3E; 0, select an index n for which there
exist (E/S)-fundamental sequences f = {fk, Ao, An}Q,Q and g =

lgk, An A0}Q,Q such that g - f ~~/5 idA0. Next we choose a neighborhood
V’ of An in Q which satisfies (3.2)(iii) for E/5 in place of e. Finally,
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pick a neighborhood V of Ao in Q and an index ko such that fk V is an
(E/5)-map of V into V’ for all k ~ ko. We claim that (3.2)(iii) holds for V.

Indeed, let W be an arbitrary open neighborhood of Ao in Q. Take a
neighborhood W’ of An in Q and a k1 ~ ko so that gk ( W’ is an (E/5)-map
of W’ into W for all k ~ ki. Inside V’ n W’ we pick a neighborhood WÓ
of An using the way in which V’ was chosen. Then select a neighborhood
Wo of Ao in Q, Wo C V n W, and a k ~ kl such that fk( Wo) C W’ 0 and

gk  fk Wo is (~/5)-homotopic in W to the inclusion of Wo into W.
Consider a cr6p-map cp : (K, K0) ~ (V, Wo). The composition fk 0 cp is a

cr6p-map into (V’, W’). Hence, there is a map 03C8: K ~ W’ which is

(E/5)-close to fk  ~ and which agrees with fk  ~ on Ko. Then

gk 0 t/1: K ~ W is (3E/5)-close to cp and gk  03C8| Ko is (~/5)-homotopic in W
to ~ |Ko. Applying the homotopy extension theorem it follows that

(2E/5)-close to gk 0 t/1 and therefore e-close to cp there is a map cp’ : K ~ W
which agrees with cp on Ko.
The strong homotopy convergence preserves, by (3.11), ANR’s and

LC" compacta. It is interesting that it also preserves local contrac-

tibility which we were unable to describe as a positional property
analogous to Lp-e-movability.

(3.12) THEOREM: Let X be a metric space and let A be a com-

pactum. If a sequence {An}~n=1 of locally contractible compacta in

X(A) converges strongly homotopically to a compactum Ao E X(A),
then Ao is also locally contractible.

PROOF: A routine proof is left to the reader.
Let C(6p and Sp be classes of pairs of topological spaces. A com-

pactum X is (Lp, 2,)-e-tame if for some (and hence for every)
embedding of X into an ANR M the following holds. For each
neighborhood U of X in M and every e &#x3E; 0 there is a neighborhood
V of X in M, V C U, with the property that for each neighborhood W
of X in M and any 8 &#x3E; 0 there is a neighborhood Wo of X in M,
Wo C V n W, such that for every C(6p -map f : (K, K0) ~ (V, Wo) one can
find a pair (L, Lo) E Sp and maps g : (K, K0) ~ (L, Lo) and h : (L, L0) ~
( U, W) with h - g Ko 8-close to f | Ko and h 0 ge-close to f.

(3.13) LEMMA: A compactum of dimension n is (Yp, gnl’)-e-
tame.

PROOF: Let X be a compactum of dimension ~ n. Then X can be

represented as the inverse limit of an inverse sequence 0’ = {Xi, fii+1}~i=1
of polyhedra of dimension :-5 n. But, the infinite mapping cylinder
Map(u) of 0’ [13] can be compactified to an ANR by adding a copy of
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X. Hence, X is clearly (Pp, Pn+1p)-e-tame. By a result analogous to
Theorem (3.4), it follows that X is (Yp, Pn+1p)-e-tame.
Combining the above lemma with theorems (3.6) and (3.7) we see that

the last result in this section includes as a special case the fact that an
n-dimensional LC" compactum is an ANR ([20], p. 168).

(3.14) THEOREM: If a compactum X is (Lp, 2p)-e-tame and 2p-e-
movable, then X is also Lp-e-movable.

PROOF: Consider X as a subset of Q. For a given e &#x3E; 0, pick a
neighborhood U of X in Q such that U satisfies (3.2)(iii) with respect
to 2p and e/2. Then select a neighborhood V of X in Q, V C U, for
E/2 using «gp, 2,)-e-tameness of X. We claim that (3.2)(iv) holds for V.

Indeed, let a neighborhood W of X in Q and a 8 &#x3E; 0 be given. First
take a neighborhood W’ 0 of X inside V n W such that every Dp-map
h : (L, Lo) - (U, Wl) is (E/2)-close to a map h’:L ~ W which agrees
with h on Lo. Finally, pick a required neighborhood Wo of X,
Wo C W Ó, so that for every Lp-map f : (K, K0) ~ (V, Wo) there is a pair
(L, Lo) E 2p and maps g : (K, K0) ~ (L, Lo) and h : (L, L0) ~ ( U, W Ó)
with h 0 g I Ko 03B4-close to f |K0 and h 0 g (E/2)-close to f.

4. L-e-calm compacta

In this section we shall study the class of (9-e-calm compacta which
one gets from the class of (9-calm compacta [5] by requiring control
on the size of homotopies appearing in the definition of L-calmness.

(4.1) DEFINITION: A compactum X is L-e-calm if for some (and
hence for every) embedding of X into an ANR M the following
holds. For every E &#x3E; 0, there is a neighborhood V of X in M and a
03B4 &#x3E; 0 such that L~h(V, 03B4; X ) is true. The J’-e-calm compacta are

simply called e-calm.

(4.2) PROPOSITION: A compactum X in a Q-manifold M is L-e-
calm iff for every e &#x3E; 0 there is a 5 &#x3E; 0 with the property that for every
neighborhood W of X in M there is a smaller neighborhood Wo of X in
M such that 5-close L-maps into Wo are E-homotopic in W.

PROOF: Suppose that X is L-e-calm. For an E &#x3E; 0, select a com-
pact ANR neighborhood V of X in M and a 03B4’ &#x3E;0 such that

L~h(V, 03B4’; X) holds. Pick a 5 &#x3E; 0 with the property that 5-close maps
into V are 03B4’-homotopic in V. Then 5 is clearly a required number.
The converse implication is obvious (just put V = M).
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(4.3) EXAMPLE: A compact ANR is 19-e-calm and an LC" com-
pactum is cgn-e-calm for every class 19. The key open question
concerning 1:6-e-calm compacta is whether e-calm compacta coincide
with compact ANR’s (Pn-e-calm compacta coincide with LC" com-
pacta).
The properties of 19-e-calm compacta are similar to properties of

%p-e-movable compacta. We shall only state theorems about 16-e-

calmness and leave to the reader their proofs if they are similar to the
proofs of the corresponding results about either Lp-e-movability in §3
or L-e-movability in [8].

(4.4) THEOREM: If a class (9 approximately dominates a class 2
[8] and a compactum X is (9-e-calm, then X is also 2-e-calm.

(4.5) THEOREM: If a class of 16-e-calm compacta in Q strongly
e-dominates a compactum X in Q, then X is also (9-e-calm.

(4.6) THEOREM: Let % be a class of compact metric spaces. A
Z-set in Q is (9-e-calm iff M = Q - X is (C-e-calm at 00 (i.e., iff for
every E &#x3E; 0 there is a compactum B in M and a 5 &#x3E; 0 with the property
that for every compactum C in M one can find a compactum D in M,
DDBUC, such that two L-maps f, g: K ~ M - D which are 5-

homotopic in M - B are also e-homotopic in M - C).

(4.7) THEOREM: Let X be a metric space and let A be a com-

pactum. If a sequence {An}~n=1 of (9-e-calm compacta in X[A] con-
verges strongly fundamentaly to a compactum Ao E X[A], then Ao is
also 19-e-calm.

(4.8) THEOREM ([10], (4.1)): If a compactum A in Q is e-calm, then
for every ~ &#x3E; 0 there is a 03B4 &#x3E; 0 such that 03B4-close fundamental
sequences f = ffk, X, AlmQ and g = {gk, X, A}M,Q defined on an arbitrary
compactum X in an AR space Mare E-homotopic.

The following theorem is analogous to the characterization of an
FANR as a compactum which is both movable and calm [10].

(4.9) THEOREM: (a) A compactum X is strongly e-movable iff X is
both e-movable [8] and e-calm (or, equivalently, a compactum X is
an ANR iff X is an approximate absolute neighborhood retract [14]
and e-calm ).

(b) A compactum X is LC"-’ iff X is both Jn-e-movable and
Jn-e-calrn.
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PROOF: (a) Suppose that a compactum X in Q is e-movable and
e-calm. For a given e &#x3E; 0, select a 8, 0  8  e/2, such that for every
neighborhood W of X in Q there is a neighborhood Wo, Wo C W, of
X in Q with the property that 8-close Y-maps into Wo are (E/2)-
homotopic in W. Then we pick a neighborhood V of X in Q such that
every Y-map f : K ~ V is 8-close to a map f’ : K ~ X ([8], (4.2)). We
claim that V satisfies (3.2)(iii) for the class 9,.

Indeed, consider an open neighborhood W of X in Q. Inside

V n W we pick a neighborhood Wo using the way in which 8 was
chosen. Then an Jp-map f (K, K0) ~ (V, Wo) is 8-close to a map

f’ : K ~ X. The restrictions f| Ko and Ko are 8-close maps of Ko
into Wo. It follows that they are (E/2)-homotopic in W. By the homo-
topy extension theorem, there is a map f" : K ~ W which is (E/2)-
close to f ’ and which agrees with f on Ko. Hence, f is e-close to f".
The other implication and the proof of (b) are obvious.
The above proof shows that a compactum X which is both L’p-e-

movable and 19"-e-calm must be Lp-e-movable. Here L’p = {K 3Ko
such that (K, Ko) E Lp} and (9 p = {K0 | ~ K such that (K, Ko) E Lp}.
This can be slightly improved by the introduction of a class of

internally Cf6 -e-calm compacta. It also suggests other "internal" pro-
perties like internal Lp-e-movability (see also the proof of (5.2)
below).
A compactum X is internally Cf6 -e-calm if for some (and hence for

every) embedding of X into an ANR M the following holds. For
every ~ &#x3E; 0 there is a 8 &#x3E; 0 such that 8-close %-maps into X are
E-homotopic in every neighborhood of X in M.

(4.10) LEMMA: A (9-e-movable compactum X [8] is %-e-calm iff X
is internally Cf6 -e-calm.

PROOF: Suppose that a compactum X in Q is both L-e-movable
and internally Cf6 -e-calm. For a given ~ &#x3E; 0, pick a 03B4 &#x3E; 0 such that

28-close L-maps into X are (E/3)-homotopic in every neighborhood of
X in Q. We claim that X satisfies the condition in (4.2).

Indeed, let W be an arbitrary compact ANR neighborhood of X in
Q. Let q E T( W, E/3), 0  ~  8/2. Since X is also L-e-movable, there
is a neighborhood Wo of X in Q, Wo C W, such that every L-map
f : K - Wo is ~-close to a map f’ : K ~ X.
Now, if cp, 03C8 : K ~ Wo are 8-close L-maps, then there are L-maps

~’, 03C8’ : K ~ X with cp’ ~-close to cp and t/1’ ~-close to t/1. It follows that
(cp, cp’), (cp’, t/1’), and (t/1’, 03C8) are three pairs of (E/3)-homotopic (in W)
maps. Hence, ~ and tp are e-homotopic in W.
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Just how close are Jn-e-calm compacta to LC"-’ compacta is best
illustrated by the following theorem.

(4.11) THEOREM: A compactum X in Q is yn-e-calm iff for every
E &#x3E; 0 there is a 03B4 = 8(E) &#x3E; 0 such that for every neighborhood W of X
in Q we can find a smaller neighborhood Wo of X in Q with the
property that any map f : Sk ~ Wo of the k-dimensional sphere into Wo
(0 ~ k ~ n) with diam f(Sk)  03B4 extends to a map f * : Bk+1 ~ W of the
(k + l)-dimensional cell into W with diam f *(B k+’)  E.

PROOF: Suppose that X is Jn-e-calm. Then X satisfies the above
condition by (4.2) because a map whose image has diameter  ~ is

E-close to a constant map.

Conversely, let X have the property described in the statement of
the theorem and let an E &#x3E; 0 be given. Put 03B41 = ~ and define in-

ductively a 03B4k, 0  03B4k  bk-1/3, by sk = S(Sk-1/3) for k = 2, 3, ..., n. It

can be proved easily by induction that 8 = 8n has the property
described in (4.2) for the class Jn.

5. Images of %p.e.movable and L-e-calm compacta

In this section we shall consider the problem of identifying classes
of maps which preserve Lp-e-movability and L-e-calmness. Our

approach allows to get some new necessary and sufficient conditions
for the image of a compact ANR under either an approximately right
invertible [18] or a refinable [17] map to be an (F)ANR.
A map f : X ~ Y between compact metric spaces is approximately

right invertible (ARI) [18] provided there is a sequence of maps

{hn : Y ~ X} and a null-sequence {~n} of positive reals such that f 0 hn
is En-close to idy. If, in addition, there is a sequence {gn : X ~ Y} of
surjective maps such that hn  gn is En-close to idx, then f is called

approximately invertible (AI). Observe that a map f : X ~ Y of an
e-movable compactum X onto Y is refinable [17] iff it is AI.
The main open problem about ARI and AI maps is whether the

images of ANR’s under these maps are ANR’s. It is not even known
if the images are FANR’s ([18], Problems (CE2) and (CE3)). It is this
later question that we study first.

Let X and Y be compacta in AR spaces M and N, respectively. A
sequence f = {fn : (M, X ) ~ (N, Y)} of maps of pairs is called a net

from X into Y (in M, N) provided for every neighborhood V of Y
in N there is a neighborhood U of X in M such that fn(U) C V for
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almost all n. If each f n maps X onto Y, then f is a net from X onto Y
(in M, N).
A map f : X ~ Y between compact metric spaces is strongly ap-

proximately right invertible (SARI) iff for some (and hence for all) AR
spaces M and N which contain X and Y, respectively, there is a net
h = {hn : (N, Y) ~ (M, X)} from Y into X and a null-sequence {~n} of
positive reals such that f O hn| Y is En-close to idy. If, in addition, there is
a net g = {gn : (M, X) ~ (N, Y)} from X onto Y such that hn 0 gn |X is
En-close to idx, then f is called strongly approximately invertible (SAI).

Clearly, every SARI map is ARI and every SAI map is AI.

(5.1) LEMMA: (a) Every ARI map f:X ~ Y of a compactum X
onto an AANRN (an approximate absolute neighborhood retract in
the sense of Noguchi [26]) Y is SARI.

(b) Every AI map f:X ~ Y of an SAANRN (a surjective ap-

proximate absolute neighborhood retract in the sense of Noguchi [27])
X onto an AANRN Y is SAI.

(5.2) THEOREM: (a) If f : X ~ Y is an SARI map of an AANRN X
onto Y, then Y is also an AANRN.

(b) Let f : X - Y be an SAI map. Then X is an AANRN iff Y is an
AANRN.

PROOF: (a) Recall that a compactum X is an AANRN iff X is an

AANRc (i.e., an e-movable compactum) and an FANR [1]. Since Y is
an AANRc by Corollary (6.5) in [8], it clearly suffices to prove that Y
is internally calm (i.e., that in some ANR space N which contains Y
there is a neighborhood V of Y in N such that 9-maps cp, t/1: K ~ Y
which are homotopic in V are homotopic in every neighborhood of Y
in N). Assume that X and Y are subsets of Q and pick a net
h = {hn : (Q, Y) ~ (Q, X)} from Y into X and a null-sequence {~n} such
that f  hn | Y is En-close to idy. Choose an extension f*: Q ~ Q of f
and a neighborhood V’ of X in Q such that P-maps cp’, 03C8’ : K ~ X
which are homotopic in V’ are homotopic in every neighborhood of X
in Q. Then select a neighborhood V of Y in Q and an index no so that
hn(V) C V’ for all n ~ no.
Consider J’-maps cp, 03C8: K ~ Y which are homotopic in V. Let W

be an arbitrary compact ANR neighborhood of Y in Q. Choose a
neighborhood W’ of X in Q that is mapped into W by f * and an E &#x3E; 0

and an n ~ no such that E-close maps into W are homotopic in W and
En  E. Then P-maps cp’ = hn 0 cp : K ~ X and t/1’ = hn 0 t/1: K ~ X are
homotopic in V’. Hence, they are homotopic in W’ so that
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f  hn  ~ : K ~ Y and f  hn  03C8: K ~ Y are homotopic in W. But, since
f  hn  ~ and cp are En-close, they are also homotopic in W. Similarly,
f - hn 0 t/1 is homotopic in W to t/1. Thus, cp and t/1 are homotopic in W.

(b) We must only show that the domain X of an SAI map f : X ~ Y
onto an AANRN Y is an AANRN because the other implication
follows from (a). X is an AANRc by Theorem (4.6) in [8]. Hence, just
like in the proof of (a), it suffices to prove that X is internally calm.
Assume again that X, Y C Q and pick a net h =

{hn:(Q,Y) ~ (Q,X)} from Y into X, a net g = {gn:(Q,X)~(Q,Y)}
from X onto Y, and a null-sequence {~n} such that f 0 hn Y is en-close
to idY and hn ° gn ( X is En-close to idx. Let a neighborhood V’ of Y in
Q has the property that 9P-maps into Y which are homotopic in V’
are homotopic in every neighborhood of Y in Q. Choose a neighbor-
hood V of X in Q and an index no such that gn(V) C V’ for all n ~ no.

Consider P-maps cp, 03C8:K ~ X which are homotopic in V. Let W
be an arbitrary neighborhood of X in Q. Pick an E &#x3E; 0 such that

E-close maps into W are homotopic in W. Then select a neighborhood
W’ of Y in Q and an n ? no with En  E and hn(W’) C W. Maps gn 0 cp
and gn 0 t/1 are homotopic in V’ and therefore also in W’. Hence,
hn 0 gn 0 cp and hn 0 gn o t/1 are homotopic in W. But, since hn 0 gn 0 cp is

En-close to cp and hn ° gn 0 t/1 is En-close to t/1, cp and t/1 are homotopic in
W.

(5.3) COROLLARY: (a) An image of an ANR under an ARI map f is
an FANR iff f is SARI.

(b) An image of an SAANRN under an SARI map is an SAANRN.
(c) Let f : X ~ Y be an SAI map. Then Y is an SAANRN iff X is an

SAANRN.

PROOF: (a) Combine [8], (6.5), [1], (5.1), and (5.2).
(b) and (c). Recall [9] that a compactum X is an SAANRN iff X is

an FANR and an SAANRc (a surjective approximate absolute

neighborhood retract in the sense of Clapp; or, equivalently, a quasi-
ANR [27]) and that refinable maps preserve SAANRc’s [28].
The problem of identifying classes of maps which preserve Lp-e-

movability naturally leads to the notion of a Wp-e-surjective fun-
damental sequence (or a Lp-e-surjection).

(5.4) DEFINITION: A fundamental sequence f = f,fk, A, B}M,N is

called a Lp-e-surjection provided f is the fundamental e-sequence and
it satisfies the following condition. For every neighborhood U’ of A in
M and every E &#x3E; 0 there is a neighborhood V of B in N with the
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property that for every neighborhood W’ of A in M, W’ C U’, and
every 8 &#x3E; 0 there is a neighborhood Wo of B in N, Wo C V, and an
index ko such that for every k ? ko and every %p-map cp : (K, K0) ~
(V, Wo) there is a map p:(K, K0)~(U’, W’) with fk e-close to cp
and fk | Ko 8-close to cp ( Ko.
The following theorem describes some properties of Lp-e-sur-

jections.

(5.5) THEOREM: (a) If a class Lp approximately dominates a class
2p and f = {fk, A, B}M,N is a Lp-e-surjection, then f is also a 2p-e-
surjection.

(b) Let f = {fk, A, B}M,N be a Dp-e-surjection of a compactum A into
a (Lp, 2p)-e-tame compactum B. Then f is also a Lp-e-surjection.

(c) If f = f,fk, A, B lmN is an Jnp-e-surjection for every n à 0 and B is
an ANR, then f is an 9’p-e-surjection.

(d) The composition of two Lp-e-surjections is a Lp-e-surjection.
(e) If a fundamental sequence generated by a map is a Lp-e-

surjection, then every other fundamental sequence generated by that
map is also a Lp-e-surjection.

PROOF: The proof is left to the reader.

In order to describe some examples of Lp-e-surjections we shall
need L-e-surjections and %p-e-bundles.

A fundamental sequence f = {fk, A, B}M,N is a L-e-surjection [8]
provided f is the fundamental e-sequence and for every neighborhood
U’ of A in M and every e &#x3E; 0 there is a neighborhood V of B in N, a
neighborhood W’ of A in M, W’ C U’, and an index ko such that for
every k ~ ko and every L-map ~ : K ~ V there is a map cP: K ~ W’

with fk   e-close to cp.

One easily shows that every fundamental sequence generated by
either an ARI or a refinable map is a L-e-surjection for every class
and that a map f:A ~ B of an e-movable compactum A onto B is a
J’-e-surjection iff f is an ARI map.

(5.6) LEMMA: Let Lp be a class of pairs of metrizable spaces. If
f = {fk, A, B}M,N is a L’p-e-surjection and B is a Lp-e-movable com-
pactum, then f is a W.-e-surjection.

PROOF: Let a neighborhood U’ of A in M and an e &#x3E; 0 be given.
Let V be a neighborhood of B in N which satisfies (3.2)(iii) with
respect to e/2. Consider a neighborhood W’ of A in M, W’ ~ U’, and
a 8, 0  8  e/2. Since f is the L’p-e-surjection, there is a neighborhood
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W of B in N, a neighborhood W" of A in M, W" C W’, and an index
ko such that for every L’p-map cp’ : K ~ W and every k ~ ko there is a
map ’:K ~ W" with fk ’ 8-close to cp’. Finally, the required
neighborhood Wo of B in N is chosen so that Wo C V n W and so
that every Lp-map cp : (K, K0) ~ (V, Wo) is (E/2)-close to a map cp’ : K -
W which agrees with cp on Ko.
Let A and B be compacta in AR spaces M and N, respectively, and

let f : A ~ B be a map. An extension F:M ~ N of f is called a

*-extension provided F-’(B) = A. A map f : A - B is a Lp-e-bundle if
there are AR spaces M and N containing A and B, respectively, and
a *-extension F : M - N of f which has the following Lp-e-lifting
property near (A, B). For every neighborhood U’ of A in M and
every e &#x3E; 0 there is a neighborhood V of B in N, a neighborhood V’
of A in M, V’ C U’, and a 8 &#x3E; 0 such that for every pair (K, Ko) E Lp
and maps cp : K - V and 03C80: K0 ~ V’ with F - 03C80 8-close to cp I Ko there
is a map 03C8: K ~ U’ such that 03C8 |K0 is e-close to 03C80 and F 03C8 is

E-close to cp.

One readily proves that the choice of spaces M and N and the
*-extension F in the above definition is immaterial. If Lp and 2p are
classes of pairs of compacta, Lp approximately dominates Sp, and
f : A - B is a Lp-e-bundle, then f is also a Dp-e-bundle. The com-
position of %p-e-bundles is a Lp-e-bundle.
A map f:X ~ Y will be called L-trivial if f maps X onto Y and

each pre-image Z = f -’(y) (y E Y) is a L-trivial compactum [10] (i.e.,
in some, and hence in every, ANR space M containing Z, for every
neighborhood U of Z in M there is a smaller neighborhood V of Z in
M such that every L-map into V is null-homotopic in U). Observe
that cell-like maps coincide with Y-trivial maps.
Let 03A3n denote the class of all at most n-dimensional spheres.

(5.7) LEMMA: A map f:A ~ B between compacta is a 03A3n-trivial

map iff f is an Jn+1p-e-bundle.

PROOF: Suppose that A and B are Z-sets in Q and that f is the
Jn+1p-e-bundle. Let F : Q - Q be a *-extension of f. Then F has the
9,n+l_e-lifting property near. (A, B). Clearly, f must map A onto B. Let
b E B and let W be a compact ANR neighborhood of Z = f-1(b) in Q.
Pick an e &#x3E; 0 such that F-1(N2~(b)) C W and E-close maps into W are
homotopic in W. Then select a neighborhood V of B in Q, a

neighborhood V’ of A in Q, and a 03B4 &#x3E; 0 with respect to e and U’ = Q
using the fact that F has the Jn+1p-e-lifting property near (A, B). Let
K be a Hilbert cube neighborhood of b in Q with b E
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int K C K C NE(b) fl V. Let Wo = F-’(int K) fl V’. We claim that

every 03A3n-map ~:Sk ~ W0 (0 ~ k ~ n ) is null-homotopic in W.
Indeed, F o ç : Sk ~ K extends to a map G : Bk+1 ~ K. By the choice

of V and V’, there is a map G : Bk+1 ~ Q such that F 0 G is E-close to
G and 6 |Sk is E -close to cp. Since G(Bk+1) ~ K ~ N~(b), (Bk+1) C
F-l(N2E(b» C W. Hence, cp is null-homotopic in W.
The converse follows from Lemma (8.3) in [15].

(5.8) LEMMA: A map f:A ~ B between compacta is a hereditary
shape equivalence (HSE) [22], [18], iff f is an Yp-e-bundle.

PROOF: Suppose first that A and B are Z-sets in Q and that f is the
Yp-e-bundle. Let F : Q - Q be a *-extension of f, let D be a closed
subset of B, and let C = F-1(D) = f-1(D). Then F has the Pp-e-lifting
property near (A, B). We shall prove that f 1 C: C ~ D is a shape
equivalence. This will follow provided we prove that for every

compact ANR neighborhood Dl of D in Q and every compact ANR
neighborhood Ci of C in Q such that F(Cl) C Di there is a compact
ANR neighborhood D2 of D in Q, a compact ANR neighborhood C2
of C in Q, and a map 03C8:D2 ~ C1 which makes the following diagram
homotopy commutative. The horizontal maps i and j on the diagram
are inclusions.

Pick compact ANR neighborhoods D’11 and D"1 of D in Q, D’Í C
int D1 C D1 C int DI, and an El E T(CI, 1) such that F-1(D’1) C CI and
NEt(Dï) C D’1. Choose an open neighborhood V’i of A in Q, an open
neighborhood VI of B in Q, and a 81 &#x3E; 0 with respect to U’ = Q and E1
using the fact that F has the Pp-e-lifting property near (A, B). Inside
V, n (int D"1) take a compact ANR neighborhood D7 of D in Q and
select an ~2 &#x3E; 0 such that N2~2(D"1) C Vi n D"1. Let E E 0393(D"1, E2). Pick
an open neighborhood V2 of B in Q, an open neighborhood V2 of A in
Q, and a 03B42 &#x3E; 0 with respect to V! and e again using the -OPp-e-lifting
property of F near (A, B). Let D2 be a compact ANR neighborhood
of D in Q which lies in V2 ~ D1 and let C2 be a compact ANR

neighborhood of C in Q such that F(C2) C D2 and C2 ~ V’1 n Ci.
The choice of V2 implies that the inclusion cp : D2 ~ V2 lifts to a map

t/1: D2 ~ Vl with F 0 t/1 being E-close to cp. Since e Z E2 and cp(D2) C D’1,
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F o 03C8(D2) C N~2(D1) C D 1 so that 03C8(D2) C F-1(D"1) C F-1(D’1) C Ci.
Also, since F 0 t/1 and i are E-close maps into D"1, they are E2-homotopic in
D"1. Finally, F 0 t/1 0 F | C2 and F ( C2 are E-close maps of C2 into D"1.
Hence, there is an E2-homotopy H : C2 x I ~ D"1 with Ho = F 0 t/1 0 F ( C2
and Hi = F | C2. Observe that H (C2 x I) C N282(D’1 ) C VI. Let g : C2 x
{0, 1} ~ V be given as t/1 0 F on C2 x {0} and as the inclusion X : C2 ~ V ’1
on C2 x {1}. Then F 0 g = H C2  {0, 1}. By the choice of Vi and V’1,
there is a map G : C2 x I - Q with Go ~1-close to t/1 0 F | C2, G ~1-close to
X, and F 0 G is El-close to H. These three conditions imply that G can be
actually completed to a homotopy in Ci between t/1 0 F | C2 and j. This
proves that the upper triangle in the diagram is indeed homotopy
commutative.

The converse implication follows easily from Kozlowski’s theorem
which says that a HSE between Z-sets in Q extends to a relative
homeomorphism of Q onto itself and the standard property of a Z-set
(see Lemma 4.1 in [11]) which allows to replace maps into Q with
nearby maps whose images are disjoint with the Z-set.

(5.9) REMARK: It can be easily proved that a map f:A ~ B of

compact ANR’s is a fine homotopy equivalence [19] iff f is a Lp-e-
bundle for every class Lp of metrizable pairs.
For a class 19 of metrizable spaces. let (Cho denote the class of all

pairs (K x [0, 1], K x 101) where K E W.

(5.9) EXAMPLE : A map f:A ~ B between compacta is a shape
fibration [25] iff f is an Yho-e-bundle.

PROOF: Consider A and B as Z-sets in Q and choose a *-extension
F : Q ~ Q of f. Pick a decreasing sequence Ai D A2 ~ ··· of compact
ANR neighborhoods of A in Q and a decreasing sequence B1 ~ B2 D
... of compact ANR neighborhoods of B in Q such that A = n i&#x3E;o Ai,
B = ~i&#x3E;0 Bi, and F(Ai) C Bi for every i &#x3E; 0. Clearly, the statement that
F has the Lh0-e-lifting property near (A, B) is equivalent to the

statement that the level map f = {F 1 Ai}:{Ai} ~ {Bi} between ANR-
sequences {Ai ~ A2 ~···} and {B1~B2~···} satisfies the AHLP
with respect to the class Y [25].
The next lemma gives additional examples of Wp-e-bundles. In view

of Remark (5.9), it includes as a special case the statement that a
refinable map between ANR’s is a fine homotopy equivalence [20], [23].

(5.10) LEMMA: An AI map f : A - B of a compactum A onto a
Lp-e-movable compactum B is a Lp-e-bundle.
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PROOF: Regard A and B as Z-sets in Q and let F : Q - Q be a
*-extension of f. We shall prove that F has the Lp-e-lifting property
near (A, B). Let a compact ANR neighborhood U’ of A in Q and an
e &#x3E; 0 be given. Pick a compact ANR neighborhood V of B in Q such
that L~/3p(Q, V ; B) holds. Let q E T( V, E/3) and put 03B4 = ~/2. Then we
pick maps h : B ~ A and g : A ~ B with f o h (E/3)-close to idB, with g
03B4-close to f, and with h o g e-close to idA. Let H : Q ~ Q and G : Q ~ Q
be extensions of h and g, respectively. Then select a neighborhood W
of B in Q and a neighborhood V of A in Q such that G V is 3-close
to F | 1 V, H(W) CU’, F - H 1 W is (~/3)-close to idw, and H - G 1 V is
e-close to idv. Finally, pick a neighborhood Wo of B in Q, Wo C W n V,
with respect to W using L~/3p(Q, V; B) and put V’ =  ~ G-’(WO).
Consider a pair (K, K0) ~ Lp and maps 03C80: K0 ~ V’ and cp : K ~ V

with F 0 03C80 8-close to cp I Ko. Since F 0 03C80 and Go 03C80 are 8-close maps,
there is an (E/3)-homotopy in V joining ~ | Ko and G 0 03C80. Hence, by
the homotopy extension theorem, there is a map ~’: K ~ V which is
(e/3)-close to cp and which agrees with G03C80 on Ko. Observe that
G 0 t/1o(Ko) C Wo. The choice of V and Wo implies that cp’ is (E/3)-close
to a map ~":K ~ W where ~"|K0 = G  03C80. Let 03C8 = H  ~". Since

F  03C8 = F  H  ~" is (E/3)-close to cp", F  ~ is E-close to cp. On the

other hand, qi Ko = H  ~" Ko = H 0 G 0 03C80 is E-close to 03C80 because
H 0 G | V’ is E-close to idv,.

(5.11) LEMMA: Let f : A ~ B be a Lp-e-bundle between Z-sets in Q
and let F : Q - Q be a *-extension of f. If the fundamental sequence
f = {fk = F, A, B}Q,Q is the L"p-e-surjection, then f is also both the

L’p-e-surjection and the Lp-e-surjection.

PROOF: Let a compact ANR neighborhood U’ of A in Q and an
e &#x3E; 0 be given Let q = min{~/2, F(U’, A (F, ~/2))}. Pick a neighborhood
V of B in Q, a neighborhood V’ of A in Q, V’ ~ U’, and a y &#x3E; 0 with

respect to U’ and q using the fact that F has the Lp-e-lifting property
near (A, B). Let W’ be an arbitrary neighborhood of A in Q and let
8 &#x3E; 0. Choose a neighborhood Wo of B in Q, Wo C V, and a neigh-
borhood Z’ of A in Q, Z’ C W’ n V’, such that for every L"p-map
~0:K0 ~ W0 there is a map 03C80:K0 ~ Z’ with F 0 03C80 min{03B3, 03B4}}-close to
cp o.

Consider a Lp-map cp : (K, Ko) - (V, Wo). The restriction wo = cp I Ko
is a %§-map into Wo. Let 03C80 be chosen as above. Since cpo and F 0 03C80
are y-close, there is a map t/1: K ~ U’ such that t/11 Ko is q-close to 03C80
and F  03C8 is q-close to cp. Using the homotopy extension theorem, we
see that there is a 039B(F, ~/2)-homotopy Ht : K ~ U’, 0 ~ t ~ 1, with
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Ho = 03C8, and H1 I Ko = 03C80. But, then F 0 Ht is an (E/2)-homotopy be-
tween F 0 t/1 and F 0 Hl with F 0 H1 Ko = F - 03C80. Hence, H1: (K, K0) ~
( U’, W’) is a %p-map such that F 0 H1 I Ko is s-close to cpo and F 0 Hi is
E-close to cp.

The proof that f is the L’p-e-surjection is left to the reader.

REMARK: Observe that, in view of (5.6), every retraction onto an
ANR is a Lp-e-surjection for every class (9p. Hence, the point
preimages of Lp-e-surjections can be quite arbitrary (in particular,
they need not have trivial shape). This, however, is not true for

Lp-e-bundles.
A simpler way of recognizing Lp-e-surjections is offered in the next

lemma.

(5.12) LEMMA: Let A and B be compacta lying in compact ANR’s
P and R, respectively, let f : A - B be a map, and let f * : P ~ R be a
*-extension of f. If f * is ARI, then every fundamental sequence
f = {fk, A, B} generated by the map f is a Lp-e-surjection for every
class (9p.

PROOF: By (5.5)(e), it suffices to construct a fundamental sequence
f generated by f which is a cgp-e-surjection. Let F = Cf* : CP ~ CR
be the cone of the map f * and identify A and B with A x {0} C M =
CP = P  [0,1]/P  {1} and B  {0} ~ N = CR = R  [0,1]/R  {1},
respectively. Then F is an ARI *-extension of f and M and N are
compact AR’s. We claim that f = {fk = F, A, B}M,N is a %p-e-sur-
jection. 
Let a neighborhood U’ of A in M and an e &#x3E; 0 be given. Since F is

ARI and F-1(B) = A, there is a decreasing sequence V1 ~ V2 ~··· of
neighborhoods of B in N, a decreasing sequence U’ = V! D V’2 ~···
of neighborhoods of A in M, and a sequence of maps G; : N ~ M
(i  = 1, 2, ... ) such that B = ~i&#x3E;0 Vi, A = ~i&#x3E;0 V’i, F-1(Vi) ~ V’i,
Gj(Vj) ~ V’i, and F 0 Gj is (~/2i)-close to idN for all j a i and all i &#x3E; 0.

Then V = VI is a neighborhood of B in N that we are looking after.
Indeed, let W’ be a neighborhood of A in M and let 8 &#x3E; 0. Pick an

index k such that Vk is contained in W’ and E/2k  5. Put Wo = Vk.
For a Lp -map cp : (K, Ko) - ( V, Wo), let  = Gk  cp : (K, K0) ~

( U’, W’). Then F 0 cP = F 0 Gk  cp is 8-close to ~.

(5.13) THEOREM: If f = {fk, A, BIQQ is a Lp-e-suplection and A is a
Lp-e-movable compactum, then B is also Lp-e-movable.

PROOF: For a given E &#x3E; 0, select a neighborhood Z’ of A in Q, an
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~ &#x3E; 0, and an index ko such that q E 039B(fk| Z’, E/2) for all k ~ ko. Then
we pick a neighborhood U’ of A in Q, U’ C Z’, satisfying (3.2)(iii)
with respect to ~. Next, we choose a neighborhood V of B in Q as in
the definition (5.4) but with respect to E/2. We claim that V has the
property described in (3.2)(iv).

Indeed, let W be an arbitrary neighborhood of B in Q and let 03B4 &#x3E; 0.

Choose a neighborhood W’* of A in Q and an index kl ? ko such that
fk(W’*) C W for all k ~ kl. Then take a neighborhood W’ of A in Q,
W’ ~ U’ ~ W’*, such that every Lp-map 03C8 : (K, K0) ~ (U’, W’) is ~-
close to a map 03C8*: K - W’* which agrees with 03C8 on Ko. Finally, select
a neighborhood Wo of B in Q, Wo C V n W, and a k2 ~ kl as in (5.4)
(using the way in which V was chosen).

Consider a Lp-map ~ : (K, K0) ~ (V, W0) and an index k ~ k2. The
choice of V, Wo, and k2 implies that there is a map 03C8 : (K, K0) ~
(U’, W’) with fk  03C8 (E/2)-close to cp and fk  03C8 | Ko 5 -close to ~ | Ko.
But, the map t/1 is T)-close to a map 03C8*: K ~ Wi which agrees with
on Ko. Then fk  03C8* is (E/2)-close to fk  03C8 and fk  t/1* Ko = fk 0 03C8| Ko.
Hence, fk  03C8* : K ~ W is E-close to cp and fk  03C8*|K0 is 6-close to

cp ( Ko.

(5.14) COROLLARY: Let f:A ~ B be a surjective map between Z-
sets in Q, let F : Q ~ Q be a *-extension of f, and let f =
{fk = F, A, B}Q,Q be a fundamental sequence generated by f. 

(a) If A is an LC" compactum and f is a 03A3n-1-trivial map, then B is
also an LC" compactum [21].

(b) If A is Lp-e-movable and f is a HSE, then B is also Lp-e-
movable. In particular, if A is an ANR and f is a cell-like map, then B
is an ANR iff f is a HSE [22].

(c) If A is Lp-e-movable and f is ARI, then B will be Lp-e-movable
ifl f is a Lp-e-surjection. In particular, if A is an ANR and f is ARI,
then B will be an ANR iff f is an Jp-e-surjection.

(d) If A is an ANR and i is ARI, then B will be an ANR iff there are
ANR’s M and N in Q containing A and B, respectively, and an ARI
*-extension F : M - N of f.

PROOF: (a) follows from (5.7), (5.11), and (5.13); the first statement
in (b) follows from (5.8), (5.11), and (5.13) and the second requires
also (5.5)(c); (c) follows from (5.6) and (5.13); and (d) follows from
(5.12) and (5.13).
The question as to which maps preserve (internal) L-e-calmness

seems to be even more difficult. At present we can prove only the
following.
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(5.15) THEOREM: (a) If A is an (internally) 16-e-calm compactum
and B is a retract of A, then B is also (internally) L-e-calm.

(b) If A is an (internally) Lp-e-movable compactum and B is a
retract of A, then B is also (internally) Lp-e-movable.

PROOF: A routine proof is left to the reader.
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