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Let D be a domain in a complex, locally convex, Hausdorff vector
space e. The Carathéodory and Kobayashi invariant pseudo-distances
have been introduced in D, together with the corresponding
infinitesimal pseudo-metrics [14]. A holomorphic map of the unit disc
à of C into D which is an isometry for the Poincaré distance of à and
the Carathéodory or the Kobayashi pseudo-distances of D is called a
complex geodesic. It is easily seen that complex geodesics do not
always exist. However, their existence turns out to be a useful tool in
the investigation of the group of all holomorphic automorphisms of D.
The primary purpose of this paper is that of establishing basic

properties of complex geodesics, clarifying in particular the relation-
ship between the Carathéodory pseudo-distance and the Cara-

théodory pseudo-metric along a complex geodesic. This latter result
will lead to conditions whereby holomorphic maps of D which

preserve complex geodesics are necessarily affine maps. As a con-
sequence, some results obtained in [10] and in [13] will be improved.

All these facts will be established in nn.3 and 4. Some basic

material will be collected in n.l, and in n.2 the relationship between
the "size" of D and the behaviour of the Kobayashi pseudo-metric
will be investigated; as a consequence, classical results of the theory
of conf ormal mappings will be extended to the domain D in e.

1. Let Z and Z, be two complex locally convex Hausdorff vector
spaces, and let D and Dl be domains in W and in Z, respectively. By
definition (cf. e.g. [8]), a holomorphic map F: D ~ D1 is a continuous,
Gateaux-analytic map F of D into Z, such that F(D) ~ D1. The
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symbol Hol(D, DI) will denote the set of all holomorphic maps of D
into Di.

If D is an open convex neighborhood of 0 in e, the support
function m of D is a convex, continuous function in 6. Let à be the

open unit disc in C, and let f E Hol(à, D). For any 03B6 ~ 0394 and any
sufficiently small r &#x3E; 0,

Hence

That proves

LEMMA 1.1: For any f E Hol(0, D), the function 03B6 ~ m(f(03B6)) is

subharmonic on A.

REMARK: If the domain D is furthermore a balanced neighborhood
of 0, then m is a semi-norm and the function 03B6 ~ log m(f(03B6)) is

subharmonic [12].

By lemma 1.1 the function m 03BF f satisfies a maximum principle,
whereby, if f(0394) n ~D ~ 0, then f(0394) C aD. In the following a stronger
form of the maximum principle will be needed, which was established
by E. Thorp and R. Whitley in [11] for complex Banach spaces. As it
was shown in [11] (cf. also [12]), there exists a constant c, 0  c  1,
such that, for every positive integer n, complex numbers zl, ..., zn can
be found satisfying the following conditions:

The proof of the following lemma-given originally in [11] in the
case of a Banach space-can be adapted to locally compact spaces.

LEMMA 1.2 : For every non-constant holomorphic function f : 0394 ~ e,
there is an element a E eB{0} such that the image of the open disc
le E C: ICI  cl by the affine map 03B6 ~ f(0) + ea belongs to the closure of
the convex hull of f(0394).



377

PROOF: Assuming f(0) = 0, let

be the power series expansion of f in A. If p is any continuous
semi-norm on e, the series 03A3+~1 p(av)tv converges for 0 ~ t  1. Then,
choosing n complex numbers zl, ..., zn as before,

where

Since

then

for lel  c and for any continuous semi-norm p. Therefore

i.e.

That proves the theorem when f’(0) ~ 0. If f’(0) = 0, let

be the power series expansion of f. Denoting by E1, ..., ~n the n-roots
of 1, the holomorphic function g: 0394 ~ e defined by
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belongs to the convex envelope of f(0394) and is such that

Recall that a point xo E aD is a complex extreme point of D if y = 0
is the only vector such that x0 + 0394y C D. Lemmas 1.1 and 1.2 yield

PROPOSITION 1.3: Let D be an open, convex neighborhood of 0 in e.
If f E Hol(à, D) is such that f(0394) n ~D ~ Ø, then f(0394) C aD. If f(0394) n
aD contains a complex extreme point of D, then f is constant.

REMARK: Proposition 1.3 extends a similar statement proved in [14]
in the case in which D is balanced. The proof given in [14] is a

straightforward consequence of a simplified version of Thorp and
Whitley’s original argument, which was established by L.A. Harris in
[5] (cf. also [3]).

2. The Poincaré metric of à

has Gaussian curvature -4. For C ~ 0394, T E C, set

For CI, 03B62 in A, the Poincaré distance is expressed by

Given any two points x and y in the domain D c e, an analytic
chain joining x and y in D consists of v + 1 points ’°, ..., ’v in 0, and
of v functions f; E Hol(0, D)(j = 1,..., v) such that:

The open set D being connected, analytic chains joining x and y in
D do exist. The Kobayashi pseudo-distance kD(x, y) is defined by
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where the infimum is taken over all analytic chains joining x and y in
D.

The Carathéodory pseudo-distance CD(X, y) is, by definition,

It turns out [14] that

and

The infinitesimal versions of kD and CD are defined as follows: the

Kobayashi pseudo-metric is given, for x E D, v E e, by

and the Carathéodory pseudo-metric by

The domain D being open, the set appearing on the right-hand side
of (1) is not empty. Furthermore [3]

and

These pseudo-distances and pseudo-metrics are all contracted by
holomorphic maps: for F E Hol(D, Dl)

for all x, y E D, v E ’1:.

For further details on the above defined pseudo-distances and
pseudo-metrics see e.g. [3] in the case of domains in complex Banach
spaces, and [14] for the general case.
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For any continuous semi-norm p on 6, any x G 6 and any r ~ 0,
Bp(x, r) denotes the open ball with center x and radius r for the

pseudo-distance defined by p. Then ([3], [13], [14])

for all y E Bp(x, r), v G 6.
The following theorem links the behaviour of the Kobayashi

pseudo-metric KD of a domain D c 6 to the "size" of D.

THEOREM 1: Let xo e D, vo e 6 be such that rcD(xo; vo) &#x3E; 0. Then

Furthermore, there is no continuous semi-norm p on Z such that D

is completely interior to Bp xo, p (vo) ; i.e. there is no continuous

semi-norm p such that

and

PROOF: If (3) does not hold, there is some e such that 0  e 

KD(xo; vo) and

Since the holomorphic function f : 03B6 ~ x0 + 03B6 KD(x0; v0) - ~ 
vo maps à

into D, and moreover
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then, by (1),

which is a contradiction.
Let p be a continuous semi-norm on e for which (4) and (5) hold.

Then, there is some E &#x3E; 0 such that

and therefore, setting A = Bp(x0, p(v0) 03BAD(x0; v0) + ~),

Contradiction. QED

Let D be a simply connected domain D ~C. For any x E D, let h

be the conformal map of D onto à with h(x) = 0, h’(x) &#x3E; 0. Then

and therefore KD(x; 1)-1 is the conf ormal radius of D at x. Theorem 1

becomes in this case a classical result of complex function theory (cf.
[1],[4]).
The relative topology of D in 6 is finer than the topologies defined

by the pseudo-distances CD and kD. If the relative topology coincides
with the topology defined by kD, D is called a hyperbolic domain. A
bounded domain is hyperbolic [14]. Since 6 is a Hausdorff space, on a
hyperbolic domain kD is a distance. Moreover the pseudo-metric KD
cannot degenerate, as is shown by the following

THEOREM 2: Let D be a hyperbolic domain. For xo E D let r &#x3E; 0 and

let p be a continuous semi-norm on e such that
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There exists a positive constant c such that

for all v E e.

PROOF: For s &#x3E; 0 let Bk(x0, s) be the open ball with center xo and
radius s for the distance kD. The domain D being hyperbolic, there is
s &#x3E; 0 such that

If the conclusion of the theorem is false, there is a sequence {vv} in
6 such that p(vv) = 1 and limace KD(xo; vv) = 0. Assume KD(xo; vv)  1

for all v, and let Ev be such that

and limv~~ ev = 0. Let f v E Hol(0, D) and Tv G C be such that

The latter condition implies that

Let w = ~1/2v. Being, for v ~ 0,

then

and (6) yields

Since limv~~ ~-1/2v = +00, there is an index vo and-for every v &#x3E; va-
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some |03B6v| ~ 03B4v, such that p(fv(03B6v)) &#x3E; r. Therefore kD(xo, fv(03B6v)) &#x3E; s. But

this is a contradiction, for

If 6 is locally bounded, then for any v E 6)(0) the continuous
semi-norm p can be chosen in such a way that p (v) &#x3E; 0.

COROLLARY: If D is a hyperbolic domain in a complex Banach
space e, for any xo E D there is a positive constant c such that

The corollary improves Proposition V.1.9 of [3].

3. Let D be a domain in e and let f ~ Hol(0394, D). For all 03B60,
03B6 ~ 0394,

If there is Co E à such that CD(f(’O), f(03B6)) = 03C9(03B60, C) (kD(f(eo), f(03B6)) =
03C9(03B60, 03B6)) for all 03B6 ~ 0394, f is called a complex geodesic for CD (respec-
tively for kD) at f(’o). Inequality (7) yields the first part of the

following lemma (the second part is trivial).

LEMMA 3.1: If f is a complex geodesic for CD, then f is a complex
geodesic for kD. If kD(CD) is a distance and if f is a complex geodesic
for kD(CD) at f(’o), then f (à) is closed in D for the kD-topology
(cD-topology).

REMARK: Let D be a non simply connected bounded domain in C.
Since any nonconstant f E Hol(à, D) is an open map, the above lemma
shows that there are no complex geodesics for either CD or kD.

PROPOSITION 3.2: If f E Hol(à, D) and Ço e à are such that

then f is a complex geodesic for CD at f (Co) in D.
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PROOF: By composing f on the right with the Moebius trans-

formation

there is no restriction in assuming eo = 0, and therefore

By definition, there is a sequence {hv}(hv E Hol(D, 0394)) such that

hv(f(0)) = 0, and

In view of Montel’s theorem, the sequence {hv 03BF f} of holomorphic
maps hv 0 f E Hol(à, A) contains a subsequence {hvj 03BF f} normally
convergent on compact sets of à to a map g E Hol(à, A). Since

g(0) = limj~~ hvj(f(0)) = 0, Ig’(O)1 = limj- |dhvj(f(0))f’(0)| = 1, then, by the
Schwarz lemma, g is a holomorphic automorphism of A. The sequence
of inequalities

yields, as j tends to infinity,

A similar argument leads to the following

PROPOSITION 3.3: If there are two distinct points eo, ’1 in 0394, such
that

then f : à - D is a complex geodesic for CD at f«(o).

PROOF: By definition there is a sequence hv E Hol(D, A) such that
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By Montel’s theorem, the sequence {hv 03BF f 1 contains a subsequence
{hvj 03BF f} normally convergent on compact sets of à to a map g E Hol(à, A)
for which

Hence, by the Schwarz-Pick lemma g is a holomorphic automor-
phism of A, and therefore

for all e E 0. QED

COROLLARY: If f : 0394 ~ D is a complex geodesic for CD at some point
f(03B60)(03B60 E 0394), then f is a complex geodesic for CD at any point’ E 0.

If f E Hol(0394, D) is a complex geodesic for kD or CD, and if cp is any
Moebius transformation of 0, then f - ç is a complex geodesic for kD
or CD respectively. To discuss the converse to this statement, let f and
g be two injective holomorphic maps of 0 into D, having the same
range: f(0394) = g(0).This fact, together with injectivity, sets up a

bi-jective map cp of 0 onto 0, defined by g = f - cp. To prove that cp is
holomorphic, let À be a continuous linear form on Z such that À 0 f is
not constant. The maps 03B6 ~ 03BB(f(03B6) and 03B6 ~ 03BB(g(03B6))(03B6 ~ 0394) are

holomorphic. If (03BB · f)’(03C40) = 03BB(f’(03C40)) ~ 0 at some point ToEA, then,
by the inverse function theorem, cp is holomorphic in a neighborhood
of ~ -1( ’To). The set of points {03C4 E 0: (A 0 f)’( ’T) = 0} is discrete in 0. Since
lepl is bounded in 0, the Riemann extension theorem implies that cp is
holomorphic on 0, and2013being bijectivc2013is therefore a holomorphic
automorphism of 0. The above argument yields

PROPOSITION 3.4: Let f and g be two complex geodesics for kD (or
for CD). Then f and g have the same range if, and only if, there is a
Moebius transformation cp of à such that g = f 0 cp.

Let p be a continuous semi-norm on 6, and let Bp = Bp(O, 1) be the
open unit ball for p. A direct application of (2), of the Hahn-Banach
theorem and of Proposition 1.3 yields the f ollowing lemma [13], [14].

LEMMA 3.5: For any x E Bp for which p(x) &#x3E; 0 the map f E

Hol(O,B) defined by f(03B6) = 03B6 p(x) x is a complex geodesic for CH. If
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f (à) n aB. contains a complex extreme point of Bp, then f is (up to a
change of parameter expressed by a Moebius transformation in A)
the unique complex geodesic for CBP (unique also for kBp) whose range
contains 0 and x.

EXAMPLE: Let B be the open unit ball of a complex Hilbert space
H. Every boundary point of B is a real (hence complex) extreme

point of B. Lemma 3.5 implies that for any x E BB{0} the map 03B6 ~ 03B6 ~x~ x
of à into B is the unique complex geodesic for cB whose range
contains 0 and x. The group Aut(B) of all holomorphic automor-
phisms of B acts transitively on B (cf. e.g. [3], Proposition VI.1.5, pp.
148-149). Hence, for any y E B, there is F E Aut(B) such that F(y) =
0. Thus, given x E BB{y}, the map

of à into B is the unique complex geodesic for cB whose range
contains x and y. By Theorem VI. 1.7 (p. 150) of [3], the range of the
map (8) is the intersection of B with a complex affine line of 7le. To
describe F, let T be the continuous linear operator of 7le defined by

where (,) is the scalar product of ée and a(y) = y’ 1 -II Y 112.
The map F is defined by

and

Hence the complex geodesic (8) is given by
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Since

then

and

Finally, the norm IIF(x )11 is given by ([3], p. 156):

PROPOSITION 3.5: Let xo E D, vo E eB{0} and h e Hol(D, 0) be such
that

If the domain D is bounded, convex and if 15 is complete and
compact for the weak topology, then there is a complex geodesic
f E Hol(à, D) for CD in D such that f(0) = xo and f ’(0) is collinear to

vo.

PROOF: Let p be a continuous semi-norm on 6 such that Bp(x0, r) C
D for some r &#x3E; 0, and such that p (vo) &#x3E; 0. The domain D, being
bounded, is hyperbolic. Thus, by Theorem 2, 03BAD(x0; v0) &#x3E; 0. By
definition,

KD(XO; vo) = p(v0)Bsup{p(g’(0)): g E Hol(à, D), g(0) = xo, g’(0)

collinear to vo}.

Let Ig,l be a sequence of functions gv E Hol(à, D) such that:

gv(0) = xo, g’v(0) ~ 0 is collinear to vo, and
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Since D is bounded and the ranges of the functions g,, lie in a

complete weakly compact subset of e, then there is a subsequence
{gvj} weakly convergent on compact subsets of à to a function

f E Hol(0394, D)(1). The range of f belongs to the weak closure of D,
which coincides with the closure D. Thus f(0394) C D. Suppose now that
f(0394) ~ aD=;f 0. Denoting by m the support function of D, lemma 1.1
implies that m(f«(» = 1 for all 03B6 ~ 0394. On the other hand, for every
continuous linear form À on e,

Therefore f (0) = xo and by consequence m(f(0))  1. This con-

tradiction proves that f(0394) C D.
If /’(0) is not collinear to vo, there is a continuous linear form À on

6 such that

Since g’(0) = cvvo with cv E CB{0}, then

Thus lim cvj = 0, contradicting (10). Then there exists c E CB{0} such

that f’(0) = cvo.
The same computation (11), for every continuous linear form À on

e, yields

and therefore, by (10),

’ That is theorem 3.14.2 (pp. 105-106) of [7] in the case where Z is a complex Banach
space. The proof of the theorem as given in [7] carries over with no change to the case of a
bounded, convex domain D in a locally convex complex space 6, such that D is complete.
This latter condition (which is automatically satisfied in the case of Banach spaces)
ensures the applicability-as in the original proof given in [7]-of the Eberlein-Smulian
theorem [9, pp. 187-188].
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Since h 0 f e Hol(à, A), and

«h 0 f)’(0)~h(x0) = ~dh(x0)f’(0)~h(x0) = le |~(dh(x0)v0~h(x0) = le 1 KD(x0; VO) = 1,

by the Schwarz-Pick lemma h 0 f is a holomorphic automorphism of
0. Thus

and therefore yD(xo; f’(0)) = 1. Proposition 3.2 yields the conclusion.
QED

COROLLARY: Let 6 be a reflexive Banach space, and let D be a
convex bounded domain in e. If xo E D, vo E eB101, and h E Hol(D, 0394)
satisfy (9), then there exists a complex geodesic f for CD such that
f (0) = xo and f’(0) is collinear to vo.

4. LEMMA 4.1: Let 61 and e2 be normed spaces over C. Let BI and B2
be the open unit balls for 61 and Z2, and assume that every boundary
point of B2 is a complex extreme point of B2. If F E Hol(BI, B2) is

such that

then F is a linear II ~-isometry.

PROOF: Condition (12) is equivalent to

For u E îl, ~u~ = 1, the map 03B6 ~ 03B6u is a complex geodesic for cB,.
Thus by (2) and (12) 03B6 ~ F(03B6u) is a complex geodesic for CB2 at 0. By
lemma 3.4. 03B6 ~ F(03B6u) is linear, i.e.
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be the power series expansion of F around 0, where P2, P3,... are
continuous homogeneous polynomials of degrees 2, 3, ... from e to
e2. Then Pv(u) = 0 for all u E el and all v = 2, 3, .... Therefore

and the conclusion follows. QED

The hypothesis concerning the complex extreme points cannot be
dropped as is shown by the map 03B6 ~ (03B6, 03B62) of 0 into the bi-disc 0 x 0.
However, according to a result of L.A. Harris [5] [3], that hypothesis
can be avoided if dF(O) is assumed to be a linear isometry of 61 onto
e2-
The above lemma could be compared with the theorem of Mazur-

Ulam [2, pp. 166-168]. Does a statement similar to Lemma 4.1 hold
for real analytic mappings?
The following result is a direct consequence of Lemma 4.1.

THEOREM 3: Let Z, and e2 be two locally convex, locally bounded,
complex vector spaces. Let Di and D2 be two bounded, convex,

balanced open neighborhoods of 0 in 16, 1 and e2, and let F E

Hol(D¡, D2) be such that F(O) = 0 and that either

or any one of the following conditions

holds for all x E DI. If every point of aD2 is a complex extreme point
of D2, then F is (the restriction to Dl of) a linear map of e1 into e2:

COROLLARY: Under the same hypotheses of Theorem 3 for Di and
D2, let F E Hol(DI, D2) be such that any one of the following con-
ditions holds :
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If the semi-group Sc of all holomorphic cD2-isometries is transitive

on D2, then for any g E Sc such that g(F(0)) = 0, g 0 F is linear and
g(F(D1)) is the intersection of D2 with a linear subspace of ¡g2.

A similar conclusion holds if condition (13) is replaced by

and if the semi-group Sk of all holomorphic kD2-isometries is transitive
on D2.
The above conditions concerning Sc and Sk are fulfilled if the group

Aut(D2) of all bi-holomorphic automorphisms of D2 acts transitively
on D2. That is the case if, e.g., D2 is the open unit ball B of a complex
Hilbert space H. Since every boundary point of B is a real (hence
complex) extreme point of B, all the hypotheses of the above corol-
lary are satisfied. Furthermore, for any linear subspace OP of llf and
any g ~ Aut(B) there is an affine subvariety If of W such that

g(P ~ B) = f ~ B. Moreover, for all y,, Y2 E If n B, cB~f(y1, y2) =
kBnAYi, y2) = CB(YI, y2) = kB(y1, y2)[3].

COROLLARY: Let Di be a bounded, convex, balanced open neigh-
borhood of 0 in le,, and let F E Hol(Dj, B) be such that any one of
the following conditions

holds for all x E Di. Then there is an affine sub-variety 5£ of Y such
that F(D1) = f rl B and,

if either (14) or (15) holds, or

if (16) holds. Moreover for any g E Aut(B) such that g 0 F(O) = 0,
g 0 F is a continuous linear map.

5. The following result, concerning the non-homogeneous case, im-
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proves previous statements of [13]. Let 039E be a u-algebra on a set M
and let 03BC be a positive measure on 039E. Let B be the open unit ball in
the complex Banach space L1(M, 039E, 03BC) and let D be a convex

hyperbolic domain in L’(M, 8, 03BC).

PROPOSITION 5.1: Let F E Hol(B, D) be such that dF(O) has a
continuous inverse and moreover

(17) yD(F(0); dF(O)u) = yB(0; u) for all u e L’(M, E, 03BC).

If dimcL1(M,039E,03BC) &#x3E; 1, and if, for every s &#x3E; 0, there is 0  r  s

such that the open set Dr = {y ~ D: cD(F(0), y)  r} is bounded and
convex, then F is an affine map

of B onto D.

PROOF: There is no restriction in assuming F(O) = 0. By the inverse
mapping theorem (cf. e.g. [3]) there is an open neighborhood U of 0
in B such that F( U) is an open neighborhood of 0 in D and the
restriction Flu is a holomorphic diffeomorphisms of U onto F(U). The
domain D being hyperbolic, in view of the hypothesis there is some
r &#x3E; 0 such that the set Dr = {y E D: cD(0, y)  r} is bounded, convex
and contained in F(U). For any y G Dr)(0), let x E U be the unique

point of U such that F(x) = y. The map 03B6 ~ 03B6 ~x~ x (03B6 ~ 0394) is a complex
geodesic at 0 for cB whose range contains x (’). By Proposition 3.2

03B6 ~ F (03B6 ~x~ x ) is a complex geodesic at 0 for CD, whose range contains
y = F(x). Hence

and therefore x E B’: = {x E L 1 (M, 039E, IL): cB(0, x)  r} =

2Since every boundary point of B is a complex extreme point of B [11], that map is
actually the unique complex geodesic at 0 for cB whose range contains 0 (Lemma 4.3 of
[ 13]).
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Since F contracts the Carathéodory distances, then

F(B’) = Dr,

and FIB’ is a holomorphic diff eomorphism of the ball B’ onto the
convex domain Dr. By a theorem of T.J. Suffridge [10, Theorem 7] FIB,
is linear. Hence F itself is linear.

For any u ~ L1(M, E, 03BC) with Ilu Il = 1, the map 03B6 ~ F(03B6u) = edF(O)u
is a complex geodesic for CD at 0 in the convex open set D. By
Lemma 3.1, its range is closed in D. Since dF(0) has a continuous
inverse, that implies that F(B) = D. QED

COROLLARY: Let F E Hol(B, D) be such that dF(O) has a con-
tinuous inverse and that (17) holds. If dimcLl(M, E, 03BC) &#x3E; 1, and if D
is an open, convex, balanced, hyperbolic neighborhood of F(O), then F
is an affine map of B onto D.

The following result, which is a consequence of the above corol-
lary, improves Theorem II of [13].

THEOREM 4: Let F E Hol(B, B) be such that dF(0) has a continuous
inverse and that

yB(F(0) ; dF(0)x) = yB(0, x) for all x E B.

If dimcL1M, 039E, 03BC) &#x3E; 1, F is the restriction to B of a linear isometry
of L1(M, 039E, 03BC) onto itself.
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