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Introduction

Let M be a real oriented hypersurface in a complex manif old X,
which divides X into two open sets X+ and X -.

In this paper we characterize in terms of tangential linear diff eren-
tial operators on M the distributions T on M which are "jumps" or
traces (in the sense of currents) of pluriharmonic functions in X+ and
X -.

The starting point of our investigation is the non-tangential charac-
terizing equation ~b~T = 0, which can be deduced from the theory of
boundary values of holomorphic forms. If M is not Levi-flat, we
construct a second order tangential local linear differential operator
wM such that if T is the trace on M of a pluriharmonic function h,
then CùM(T) = ah. This enables us to prove that the tangential equation
abC»M(T) = 0 characterizes locally the traces on M of pluriharmonic
functions on X+ or X - (local Cauchy-Dirichlet problem). From this
local result we deduce directly the global solvability of the Cauchy-
Dirichlet problem in the case M is either compact or its Levi form
has everywhere at least one positive eigenvalue.

Finally, using standard cohomological arguments the global Rie-
mann-Hilbert problem ("jumps" of pluriharmonic functions on XBM)
is solved if H2(X, C) = 0 or H’(M, R) = 0. Particular cases of our

problem have been investigated in [1], [3] (cf. also [2], [4]).
The present paper contains an improved version of the results

announced in [5].

1. Preliminaries and notations

In the present paper X will be a complex manifold of dimension
n 2: 2, and M C X a real oriented connected C°° hypersurface.
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We assume M is defined by p = 0 where p : X ~ R is a C°° function
such that d03C1 ~ 0 on M.
We say that such a p is a defining function for M ; M divides X

into two open sets X+ and X -, defined respectively by p &#x3E; 0 and
p  0; if U is an open subset of X, we will set U± = U fl x±; we can
also assume that there exists an ~0 &#x3E; 0 such that if JE  Eo and Me is
the level hypersurface defined by p = e, there exists a diffeomorphism
03C0~: M~~M.
We will use the standard notations for currents and distributions

spaces (cf. e.g. [9]); in particular we fix the orientation on M in such a
way that d[X+] = [M].
Furthermore we list the following definitions:

i) Let L: (r)(X) ~ (r)(M) be the restriction operator; we set:

(p,q)(M) = L((p,q)(X)).
ii) Let K E 2(’)(M): K A [M] will be the (r + 1 )-current on X defined

by: (K A [M], ~) = (K, L(~)&#x3E;, ~ E gy(2n-r-1)(X).
iii) We say that K E 2’(")(M) is a (r, 0)-current (resp. (0, r)-current) if

(K A [M])P,q = 0 for p :5 r (resp. (K A [M])q,p = 0 for p :5 r); we denote
by 2’(10)(M) (resp. D’(0,r)(M)) the space of (r, 0)-currents (resp. (0, r)-
currents).

iv) If K E 2’(ro)(M), then K A [M]1,0 is the (r + 1, 0)-current defined
by: (K A [M]’’°, ~) = (K, L(cp)), cp E D(n-r-1,n)(X) and K A [M]0,1 is the

(r, 1)-current defined by: (K A [MI’,’, ~&#x3E; = (K, L(cp» cp E 9)(n-r, n-1)(X).
v) Let a E c¡g(2)(X+); we say that a admits trace K E 2’(")(M) on M in

the sense of currents if for every cp ~ D(2n-r-1)(M) we have:

(cf. [8]); we set K = y+(a); in the same manner we define y-(a) if
03B1 ~ (r)(X-).

Let a E e(’)(XBM) such that y+(a) and y-(a) exist: we refer to
03B3+(03B1) - y-(a) as the jump of a on M.
We denote by (r,s)*(X±) the space of forms a E (r,s)(X±) such that

03B3~(03B1) and y±(da ) exist.
Observe that if a ~(r,0)*(X+), in particular we have
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2. Tangential operators on M

2a) The smooth case
A local linear operator 03A6: (p,q)(X) ~ (r,s)(M) is said to be tangen-

tial on M if from L(f ) = 0 it follows 03A6(f) = 0; a tangential operator
induces a new operator: (p,q)(M) ~ (r,s)(M) which will be denoted
again by 03A6.

Let now (,) be a Hermitian structure on X; without loss of

generality we can assume (ap, ap) = 2 on M. Define:

We have the decompositions:

1

and we denote by:

the natural projections; observe that T(a) = T(¡3) is equivalent to
03B1 039B [M]1,0 = 03B2 039B [M]10; we set ~b = 03C4 03BF L 03BF ~ and ~b = 03C4 03BF L 03BF ~;
by definition ab and ib are tangential operators on M (cf. [6]).
The induced operators

are described by the formulas
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Thus

We consider in particular the following cases: f E (0,0)(X) and 03B2 E

(1,0)(X).

a) if f E (0,0)(X) set:

so we obtain on M:

furthermore it is easy to check that:

i) at every point of M, N(f) represents the complex normal derivative
of f and N(f) + N(f) is the real normal derivative of f.

ii) f H N(f) - N(f) is a tangential operator on M ; thus we have also
e.g. : 

.

b) if 0 E (1,0)(X) define N1(03B2) and N1(03B2) by the relations:

we observe that (3 t---+ N1(03B2) - N1(03B2) is a tangential operator, and so
we obtain on M the decomposition:

which again enables us to isolate the genuine non-tangential com-
ponent of L(~03B2), namely (N1(03B2) + N1(03B2)) 039B L(ap).

Let U ~ X be an open set and let 9P(U) be the space of real
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pluriharmonic functions on U (i.e. f E P(U) iff f is real valued and
aaf = 0).
We have the following:

PROPOSITION 2.1: Assume L(ap A ap A ~~03C1) ~ 0; then there exists a
local linear differential operator R : (0,0)(M) ~ (0,0)(M) such that if
h E P(X) then R(L(h)) = L(N(h) + N(h)).

PROOF: Let h E 9P(X): define Sb = ab + ab, *03B4b = Tab + Tab, S b =

i(~b - ab); then omitting L to simplify our notations:

and also

thus we obtain the relation:

taking the Hermitian product, we have:

Since i03C4(~b~03C1), which is a real operator, represents the restriction to
M of the Levi form of p, in our assumption ~i03C4(~b~03C1)~2 &#x3E; 0 everywhere
and so the R we are looking for is given by:

We observe that in [10] a similar formula is proved in a more

laborious way.
For example in the case X = B2, the unit ball in C’, and M = b B2, we

obtain the formula:

(cf. also [1]).
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Proposition 2.1 shows that if h is a pluriharmonic function on X
and M is not Levi-flat anywhere, then the real normal derivative of h
on M can be expressed by means of a real tangential operator R.
Thus we have on M:

let Cl)M : (0,0)(M) - (1,0)(M) be defined by the right member of (*) we
have the following:

REMARKS 2.2: a) if f ~(0,0)(M), then ~b03C9M(f) = 0.
(b) if f is the restriction of a pluriharmonic function F then ~b03C9M(f) =

0.

PROOF: a) Let f E (0,0)(X+) be an extension of f ; by Stokes’

theorem, L(ap) A [M]1,0 = 0, so Cl)M(f) A [M]1,0 = abf A [M]1,0 =

~(f[M]1,0) and therefore ~03C9M(f) A [M]1,0 = 0, so ~b03C9M(f) = 0.
b) By (*), wm(f) = L(aF) so Cl)M(f) A [M]0,1 = aF A [M]O,’. Since F is

pluriharmonic, ~(03C9M(f) 039B [M]O,’) = 0 and therefore ~b03C9M(f) = 0.

2b) Extension to the general case.

Consider the dual decompositions:

where the projections T and r are defined in an obvious way, so the
operators ab and ab extend naturally to currents on M. Furthermore it
turns out that Ni and Ni are defined as N1, N1: 1,0*(X±) ~ D’(1,0)(M)
and they induce a continuous operator Ni-N1: gy10,O)(M) - D’(1,0)(M);
so if e.g. 0 ~(1,0)*(X+) we have:

Of course ~03B2 = 0 implies N1(03B2) = 0; we note also that if p is

holomorphic or (3 = a f for a real valued f, then N1(03B2) = 0; in parti-
cular if 03B3+(03B2) = 03B3+(f)~03C1 for a real valued function f, then:

Finally we have that MM can be extended as an operator
WM : D’(0,0)(M) ~ D’(1,0)(M) and remarks 2.2 a), b) hold.
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3. Traces of pluriharmonic functions

We are able now to give the following local solution to the trace
problem (Cauchy-Dirichlet problem) for the aa operator.

THEOREM 3.1: Let p E M and U be a neighbourhood of p ; assume
L(ap A 03B403C1 A ~~03C1) ~ 0 on M ~ U and let T be a real distribution defined
on U rl M ; then the following statements are equivalent :

i) ~b03C9M(T) = 0 on Un M
ii) there exists a neighbourhood V of p and there exists F E P(VBM)

such that 03B3+(F) - 03B3-(F) = T in U ~ V ~ M; more precisely if
the Levi form of p has a positive (resp. negative) eigenvalue at p we
can choose F 1 v- = 0 (resp. F|V+ = 0) and so T is actually the trace of
a pluriharmonic function.

PROOF: We have already observed that ii) implies i); conversely
assume ~b03C9M(T) = 0 on U n M ; let W C U be a Stein neighbourhood
of p: by assumption we have: a [wm(T) A [M n W]0,1] = 0 in W and so
there exists K E gyf(1,O)(W) such that ~K = wM(T) A [M n W]0,1.
|w+ and |w- are holomorphic (1, 0)-forms in W+ and W- respec-

tively, |w±~(1,0)*(W±) and 03B3+(|w+) - 03B3-(|w-) = 03C9M(T) on M n W
(cf. [8] th.II 1.3). Now assume the Levi form of p has e.g. a positive
eigenvalue at p; then klw- extends across M as a holomorphic (1,0)-
form 03B2 to a Stein neighbourhood V of p: if K+ = k 1 v, of course we
have: 03B3+(K+ - 03B2) = lùM(T) on M ~ W.

Furthermore we have:

in fact N,(K+ - 03B2) = 0 and so:

Let now (fn)n~N be a sequence of elements of (0,0)(V) such that
L(fn) ~ T in D’(0,0)(M ~ V); from (°) it follows

which proves (**).
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Now in V we have:

and thus ~(K+-03B2)039B[V+] is holomorphic in V and so ~(K+- 03B2) ~ 0
on V+.

It follows that on V: a [(K+ - j8) A [V+] - T 039B [M rl V]1,0] = 0 and so
it is possible to find Ô E D’(0,0)(V) such that:

Then if we set G = GBVBM we obtain aao = 0.
Thus we have the following:

a) G is a pluriharmonic function in VBM
b) Since G can be extended as a distribution across M and satisfies

aaG = 0, then (cf. again [8] corollaire 1, 2.6.) y+(G) and y-(G)
exist.

c) On V+ one has aG = K+ - 0.
We have also that 03B3+(G) + T is ab-closed: in fact:

Thus there exists an antiholomorphic function H on V+ such that
-y,(H) = 03B3+(G) + T.

It follows that F = H - G is a pluriharmonic function on V+ such that
y+(F) = T and since T is real we actually have y+(Re F) = T and the
proof of Theorem 3.1. is complete.

From Theorem 3.1. we can deduce first the following global solu-
tions of the Cauchy-Dirichlet problem:

PROPOSITION 3.2: Suppose the Levi form of p has least one positive
eigenvalue at every point p E M. Then there exists a neighbourhood U
of M such that the equation ~b03C9M(T) = 0 characterizes those dis-
tributions on M which are traces of pluriharmonic functions in U+.

PROOF: Theorem 3.1. assures that there exists a covering U =
(Un)n~N of M by open set of X such that for every n E N there
exists f n E P(U+n) for which 03B3+(fn) = T on M rl Un ; furthermore, if
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Un fl Um rl M ~ 0, one has 03B3+(fm) = 03B3+(fn) on Um ~ Un rl M and thus,
since the trace on M characterizes a pluriharmonic function, we have
fm = fn on U+n ~ U+m etc...

PROPOSITION 3.3: Suppose X is a Stein manifold, X+ is relatively
compact and L(ap A ap A ~~03C1) ~ 0. If T is a real distribution on M,
then the following statements are equivalent :

PROOF: i) follows immediately from ii); assume now i) holds: in

order to prove ii), we argue in the same way as in Theorem 3.1,
setting W = X and using Hartog’s theorem to extend Klx- to the
whole X.

Using standard cohomological arguments we can investigate the
global Riemann-Hilbert problem.
Let Y be the sheaf of germs of real distributions T on M such that

~b03C9M(T) = 0 and let Y be its trivial extension to X. Let s4 be the sheaf
of germs of distributions T on M such that ~bT = 0. Furthermore, let
ex be the sheaf of germs of real pluriharmonic functions on X and
*PM the sheaf on X associated to the canonical presheaf:

Assume L(ap 039B ~03C1 039B aap) Y-4 0 on M.
Let Re: A ~ J be the sheaf homomorphism defined by T - real

part of T, and let a be the sheaf homomorphism defined by:
03B1:*PM ~ J

COROLLARY 3.4: The sequences

are exact.
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PROOF: We need the following

LEMMA 3.5: Suppose M is not Levi-flat at p and let U be a

neighbourhood of p; let f± ~ P(U±) admitting traces -y,(f,) and

03B3-(f-) on U ~M. If furthermore 03B3+(f+) = 03B3-(f-), then there exists

f ~ P(U) such that f 1 u± = f±.

PROOF OF LEMMA 3.5: Since the problem is local, we can assume U

is a domain of Cn : then ~f± ~zj, 1 ~ j ~ n, are holomorphic in U±, -y, af+
and 03B3-(~f- ~zj) exist and Proposition 2.1. assures that 03B3+(~f+ ~zj) = 03B3-(~f- ~zj),
1 S j S n ; hence, we are essentially reduced to the case f ± holomor-
phic which follows from [8], Corollaire II 1.2.

PROOF OF THE COROLLARY 3.4: (1) In virtue of Theorem 3.1. a is

surjective and the previous lemma concludes the proof of the exact-
ness of (1).

(2) As a consequence of Lemma 3.5, we deduce easily that

ker Re = lm(î) and so we have to check that if p E M and T E Yp
then there exists f E Ap such that Re T = T.
Now in virtue of Theorem 3.1, there exist a neighbourhood U of p

in X and F E P(UBM) such that: T = 03B3+(F) - 03B3-(F); from [8] we
deduce that there exists G E O(UBM) such that Re G = F and y+(G),
03B3-(G) exist; (more in detail the,argument runs as follows: holomor-
phic and pluriharmonic functions with traces in the sense of currents
are characterized by finite order of growth with respect to p ([8]
Corollaire 1 2.6.) so F has finite order of growth with respect to p and
so does G, which can be expressed locally as G = F + iH, where H
satisfies dH = d’F etc ...); it follows that Re: A ~ J is surjective and
(2) is exact: so the proof of Corollary 3.4 is complete.

THEOREM 3.6: (Global solution of the Riemann-Hilbert problem for
aa) Suppose X is a Stein manifold and L(ap 039B ap A ~~03C1) ~ 0; assume
furthermore H2(X, ) = 0 or H’(M, R) = 0; then if T is a real dis-
tribution on M, the following statements are equivalent :

i) ~b03C9M(T) = 0
ii) there exists F E P(XBM) such that 03B3+(F) - 03B3-(F) = T.

PROOF: We observe that for a Stein manifold X we have the

isomorphism Hr(X, PX) ~ Hr+1(X, C) for r ~ 1; moreover we have:
H O(X, ) ~ H’(M, J).
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If H2(X, C) = 0 we obtain the exact sequence:

If H1(M, R) = 0 we obtain the exact sequence:

This concludes the proof.
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