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TRACES OF PLURIHARMONIC FUNCTIONS

Paolo de Bartolomeis and Giuseppe Tomassini

Introduction

Let M be a real oriented hypersurface in a complex manifold X,
which divides X into two open sets X* and X~

In this paper we characterize in terms of tangential linear differen-
tial operators on M the distributions T on M which are “jumps” or
traces (in the sense of currents) of pluriharmonic functions in X* and
X"

The starting point of our investigation is the non-tangential charac-
terizing equation 8,0T = 0, which can be deduced from the theory of
boundary values of holomorphic forms. If M is not Levi-flat, we
construct a second order tangential local linear differential operator
wpm such that if T is the trace on M of a pluriharmonic function h,
then wy(T) = oh. This enables us to prove that the tangential equation
dywm(T) = 0 characterizes locally the traces on M of pluriharmonic
functions on X* or X~ (local Cauchy-Dirichlet problem). From this
local result we deduce directly the global solvability of the Cauchy-
Dirichlet problem in the case M is either compact or its Levi form
has everywhere at least one positive eigenvalue.

Finally, using standard cohomological arguments the global Rie-
mann-Hilbert problem (“‘jumps’’ of pluriharmonic functions on X\M)
is solved if H¥X,C)=0 or H'(M,R)=0. Particular cases of our
problem have been investigated in [1], [3] (cf. also [2], [4]).

The present paper contains an improved version of the results
announced in [5].

1. Preliminaries and notations

In the present paper X will be a complex manifold of dimension
n=2,and M C X a real oriented connected C” hypersurface.
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30 P. de Bartolomeis and G. Tomassini [2]

We assume M is defined by p = 0 where p: X -»R is a C” function
such that dp# 0 on M.

We say that such a p is a defining function for M; M divides X
into two open sets X* and X, defined respectively by p >0 and
p <0;if U is an open subset of X, we will set U*= U N X*; we can
also assume that there exists an € >0 such that if |e| <, and M, is
the level hypersurface defined by p = €, there exists a diffeomorphism
we: M.— M.

We will use the standard notations for currents and distributions
spaces (cf. e.g. [9]); in particular we fix the orientation on M in such a
way that d[X*] = [M].

Furthermore we list the following definitions:

i) Let L: €7(X)—> €”(M) be the restriction operator; we set:
%(p,q)(M) = L(%“””(X)).

ii) Let K € 2'"(M): K A [M]will be the (r + 1)-current on X defined
by: (K A [M], ) = (K, L(¢)), ¢ € D*" " (X).

iii) We say that K € 9"”(M) is a (r, 0)-current (resp. (0, r)-current) if
(K A[M]DP9=0for p=r (resp. (K A[M])*” =0 for p =r); we denote
by 2'"%(M) (resp. 2'®(M)) the space of (r, 0)-currents (resp. (0, r)-
currents).

iv) If K € 92'""(M), then K A [M]" is the (r + 1, 0)-current defined
by: (K A[M]", ¢)=(K, L(¢)), ¢ € D™ "(X) and K A [M]* is the
(r, 1)-current defined by: (K A [M]*!, ¢) = (K, L(¢)) ¢ € 2" " "")(X).

v) Let a € €92(X™); we say that a admits trace K € 9"”(M) on M in
the sense of currents if for every ¢ € 2" "Y(M) we have:

limj a A T¥(p) = lim j Te(@) A @ =
0" JM, 0" JM
= lim (7e(a), @) = (K, ¢)
€0

(cf. [8]); we set K = y,(a); in the same manner we define y_(a) if
a € 8(X).

Let a € €”(X\M) such that y.(a) and y_(a) exist: we refer to
v+(a) — y-(a) as the jump of a on M.

We denote by €{(X*) the space of forms a € €")(X*) such that
v=(a) and y.(da) exist.

Observe that if a € €49(X"), in particular we have

3(y+(a) A IMTY) = (=1)""'y:(3a) A [M]™.
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2. Tangential operators on M

2a) The smooth case

A local linear operator ®: €®?(X)—> €")(M) is said to be tangen-
tial on M if from L(f) =0 it follows ®(f) = 0; a tangential operator
induces a new operator: €*9(M)- ¢"9(M) which will be denoted
again by ®.

Let now () be a Hermitian structure on X; without loss of
generality we can assume (dp, dp) =3 on M. Define:

NCOYM) ={a € €M) |a =9 rL(3p)} p=1
1PO(M) = {a € P)M) | (e, )=0 VB ENIM)}
FeOM)={a € *(M)|a =9 nL(3p)} q=1
EPO(M) = {a € E7(M) | (o, B)=0 VB EFPIM)}
We have the decompositions:

g(p,q)(M) — ./V(p"‘)(M)@ E(p,q)(M)
«g(p,q)(M) = ./\-f(p"')(M)@) g(p,q)(M)
and we denote by:
T %(p,q)(M)_, g(""')(M)
T g(p,q)(M)_, g(p,q)(M)
the natural projections; observe that 7(a)=7(8) is equivalent to
a A[M]"=BA[M]Y; we set d=70Lod and 8,=7oLod;

by definition 3, and 3, are tangential operators on M (cf. [6]).
The induced operators

Ap: g(p,q)(M)_) g(p+1,q)(M)
5b3 %(p,q)(M)_) E(P,qﬂ)(M)
are described by the formulas

dpa=T1°Lo3d(a A[M]Y)

dpa =7oLod(a A [M™.
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Thus

a(a A [M]™) = dpa A [M]°
a(a A [M1*) = dpa A [M]*

We consider in particular the following cases: f € €°9(X) and B €
€19(X),

a) if f € €°9(X) set:
N(f)=LI@f, p)] ~ N(f)= LIS, 3p)];
so we obtain on M:
L(3f) = asf + 2N (f)L(3p)
L(5f) = af + 2N (f)L(3p);
furthermore it is easy to check that:
i) atevery poin_t of M, N (f) represents the complex normal derivative
of f and N(f) + N(f) is the real normal derivative of f.
ii) f = N(f)— N(f) is a tangential operator on M ; thus we have also
e.g.:
L(3f) = af + [N(f) = N()IL(3p) + [N (f) + N()1L(3p)
b) if B € €"9(X) define N,(B) and N,(B) by the relations:
L(3B) = 9B +2N:(B)  L(3p)
L(3B +4B)— 7(3B + 9B) = Ni(B) A L(3p)

we observe that B — N(8)— Ny(B) is a tangential operator, and so
we obtain on M the decomposition:

L(3B) = 3B + [N\(B) — N1(B)] A L(3p) + [N«(B) + N1(B)] A L(3p)

which again enables us to isolate the genuine non-tangential com-
ponent of L(3B), namely (N«(B)+ Ni(B)) A L(3p).

Let UCX be an open set and let ?(U) be the space of real
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pluriharmonic functions on U (i.e. f € ?(U) iff f is real valued and
aof = 0).
We have the following:

PROPOSITION 2.1: Assume L(3p A dp A 3dp) # O; then there exists a
local linear differential operator R: €°Y(M)— €®°(M) such that if
h € ?(X) then R(L(h)) = L(N(h)+ N (h)).

PrROOF: Let h € P(X): define &, = dp + 0, *& = T0p + 70, 85 =
i(3, — 3); then omitting L to simplify our notations:

= 7(3pdph +20,N (h) A 9p + 2N (h)30p) = 7(3s35h) + 2N (R)(3,3p)
and also

0 = 77(30h) = 1(dpdsh) + 2N (h)7(3dp) = 7(3pdsh) — 2N (h)7(3»dp)
thus we obtain the relation:
(##)  *885h =2i[N(h)+ N(h)]7(3,3p);
taking the Hermitian product, we have:
(*8u85h, i7(3,9p)) = 2[N (h) + N (W)](li(3,0p)|).
Since it(9,dp), which is a real operator, represents the restriction to

M of the Levi form of p, in our assumption [|it(3,dp)|’ > 0 everywhere
and so the R we are looking for is given by:

R(f) =3[(*8:85f, it(3,0p)1iT(353p)]| .

We observe that in [10] a similar formula is proved in a more
laborious way.

For example in the case X = B2, the unit ball in C2, and M = bB?, we
obtain the formula:

_ 1 [ of of of _ | of -
R + — Zi+—=
= V2 3z, at 32, z az. 97, 22

aZf Zf 2f aZf
2( _ _
92107 252V 33,0 77 T 32097, 22 T ag,05, Z‘z‘)]

(cf. also [1]).
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Proposition 2.1 shows that if h is a pluriharmonic function on X
and M is not Levi-flat anywhere, then the real normal derivative of h
on M can be expressed by means of a real tangential operator R.

Thus we have on M:

(*) L(3h) = a,h + [N (h) — N (h)IL(3p) + R(h)L(3p)

let oy : €9%M) > €9(M) be defined by the right member of (*) we
have the following:

REMARKS 2.2: a) if f € €9%(M), then d,wum(f) = 0.
(b) if f is the restriction of a pluriharmonic function F then dyou (f) =
0.

PROOF: a) Let f € €®P(X*) be an extension of f; by Stokes’
theorem, L(3p)A[M]1°=0, so  ou(f)A[M]°=2afAr[M]"=
d(fIM1"®) and therefore dwu (f) A [M]*° =0, so dpwum(f) =0.

b) By (*), om(f) = L(3F) so wm(f) A[M]*' = dF A[M]*". Since F is
pluriharmonic, 3(wy(f) A [M1*") = 0 and therefore dpwp(f) =0.

2b) Extension to the general case.

Consider the dual decompositions:

g I(M)( M) =N n(p,q)( M) @ Er(p,q)( M)
9 r(n,q)(M) = ./V l(p,q)(M) @ gl(p,q)(M)

where the projections T and 7 are defined in an obvious way, so the
operators d, and 3, extend naturally to currents on M. Furthermore it
turns out that N, and N, are defined as N;, N;: €L%(X*)—> @'“9(M)
and they induce a continuous operator N; — N;: @'O(M) —» 2"“Y(M);
so if e.g. B € €LP(X™") we have:

¥+(3B) = 3B + (N1= N)(v.4(B)) A L(3p) + (N1 + N)(B) n L(3p).

Of course 9B =0 implies Ny(B)=0; we note also that if B is
holomorphic or g = of for a real valued f, then N;(B)=0; in parti-
cular if y.(B) = v.(f)dp for a real valued function f, then:

() (N1=N)(B) = (N:— Ni)(3fp — p3f) = (N1 — N1)(3fp) = .

Finally we have that wy can be extended as an operator
ou : D'OOM) - 9'"(M) and remarks 2.2 a), b) hold.



7 Traces of pluriharmonic functions 35
3. Traces of pluriharmonic functions

We are able now to give the following local solution to the trace
problem (Cauchy-Dirichlet problem) for the 38 operator.

THEOREM 3.1: Let p € M and U be a neighbourhood of p; assume
L(3p A 3p A 33p) #0 on M N U and let T be a real distribution defined
on U N M then the following statements are equivalent:

i) pou(T)=00n UNM

ii) there exists a neighbourhood V of p and there exists F € ?(V\M)
such that y.(F)—y(F)=T in UNVNM,; more precisely if
the Levi form of p has a positive (resp. negative) eigenvalue at p we
can choose F|y- =0 (resp. F|v+=0) and so T is actually the trace of
a pluriharmonic function.

ProoF: We have already observed that ii) implies i); conversely
assume dpwp(T)=0o0n U NM;let W C U be a Stein neighbourhood
of p: by assumption we have: 3[wm(T) A[M N W]*']1=0in W and so
there exists K € ""(W) such that 4K = wn(T) A[M N W]

K|w+ and K|w- are holomorphic (1, 0)-forms in W* and W~ respec-
tively, K|w= € €$O(W*) and y.(K|w+) — y-(K|w-) = om(T) on M N W
(cf. [8] th.II 1.3). Now assume the Levi form of p has e.g. a positive
eigenvalue at p; then K|w- extends across M as a holomorphic (1,0)-
form B to a Stein neighbourhood V of p: if K. =K |v+ of course we
have: y.(K:—=B)=wu(T) on M N W.

Furthermore we have:

**)  v+o(K+—B)=0
in fact Ny(K, — B) =0 and so:

v+[0(K+ — B)] = dp[y+(K+— B)] + 2(_1V1 - Nl)('Y+(K+ - B))_
= 3wy (T)+2(N; — N1)(wu(T)) = 2(N; — N)(8,T)

Let now (f,)nen be a sequence of elements of €%”(V) such that
L(f.)—> T in 2"®9(M N V); from (°) it follows

2(N, = N1)(3T) = lim 2(N, — N1)(85f,) = lim 2(N; — N1)(3f,) = 0

which proves (**).
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Now in V we have:
I[I(K:—B) ALV = y.(0K+— B) A [VNM]*' =0

and thus 9(K,— B) A[V*] is holomorphic in V and so 4(K,—B)=0
on V*.

It follows that on V: 3[(K:—B)A[V]—T A[M N V]**1=0 and so
it is possible to find G € 9"*(V) such that:

G =(K,—B)A[V']I-T A[M N V]

Then if we set G = G|y we obtain 339G = 0.
Thus we have the following:

a) G is a pluriharmonic function in V\M

b) Since G can be extended as a distribution across M and satisfies
339G = 0, then (cf. again [8] corollaire I, 2.6.) y.(G) and y.(G)
exist.

¢) On V' one has 4G = K, — 8.

We have also that y.(G)+ T is d,-closed: in fact:

A[(y+(G)+ T) AIM N V]I = wy(T) A[M N V] +
= 7+(3G) A M1 = 0op(T) A [M N V] =y (Ki = B) A [M N V]'™.

Thus there exists an antiholomorphic function H on V* such that
y+«(H)=v(G)+T.

It follows that F = H — G is a pluriharmonic function on V* such that
v+(F)=T and since T is real we actually have y,(Re F)=T and the
proof of Theorem 3.1. is complete.

From Theorem 3.1. we can deduce first the following global solu-
tions of the Cauchy-Dirichlet problem:

PROPOSITION 3.2: Suppose the Levi form of p has least one positive
eigenvalue at every point p € M. Then there exists a neighbourhood U
of M such that the equation 3,0yu(T)=0 characterizes those dis-
tributions on M which are traces of pluriharmonic functions in U*.

Proor: Theorem 3.1. assures that there exists a covering U =
(Un)wen of M by open set of X such that for every n €N there
exists f, € P(Uy) for which v,(f,)=T on M N U,; furthermore, if
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U, N U, N M#0, one has y.(fn) = y+(f») on U, N U, N M and thus,
since the trace on M characterizes a pluriharmonic function, we have
fu=f.on U:NU; etc...

ProprosITION 3.3: Suppose X is a Stein manifold, X™ is relatively
compact and L(3p A dp n d3p) #0. If T is a real distribution on M,
then the following statements are equivalent:

i) y0om(T)=0
ii) there exists F € #(X") such that y(F)=T

ProorF: i) follows immediately from ii); assume now i) holds: in
order to prove ii), we argue in the same way as in Theorem 3.1,
setting W = X and using Hartog’s theorem to extend K|x‘ to the
whole X.

Using standard cohomological arguments we can investigate the
global Riemann-Hilbert problem.

Let & be the sheaf of germs of real distributions T on M such that
dywu(T) =0 and let & be its trivial extension to X. Let & be the sheaf
of germs of distributions T on M such that 4,T = 0. Furthermore, let
Px be the sheaf of germs of real pluriharmonic functions on X and
+Pu the sheaf on X associated to the canonical presheaf:

B PU) if UNM=¢
«P(U) = {{fe PU) | y+(f), y-(f) exist on M} if U NM#§.

Assume L(dp A dp A 33p) # 0 on M.

Let Re: o > % be the sheaf homomorphism defined by T+ real

part of T, and let a be the sheaf homomorphism defined by:
a:*g’M—>9’

_[lyv+()—v-) ifxeEM
o(f) = { 0 if x&M °

COROLLARY 3.4: The sequences
(1) 0> Px—> 4Py >F -0
2 0-R 54 5950

are exact.
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ProoFr: We need the following

LemMA 3.5: Suppose M is not Levi-flat at p and let U be a
neighbourhood of p; let f.€ P(U*) admitting traces vy.(f;) and
v-(f-) on UNM. If furthermore vy.(fi)=vy-(f-), then there exists
f € P(U) such that f|y== f..

ProOOF OF LEMMA 3.5: Since the problem is local, we can assume U

of +)

is a domain of C": then af = 1=<j=n, are holomorphic in U* y+( 92
]

and vy (?9]; ,) exist and Proposition 2.1. assures that . (32 :) V- (%fzj)’

1=j=n; hence, we are essentially reduced to the case f. holomor-
phic which follows from [8], Corollaire II 1.2.

PROOF OF THE COROLLARY 3.4: (1) In virtue of Theorem 3.1. a is
surjective and the previous lemma concludes the proof of the exact-
ness of (1).

(2) As a consequence of Lemma 3.5, we deduce easily that
ker Re = Im(i) and so we have to check that if pEM and TE ¥,
then there exists T € &, such that Re T = T.

Now in virtue of Theorem 3.1, there exist a neighbourhood U of p
in X and F € ?(U\M) such that: T = y,(F)—vy_(F); from [8] we
deduce that there exists G € 0(U\M) such that Re G = F and v.(G),
v-(G) exist; (more in detail the argument runs as follows: holomor-
phic and pluriharmonic functions with traces in the sense of currents
are characterized by finite order of growth with respect to p ([8]
Corollaire I 2.6.) so F has finite order of growth with respect to p and
so does G, which can be expressed locally as G = F +iH, where H
satisfies dH = d°F etc...); it follows that Re: o —» & is surjective and
(2) is exact: so the proof of Corollary 3.4 is complete.

THEOREM 3.6: (Global solution of the Riemann—Hilbert problem for
83) Suppose X is a Stein manifold and L(3p A dp A 33p) # 0; assume
furthermore HXX, C)=0 or H'(M, R)=0; then if T is a real dis-
tribution on M, the following statements are equivalent:

1) 5wa(T) =0

ii) there exists F € ?(X\M) such that y,(F)— y(F)=T.

PrOOF: We observe that for a Stein manifold X we have the
isomorphism H"(X, ?x)~ H™"'(X, C) for r = 1; moreover we have:
HX, $)~ H'M, ).
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If HX(X, C) =0 we obtain the exact sequence:
0 HYX, Px)->HX, +Pu)—> H'M, $)>0
If H'(M, R) = 0 we obtain the exact sequence:
0->R—->H'M, 4)— H'M, ¥)-0
This concludes the proof.
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