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ON SINGULAR COMPLEX SURFACES WITH VANISHING
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@ 1981 Sijthoff &#x26; Noordhoff International Publishers - Alphen aan den Rijn
Printed in the Netherlands 

Let X be a normal compact two-dimensional complex analytic
space with (necessarily isolated) singular points x1, ..., x,. We want to
examine the relationship between global properties of X and local
properties of the germs (xi, 6x,x,). A standard technique for doing this
is to resolve the singularities and try to lift the problem under
consideration to the non-singular model, where the powerful
machinery of the theory of compact complex manifolds can be
brought into play. In particular this idea has proved quite successful
in studying the classical analytic invariants q = dim H’(X, ~X), the
irregularity, and Pg =dim H2(X,~X), the geometric genus. (Cf. Artin
[2], Laufer [22] for local versions of these ideas.)
Let 03C0:~X be a resolution of the singularities of X with excep-

tional set E = 03C0-1({~1,..., x.1). Then the Leray spectral sequence
shows that f or X = 1- q + pg the Euler characteristic, ~(~X) - x(6g) =
03A3ri=i dim (R103C0*~)xi, f or R103C0*~ the first derived sheaf of ~ via the
map 7T. That is to say, in passing from X to X, q goes up, pg goes
down, and the total change in X is completely determined by the
analytic structure of the germs of the singular points. However,
whether in a particular example it is q or pg (or both) that changes
depends not only on the singularities but on global properties of X.
(To see this, let X be the space obtained from the complex projective
plane P2 by blowing up 10 points on a non-singular cubic curve r, and
let X be the singular space obtained from X by collapsing the proper
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original version of Corollary 5 below and for suggesting improvements in the proofs of
Lemma 9 and Corollary 10.
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transform t to r of a point. Let Y be the compact surface obtained
by adjoining the infinity section to the total space of the normal line
bundle on f to the embedding of f in X, and let Y be the space
resulting from blowing down the zero section of Y. Then X and Y
are biholomorphic in a neighborhood of the singular point ([23],
Theorem 6.2), but q(X)=q()=0, pg(X)=1~pg()=0, while

pg(Y) = pg(Y) = 0 but q(Y) = 0~ q(Y) = 1. The singular spaces X
and Y have an important topological difference, too. Namely, on Y
the intersection (cup product) pairing H 2( Y, R) x H2(Y,R)~R is non-
singular (as is the case with non-singular spaces), while on X this
pairing has null eigenspace of dimension 2.)

In this paper we want to study normal compact analytic surfaces
with vanishing geometric genus. For singular surfaces this is a very

strong condition having surprising local consequences as well as global
ones. As will be seen such surfaces are very "manifold-like" in their

global properties and can have only very special kinds of singularities.
Below a surface is any reduced, irreducible two-dimensional complex
space, with or without singularities.

1. DEFINITION: A normal surface singularity x E X is vth-order
rational, v = 0, 1, 2, ..., if there is a normal (good) resolution 7r :  ~
X of the singularity of X at x for which the sheaf R103C0*JvE vanishes
at x, for E = 03C0-1(x) the exceptional curve of the resolution and for
JE C ~ the ideal sheaf of germs vanishing on E. If x E X is first-

order rational and if the associated dual intersection graph of the
curve E is acyclic, then x E X is called pararational.

REMARKS: (1) First-order rational singularities were introduced in
[8] where 1 called them "analytically rational" points to contrast them
with the so-called "topologically rational" points - those with

H’(E, R) = 0 - and expressly to spare the reader terms like "parara-
tional", "pseudorational", "almost rational", etc. The point of this
terminology was that there is a natural split exact sequence

which breaks the stalk (R103C0*~)x into an "analytic" component
(R103C0*JE)x and a component H1(E,~E) which is determined by the
topology of E. Thus rational ((R103C0*~)x = 0) is equivalent to analy-
tically rational and topologically rational together. Later it became

clear to me that "analytically rational" was not good terminology, and
in the first version of the present paper 1 called first-order rational

points with acyclic graphs "quasi-rational" - only to discover that



299

Abhyankar [1] had already coined the term quasirational to refer to
those singularities whose exceptional curves have only rational com-
ponents (a larger class than "topologically rational"). In this language,
rational is Abhyankar’s quasirational plus the present pararational.
The term "vth-order rational" is intended to suggest the vth-order
infinitesimal neighborhood (E, ~/JvE) of the embedding of E in X.

(2) Oth-order rational is the same as rational and implies 1st-order

rational, but in general there are no other implications between
vth-order and IL th-order rationality for various v and ii. For example,
among rational double points only those of type Ak (the singularities
xk+1+ y2 + Z2 = 0) are second-order rational, while the minimally ellip-
tic singularity x3+y3+z3=0 is vth-order rational ~v~1, but not
rational. A singular point is super-rational if it is vth-order rational Vv.

(3) For v = 0 and 1 the vanishing of R103C0*J03C0-1v(x) is independent of
the resolution v, but this is not true for general v. Indeed, if 7T : À - X
is any normal resolution and if :~X is obtained from v by
blowing up a point of intersection of two of the components of the
exceptional curve of 7T, then dim (R103C0*J-1v(x))x &#x3E; 0 for v~2. On the

other hand, for fixed v if this group vanishes for any normal resolu-
tion then it vanishes for the unique minimal normal resolution. All of
these ideas carry over immediately to higher dimensions and are
especially useful in the study of 3-dimensional isolated singular
points.

In the present paper, one of the main results (Theorem 10 below) is
that a normal algebraic surface with pg = 0 can have only pararational
singularities. If we assume in addition that X is Gorenstein - that is,
that the canonical line bundle Kxo on the regular points Xo of X is
trivial in a neighborhood of each singular point - then much finer
results are possible. Indeed, under some further global conditions it is
shown (Theorems 14 and 15 below) that only rational double points
and minimally elliptic singularities of type El (Laufer’s classification
[25]) can occur. A summary of results of this kind classifying singular
Gorenstein surfaces with pg = 0 and their possible singularities is

given in the chart at the end of section III below.

I. Pararational singularities

Let X be a normal Stein surface with exactly one singular point x.
Let 7T:  ~ X be the minimal normal resolution with exceptional set
E = 7T-I(X) = Usi=1 E,, Ei irreducible. That is, each Ei is a non-singular
curve, Ei meets Ej (if at all) transversally in a single point, Ei n Ej n
Ek = Ø for distinct indices i, j, and k, and if 03C0’:X’~X is any other
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resolution whose exceptional set has these properties then 7T’ factors

through 7T. Denote by .JE C ~ the (reduced) ideal sheaf of E in X. In
the unpublished notes [7], first-order rational points (those for which
the derived sheaf R103C0*JE identically vanishes) were studied, with
these conclusions among others:

2. LEMMA: Let 03C0:~X be the minimal normal resolution of a
normal singular point x E X with exceptional curve E = U i=l Ei. For
each i put ni = 03A3j~i Ej - Ei = the number of curves Ej meeting Ei, i~ j,
and put mi = Lji Ej - Ei = the number of curves Ej meeting Ei with
j  i. Denote by gi and ET respectively the genus of Ei and the

self -intersection number of Ei on X, and suppose that ~i we have the
estimate

Then (R l’TT *.1E)x = o.

3. COROLLARY: For 03C0:~X as above, if E has no cycles in its

graph and if

for all i ; or if for some index io,

while (1) holds ~i~ io; then x ~X is pararational.

Corollary 3 follows from the Lemma by noting that E acyclic
implies that the Ei can be ordered in such a way as to make the
integers mi of the Lemma all equal to 1, except the first, which is

equal to zero. The proof of the Lemma follows the Grauert-Laufer
technique of considering successive products of powers of the ideal
sheaves of the Ei. Since 2 and 3 will not be needed explicitly in the
sequel the proofs will not be given, but we will need the following
converse, whose proof will illustrate the technique.

4. LEMMA: Let x E X be a pararational two-dimensional singular
point and let 03C0:~X be a normal resolution with exceptional set
E = U /=i Ei. Then for E;, gi, ni the self -intersection of Ei, genus of Ei,
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and number of components Ej ~ Ei meeting Ei, for all i we have

PROOF: Let JEl denote the locally principal, locally prime ideal
s

sheaf of germs of functions vanishing on Ei. Then if JE = Q9 i = l .!J£. is the

ideal sheaf of E we have the exact sequence of sheaves 0 ~ JElJE~
JE ~ JE/JElJE ~0. Taking cohomology on X, this gives the exact

sequence

Without loss of generality we may take X Stein and contractible onto
x and with x as its only singular point. Then H2(, F) = 0 for any
coherent analytic sheaf F, and we conclude that H1(,JE)~
H|(, JE/JElJE) is surjective. But also X Stein and contractible

implies that H’(X, .1E) == (R 17T *.1E)x, which by the condition x parara-
tional is zero. Therefore H1(, JE/JEiJ) = 0.
Now JE/JElJE is supported on the curve Ei, and on Ei is the sheaf

s

of germs of sections of the line bundle L=~[Ej]-1|El, for [Ej] the

bundle on X of the divisor of Ej. This line bundle has Chern class
(degree) equal to - 03A3sj=1 Ej · Ei = -E2i - ni. By Riemann-Roch on Ei,

Since H’(Ei, L) = H1(, JE/JElJE) = 0 we conclude that

5. COROLLARY: Let x be a pararational Gorenstein point of a
surface X. Suppose that x is not a rational double point and that the
minimal resolution 7T: ~X is normal. Denote by E = ~si=1 Ei the
exceptional curve of 7T, and in a neighborhood of E put Kx =

~si=1 [Ei]-ki for some integers ki. Then for gi the genus of Ei we have the
inequality
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PROOF: Since ir is the minimal resolution, ki ~ 0 Vi. Indeed, since x
is not a rational double point, each ki ~ 1, for the adjunction formula

shows that if ki = 0 then g; = 0, ET = -2, and the same is true for

every Ej meeting Ei. Since E is connected, then, K is trivial in a
neighborhood of E, which property characterizes rational double

points.
Put ni = Ej,i Ej - Ei as in Lemma 4. Then (***) can be written as

Applying Lemma 4, since ki ~ 1 Vi,

f or each i. Summing,

By the condition of no cycles in the graph of E, Lf=l ni = 2(s - 1), so
we have

which is equivalent to (**).
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REMARK: It will be noted that only topological properties of the
canonical bundle K were used in the proof, nor did the fact that the
ki were integers (instead of just rational numbers) play a role. But if X
is any contractible Stein surface and 7T:  ~ X is a resolution, then
the first Chern class c1 = c(K-1) satisfies c1=03A3si=1 kic([Ei]) E
H2(, Q)~ H 2(E, 0), for the ki some rational numbers. The formula
(**) remains valid in this case for any pararational singularity for
which ki ~ 1 Vi when 7T is the minimal normal resolution.

6. DEFINITION (Wagreich [27], Laufer [25]): A normal two dimen-
sional singular point x E X is elliptic if X(Z) = 0 for Z the fundamen-
tal cycle of the minimal resolution. (If 03C0:~X is the minimal

resolution, with 7T-I(X) = E = ~si=1 E,, then the fundamental cycle Z =
Li=l aiEi is the smallest positive cycle supported on E with Z. Ei :5
0~i.) x~X is minimally elliptic if ~(Z) = 0 and ~(Z’)&#x3E;0 for all

positive cycles Z’  Z. A minimally elliptic singularity is of type El if
E consists of a single non-singular elliptic curve, and is of type No
(for "node") if E is an irreducible rational curve with a node

(ordinary double point) or a collection of non-singular rational curves
forming one big cycle ([25], section 5). In the present paper sin-

gularities of type No will appear later in connection with non-

algebraic surfaces with pg = 0 - see chart below.

7. LEMMA: If x E X is pararational Gorenstein, and if X admits a
normal resolution 03C0:~X of the singularity of X at x whose

exceptional set E is irreducible, then for g the genus of E and k
satis f ying Kx [E ]-k as in Corollary 5, either

(a) g = 0, k = 0, and x is the rational double point Ai, or
(b) g = 1, k = 1, and x is a minimally elliptic singularity of type El.

PROOF: Again by adjunction

whence g = 0~k=0 and E2 = - 2, and g=1~k=1. These are

respectively the cases (a) and (b). We must show that nothing else can
occur, namely that g &#x3E; 1 is impossible.
Suppose g &#x3E; 1. By Corollary 5 (g - 1)(k - 3) ~ 0, so k must be 2 or

3. If k = 2, then arguing as in the proof of Lemma 4 and using Serre
duality,
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a contradiction. Similarly if k = 3, 0 = H’(E, [E]-1|E) = H°(E, [E]-1|E)
(Serre duality and adjunction). Then from the sequence

we have H1(,J2E) = 0. But then from

we conclude that H’(E, [E]-2|E) = HO(E, CE) = 0, an absurdity. This
completes the proof.

II. Singular surfaces with pg = 0

Pararational singularities are interesting objects in their own right
and deserve, 1 think, further study (for instance, Corollary 5 for

Gorenstein singularities can be improved by the technique of Lemma
7). But now we want to turn to global considerations.
We will rely heavily on the relations between global topological and

analytic invariants of a singular surface X and its non-singular model
X. If X is a normal surface and if 7r À - X is a normal resolution of
singularities with exceptional curve E, then 7r induces an exact

commuting diagram
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where the top row is the Leray spectral sequence and the vertical
arrows are induced by the inclusions of R into 6x and 6g (see [8],
Lemmas 1 and 2, where the properties of this diagram are worked out
in great detail). jl, hence also jl, is injective. Since E is exceptional its
components Ei span a negative definite (with respect to the inter-

section pairing) subspace e of H2(X, R) and i2 maps Z isomorphically
onto H2(E, R). Thus i2 is surjective and 03C03 is an isomorphism. ’TT 2

preserves positive eigenspaces, while 81 maps H’(E, R) onto the null
space of H2(X, R).

9. LEMMA: Let X be a normal (possibly) singular complete ab-
stract algebraic surface over C. Suppose that X admits a resolution of
singularities 7r : ~ X which preserves the geometric genus. Then

(a) X is a projective variety,
(b) each singular point of X is pararational, and
(c) the intersection pairing on X is non-singular with positive

eigenspace of dimension 2pg + 1.

PROOF: Since pg is a birational invariant of non-singular surfaces
we may assume that 7r is the minimal normal resolution. X, being a
non-singular algebraic surface, is projective. That 7r preserves pro-

jectivity (in both directions) in the presence of the condition pg() =
pg(X) is shown in [8] (Corollary 5 and Proposition 7 and their proofs).
Thus X is projective.

For parts (b) and (c) we chase the diagram (8). By hypothesis 2 is
an isomorphism, so cp is surjective. Since X is algebraic, j’ is an

isomorphism (of real vector spaces). Thus ’/1 is surjective and we
conclude that

(Here bi denotes the ith Betti number and h’(W) the (complex)
dimension of Hi(F) for F a coherent analytic sheaf.) On the other
hand for FE the ideal sheaf of E the exact sequence

shows that

Since h1(~E)=1 2b1(E)+1 2g(E) for g(E) the number of independent
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cycles in the graph of E, (1) and (2) imply h0(R103C0*JE) = g(E) = 0 (i.e.,
the singularities are pararational; this proves (b)), and 1Jt is an

isomorphism. But then i’ is surjective and the nilspace of H2(X, R) =
im(03B41) = 0, as claimed in (c). The last assertion in (c) follows from the
fact that 7T2 preserves the positive eigenspace and that (c) is va:id for
any non-singular algebraic surface ([20], 1, Theorem 3).

10. THEOREM: Let X be a normal compact complex analytic sur-
face with pg = 0. Then for 03C0:~X a resolution with exceptional
curve E, R103C0*JE ~ 0 on X.

Indeed, either

(a) X is a projective variety with only pararational singular points
and with intersection pairing non-singular with 1-dimensional positive
eigenspace, or

(b) X is bimeromorphically equivalent to a non-singular surface of
type VII0 (Kodaira’s classification [20] - i.e., to a non-algebraic sur-
face with q = b1 = 1), and either

(i) all singularities of X are rational and q(X) = bi(X) = 1, or
(ii) X is regular (q(X)=bi(X)=0) and all singularities of X are

rational except one, that one exception being elliptic.
In (b) the cup product pairing is either negative definite (~ all

exceptional curves Ei are rational) or with a 1-dimensional null

eigenspace and no positive eigenspace (O one of the Ej’s is elliptic).

REMARK: Singular surfaces of type (b)(i) can always be con-

structed by the following trivial device: start with a non-singular
surface X having whatever properties you like, perform some iterated
monoidal transformations, thus introducing some rational curves with
various negative self intersections, then blow down some of these.
The resulting singular surface X will have only rational singularities
and will have essentially the same global properties a.s X.
The most interesting examples of type (b)(ii) are the singular

surfaces of Inoue-Hirzebruch ([19]; cf. [18], [15], [16]). These spaces
are obtained by compactifying quotients mod certain groups T of
automorphisms of H X C, H the half-plane, with two singular points,
then identifying the points by an involution. Such a surface X has
q = bi = 0, pg = b2 = 0, and its singular point is elliptic of nodal type
(type No). Alternatively, for spaces of our type (b)(ii) with b2 &#x3E; 0,
resolve just one of the two singular points of the compactification X
of (H x C)/r. (X itself, however, has pg = 1.)

Further examples of (b)(ii) are obtained from non-singular elliptic
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Hopf surfaces by blowing up points on a general fibre E of an elliptic
fibration, then blowing down the resulting negatively embedded ellip-
tic curve E, or a star consisting of É and some of the rational curves
born of the blowings up.

PROOF oF THEOREM 10: Let 03C0:~X be a resolution. Then

pg() = 0, so the classification of surfaces shows that either X is

algebraic or else q(X) = b1() = 1, and X is a surface of type VIIo. In
the first case X is also algebraic and Lemma 9 applies. In the second
we have

the sum taken over the singular points xl, ... , xr of X. The pos-
sibilities are ((b)(i)) q(X) = 1 and all the singularities are rational, or
q(X) = 0 and we are in case (b)(ii). (A singular point x with

(R103C0*~)x = C is necessarily elliptic ([25], Theorem 4.1).)
For the vanishing of R103C0*JE and the assertions about the cup

product, in the non-algebraic case the diagram (8) reduces to

If the singularities are rational, b,(E) = hO(R 11T*Úx) = 0 and the

diagram shows that b°(X) = 0, for b° the dimension of the nilspace. In
the elliptic case,

and by the diagram

Since bl(E) &#x3E; 0, also h1(~E) &#x3E; 0, whence h0(R103C0*JE) =
03A3ri=1 dim(R103C0*JE)xi = 0 as claimed. Indeed, (t) and (tt) show that
h1(~E) = 1, so there are two possibilities:

(a) One of the Ei is elliptic, all the rest are rational, and the graph
of E is acyclic. Then b1(E) = 2 and by (tt) b0(X) = 1. Or

(0) Ei is rational Vi and the graph of E contains one cycle. Then
bl(E) = 1 and b°(X) = 1. The desired conclusions now follow from the
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facts that non-singular surfaces of type VIIO have negative definite
intersection pairing (X is not necessarily minimal, so this remark is
not vacuous even for spaces derived from Hopf surfaces and Inoue’s
surfaces SM, S(±)N ([18]), whose minimal models have b2 = 0), and that
b + is preserved by resolutions of singularities.

REMARK: To anticipate the needs of the next section we observe
here that if each singular point is Gorenstein then the rational points
are all double points, while the one elliptic point occurring in case (b)
(ii) of Corollary 10 is necessarily minimally elliptic of type El or of
type No ([25], Theorems 3.5, 3.10, and 4.3 and its proof).

III. Gorenstein surfaces

In this section we want to make fuller use of the classification of

non-singular surfaces and in particular the notions of plurigenera and
canonical dimension. We review briefly some facts about Gorenstein
surfaces. A Noetherian commutative ring R is Gorenstein if it has

finite injective dimension. If (x, Cx,,) is the germ of an n-dimensional
analytic space, then the ring Cx,, is Gorenstein if and only if it is

Cohen-Macaulay and the canonical module 03A9~X,x = ExtN-n(~X,x, ~CN,~)
is free of rank one, for X C CN a local embedding. An analytic space
(X, Ox) is Gorenstein if OX,x is a Gorenstein ring V x E X. If X is

Gorenstein then evidently the canonical sheaf 03A9X whose stalk at x is

03A9~X,x is the sheaf of germs of sections of a holomorphic line bundle
Kx, the canonical line bundle of X. Kx restricted to the regular points
Xo of X is the usual bundle of holomorphic n-forms on the complex
manifold Xo. ([14]; [17], section 3).

Let X be a two-dimensional Gorenstein analytic space (a Goren-
stein surface). If 7r :  ~ X is a resolution of singularities with excep-
tional curve E = ~si=1 Ei, then the canonical bundle K on X satisfies

Kx = 03C0*KX~(~ [Ei]-kl) for some integers k; (= order of the pole on

Ei of a meromorphic 2-form defined in a neighborhood of E and
without zeros or poles except on E). ki ~ 0 unless Ei is a non-singular
rational curve with self-intersection -1 (an "exceptional curve of the
first kind"); if E contains no such components then ki = 0~Ei is a
non-singular rational curve with self-intersection -2, and so is each
analytic component Ej of the connected component of E containing
Ei. If E contains no exceptional components of the first kind and if
ki = 1 for some i, then gi &#x3E; 0 implies that Ei is a non-singular elliptic
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curve, while if Ei contains a singular point then Ei is a rational curve
with one simple node or one simple cusp; in each of these cases Ei is
an isolated component of C. (These observations follow, as in the

proof of Corollary 5 above, from the adjunction formula 2gi - 2 +

203B4(Ei)=-03A3j~i kjej - Ei - (ki - 1)E2i, where 03B4(Ei) is the "number of

nodes and cusps", counted with appropriate multiplicities, etc., on Ei.)
If X is Gorenstein we may define as usual the mth pluri-genus

Pm(X) = dim H°(X, KmX) and the canonical dimension 03BA(X) = order of
(polynomial) growth of Pm as a function of m. Since Pm(X) ~
Pm()~m, 03BA(X)~03BA().

11. DEFINITIONS: Let X be a normal compact complex surface.
Then

(a) X is minimal if b2(X) is smallest among all surfaces

bimeromorphically equivalent to X.
(b) X is essentially non-singular if it has only rational double

points as singularities.
(c) X is called a projective ruled cone if it is the space derived from

a non-singular projective ruled surface, with no singular fibres, by
blowing down the base curve. (A non-singular surface X is ruled if

there is a proper regular map 03C1: ~ T onto a non-singular algebraic
curve r, whose general fibre is a non-singular rational curve. If p has
no singular fibres then X is the total space of a P1-bundle on h and as
such contains a zero-section, the base curve B ~ r, which we may
take to have non-positive self-intersection, and an "infinity-section"
B~, with B2~ = -B2~0.)

(d) X is quasi-rational if it is (abstract) algebraic and Gorenstein
and if q(X) = pg(X) = 0 and Pm(X) = 0 Vm = 1, 2,....

REMARK: The point of definition (b) is that rational double points
make no contribution at all to many global properties of surfaces,
while to others their contribution is completely straightforward and
easy to deal with. Thus the theory of complex manifolds of dimension
2 can easily be expanded to take in the "essentially non-singular"
surfaces. For example

12. PROPOSITION: Let X be an essentially non-singular compact
surface. Denote by bi, b +, b -, b 0, and e respectively the i th Betti

number, the dimension of the positive, negative, and null eigenspace of
the cup product pairing, and the topological Euler number. Denote by
Kx the canonical bundle and by 03BC(X) the sum of the Milnor numbers
of the singular points xi - i.e., of the number of vertices ki of the
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Dynkin diagrams Ak,, Dk,, or Ek, associated to the xi (see [13], [3], for
the graphs Ak, Dk, Ek; [24], [26] for 03BC). Then

(a) (Poincaré duality, Hirzebruch index theorem, etc.) bi(X) =
b4-i(X)~i, b0(X)=0,

and b+(X) - b-(X) = 1(Ki - 2e(X) + 03BC(X)).
(b) (Kodaira’s algebraicity criteria.) If X admits two algebraically

independent rneromorphic functions, or if X admits a holomorphic
line bundle with positive self -intersection (in particular if K2X &#x3E; 0), or
if pg(X) = 0 and b1(X) ~ 1, then X is projective algebraic.

(c) (Serre duality and Hirzebruch Riemann-Roch.) For L a

holomorphic line bundle on X, Hi(X, ~X(L)) ~
H2-i(X, ~X(KX~L-1))~i, and

(d) If 03C0:~X is the minimal resolution of singularities then

bi()=bi(X) for i~2, b+()=b+(X), b-()=b-(X)+03BC(X),
Pg(X) = pg(X), q() = q(X), K = 03C0*KX, Hi(X, ~(03C0*L)) ~
H’(X, Cx (L» V line bundles L on X, X is projective ~ X is projective
([3], Theorem 2.3; [8], Corollary 11), etc.

See also Burns and Wahl [11] for the contribution of rational

double points to deformations. The relations (d) provide the proofs of
(a)-(c).
With respect to definition (d) we note that by Theorem 10 above a

quasi-rational surface has only pararational singularities. Further-

more, since Pm()~Pm(X) = 0 for X a non-singular model of a

quasi-rational surface X, it follows from the classification of non-

singular surfaces that every such X is birationally equivalent to a
ruled surface over a curve r of genus g = 1 2b3(X) ([18], Proposition
16.) In particular,

13. OBSERVATION: A quasi-rational surface X is rational (bira-
tionally equivalent to the complex projective plane P2) V b3(X) =
0 V X is essentially non-singular.

PROOF. For 03C0:~X a resolution, 1 2b3(X)=1 2b3()=q()=
~(~X)-~(~)=03A3dim(R103C0*~)x1, the sum taken over the singular



311

points x1,..., xr of X. Now a ruled surface X is rational Vq(À) = 0,
so X, being birationally equivalent to X, is rational ~b3(X) =
03A3ri=1dim(R103C0*~)xi = 0, i.e., ~b3(X) =0 and each xi is rational. But

among rational singularities only the classical double points Ak, Dk,
and Ek are Gorenstein ([25], [12]). This completes the proof.

14. THEOREM (Classification of minimal quasi-rational
surfaces): Let X be a minimal quasi-rational surface. Then either

(a) X is essentially non-singular rational, or
(b) X is a projective ruled cone over an elliptic curve.

Indeed, in the first case either X = P2, X = the singular quadric
hypersurface QÕ = {x2+y2 + z 2 =0} C C3 = P3, or X is obtained from
P2 by the successive application of some number s, 3 s s ::; 8, of

monoidal transformations, followed by the blowing down of precisely
s non-singular rational curves, each with self-intersection - 2 (cf. [9],
Proposition 4).

PROOF: In [10] are determined all Gorenstein surfaces with nega-
tive canonical bundle. They are all of type (a) or (b) above. Of these
only the spaces described by the last statement of the theorem have
b2 = 1. Thus it suffices to show that b2(X) = 1 and Kx is negative. But
as remarked above Pm(X) = 0~m~ X is birationally equivalent to a
projective ruled surface and so has (an infinite family of) ruled cones
X’ in its birational equivalence class. Since b2(X’) = 1 for X’ a ruled
cone, minimality of X guarantees b2(X) = 1.
Now by Lemma 9 X is projective, so X admits a positive line

bundle L. Thus, positivity of line bundles being a topological pro-
perty, b2(X) = 1 ~ every holomorphic line bundle on X is either

positive, negative, or topologically torsion, while q(X) = 0 implies
that a topologically torsion bundle is analytically torsion. Since no
positive power of Kx admits a section, Kx cannot be positive or
torsion. Thus Kx must be negative, and we are done.

It remains to consider those Gorenstein surfaces whose non-sin-

gular models are not ruled. This turns out to be quite easy.

15. THEOREM: Let X be a complete algebraic Gorenstein surface
with pg = 0, and let 1T : ~ X be a resolution of singularities. Suppose
that X is not ruled. Then either

(a) X is essentially non-singular, or
(b) X has exactly one minimally elliptic singularity of type El, and

every other singular point is a rational double point.
Case (b) does not occur if X is of general type.
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PROOF: By the classification of non-singular surfaces ~() ~ 0 if X
is not ruled ([20], [6]). Since pg() = pg(X) = 0, the only possibilities
are q() = 0 or 1. Thus q()-q(X)=03A3ri=1 dim(R103C0*~x)xi ~1, so

every singular point of X is rational except at most one, and that one
exception xio, if it occurs, has R103C0*~X,xl0 =C. As before Gorenstein
implies that the rational points are double points while xi0 is minimally
elliptic. Checking Laufer’s lists [25] of minimally elliptic singularities
it is immediate that only those of type El are pararational. Thus (a)
and (b) are the only possibilities.

If X is of general type, then ~(~)~1, so pg()=0~q() =
q(X) = 0 and we are in case (a), Q.E.D.

REMARK: Examples of such surfaces are, for (a) simply take a
surface X of general type with Pg = 0 and blow down all curves which
are simultaneously base curves for all pluri-canonical systems |Km|.
The resulting surface will be essentially non-singular with pg = 0 and
will still be of general type - in fact X, but not in general X, will admit
pluri-canonical projective embeddings (Bombieri [5], Bombieri and
Husemoller [6], part V). For (b) the easiest construction is to take a

non-singular elliptic surface with pg = 0, blow up a point on a non-
singular fibre T of an elliptic fibration, then blow down the proper
transform f.
With the above results in hand the accompanying chart is constructed

merely by comparing our findings above with the classification theory
for non-singular surfaces ([20], [6]).
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