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§0. Introduction

Let X be an algebraic variety. S. litaka [5] defined the Kodaira
dimension K(X) as a fundamental birational invariant of X. 03BA(X)
takes a value among -~, 0, 1,..., dim X. In this paper we shall study
the structure of X such that 03BA(X) = 0. Everything in this paper is

assumed to be defined over the complex number field C.

THEOREM 1 = MAIN THEOREM: Let X be a non-singular and pro-
jective algebraic variety and assume that K(X) = 0. Then the Albanese
map a : X ~ A(X) is an algebraic fiber space.

An algebraic fiber space is a morphism of non-singular projective
algebraic varieties which is surjective and has connected fibers.

COROLLARY 2: If 03BA(X) = 0, then the irregularity
q(X) -def dim HO(X, 03A91X) ~ dim X. Moreover, if the equality holds,
then a is a birational morphism. In other words, K(X) = 0 and

q(X) = dim X give a characterization of an abelian variety up to

birational equivalences.

Theorem 1 follows from the following two theorems by a standard
argument in the classification theory of algebraic varieties by Iitaka
and Ueno.

* This work was presented as a doctoral thesis to the Faculty of Science, University of
Tokyo and was partially supported by the Sakkokai Foundation.

0010-437X/81050253-24$00.20/0
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THEOREM 3: Let f : X ~ Y be an algebraic fiber space. Assume that
03BA(X) ~ 0 and K ( Y) = dim Y. Then 03BA(X) = K (Y) + K(F), where F is a

general fiber of f.

THEOREM 4 ([9]): Let f : X - A be a finite and surjective morphism
from a complete normal algebraic variety X to an abelian variety A. If
K(X) = 0, then f is an etale morphism.

Theorem 3 follows from the following Theorem 5, which is a

generalization of the main result of Fujita [2].

THEOREM 5 = MAIN LEMMA: Let f : X ~ Y be an algebraic fiber
space which satisfies the following conditions :
(i) There is a Zariski open dense subset Yo of Y such that D =def y -

Yo is a divisor of normal crossing on Y.
(ii) Put Xo = f-1(Y0) and fo = f Ixo. Then f o is smooth.
(iii) The local monodromies of R"fo-Cx,, around D are unipotent,

where n = dim X - dim Y.

Then f*KX/Y is a locally free sheaf and semi-positive, where Kx/y
denotes the relative canonical sheaf.

A locally free sheaf V on a com’plete normal algebraic variety X is
said to be semi-positive if for any non-singular projective curve C, for
any morphism cp : C ~ X and for any quotient invertible sheaf Q of

cp * V, we have degc Q ~ 0. Note that in Theorem 5 only the special
hypothesis is the unipotence in (iii). For a proof of Theorem 5 we use
the theory of variations of Hodge structures and the theory of mixed
Hodge structures by P. Griffiths, P. Deligne and W. Schmid.

In §1 we shall recall some results by litaka and then prove that
Theorems 3 and 4 imply Theorem 1. In § 2 the problem will be

reduced to the case where the local monodromies are unipotent. This
step is similar to a "stable reduction". In § 3 we shall prove that
Theorem 5 implies Theorem 3. In § 4 we shall prove Theorem 5. In § 5
we shall extend our results to compact Kaehler manifolds and to

non-complete algebraic varieties.
This work was mainly prepared when the author was in Mannheim

University. He wishes to express his thanks to the members there,
especially to Prof. H. Popp and to Dr. E. Viehweg for valuable
discussions. He also thanks Prof. T. Fujita who pointed out a

mistake in the first version of this paper, and to Prof. S. litaka and

Prof. K. Ueno who originated the classification theory of algebraic
varieties. He gives his hearty thanks to Prof. S. litaka, his thesis
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advisor, for the discussions during the preparation of the present
version of this paper.

§ 1. Classification theory

Let us recall some definitions and some fundamental results in the

classification theory of algebraic varieties by litaka. We refer the
reader to [13].

DEFINITION: Let X be a complete normal algebraic variety and let
L be a line bundle on X. The L-dimension K (L, X) of the pair (L, X)
is defined as follows. Let N(L, X) = f m ~ N; H°(X, mL) ~ 0}, where
mL is the m-th tensor power which is usually denoted by L0m. For
m E N(L, X) let (PmL: X.. ~ Pl(mL)-1 be the rational map associated to
the line bundle mL, where 1(mL) = dim H’(X, mL). If N(L, X) =,0,
then we put K(L, X) = -00. If N(L, X) ~ , then 03BA(L, X) =
maxm~N(L,X)(dim 03A6mL(X)). Note that K(L, X) ~ dim X. Let D be a

Cartier divisor on X. We define the D-dimension K(D, X) to be

K(O(D), X).
If X is non-singular, the Kodaira dimension 03BA(X) of X is defined

by K((X) = K(Kx, X), where Kx is the canonical line bundle. For

m ~ N we call Pm (X) =def l(mKX) = dim H°(X, mKX) the m-genus of
X. It is easy to see that if X and X’ are birational, then K(X) = K(X’)
and Pm(X) = Pm (X’) for all m ~ N. Thus in general for any algebraic
variety X, we can define 03BA(X) =def 03BA(X*) and Pm(X) =def Pm(X*),
where X* is a complete non-singular algebraic variety which is

birationally equivalent to X. It is important to note that they do not
depend on the choice of the birational model X*.

THEOREM 6 (Theorem 8.1 of [13]): Let X be a complete normal
algebraic variety and let L be a line bundle on X. Then there exist
positive numbers a, 03B2 and a positive integer mo such that the following
inequalities hold for any integer m ~ mo:

where d is the greatest common divisor of N(L, X).

PROPOSITION 7: Let LI and L2 be two line bundles on X and

assume that there is a non-zero homomorphism L1 ~ L2. Then

03BA(L1, X) ~ 03BA(L2, X).
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PROPOSITION 8 (Theorem 5.13 of [13]): Let f : X - Y be a surjective
morphism of complete normal algebraic varieties and let L be a line
bundle on Y. Then 03BA(f*L, X) = K(L, Y).

COROLLARY 9: Let f : X ~ Y be a generically surjective and

generically finite morphism of algebraic varieties. Then 03BA(X) ~ K(Y).
Moreover if X and Y are both complete and normal and f is etale, then
K(X) = K(Y).

THEOREM 10 (Theorem 5.10 of [13]): Let X be a complete normal
algebraic variety and let L be a line bundle on X. We assume that

03BA(L, X) ~ 0. Then there exist non-singular projective algebraic
varieties X* and Y* and a surjective morphism 03A6: X* ~ Y* which
satisfy the following conditions :
(1) There is a birational morphism 03C0 : X* ~ X.
(2) dim Y* = 03BA(L, X).
(3) There is a subset U of Y* which is a complement of countable

union of proper algebraic subsets of Y*, such that each fiber
X*y = def 03A6-1(y) is irreducible and non-singular for y E U.

(4) K (zr *L 0 OX*y’ X*y) = 0 for y E U.
(5) 03A6 : X * ~ Y * is birationally equivalent to the map 03A6mL : X ·· ~

03A6mL(X) for some m.
(6) The triple (X*, Y*, f) is uniquely determined up to birational

equivalences by the properties (1) through (4).

DEFINITION: The morphism 03A6 : X* ~ Y* is called the Iitaka

fibering associated to the pair (L, X). When X is non-singular and
L = Kx, then we call it the Iitaka fibering of X. A fiber X1 for y E U
is called a general fiber of 03A6. An algebraic fiber space is a surjective
morphism f : X ~ Y of non-singular projective algebraic varieties

which has connected fibers. In general, a geometric fiber of an

algebraic fiber space which is situated on a generic point of Y is

called a general fiber. This concept is not so clear because we use

both algebraic and analytic methods. But we can define the Kodaira
dimension of a general fiber as an invariant of an algebraic fiber space
and in this sense no problem will occur.

THEOREM 11 (Theorem 5.11 of [13]): Let f : X ~ Y be an algebraic
fiber space and let L be a line bundle on X. Then there is an open
dense subset U of Y such that for any fiber Xy =d,ff-’(Y) for y E U,
we have K (L, X) ~ K (L ~ Cxy, Xy ) + dim Y.
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We have to know something about abelian varieties. Let us begin
with the following theorem of Ueno.

THEOREM 12 (Theorem 10.3 of [13]): Let X be a subvariety of an
abelian variety A. Then 03BA(X) ~ 0 and there exist an abelian subvariety
B of A and a subvariety Y of the abelian variety A/B such that :
(1) X is an analytic fiber bundle over Y whose fiber is B.
(2) 03BA(Y) = dim Y = 03BA(X).
(3) There are etale covers X and Y of X and Y, respectively, such that

 = B  ,

We extend Theorem 12 making use of Theorem 4.

THEOREM 13: Let f : X ~ A be a finite morphism from a complete
normal algebraic variety to an abelian variety. Then 03BA(X) ~ 0 and
there are an abelian subvariety B of A, etale covers X and B of X and
B, respectively, and a complete normal algebraic variety Y such that :
(1) Y is finite over A/B.
(2) X is isomorphic to B x Y.
(3) K(Y) = dim Y = K(X).

PROOF: The first assertion follows from Theorem 12 and Corollary
9. Let 03A6 : X* ~ Y* be the litaka fibering of X and let By be the image
of a general fiber X*y = 03A6-1(y) by f for y E U. By Theorem 12

K(By) 2:: 0. By Corollary 9 K(By) = 0. By Theorem 12 By is a trans-

lation of an abelian subvariety of A. f induces a morphism X*y ~ By
which is birationally equivalent to an etale cover by Theorem 4. Since
there are at most countably many abelian subvarieties in A, there is a
Zariski dense subset U’ of U such that the By for y E U’ are

parallel to an abelian subvariety B of A. By the following Lemma 14,
there is a rational map g * : Y * - A/B such that the composition of the
morphisms X* ~ A ~ A/B is birationally equivalent to g*  03A6. Since
A/B is an abelian variety, g* is a morphism. By the consideration of
the dimensions, g* is generically finite. Let Xo and Yo be the images
of X and Y* by f and g*, respectively, and let Y be the nor-

malization of Yo in the field C (Y*). Let g : Y - Yo be the projection.
By Zariski’s main theorem, 03A6 induces a morphism 1Jt: X - Y.
By the Poincare’s theorem, there is an etale cover C ~ A/B such

that A A/B C is isomorphic to B x C. Thus we may assume that Xo is
isomorphic to B x Yo when we take etale covers. There is an open
subset U of Y such that U is non-singular and 1Jt is smooth over U.
The fibers 1Jt-l(y) for y E U are etale over B and hence isomorphic to
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each other. Let us denote it by B and let G be the kernel of the
projection  ~ B which is induced by f. Let Y be the normalization
of the inverse image of 101 x Yo C Xo in X by f. B acts on Xo as
birational automorphisms. Since Lie B = Lie B, B acts on X as bira-
tional automorphisms by the Zariski’s main theorem. Therefore, Y is
a Galois cover of the normalization of Yo with the Galois group G.
The group G acts also on X =def B x Y and X/G is isomorphic to X.
By the construction the action of G on X is fixed point free and X is
etale over X. Thus 03BA(X) = 03BA() = 03BA() and dim Y = dim Y = 03BA(X).
Therefore we complete the proof. Q.E.D.

LEMMA 14: Let f : X ~ Y and g : X ~ Z be two morphisms of al-
gebraic varieties and assume that there is a Zariski dense subset U of
Y such that g(f-|(y)) is a point for y E U. Then there is a rational map
h : Y ·· ~ Z such that h 0 f is birationally equivalent to g.

PROOF: Let G C Y x Z be the image of X by the map ( f x g)  0394X,
where àx is the diagonal map, and let py : G ~ Y and pz : G ~ Z be the
projections. Since for y E U p Y’(y) is a point, py is a birational

morphism. The composition h = pZ  p-1Y satisfies our lemma. Q.E.D.

CLAIM 1: Theorem 3 implies Theorem 1.

PROOF: In this proof and also in other parts of this paper we shall
change freely by birational models of algebraic varieties. Let us con-
sider the following commutative diagram:

where Z is the image of a and g O f is the Stein factorization of h

which is induced by a. By Theorem 13 there is an etale cover Y of Y
such that Y = B x W, where B is an abelian variety and W is an
algebraic variety of general type, i.e., 03BA(W) = dim W. Let  =
X X Y Y. Then K(X) = 03BA(X) by Corollary 9. Since the composition of

the morphisms  ~ 1 1 W satisfies the hypothesis of Theorem 3, we
have 03BA() ~ dim W (see also Theorem 11). Hence W is a point and
Y = B. Therefore, Y is also an abelian variety. By the universality of
the Albanese map, p 0 g is an isomorphism. Thus we prove Theorem
1, assuming Theorem 3. Q.E.D.
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REMARK: The litaka fibering decomposes the study of algebraic
varieties into two parts: (1) the study of an algebraic fiber space with
a general fiber F such that K (F) = 0, and (2) the study of a variety
such that K(X) = -00, 0 or dim X. This paper gives a partial affirmative
answer to the following conjecture of Ueno about the structure of an
algebraic variety with K (X) = 0.

CONJECTURE K: Let X be a non-singular projective algebraic
variety such that K (X) = 0 and let a : X ~ A(X) be the Albanese map.
Then

(1) a is surjective and has connected fibers, i.e., a is an algebraic fiber
space.

(2) Let F be a general fiber of a. Then K(F) = 0.
(3) There is an etale covering B ~ A(X) such that X XA(X) B is bira-

tionally equivalent to F x B over B.

By Theorem 3 Conjecture K is true in case q(X) = dim X. We can
also prove the following theorem when we assume Theorem 3.

THEOREM 15: If q(X) = dim X - 1, then Conjecture K is true.

Moreover, in this case pg(X) =def Pl(X) = 0.

PROOF: In this case a general fiber of a : X A(X) is a curve. By
the addition theorem of Viehweg [16], it is an elliptic curve and
moreover, there is an open dense subset U of A(X) such that all the
fibers 03B1-1(y) for y E U are isomorphic to an elliptic curve E. There-
fore, there is a Galois cover Yo of A(X) such that X A(X) Yo is

birationally equivalent to E x Yo. Let G be the Galois group. Let
D0 ~ A(X) be the reduced discriminant divisor of Yo- A(X) and let

IL : Z ~ A(X) be a birational morphism such that Z is a non-singular
projective algebraic variety and the reduced total transform D of Do
is a divisor of normal crossing on Z. Let Y be the normalization of Z
in C(Y0). Let g : Y - Z be the projection. We may assume that we
have a morphism f : X ~ Z. G acts also on E x Y and X’ = def (E x
Y)/G is birationally equivalent to X. Let f’ : X’ ~ Z be the projection.
Fix a holomorphic 1-form on E and an origin of E. They define a

relative 1-form w and a section s on the fiber space E x Y - Y. The
action of G on E x Y induces contravariant actions of G on w and s
and gives two representations of G by abelian groups C  and

E. a : G ~ ex is defined by g*03C9 = a(g)-103C9 for g E G and b : G - E is
defined by g * s = s - b (g) for g E G. Since G is a quotient group of
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1Tl(Z - D) and the abelianization of the latter is Hl(Z - D, Z), we get
two representations a : H1(Z - D,Z) ~ C  and b : H1(Z - D,Z) ~ E,
which we denote by the same letters. Consider an exact sequence

where L is the subgroup generated by the lassoes around D. There is
a positive integer m such that a (g)m = 1 for any g E G. Then wm
defines a holomorphic section of mkxlz. Pick a point z E Z and a
small coordinate neighborhood {U; ti, ..., td} around z such that the
local equation of D is given by t 1 ... te = 0. Put U’ =

U - ~ei=1 {ti = 0}, Let l1,...,le be the corresponding lassoes. Then
there are numbers 0 ~ ri  1 for i = 1,..., e, such that 03A0ei=1 t-rii03C9 gives
a simple valued section of Kx/z over U’. ri = 0 if and only if a(li) = 1.
Since IIf=1 (titî)-ri dt; du is integrable on U’, this gives a section over
U by the following Proposition 16. If a(L) ~ 1, then there exists an
irreducible component Do,, of Do such that for the lasso Il around D0,1
we have a(li) ~ 1. Let Di be the strict transform of Do,, in Z.

Then by the argument above, mKX/Z ~ f *Dl. Since K(Kz + DI, Z) =
K (Do,,, A(X)) &#x3E; 0, we get 03BA(X) &#x3E; 0, which is a contradiction. Thus,
a(L) - 1.

PROPOSITION 16 (Theorem 2.1 of [11]): Let X be a complex mani-
fold of dimension n and let D be a divisor on X. A holomorphic
n -form w on X - D can be extended to a holomorphic n-form on X if
|X-D 03C9 A úJl  +00.

Continue the proof of Theorem 15. The representation a induces a
representation of 7r,(Z) = 7r,(A(X)). Let Z be the corresponding etale
cover of Z and let X = X Z. To prove the theorem we may replace
X and Z by X and Z, respectively. Thus we may assume that a ~ 1.
This means that there is an action of E on X’ which is induced by the
trivial action of E on Y x E. Let j be a positive integer such that
jb --- 0. Then the multiplication j : E ~ E induces a finite and surjective
morphism X’ ~ Z x E. Hence by Theorem 13, there is an etale cover
’ ~ X’ such that X’ =  x E, where 2 is finite over Z. Since K(Z) =
03BA(’) = 0, i is etale over Z by Theorem 4. Thus we proved the first
part of the theorem.

Let X = X A(X) B. There is an element g E G =def Gal(X/X) such
that g ~ 1. Since H0(X, 03A91X) = (H0(, 03A91X))G and q(X) = q() - 1,
.there is a base 03C91,..., Wd of H°(X, 03A91) such that g*03C91 = cw, for c:É 1
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and g*03C9i = w; for i ~ 1. Since wi  ··· n ÓJd is a generator of H°(X, KX)
and H°(X, Kx) = (H°(X, Kfc»O, the latter is zero. Q.E.D.

REMARK: The above proof can be extended to the case where

q(X) is general, except the first step where we used the addition
theorem of Viehweg. A modification is as follows. We assume that

there is a non-singular projective algebraic varity F and an open
subset U of A(X) such that K(F) = 0 and that fibers a-’(y) for y E U
are isomorphic to F. Under this assumption we shall prove Conjecture
K. There is a finite Galois cover Y ~ A(X) such that Xo =def (F x
Y)/G is birationally equivalent to X, where G = Gal(Y/A(X)). This
trivialization induces a representation b : 03C01(U) ~ Aut F. Replace G
by the image of b and replace Y by the one corresponding to the new
G. By the Fujita’s reduction at the beginning of § 3, a non-zero section
w of mKx (Where m is a positive integer such that Pm(X) ~ 0) gives a
generically finite and surjective morphism X* ~ X such that K(X*) =
0 and pg(X *) = 1. Let w * be a non-zero section of Kx*. Let X* ~ B ~
A(X) be the Stein factorization of the composition of X* ~ X ~
A(X). Since 03BA(X*) = 0, we have 03BA(B) = 0 and hence B - A(X) is

etale. Replace X and X* by X xA(X) B and an irreducible component
of X* A(X)B, respectively. Then X* ~ A(X) becomes also an al-

gebraic fiber space. Let X ô be the normalization of Xo in C (X *). Fix
a general point .y E A(X) and fix isomorphisms Xy  F and

X*y  F*, where F* ~ F is a generically finite and surjective
morphism obtained by a non-zero section Cùp of mKF which is

induced by w. Let 03C9*F be a non-zero section of KF*- Since X*0 ~ Xo is
finite, the representation b induces a representation b* : 03C01*(U) ~
Aut F*0, where F*0 is the normalization of F in C (F*). Let G * be the

image of b * and let Y* be a Galois cover of A(X) corresponding to
G*. G* acts on F* x Y* and when we put X*1 = (F* x Y*)/G*, there
is a birational morphism 7r : X* ~ X*1. Since there is a homomorphism
c : G* ~ G such that b = c  b*, we have only to show that Y * is etale
over A(X). By the argument in the proof of the theorem, we can
prove that b * induces a trivial representation on HO(F*, KF*). Hence
there is a subset E1 of F* such that codF* Ei * 2 and that the action of
G* on (F*-E)xY* is fixed point free, where E = E1 ~ div 03C9*F.
Therefore, 03BA((F* - E)  Y*) = 03BA(X*1 - p(E  Y*)), where K denotes
the logarithmic Kodaira dimension (see § 5 and [6]) and p : F* x Y* ~
X*1 is the projection. Since 1T-lp(E x Y*) is a sum of divw* and an
algebraic subset of codimension greater than 1, we have 03BA(X* -
1T-lp(E x Y*)) = 03BA(X*) = 0. Hence K(Y*) = K((F* - E) x Y*) = 0.
Thus Y* ~ A(X) is etale and we complete the proof. Q.E.D.
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§2. Unipotent reduction

THEOREM 17: Let X be a non-singular projective algebraic variety
and let D be a divisor of normal crossing on X, i.e., D is a reduced

effective divisor and if D = 03A3Ni=1 1 Di is the decomposition to irreducible
components, then the Di are non-singular and cross normally. Let mi
be positive integers for i = 1, ..., N. Then there exists a finite surjective
morphism p :  ~ X satisfying the following conditions :
(1) X is non-singular.
(2) D =def (p * D)red is a divisor of normal crossing on .
(3) Let P*Di = 03A3j mijj be the decomposition to irreducible com-

ponents, where j ~ Dj’ for j ~ j’. Then mi 1 mij for any i and j.

PROOF: We construct inductively a sequence of finite surjective
morphisms XN  XN_,  ···  XI  X as follows. XN is

the desired X. Let M be an ample line bundle on X and let m be a
positive multiple of rn, such that mM - Di is very ample. Put d =
dim X. Let Hk (1 ~ k ~ d) be general members of the linear system
)mM - Di) | such that 1’. Hk + D is a divisor of normal crossing. Let
OU = {Us} be a covering of X by affine open subsets and let ast be

transition functions of M with respect to OU. Let CPk,s be local equa-
tions of Hk + Dl in Us such that cpk,s = ams~k,t for 1 S k S d. Then the
fields C (X)(m~1,s, ..., m~d,s) are the same for all s, which we denote
by L. Let Xi be the normalization of X in L. We shall show that Xi is

non-singular. Pick a point x ~ Us. Since ~dk=1 Hk ~ D1 = , at least
one of the Hk or DI does not pass through x. If x ~ D1, x E Hk for
1 ~ k ~ e and x ~ Hk f or e + 1 S k S d, then the cpk,s for 1 :5 k S e make

a part of a regular system of parameters at x and the cpk,s for

e + 1 - k - d are units at x. Hence Xi xx Spec X,x is non-singular. If
x E DI, x ~ Hk for 1 S k --5 e (where e ~ 0) and x E Hk for e + 1 ~ k ~ d,
then CPI,s and the ~k,s/~1,s for e + 1 ~ k ~ d make a part of a regular
system of parameters at x and the ~k,s/~1,s for 2 ~ k ~ e are units at x.
Thus XI xx Spec Cx,, is non-singular also in this case. Since 03A3dk=1 Hk +
D is a divisor of normal crossing, by applying the above argument to
the Di instead of X, we prove that the Dl =def (p *Di),ed are non-
singular and cross normally, where p1 : X1 ~ X is the projection. Since
Xi is ramified along Dl with index m, P*Di = mD;. Althou h.Dl may
be reducible, it is non-singular and we can make X2 from XI when we
apply the above process for D2 instead of Di. Thus repeating the
above procedures, we complete the proof. Q.E.D.
The monodromy theorem says that the local monodromies are

quasi-unipotent, i.e., some positive powers are unipotent. Therefore:
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COROLLARY 18: Let f : X ~ Y be an algebraic fiber space which
satisfies the conditions (i) and (ii) of Theorem 5. Then there exists a
finite surjective morphism q :  ~ Y from a non-singular projective
algebraic variety Y such that for a desingularization X of X x y Y, the
morphism f :  ~ Y induced from f satisfies the conditions (i) through
(iii) in Theorem 5.

COROLLARY 19: Let K1/K be a finite extension of algebraic func-
tion fields. Then there exist a finite algebraic extension L/K1 and a
non-singular projective model X of K such that the normalization of
X in L is also non-singular.

PROOF: We may assume that Ki/K is a Galois extension. Let X be
a non-singular projective model of K and let XI be the normalization
of X in KI. By the resolution of singularities we may assume that the
reduced discriminant D = L1(XdX) is a divisor of normal crossing on
X. Let D = I51 Di be the irreducible decomposition and let mi be the
ramification indices of the Di. Then apply the theorem to X, D and the
mi and get a finite surjective morphism p:  ~ X. Let Z be the

normalization of an irreducible component of the fiber product
Xi X. Then Z is etale over X and hence non-singular. L = C (Z) is
the desired field. Q.E.D.

§3. Addition theorem

CLAIM 2: Theorem 5 implies Theorem 3.

PROOF: First we reduce the problem to the case where

pg(X) -def P1(X) ~ 0 by the following argument which is due to T.

Fujita (lemma 1.8 of [15]). Let m be a positive integer such that
Pm(X) ~ 0. Let OU = {Ui} be a covering of X by affine open subsets
and let CPij be transition functions of Kx with respect to GU. Let f; be
functions on the U; which represent a non-zero section of mKX and
such that fi = ~mijfj on Ui n Ui. Let U’i = {(x, t) E Ui X C; tm = fi(x)}.
Then for x ~ Ui ~ Uj, (x, t) ~ U’j if and only if (x, ~ij(x)t) ~ U’i.
Therefore, the Vi can be patched together to make an algebraic
subset X’ of the total space of Kx. Let X* be a desingularization of
an irreducible component of X’ and let 03C0 : X * ~ X be the projection.
Let R =def KX* - 03C0 * KX be the ramification divisor. Then by the con-
struction, there is a positive integer N such that 0 ~ R :5 N03C0*KX.
Hence 03BA(X*) = 03BA(X) by Proposition 8 (Note that in general
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K(mL,X)=K(L,X) for a positive integer m.) The functions U’i ~
(x, t) ~ t E C define a section of 03C0*KX on X*. Thus pg(X*) ~ 0. Let
X* f* Y* ~ Y be the Stein factorization of the composition of
morphisms X* 03C0 X f Y. Replace Y* by its desingularization
and let F* be a general fiber of f * which is mapped onto the general
fiber F by ir. Then 03BA(Y*) ~ K ( Y) and 03BA(F*) ~ K(F). Therefore, it is
enough to prove the theorem for the algebraic fiber space f* : X* ~
Y*, that is, we may assume that pg(X) ~ 0.
Let F = f-1(y) for a general y E Y and let t1, ..., td be a local

parameter system of Y centered at y. For a non-zero section of Kx,

residuef (03C9 t1...td) defines a non-zero section of KF if y is general.
tl ... d

Thus pg(F) ~ 0. If we change birational models, the morphism
f : X ~ Y satisfies the assumption of Corollary 18. We get a com-
mutative diagram

where q is finite and surjective. By Theorem 5, f*K/ is a non-zero
locally free sheaf and semi-positive.

LEMMA 20 (Kodaira [10]): Let L be a very ample line bundle on Y.
Then there exists a positive integer m such that Hom(L, mq*KY) ~ 0.

PROOF: We use the fact that K(Y) = dim Y. There is an exact

sequence:

where L denotes also a general member of the linear system deter-
mined by H0(, L). Since 03BA(, q*KY) = dim Y, there is a positive
number a and a positive integer mo such that l(mdq*KY) ~ am dim Y,
for m 2: mo, where d is the largest common divisor of N(q*KY, Y) by
Theorem 6. On the other hand, there is a positive number (3 such that
l (mq *KY Q9 CL):5 03B2mdimY-1 by the consideration of the dimension. Thus
for a large multiple m of d, the first term of the exact sequence does not
vanish. Q.E.D.
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Continue the proof of Claim 2.

Let P = P(*K/), let 1T : P ~  be the projection and let H be the
tautological line bundle on P. We shall show that H is semi-positive,
i.e., for any curve C on P, we have H · C ~ 0. Let 03BD : C* ~ C be a

resolution. 1T induces a morphism cp : C* ~ Y and a quotient invertible
sheaf Q of ~**K/, which is just v*H. Thus degC*03BD*H ~ 0.

Seshadri’s criterion (p. 37 of [4]) says: Let S be a complete
algebraic variety and let D be a Cartier divisor on S. Then D is ample
if and only if there is a positive number e such that for every

integral curve C on S, we have D · C ~ ~m(C), where

m(C) = def maxp~C multp (C). Since L is ample, there is a positive
number ~ ~ 1 such that for any curve Co on Y, we have Le C0 ~
Em (C°). Let C be a curve on P and let Co = v(C). If Co is a curve
on Y, then (mH + 1T*L) . C ~ 1T*L . C = (deg ir)L - C° ? (deg 7r)
~m(C0)~~m(C). If C is in a fiber of 1T, then (mH+1T*L).C==
mH - C ~ m · m(C). Thus mH + 1T*L is ample on P.

Since q is flat, KX Y/ = p*KX/Y and hence X Y  is Gorenstein.
Since IL is birational, Hom(03BC*K, KX Y) ~ 0. Therefore, a com-

position of homomorphisms Symy *K/ ~ Sym00FF f1*KX Y/~
03A3n~0f1*(nKX Y/) defines a subscheme R of P and 7r induces a

surjective morphism R - Y. Assume that dim Y &#x3E; 0; otherwise there
is nothing to prove. Pick two distinct points yi and y2 of Y and let ri

and r2 be points of R which lie above YI and Y2, respectively. Since
mH + 7r*L is ample, there is a positive integer n ând sections si and
S2 of n (mH + zr *L) such that si |03C0-1(y1) = 0, s1(r2) ~ 0, S2 Il-l(y2) = 0 and
s2(r1) ~ 0. Since HO(P, n(mH + 03C0*L)) = H0(, symnm *K/ ~ nL),
si and S2 induce sections wi and 03C92 of f1*(nmKX Y/) 0 nL, respec-
tively, such that wi(yi) = 0, 03C91(y2) ~ 0, 03C92(y2) = 0 and 03C92(y1) ~ 0. Hence
dim H0(, f1*(nmKX Y/) 0 nL) ~ 2. Theref ore, dim H0(X  Y ,
nmp * Kx) = dim H°(X Xy Y, nm(KX Y/ ~ f*1q*KY)) ~ 2. Hence

03BA(X)&#x3E;0.
Let 03A6 : X ~ Z be the litaka fibering and let G = {(y, z) ~ Y  Z ;

~x ~ X s.t. y = f (x) and z = 03A6(x)}. Let Z’ be an intersection of

general hyperplane sections of Z such that Y * =def G xzZ’ is

generically finite and dominating over Y. Since 03BA(Y) = dim Y,
K ( Y *) = dim Y*. A general fiber of the algebraic fiber space Y* ~ Z’
is f(Xz) for z E Z’. By Theorem 11, 03BA(f(Xz)) = dim f (Xz ) for general z.
Apply the result in the first part of this proof to the algebraic fiber
space f Ixz : Xz ~ f(Xz). Since 03BA(Xz) = 0, we conclude that f(Xz) is a

point. By Lemma 14, there is a morphism g : Z ~ Y such that f =
g  03A6. By Theorem 11, 03BA(F)~dim03A6(F). Then K(X) = dim Z =
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dim 03A6(F) + dim Y ~ 03BA(F) + 03BA(Y). On the other hand, 03BA(X) ~
03BA(Y) + 03BA(F) by Theorem 11. Thus we complete the proof of Claim 2.

Q.E.D.

REMARK: Theorem 3 is an affirmative answer for a special case of
the following conjecture of litaka:

CONJECTURE C: Let f : X ~ Y be an algebraic fiber space. Then
03BA(X) ~ K ( Y) + K (F), where F is a general fiber.

The conjecture is also true in the following cases: when
(1) F is a curve ( 16]),
(2) F is a surface such that 03BA(F) ~ 2. or

(3) F is an abelian variety ([14]).
The case (2) will be treated in a forthcoming paper.

§4. Semi-positivity

In this section we shall prove Theorem 5. First we recall some

results in [12].
(1) (p. 234 of [12]) Put H0 = (Rnf0*CX0)prim ~ Y0 and F0 = fo*Kxo/yo’

where prim denotes the primitive part with respect to the polarization
and n = dim X - dim Y. H0 has the so-called Hodge filtration fFPI().,,p,,,
and F0 = F"(,Yo). H0 has a canonical extension X on Y which is

locally free. This extension is locally described as follows: Let

s = 1 fisi be a single-valued local section of Yo, where the fi are

multi-valued holomorphic functions and the si are multi-valued flat

sections of âeo with respect to the Gauss-Manin connection. s can be
extended over the boundary D to a local section of Y if and only if
every fi has at most logarithmic singularities along the boundaries,
when the si are chosen to be linearly independent. Moreover, the
filtration IFPI can be extended over H. (Note that this is not the

so-called limit filtration Foc on the fiber llfy for a base point y E Yo,
because there is no connection on X which is an extension of the

Gauss-Manin connection on ZO). Put 6F = Fn(H). F is a locally free
sheaf on Y and an extension of F0. Let y be a point of D and let
{U; tl,..., tdj be a local coordinate system of Y centered at y such
that the local equation of D is t 1 ... te = 0. Let s = 1 fis be a rational
section of F0 on U - D. Then Xt s 039B s = 03A3 aijfifj, where the

aij -def Xt Si A Sj are constants. Hence by Proposition 16, s can be
extended to a section of F on U if and only if it defines a section of
f*KX/Y on U. Thus F = f*KX/Y.
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(2) (§ 6 of [12]) Let Dl be an irreducible component of D and put
D01 = D1 - (D - D1)c1, where cl denotes the closure. Let U denote a
small open neighborhood of Dl and put Uo = U - (D - DI)c1. Then the
local monodromy y, around DI can be defined up to conjugations on
;Je JU-D. There is an ascending filtration {Wl}0~l~2n on llf I u-p, which is
called a weight filtration with respect to y,, such that (i) N(Wl) C
Wl-2, where N = log y,, and (ii) Nl : GrWn+l(H|U-D) ~ GrWa-l(H|U-D) is

an isomorphism for 1 ~ 0. Since 03B31 ~ 1 on Gr"’(W IU-D), the filtration
(Wi) can be extended on W (uo and Grw(;Je Uo) has a flat connection
which is induced by the Gauss-Manin connection. The two filtrations
{Wl} and IFPI define a variation of mixed Hodge structures on Y |D01,
that is, FFPI defines a variation of Hodge structures without polariza-
tion on GrW(H IDO). Denote by P0l the kernel of Nl-n+1 : Grw(W |D01) ~
GrW2n-l-2(H 1&#x26;,) if 1 * n and put P0l = 0 if 1  n. Then for n ~ l ~ 2n, P01
turns out to be a variation of Hodge structures with a polarization Si,
which is defined as follows: Let ù, 13 E P0l,y for y E Do and let u and v
be multi-valued flat sections of Wl(H IU-D) which induce flat sections
of GrWl(H luo) passing through û and v, respectively. Then put Sl(û,
v ) = S(u, v), where S is the original polarization on W IU-D. The P0l
can be extended to locally free sheaves Pl on Dl canonically by (1).
On the other hand, also by (1), the Wl(H |D01) can be extended to
locally free subsheaves Wl(H |D1) of H ID, on D,. The induced exten-
sions Grw(X lo,) are compatible with the extensions Pl. By the

comparison of the types, we get GrWl(F lo,) = Fn(Pl) C lPi.
Now let C, cp and Q be as in the definition after Theorem 5. We

shall prove that degc Q - 0 inductively as follows.

(i) We assume that ~(C) ~ Y0 ~ Ø. Define a positive definite her-

mitian metric h on F0 by h(u, v ) = S(u, v), where u, v E F0,y for

y E Yo and S is the polarization of Yo. Put C0 = ~-1(Y0). Then Q ico
has an induced hermitian metric hQ. P. Griffiths shows that its cur-

vature 0 is non-negative (Theorem 5.2 of [3] or § 7 of [12]). On the
other hand, the ap in the following lemma are all zero for p E C - Co
by the argument at the end of (1). Thus degc Q ~ 0 in this case.

In general, let L be an invertible sheaf over a non-singular pro-
jective curve C, let Co be a Zariski open dense subset of C and let h
be a hermitian metric on L Ico. The metric connection of L Ico with
respect to h defines a curvature form 0 on Co, which is locally
described as follows: 0 = ~~ log h(v, v), where v is a non-zero

holomorphic local section of L. Let p be a point of C - Co and let tp
be a local parameter of C centered at p. We assume that for a

uniformizing section vp of L near p, h(vp, vp) = 0(|t|-203B1p|log t|03B2p) for
some real numbers aP and 03B2p.
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LEMMA 21: degc L = 2 t ir fc,) 0 + Ylpczc-co ap, where the first integral
is an improper Riemann integral.

PROOF: This is essentially due to Fujita [2]. Let us take small open
neighborhoods Up = {x; Itp(x)1  ~} of the p G C - Co and modify the
metric h inside of the Up into the hp which is Coo to make a global
hermitian metric of L. Let 0’ be the curvature of the new metric
connection. Then

By Stokes’ theorem,

where

Since

we get the desired formula. Q.E.D.

(ii) We assume that ~(C) ~ D1 and ~(C) ~ D01 ~ Ø. Then the map
~*F ~ Q induces a non-zero homomorphism ~*GrWl(F|D1) ~ Q for
some 1. Let Q’ be the image of this map. Apply the argument in (i) to
GrWl(F IDI) = Fn(Pl) ~ Pl instead of F = Fn(H) ~ H. Then we con-
clude that degc Q’ ~ 0. Since degc Q ~ degc Q’, we get the desired
result in this case.

(iii) Let D2 be another irreducible component of D and put D12 =

D, n D2 and D?2 = DI2 - (D - D, - D2)c’, We assume that ~(C) C D,2
and ep(C) n D012 ~ 0. Then we have a non-zero homomorphism
~*GrWl(F |D1) ~ Q for some 1. Let Q’ be the image. Apply the

argument in (ii) to Pl, Grt’(fi IDl) and y2 instead of H, F and yi, where
y2 is the local monodromy around D12. Then we get degc Q’ ~ 0 and
the desired result.

(iv) We complete the proof inductively by the classification of images
of the cp as in (i) through (iii). Q.E.D.
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§5. Extensions

First we shall extend our theory to compact Kaehler manifolds. We
can define the Kodaira dimensions also for compact complex mani-
folds just as in § 1 (cf. Definition 6.2 of [13]).

THEOREM 22: Let X be a compact normal complex space, let A be
a complex torus and let f : X - A be a finite surjective morphism. If
K(X) = 0, then f is an etale morphism.

PROOF: We shall only show how to modify the proof of Theorem 4
(main theorem of [9]). Let D be the reduced discriminant divisor of f
in A. Let B = {a ~ A; a + D ~ D}0, where 0 denotes the connected
component of the origin, and let A’ = A/B. Let a’ be a general point
of A’ and let B be the inverse image of a’ in X. Then B is etale over
B. A is a fiber bundle over A’ with a fiber B. Let À = A B  and
X = X AÃ. Then X is a fiber bundle over a compact normal com-
plex space X’ with a fiber B, and there is a finite and surjective
morphism f’ : X’ ~ A’. Let X’* be a resolution of X’and let X*=
 X’ X’*. The pull back of a general d-form on A for d = dim B to
* induces non-zero homomorphisms H0(X’*, mKX’*) ~ H0(*,
mKx*) for m ~ N. Hence 03BA(X’) ~ 03BA(X), and thus K (X’) = 0. On the
other hand, if D’ is the reduced discriminant divisor of f’, then
D = p-1(D’), where p : A ~ A’ is the projection. Therefore, we may
replace X and A by X’ and A’, respectively, that is, we may assume
that B = {0}.

Let C = 1 Ci be the irreducible decomposition of the reduced
ramification divisor of f and let 1£ : X* ~ X be a birational morphism
from a compact complex manifold X* such that the strict transforms
ci of the Ci are non-singular and mutually disjoint. Since Kx* * li C*i
and 03BA(X) = 0, we conclude that li pg(Ci):5 n = def dim A. Put Di =
f(Ci). Then li pg(Di):5 n. Let Ai = {a E A ; a + Di C Di}0 and let Ei =
DilAi. We know that K (Ei) = dim Ei and hence the Ei are algebraic.
Then pg(Di) ~ pg(Ei) ~ dim Ei + 1 = codA Ai. Sinceni Ai = B = 101, we
get the equalities pg(Di) = pg(Ei) = dim Ei + 1. Hence by Theorem 1 of
[9], Ix(OE)1 = 1. When we take etale covers m : A ~ A for m ~ N and
make base changes Xm = X AA, we shall get a contradiction. Then
we shall conclude that D = 0. Q.E.D.

THEOREM 23: Let X be a compact normal complex space, let A be
a complex torus and let f : X ~ A be a finite morphism. Then 03BA(X) ~ 0
and there are a complex subtorus B of A, etale covers X and B of X
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and B, respectively, and a compact normal complex space  such

that :

(1) Y is finite over A/B.
(2) X is an analytic fiber bundle over Y with a fiber B and translations

by B as a structure group.
(3) 03BA() = dim  = 03BA(X).

PROOF: We shall only show how to modify the proof of Theorem
13. The point is that we have no Poincaré’s reducibility theorem. Use
the same notation as in Theorem 13. Let B be a general fiber Xy of 1/1
which is etale over B. A is an analytic fiber bundle over A/B with a
fiber B. Let Ã = A B and let X = X X A A. Then X is etale over X
and when we replace X by X, then 1/1: X ~ Y becomes a fiber bundle
with a fiber B. Now we have to show that 03BA(Y) = dim Y. Assume the
contrary and apply the above process to Y instead of X. Then we get
the following situation: There is a commutative diagram

where C is a complex subtorus of A which contains B and Y is a

fiber bundle over Z with a fiber C/B. Then X is a fiber bundle over Z
with a fiber C. By Theorem 11, we have 03BA(X) ~ dim Z, which is a

contradiction. l’hus 03BA(Y) = dim Y. Q.E.D.

THEOREM 24: Let X be a compact Kaehler manifold and let a : X ~
A(X) be the Albanese map to a complex torus A(X). We assume that
K(X) = 0. Then a is surjective and has connected fibers.

COROLLARY 25 : If K(X) = 0, then the irregularity
q(X) = def dim H0(X, 03A91X) ~ dim X. Moreover, if the equality holds,
then a is a bimeromorphic morphism. In other words, K(X) = 0 and
q(X) = dim X give a criterion for a compact Kaehler manifold to be
bimeromorphic to a complex torus.

PROOF: Let Zo be the image of a and let X ~ Z Zo be the Stein
factorization. Apply Theorem 23 to Z-A(X). Then there are

an etale cover i of Z and a morphism 2 - Y such that 03BA(Y) = dim Y.
Then since Y is Moishezon, there is a resolution Y * of Y which is

projective. Let us study the morphism X ~ Y *. Since the monodromy
theorem is also true in this case, we can reduce it to the case where

local monodromies are unipotent by Theorem 17. Since the analytic
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method in § 4 can be applied without modification also in this case, we

get the semi-positivity of f*KX/Y*, and hence K (X) &#x3E; 0 if dim Y &#x3E; 0.

Thus we conclude that Y is a point. This means that Z = A(X) and
we complete the proof. Q.E.D.
Next we shall extend our theory to non-complete algebraic

varieties. General references for the following paragraphs are [6] and
[7]. litaka defined the logarithmic Kodaira dimensions of algebraic
varieties for finer classification of algebraic varieties.

DEFINITION: Let X be a non-singular algebraic variety. The

logarithmic Kodaira dimension K(X) and the logarithmic m-genus
Pm(X) for m ~ N are defined as follows : Find a non-singular and
complete algebraic variety X which contains X as a Zariski open
dense subset and such that the complement D ==defX -X is a divisor
of normal crossing on X. Then define K(X)=K(Kx+D,X) and
Pm(X) = 1(m (Kg + D)). It is easy to check that they do not depend on
the choice of X and D. If f : 1X ~ X2 is a proper and birational

morphism of non-singular algebraic varieties, then 03BA(X1) = 03BA(X2) and

Pm(X1) = Pm(X2). Thus we can define the logarithmic Kodaira

dimension K(X) and the logarithmic m-genus Pm(X) of a general
algebraic variety X as follows: Find a non-singular algebraic variety
X* such that there is a proper and birational morphism X* ~ X. Then
put 03BA(X) = 03BA(X*) and Pm(X) = Pm (X *) for any m ~N.

DEFINITION: A quasi-abelian variety A is a quasi-projective com-
mutative algebraic group variety which is an extension of an abelian
variety Ao by an algebraic torus Gdm of dimension d:

Let X be a non-singular algebraic variety. The quasi-Albanese map
a : X ~ A is a morphism to a quasi-abelian variety A such that

(1) for any other morphism 03B2 : X - B to a quasi-abelian variety B,
there is a morphism f : A - B such that j3 = f O a, and

(2) f is uniquely determined up to translations. The quasi-Albanese
map 03B1: X ~ A can be constructed using the space of logarithmic
1-forms H0(X, 03A91X(log D)), where X and D are as in the preceding
definition. We call q(X) = def dim H0(,03A91 X(log D)) the logarithmic
irregularity of X. We know that dim A = q(X).

DEFINITION: An open algebraic fiber space f : X ~ Y is a morphism
of non-singular quasi-projective algebraic varieties which is generic-
ally surjective and has irreducible general fibers.
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THEOREM 26: Let X be a normal algebraic variety, let A be a

quasi-abelian variety and let f : X ~ A be a surjective and finite
morphism. If K(X) = 0, then f is an etale morphism.

PROOF: We shall prove the theorem by induction on d in the

definition. If d = 0, then this is just Theorem 4. Assume that d &#x3E; 0 and

pick a subgroup B of A which is isomorphic to G. Put A’ = A/B.
Then A is a Gm-bundle over A’. The compactification Gm ~ P1 induces
a natural partial compactification A of A, which is a P1-bundle over
A’. Let X be the normalization of À in the field C(X). Let f : X ~ A
be the projection and let X ~ X’  A’ be the Stein factorization of

the composition of the morphisms X ~ A ~ A’. Let x E X’ and y E A’
be general points such that f’(x) = y. First K(X’) 2:: 0. Apply the

addition theorem ([8]) to the morphism X ~ X’, where a general fiber
Xx is a curve. Since 03BA(X) = 0, we conclude that 03BA(X’) = 0 and
K(Xx) = 0. Therefore, f Ixx : Xx ~ Ay is an etale morphism. Let Â =
A Ay Xx, let X = X xA A and let X’ be the normalization of X’ in the
field C(). Then X is a fiber bundle over X’ with a fiber Xx. Then
since K(X’) = 0, X’ is a quasi-abelian variety by induction. Hence 
is also a quasi-abelian variety and thus f is etale. Q.E.D.

Note that we have no Poincaré’s reducibility theorem in this case,
either. By a similar argument as in Theorem 23, we get the following,
where an etale cover means a finite etale morphism:

THEOREM 27: Let X be a normal algebraic variety, let A be a

quasi-abelian variety and let f : X ~ A be a finite morphism. Then
03BA(X) ~ 0 and there are a quasi-abelian subvariety B of A, etale covers
X and B of X and B, respectively, and a normal algebraic variety Y
such that :

(1) 1 is a finite over A/B.
(2) X is a fiber bundle over Y with a fiber 13 and translations by 13 as a

structure group.

The main theorem in this case is the following :

THEOREM 28: Let X be a non-singular and quasi-projective al-

gebraic variety such that K(X) = 0. Then the quasi-Albanese map
a : X ~ A(X) is an open algebraic fiber space.
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COROLLARY 29: In the situation above, we have q(X) ~ dim X.

Moreover, the equality holds if and only if a is a birational morphism.

We can reduce Theorem 28 to the following "addition theorem":

THEOREM 30: Let f : X ~ Y be an open algebraic fiber space. If
03BA(X) ~ 0 and 03BA(Y) = dim Y, then 03BA(X) = K(Y) + 03BA(F), where F is a
general fiber of f.

We shall need the following lemma.

LEMMA 31: Let f : X ~ Y be an algebraic fiber space, let q :  ~ Y
be a finite and surjective morphism from a non-singular projective
algebraic variety Y and let IL:  ~ X x y Y be a desingularization. Let
p : X x y  ~ X and f : À -  be projections. Let C and D be reduced
effective divisors on X and Y, respectively, such that f -’(D) C C and
that for any irreducible component Co of C, we have either f (Co) C D
or f (Co) = Y. Put Û = P-’(C) =def (p*(C»red and  = q-’(D). Then

Hom(03BC*(K/ +  - *), p *(Kx/y + C’ - f*D)) ~ 0.

PROOF: We have Kx/x = IL*P*C - Û + A and Ky/y = q*D - D + B,
where A and B are effective divisors on X and Y which have no
mutual irreducible components with Û and D, respectively. By the
assumption on C and D, we deduce that *B has no mutual irreduci-
ble components with C. Since q is flat, KxxyY/y = p*KX/Y. Since p, is

a birational morphism, Hom(IL*Kx, KX Y) ~ 0. Hence

Hom(03BC*K/X, f*1K/Y) ~ where fi is induced by f. Thus,
Hom(03BC*A, f*1B) ~ 0, which shows our conclusion. Q.E.D.

Now we shall prove Theorem 30. Let X and Y be non-singular
projective algebraic varieties which contain X and Y as Zariski open
dense subsets and such that C =def X - X and D =def Y - Y are

divisors of normal crossing on X and Y, respectively. Let f : X ~ Y
be a morphism which is an extension of f. Then f-1(D) C C. Note that
in general if X1 ~ X2 is a birational morphism, then 03BA(X1) ~ 03BA(X2).
Thus we may assume that for any irreducible component Co of C, we
have either f(C0) ~ D or f(C0) = Y. Now apply Corollary 19 to every
irreducible component of C which is mapped onto Î’. We make a base
change Y’ ~ Y such that C Xy Y’ decomposes into components which
are degree one over Y’. After that apply Theorem 17 to local

monodromies. Thus when we take into account Lemma 31, we can
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reduce Theorem 30 to the following Theorem 32 by the argument in
§ 3.

THEOREM 32: Let us consider the following commutative diagram
which consists of non-singular and quasi-projective algebraic
varieties and morphisms among them :

We assume the following conditions :
(i) f is an algebraic fiber space of relative dimension n.
(ii) y 1) Yo. C =aef X - X ~ Xo and D =def Y - Y0 are divisors of

normal crossing on X and Y, respectively.
(iii) C = f*(D)red + Ch and Ch = 03A3Ni=1, Ch, where the Chi are irreducible

components of C which are mapped onto Y by f.
(iv) Let d be any non-negative integer and let Z be an intersection of

any d distinct members of the Chi. If d = 0, we put Z = X. Then
11z : Z ~ Y is an algebraic fiber space. Put Zo = Z ~ Xo. Then
f o 120: Zo- Yo is proper and smooth.

(v) The local monodromies of Rn-dfo*(2o around D are unipotent.
Then f*((KX + C,) - f*(KY + D1)) is a locally free sheaf and semi-

positive, where CI = X - X and D, = Y - Y.

PROOF: Let X d and xg be the disjoint unions of all the distinct Z
and Zo for a fixed d in (iv), respectively. By (3.2.13) of [1], there are
the following two spectral sequences which degenerate at E2:

The two spectral sequences are related by the usual Hodge’s spectral
sequences. From (a) we deduce that the local monodromies of

Rnfo*Cxnxo around D are also unipotent. By Schmid’s method (1) in
§4, we can extend the sheaves (Rn-dfo*Cxg)prirnQ90yo and

(Rnf0*CX~X0)prim Q9 (ryYo to locally free sheaves Xd and X, respectively,
canonically and compatibly. Since the Hodge filtrations can be exten-
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ded on Hd, we deduce that Y has also an extended Hodge filtration
when we take into account the sequence (b). Put 6F = pn¡¡e. Then by
the sequence (b), GrWF = 03A3nd=1 ker(Fn-dHd ~ Fn-d+1Hd-1/Fn-d+2Hd-1),
where W denotes the weight filtration with respect to the boundary
C h. The d-th direct summand of the right hand side is an intersection
of F’-’X’ with a flat subbundle of Hd and hence semi-positive by the
arguments in § 7 of [12) and Theorem 5. Thus GrWF and hence also 6F
are also semi-positive.
We shall prove that 6F = f*((KX + C1) - f*(Ky + D,)). Denote by 6F’

the right hand side. Note that both sides are torsion free extensions of

F |Y0 on Y. Let x ~ X and y=J(x)EY. Let (U;xI,...,xp) and
(V; y,, - .., yr) be small coordinate neighborhoods of x and y, such

that Ci and Di are defined in U and V by equations xi... Xq = 0 and
y, ... y, = 0, for some q :5 p and s ~ r, respectively. We assume that
f(U) C V. Let w be a section of F jvnvo. Write (ù = 1 fiai, where thé fi
are multi-valued holomorphic functions on V n Yo and the si are

multi-valued flat sections of W Ivnyo which are linearly independent.
Put

6 induces a homomorphic section of KX + Ci on U if and only if for a
fixed small positive number Eo, we have an estimation

Let us cover f-1(V) by a finite set of the U and sum up the above
estimations. Then we deduce that this is equivalent to saying that the
fi have at most logarithmic singularities along the boundary V n D,,
that is, w defines a holomorphic section of H|V. Thus we complete
the proof. Q.E.D.
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