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Introduction

A main tool of this paper are strong Lusin sets. It turns out that the
use of strong Lusin sets permits to construct some special 03C3-fields of
subsets of the real line R. Namely, we consider the following situa-
tion : 99 is the a-field of Borel subsets of R and -0 is a 03C3-ideal on R

with a Borel basis. We wish to extend the (1-field B() to a field
which has some combinatorial properties. If A is a strong Lusin set
for B() then we can test any X ~ B() whether it belongs to J,
namely it suffices to look whether the cardinality of X n A is less
than c. Consequently if A is a strong Lusin set for B() then
 fl P(A) C [A] and (B - ) n P(A) [A]’; thus we have a quite big
freedom of extension of  to an ideal J in this manner that 00 - j =
B - . This freedom in the choice of j allows us to solve some
problems arisen from some Ulam’s problems on 03C3-fields on R (for a
more detailed discussion of these problems see [4]).
The present paper is divided into two parts. In §1 (Tools), we

clarify the question of the existence of strong Lusin sets and testing
mappings and we construct some special strong Lusin sets like Hamel
bases. In §2 (Applications), we apply our tools to give an answer to a
question from [4] and to get a strengthening of a theorem from [12].
Of course in §0 we give all necessary definitions and clarify our
notation.

§0. Notation and terminology

We use the standard set-theoretical notation and terminology, e.g.
ordinals are sets of all smaller ordinals, cardinals are initial ordinals,
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w = {0, 1, 2, ...} is the set of all natural numbers, R is the set of all
reals and Q is the set of all rationals. The cardinality of a set A is
denoted by lAI. In particular IRI = c = 2’ and |03C9 = |Q| = 03C9. 9P(X)
denotes the set of all subsets of X. A cardinal K is regular iff K is not
any union of fewer than K sets of the cardinality less than K.
We consider some ideals and fields of sets on either R or c. All

ideals and fields under consideration are closed under countable

unions and contain all singletons.  and 3t are the ideals of all

subsets of R of Lebesgue measure zero and of all meager subsets of
R, respectively. 00 denotes the field of Borel subsets of R and NS, the
ideal of nonstationary subsets of c. In the case when c is regular we
may use the Fodor Theorem for NS, (see e.g. [3]).

If 0 is an ideal then a family s4 c Y is a basis for Y iff for any
element of J there is an element of A which includes it; in particular
an ideal J on R has a Borel basis iff  n S8 is a basis for . For any
ideal 0 on R we denote by B() the field generated by B and . It is
easy to see that B() = {B A I : B e 38 and I e }, where A denotes
the symmetric difference.
Let 0 be an ideal on R. By 03B1() we denote the least cardinal K

such that any set from B() -  can be presented as a union of K sets
from 0. Similarly 0(-0) denotes the least cardinality of sets from
P(R) - . For a discussion of properties of 03B1() and 03B2() see [2].
Notice that for any J we always have the following obvious relations

We say that a boolean algebra  satisfies C.C.C. if any family of
pairwise disjoint non-zero elements of (9 is at most countable. A

boolean algebra  is homogeneous if for each non-zero element

a ~  the algebras (9 and (a) = {x ~  : x ~ a} are isomorphic.
We deal with the following three properties of ideals on R or on c

(for more detailed discussion of these notions see [1], [3] and [11]).
(1) An idéal 9 is a P-ideal if for each family {A03B1 : a  c} C -0 there is

some A ~  such that for all a  c we have lAa- A|  c.

(2) An ideal 9 has the property U() if there is a family of pairwise
disjoint sets {A03B1 : 03B1  } ~ 9P(R), each of which has the cardinality c,

such that for each A G 9 there is some a  c with A03B1 ~ A = 0.
(3) An idéal 9 is selective, if for each partition 6U c Y there is a

selector S of 6U such that the complement of S is in 9.
Now we adapt the property (3) for consideration of fields on R. We

say that a field  on R is selective, if for each partition 6U c Y of R
there is a selector of 6U in Y.
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If li is a countably additive measure on a field of subsets of R then
by 9, we denote the ideal of all subsets of R of g-measure zero. We
say that li is invariant under translations if for each g-measurable set
A and x G R the set A + x = {a + x : a E A} is also 03BC-measurable and
03BC(A + x) = 03BC(A). More general, if A is a family of subsets of R then
we say that A is invariant under translations if for each A E.:Il and
each x E R we have A + x G s4. We say that A is invariant if s4 is
invariant under translations and for each A G A and each rational r E Q
we have rA = {ra : a E A} EE A.
We treat very often R as a linear space over rationals. In particular

we say that a set X C R is linearly independent if X is independent in
the linear space R over Q. A basis of the space R over Q is called a
Hamel basis of R If X C R then by [X] we denote the linear

subspace of R spanned by X.

§ 1. Tools

In this section we consider only those u-ideals on R which have
Borel bases.

Let us recall the following two notions.

DEFINITION: (i) A set A c R of the cardinality c is a Lusin set for
an ideal -0 on R, if for each I Ei -0 we have JA n il   (see Sierpinski
[8]).

(ii) A set A C R is a strong Lusin set for B(), if for each

B ~ B() we have 1 B fl A|  c iff B EE 0 (compare McLaughlin [6]).

LEMMA 1: Suppose that 03B1() = c. Then
(i) there exists a strong Lusin set for B(),
(ii) if  is invariant under translations then there exists a Hamel

basis which is a strong Lusin set for

PROOF: Let {X03B1 : a  c} be an enumeration of all sets from S8 ~ 
and let {Y03B1: a  } be a sequence of sets from B -  such that each
element of 1,3C - 0 occurs c times in this sequence.
To prove (i), pick for every a  c an element Pa from Y03B1 -

(U03BE03B1 X03BE U {p03BE : 03BE  03B1}). It is easy to see that the set {p03B1 : a  CI is a

strong Lusin set for B().
To prove (ii), fix an enumeration {x03B1 : a  } of all reals. We con-

struct two sequences of reals: a sequence {p03B1 : a  } and a sequence
{q03B1 : a   and a is odd}. We proceed as follows:
We put Na = U03BE03B1 Xe U [{p03BE :  03B1} U {q03BE : 03BE  a and e is odd}]. Now
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we consider two cases:

(a) a is even, i.e. a = À + 2n. Then let pa be any element from

YA+n - Na.
(b) a is odd, i.e. 03B1 = 03BB + 2n + 1. By assumption on , we have

N03B1 ~ (N03B1 + x03BB+n) ~ R. Thus we can choose Pa, q03B1 ~ N03B1 such that

P« - qa = x03BB+n.

Let A = {p03BE : 03BE  cl and B = (q, : 1  c and e oddl. Then A is linearly
independent set which is a strong Lusin set for B(), B is a Lusin set
for B(), and [A U B] = R. Let X be any maximal linearly in-

dependent set such that A C X and X C A U B. Then X is a strong
Lusin set and a Hamel basis.

REMARK: It is easy to see that if cf(c) = c, then the existence of a
strong Lusin set for B() implies that 03B1() = c.
We do not have to assume that 03B1() =  in order to produce a

strong Lusin set for B(). In fact, we can construct a strong Lusin
set just from the assumption that there exists a Lusin set, provided
the algebra B()/ satisfies some extra conditions. Notice that both
the ideals Y and lkf satisfy them.

PROPOSITION: Suppose the algebra B()/ is homogeneous and
satisfies C.C.C. If there exists a Lusin set for 1 then there exists a
strong Lusin set for

PROOF: Let A be a Lusin set for g3(J). Let Y be a maximal family
of -almost disjoint sets from j3 - J such that for each X ~  we
have |X ~ A|  . By C.C.C. we see that || ~ 03C9. Let B = R - U .
Then obviously B is a Borel set, B ~  and for each U C B if U *É Y
then |A ~ U| = .
By Sikorski’s theorem ([7], Theorem 32.5) there exists a Borel

isomorphism f from B onto R such that for each Borel subset X of B
we have X ~  iff f(X) E 1. Thus f (A) is a strong Lusin set for -04

REMARK: The assumption of homogeneity of the algebra B()/
in the Proposition above is necessary. In fact, if we add M2 Cohen
reals to a model for ZFC + V = L, then in the resulted model the ideal
 = {X C R: RI n X E X and R- ~ X E } has a Lusin set, the algebra
B()/ satisfies C.C.C., and there is no strong Lusin set for B().
Our main tool is the following notion.

DEFINITION: A mapping f :  ~ R is a testing mapping for B() if
for each X ~ B() we have
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LEMMA 2: Let cf() = c. Then B() has a strong Lusin set iff it has
a testing mapping.

PROOF: Let A be a strong Lusin set for B(). Let {X03B1 : a  c} be an
enumeration of all sets from B - . Notice that since J has a Borel

basis, for each X ~ B() -  there is some a  c such that Xa c X.
Consider the family {X03B1 ~ A: 03B1  }. Since A is a strong Lusin set

for B(), we see that, for all 03B1  , we have IXa ~ AI = c. By
Sierpinski’s Refining Theorem (see [9]), there is a family {Y03B1: a  c} of
pairwise disjoint sets such that for each a  c, we have Ya C Xa n A,
1 Ya = c and U03B1 Ya = A. By Solovay’s Partition Theorem (see [10]),
there is a family of pairwise disjoint stationary sets {Z03B1: a  c} Ç P().
Let f be any one-to-one function which maps c onto A such that for
each a  c we have f(Za) = Y03B1. By our construction, if X E B() - 
then for some «  c we have Ya C Xa C X. Consequently Z« C
{03BE: f(03BE) ~ X}. Thus f-1(X) is stationary. Similarly, if X ~  then

lx ~ AI  c. Thus f-1(X), as a bounded subset of c, is nonstationary.
This shows that f is a testing mapping for B().

Conversely, suppose that f is a testing mapping for B(). Let
{X03B1: a  } be an enumeration of éB n J and let Na = f-1(X03B1). Then
Na E NSc for each 03B1  . Consequently the diagonal union N =
~03B1 N03B1 is in NS,. Now it is easy to check that f (c - N) is a strong
Lusin set for B().

It would be interesting to know if the assumption cf (c) = c is essential
in the Lemma above.

§2. Applications

Our first application of notions and methods introduced in § 1 is the
following theorem, which is a solution of a problem from [4].

THEOREM 1 : Suppose 03B1() = , cf() =  and B()/ satisfies
C.C.C. Then there exists a proper 03C91-complete selective field extending
B().

PROOF: By Lemma 1 there is a strong Lusin set for B(). Thus
using Lemma 2 we get a testing mapping f for B (). Define an ideal j
on R by: X E j if f-1(X) ~ NS,. Let = B(). Then obviously Y is
an wi-complete field extending B().
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Claim 1. g is proper.

Suppose not. Define a mapping 03A8: P() ~ B()/ by 03A8(X) =
[f(X)] for X ~ P(). Then 03C8 yields a one-to-one mapping
4Y : P()/NS ~ B()/. By Solovay’s Partition Theorem (see [10]) we
have |P()/NS| &#x3E; c, consequently |B()/| &#x3E; c. On the other hand we
have |B()/] ~ |B| = c. This contradiction proves our Claim 1.

Claim 2. fi is selective.

First, consider the case when a partition OU of R is such that W C J.
Then, since NSc is selective, there exists a seléctor S of ’U which has the
complement in J, consequently S ~ B().

So, consider the general case, i.e. let au C B() be any partition of
R. Since for each A E 38 we have A e 0 iff A E J, we see that

130(j)/j In particular B()/ satisfies C.C.C. Con-

sequently at most countably many members of au are in B()-.
Thus au = {Yn:n  03C9} U {Z03B1 : a  c}, where Za ~  for a  c. Let Y =

U nw Yn. Then Y ~ B(). Consider the partition "If =

{Z03B1: a  c} U {{y}: y E Y} of R. Then T C J. Thus, as we have noticed
before, there is a selector S of Y such that S ~ B(). Let F be a
selector of {Yn: n  03C9}. Then F E B(). But (S - Y) U F is a selector
of au which clearly belongs to B(). This shows the selectivity of g.

REMARKS: (1) In fact, in [4], the Authors stated the following
(added in proof): "Let % be a cr-comptete field of subsets of real line
203C9, which contains all Lebesgue measurable sets. Suppose that for
every partition Y C (9 of 2" there exists a selector of "if in . Does

= P(203C9)? Our conjecture is NO, at least in ZFC + CH".
E. Grzegorek has remarked that if cf() = w  c, and 03B2() = c then

the answer is YES. Notice that the assumption that cf() = c itself

does not suffice to prove Theorem 1. Indeed, if we add 2 Cohen reals
to a model for ZFC + CH then in resulted model we have cf (c) = c
and the answer is YES.

(2) Notice that, if we apply our Theorem 1 exactly to the case of
the problem mentioned above, i.e. to B(), then on the field 91

constructed in the proof of Theorem 1, we can define a countably
additive measure li by: li (B A I ) = m(B), where B E B, I e J, and m
is the Lebesgue measure on R.
A next application of the method of strong Lusin sets is a theorem

which improves a theorem from [12].

THEOREM 2: Let rn be the Lebesgue measure on R and suppose
that a (Y) = cf() = c. Then there exists a countably additive invariant
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measure IL on R such that:

(i) if X ~ B() then X ~ B(03BC) and 03BC(X) = m(X);
(ii) 03BC~ U();
(iii) Y, is a P -ideal.

PROOF: By our assumptions and Lemma 1 there exists a Hamel

basis H which is a strong Lusin set for 00(2). Let H = {h03B1: a  cl be
an enumeration of H. By proof of Lemma 2 we can assume that for
each X ~ B() -  we have (03B1 : h03B1 ~ X} ~ NS. Let Ra =

[{h03B2 : 03B2  03B1}]. Define a function r:R ~  by r(x) = min{03B1 : x ~ R03B1}.
Notice that if x ~ 0 then r(x) = ao iff there are some so, s1,...,sn E

Q - {0} and ao &#x3E; 03B11 &#x3E; ··· &#x3E; an such that x = soho + ... + snhn.

Claim 1. If N E 2 then r(N) E NS,.
Suppose, to get a contradiction, that there is some N EE Y such that

r(N) ~ NS,. Without loss of generality, we can assume that 0 ~ N and
that r is one-to-one on N. Then each a E N has the form a =

s0h03B10 +... + snhan, where so, ..., sn E Q = Q - {0}, and r(a) = ao &#x3E;... &#x3E;

an. Because we have only countably many finite sequences from Q,
and NS, is c-complete, without loss of generality we can assume that
there are some so, ..., sn E Q such that for each a E N we have
a = s0h03B10 + ··· + snhan, where r(a) = ao. Define a function f : r(N) ~ c
by f (ao) = a if there is (by our assumption exactly one) such a EN
that a = s0h03B10 + s1h03B11 + ··· + snh03B1n. Since f is regressive there exists
Mi C N and 0  c such that r(M1) ~ NS, and f has a constant value
(31 on r(Ml).
Repeating this argument n-times, we get a set M CN and (31 &#x3E;

... &#x3E; 03B2n such that r(M) ~ NS,, and for each a E M we have a =

s0h03B10 + s1h03B21 + ··· + snh03B2n. But then MI= c. Let C =

;0 (M - (s1h03B21 + ··· + SnhOn». Then C E 5£, ICI = c and C C - H. But this

contradicts our assumption that H is a strong Lusin set for ß().
This finishes the proof of Claim 1.

Let j be an ideal defined by X ~  iff r(X) ~ NS. It is easy to see
that J is c-complete and, by Claim 1,  ~ . Moreover for each
a E R, each X C R and each s E Q we have r(X + a) - (r(a) + 1) =
r(X) - (r(a) + 1) and r(sX) = r(X). Consequently J is an invariant

ideal on R. Finally, notice that for every X E 00(:£) we have X e j iff
X ~ . Thus we can define a measure g on B() by: 03BC(B 0394 I ) =

m(B), where B E 00 and I E J. It is easy to see that g is a countably
additive invariant measure on R and J. = J.
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Claim 2. JÉ U().
Indeed, let 6U = {U03B1 : 03B1  } be a partition of R into sets of car-

dinality c. Consider the family {r(U03B1): 03B1  c}. Since the coimage of
any point has the cardinality less than c and cf (c) = c, we see that the
cardinality of any set from {r(U03B1): a  c} is also c. Thus, by Sierpins-
ki’s Refining Theorem, there is a family of pairwise disjoint sets

{V03B1 : a  } such that for every a  c we have IVal = c and Va C r(U03B1).
Now, since NS ~ U(), there is a selector S for {V03B1 : a  } which is
in NS,. But then, for each a  c, r-,(s) n U03B1 ~  and r-1(S) ~ . Thus
there is a selector of 6U in j which proves our Claim 2.

Finally by a similar argument like used in the proof of Claim 2, we
can show that j is a P-ideal.

REMARK: As far as we know, extensions of the Lebesgue measure
in the Kakutani-Oxtoby way (see for example [5]) have the property
U (c).
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