COMPOSITIO MATHEMATICA

JAN BRZUCHOWSKI JACEK CICHOŃ BOGDAN WEGLORZ Some applications of strong Lusin sets

Compositio Mathematica, tome 43, nº 2 (1981), p. 217-224 http://www.numdam.org/item?id=CM_1981_43_2_217_0

© Foundation Compositio Mathematica, 1981, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 43, Fasc. 2, 1981, pag. 217–224 © 1981 Sijthoff & Noordhoff International Publishers – Alphen aan den Rijn Printed in the Netherlands

SOME APPLICATIONS OF STRONG LUSIN SETS

Jan Brzuchowski, Jacek Cichoń and Bogdan Weglorz

Introduction

A main tool of this paper are strong Lusin sets. It turns out that the use of strong Lusin sets permits to construct some special σ -fields of subsets of the real line **R**. Namely, we consider the following situation: \mathcal{B} is the σ -field of Borel subsets of **R** and \mathcal{I} is a σ -ideal on **R** with a Borel basis. We wish to extend the σ -field $\mathcal{B}(\mathcal{I})$ to a field which has some combinatorial properties. If A is a strong Lusin set for $\mathcal{B}(\mathcal{I})$ then we can test any $X \in \mathcal{B}(\mathcal{I})$ whether it belongs to \mathcal{I} , namely it suffices to look whether the cardinality of $X \cap A$ is less than c. Consequently if A is a strong Lusin set for $\mathcal{B}(\mathcal{I})$ then $\mathcal{I} \cap \mathcal{P}(A) \subseteq [A]^{<\epsilon}$ and $(\mathcal{B} - \mathcal{I}) \cap \mathcal{P}(A) \subseteq [A]^{\epsilon}$; thus we have a quite big freedom of extension of \mathcal{I} to an ideal \mathcal{I} in this manner that $\mathcal{B} - \mathcal{I} =$ $\mathcal{B} - \mathcal{I}$. This freedom in the choice of \mathcal{I} allows us to solve some problems arisen from some Ulam's problems on σ -fields on **R** (for a more detailed discussion of these problems see [4]).

The present paper is divided into two parts. In 1 (Tools), we clarify the question of the existence of strong Lusin sets and testing mappings and we construct some special strong Lusin sets like Hamel bases. In 2 (Applications), we apply our tools to give an answer to a question from [4] and to get a strengthening of a theorem from [12]. Of course in 0 we give all necessary definitions and clarify our notation.

§0. Notation and terminology

We use the standard set-theoretical notation and terminology, e.g. ordinals are sets of all smaller ordinals, cardinals are initial ordinals,

0010-437X/81050217-08\$00.20/0

 $\omega = \{0, 1, 2, ...\}$ is the set of all natural numbers, **R** is the set of all reals and **Q** is the set of all rationals. The cardinality of a set A is denoted by |A|. In particular $|\mathbf{R}| = \mathfrak{c} = 2^{\omega}$ and $|\omega| = |\mathbf{Q}| = \omega$. $\mathcal{P}(X)$ denotes the set of all subsets of X. A cardinal κ is regular iff κ is not any union of fewer than κ sets of the cardinality less than κ .

We consider some ideals and fields of sets on either **R** or \mathfrak{c} . All ideals and fields under consideration are closed under countable unions and contain all singletons. \mathscr{L} and \mathscr{K} are the ideals of all subsets of **R** of Lebesgue measure zero and of all meager subsets of **R**, respectively. \mathscr{B} denotes the field of Borel subsets of **R** and $NS_{\mathfrak{c}}$ the ideal of nonstationary subsets of \mathfrak{c} . In the case when \mathfrak{c} is regular we may use the Fodor Theorem for $NS_{\mathfrak{c}}$ (see e.g. [3]).

If \mathscr{I} is an ideal then a family $\mathscr{A} \subseteq \mathscr{I}$ is a basis for \mathscr{I} iff for any element of \mathscr{I} there is an element of \mathscr{A} which includes it; in particular an ideal \mathscr{I} on **R** has a Borel basis iff $\mathscr{I} \cap \mathscr{B}$ is a basis for \mathscr{I} . For any ideal \mathscr{I} on **R** we denote by $\mathscr{B}(\mathscr{I})$ the field generated by \mathscr{B} and \mathscr{I} . It is easy to see that $\mathscr{B}(\mathscr{I}) = \{B \bigtriangleup I : B \in \mathscr{B} \text{ and } I \in \mathscr{I}\}$, where \bigtriangleup denotes the symmetric difference.

Let \mathscr{I} be an ideal on **R**. By $\alpha(\mathscr{I})$ we denote the least cardinal κ such that any set from $\mathscr{B}(\mathscr{I}) - \mathscr{I}$ can be presented as a union of κ sets from \mathscr{I} . Similarly $\beta(\mathscr{I})$ denotes the least cardinality of sets from $\mathscr{P}(\mathbf{R}) - \mathscr{I}$. For a discussion of properties of $\alpha(\mathscr{I})$ and $\beta(\mathscr{I})$ see [2]. Notice that for any \mathscr{I} we always have the following obvious relations

$$\omega_1 \leq \alpha(\mathscr{I}) \leq \mathfrak{c} \qquad \omega_1 \leq \beta(\mathscr{I}) \leq \mathfrak{c}.$$

We say that a boolean algebra \mathscr{C} satisfies C.C.C. if any family of pairwise disjoint non-zero elements of \mathscr{C} is at most countable. A boolean algebra \mathscr{C} is homogeneous if for each non-zero element $a \in \mathscr{C}$ the algebras \mathscr{C} and $\mathscr{C}^{(a)} = \{x \in \mathscr{C} : x \leq a\}$ are isomorphic.

We deal with the following three properties of ideals on \mathbf{R} or on \mathfrak{c} (for more detailed discussion of these notions see [1], [3] and [11]).

(1) An ideal \mathscr{I} is a *P*-ideal if for each family $\{A_{\alpha} : \alpha < \mathfrak{c}\} \subseteq \mathscr{I}$ there is some $A \in \mathscr{I}$ such that for all $\alpha < \mathfrak{c}$ we have $|A_{\alpha} - A| < \mathfrak{c}$.

(2) An ideal \mathscr{I} has the property $U(\mathfrak{c})$ if there is a family of pairwise disjoint sets $\{A_{\alpha} : \alpha < \mathfrak{c}\} \subseteq \mathscr{P}(\mathbb{R})$, each of which has the cardinality \mathfrak{c} , such that for each $A \in \mathscr{I}$ there is some $\alpha < \mathfrak{c}$ with $A_{\alpha} \cap A = \emptyset$.

(3) An ideal \mathscr{I} is selective, if for each partition $\mathscr{U} \subseteq \mathscr{I}$ there is a selector S of \mathscr{U} such that the complement of S is in \mathscr{I} .

Now we adapt the property (3) for consideration of fields on **R**. We say that a field \mathcal{S} on **R** is selective, if for each partition $\mathcal{U} \subseteq \mathcal{S}$ of **R** there is a selector of \mathcal{U} in \mathcal{S} .

If μ is a countably additive measure on a field of subsets of **R** then by \mathscr{I}_{μ} we denote the ideal of all subsets of **R** of μ -measure zero. We say that μ is invariant under translations if for each μ -measurable set A and $x \in \mathbf{R}$ the set $A + x = \{a + x : a \in A\}$ is also μ -measurable and $\mu(A + x) = \mu(A)$. More general, if \mathscr{A} is a family of subsets of **R** then we say that \mathscr{A} is invariant under translations if for each $A \in \mathscr{A}$ and each $x \in \mathbf{R}$ we have $A + x \in \mathscr{A}$. We say that \mathscr{A} is invariant if \mathscr{A} is invariant under translations and for each $A \in \mathscr{A}$ and each rational $r \in \mathbf{Q}$ we have $rA = \{ra : a \in A\} \in \mathscr{A}$.

We treat very often **R** as a linear space over rationals. In particular we say that a set $X \subseteq \mathbf{R}$ is linearly independent if X is independent in the linear space **R** over **Q**. A basis of the space **R** over **Q** is called a Hamel basis of **R**. If $X \subseteq \mathbf{R}$ then by [X] we denote the linear subspace of **R** spanned by X.

§1. Tools

In this section we consider only those σ -ideals on **R** which have Borel bases.

Let us recall the following two notions.

DEFINITION: (i) A set $A \subseteq \mathbb{R}$ of the cardinality \mathfrak{c} is a Lusin set for an ideal \mathscr{I} on \mathbb{R} , if for each $I \in \mathscr{I}$ we have $|A \cap I| < \mathfrak{c}$ (see Sierpiński [8]).

(ii) A set $A \subseteq \mathbb{R}$ is a strong Lusin set for $\mathscr{B}(\mathscr{I})$, if for each $B \in \mathscr{B}(\mathscr{I})$ we have $|B \cap A| < \mathfrak{c}$ iff $B \in \mathscr{I}$ (compare McLaughlin [6]).

LEMMA 1: Suppose that $\alpha(\mathcal{I}) = \mathfrak{c}$. Then

(i) there exists a strong Lusin set for $\mathscr{B}(\mathscr{I})$,

(ii) if \mathcal{I} is invariant under translations then there exists a Hamel basis which is a strong Lusin set for $\mathcal{B}(\mathcal{I})$.

PROOF: Let $\{X_{\alpha}: \alpha < \mathfrak{c}\}$ be an enumeration of all sets from $\mathfrak{B} \cap \mathfrak{I}$ and let $\{Y_{\alpha}: \alpha < \mathfrak{c}\}$ be a sequence of sets from $\mathfrak{B} - \mathfrak{I}$ such that each element of $\mathfrak{B} - \mathfrak{I}$ occurs \mathfrak{c} times in this sequence.

To prove (i), pick for every $\alpha < \mathfrak{c}$ an element p_{α} from $Y_{\alpha} - (\bigcup_{\xi < \alpha} X_{\xi} \cup \{p_{\xi} : \xi < \alpha\})$. It is easy to see that the set $\{p_{\alpha} : \alpha < \mathfrak{c}\}$ is a strong Lusin set for $\mathfrak{B}(\mathcal{I})$.

To prove (ii), fix an enumeration $\{x_{\alpha}: \alpha < \mathfrak{c}\}$ of all reals. We construct two sequences of reals: a sequence $\{p_{\alpha}: \alpha < \mathfrak{c}\}$ and a sequence $\{q_{\alpha}: \alpha < \mathfrak{c} \text{ and } \alpha \text{ is odd}\}$. We proceed as follows:

We put $N_{\alpha} = \bigcup_{\xi < \alpha} X_{\xi} \cup [\{p_{\xi}: \xi < \alpha\} \cup \{q_{\xi}: \xi < \alpha \text{ and } \xi \text{ is odd}\}].$ Now

we consider two cases:

(a) α is even, i.e. $\alpha = \lambda + 2n$. Then let p_{α} be any element from $Y_{\lambda+n} - N_{\alpha}$.

(b) α is odd, i.e. $\alpha = \lambda + 2n + 1$. By assumption on \mathscr{I} , we have $N_{\alpha} \cup (N_{\alpha} + x_{\lambda+n}) \neq \mathbb{R}$. Thus we can choose p_{α} , $q_{\alpha} \notin N_{\alpha}$ such that $p_{\alpha} - q_{\alpha} = x_{\lambda+n}$.

Let $A = \{p_{\xi}: \xi < \mathfrak{c}\}$ and $B = \{q_{\xi}: \xi < \mathfrak{c} \text{ and } \xi \text{ odd}\}$. Then A is linearly independent set which is a strong Lusin set for $\mathfrak{B}(\mathcal{I})$, B is a Lusin set for $\mathfrak{B}(\mathcal{I})$, and $[A \cup B] = \mathbb{R}$. Let X be any maximal linearly independent set such that $A \subseteq X$ and $X \subseteq A \cup B$. Then X is a strong Lusin set and a Hamel basis.

REMARK: It is easy to see that if $cf(\mathfrak{c}) = \mathfrak{c}$, then the existence of a strong Lusin set for $\mathscr{B}(\mathscr{I})$ implies that $\alpha(\mathscr{I}) = \mathfrak{c}$.

We do not have to assume that $\alpha(\mathcal{I}) = \mathfrak{c}$ in order to produce a strong Lusin set for $\mathscr{B}(\mathcal{I})$. In fact, we can construct a strong Lusin set just from the assumption that there exists a Lusin set, provided the algebra $\mathscr{B}(\mathcal{I})/\mathcal{I}$ satisfies some extra conditions. Notice that both the ideals \mathscr{L} and \mathscr{K} satisfy them.

PROPOSITION: Suppose the algebra $\mathcal{B}(\mathcal{I})/\mathcal{I}$ is homogeneous and satisfies C.C.C. If there exists a Lusin set for \mathcal{I} then there exists a strong Lusin set for $\mathcal{B}(\mathcal{I})$.

PROOF: Let A be a Lusin set for $\mathscr{B}(\mathscr{I})$. Let \mathscr{X} be a maximal family of \mathscr{I} -almost disjoint sets from $\mathscr{B} - \mathscr{I}$ such that for each $X \in \mathscr{X}$ we have $|X \cap A| < \mathfrak{c}$. By C.C.C. we see that $|\mathscr{X}| \leq \omega$. Let $B = \mathbb{R} - \bigcup \mathscr{X}$. Then obviously B is a Borel set, $B \notin \mathscr{I}$ and for each $U \subseteq B$ if $U \notin \mathscr{I}$ then $|A \cap U| = \mathfrak{c}$.

By Sikorski's theorem ([7], Theorem 32.5) there exists a Borel isomorphism f from B onto \mathbf{R} such that for each Borel subset X of B we have $X \in \mathcal{I}$ iff $f(X) \in \mathcal{I}$. Thus f(A) is a strong Lusin set for $\mathfrak{B}(\mathcal{I})$.

REMARK: The assumption of homogeneity of the algebra $\mathfrak{B}(\mathfrak{I})/\mathfrak{I}$ in the Proposition above is necessary. In fact, if we add \aleph_2 Cohen reals to a model for ZFC + V = L, then in the resulted model the ideal $\mathfrak{I} = \{X \subseteq \mathbb{R} : \mathbb{R}^+ \cap X \in \mathfrak{K} \text{ and } \mathbb{R}^- \cap X \in \mathfrak{L}\}$ has a Lusin set, the algebra $\mathfrak{B}(\mathfrak{I})/\mathfrak{I}$ satisfies C.C.C., and there is no strong Lusin set for $\mathfrak{B}(\mathfrak{I})$. Our main tool is the following notion.

DEFINITION: A mapping $f: \mathfrak{c} \to \mathbf{R}$ is a testing mapping for $\mathfrak{B}(\mathfrak{I})$ if for each $X \in \mathfrak{B}(\mathfrak{I})$ we have

$$X \in \mathscr{I}$$
 iff $f^{-1}(X) \in NS_{\mathfrak{c}}$.

LEMMA 2: Let cf(c) = c. Then $\mathcal{B}(\mathcal{I})$ has a strong Lusin set iff it has a testing mapping.

PROOF: Let A be a strong Lusin set for $\mathfrak{B}(\mathfrak{I})$. Let $\{X_{\alpha} : \alpha < \mathfrak{c}\}$ be an enumeration of all sets from $\mathfrak{B} - \mathfrak{I}$. Notice that since \mathfrak{I} has a Borel basis, for each $X \in \mathfrak{B}(\mathfrak{I}) - \mathfrak{I}$ there is some $\alpha < \mathfrak{c}$ such that $X_{\alpha} \subseteq X$.

Consider the family $\{X_{\alpha} \cap A : \alpha < c\}$. Since A is a strong Lusin set for $\mathscr{B}(\mathscr{I})$, we see that, for all $\alpha < c$, we have $|X_{\alpha} \cap A| = c$. By Sierpiński's Refining Theorem (see [9]), there is a family $\{Y_{\alpha} : \alpha < c\}$ of pairwise disjoint sets such that for each $\alpha < c$, we have $Y_{\alpha} \subseteq X_{\alpha} \cap A$, $|Y_{\alpha}| = c$ and $\bigcup_{\alpha < c} Y_{\alpha} = A$. By Solovay's Partition Theorem (see [10]), there is a family of pairwise disjoint stationary sets $\{Z_{\alpha} : \alpha < c\} \subseteq \mathscr{P}(c)$. Let f be any one-to-one function which maps c onto A such that for each $\alpha < c$ we have $f(Z_{\alpha}) = Y_{\alpha}$. By our construction, if $X \in \mathscr{B}(\mathscr{I}) - \mathscr{I}$ then for some $\alpha < c$ we have $Y_{\alpha} \subseteq X_{\alpha} \subseteq X$. Consequently $Z_{\alpha} \subseteq$ $\{\xi: f(\xi) \in X\}$. Thus $f^{-1}(X)$ is stationary. Similarly, if $X \in \mathscr{I}$ then $|X \cap A| < c$. Thus $f^{-1}(X)$, as a bounded subset of c, is nonstationary. This shows that f is a testing mapping for $\mathscr{B}(\mathscr{I})$.

Conversely, suppose that f is a testing mapping for $\mathscr{B}(\mathscr{I})$. Let $\{X_{\alpha}: \alpha < \mathfrak{c}\}$ be an enumeration of $\mathscr{B} \cap \mathscr{I}$ and let $N_{\alpha} = f^{-1}(X_{\alpha})$. Then $N_{\alpha} \in NS_{\mathfrak{c}}$ for each $\alpha < \mathfrak{c}$. Consequently the diagonal union $N = \nabla_{\alpha < \mathfrak{c}} N_{\alpha}$ is in $NS_{\mathfrak{c}}$. Now it is easy to check that $f(\mathfrak{c} - N)$ is a strong Lusin set for $\mathscr{B}(\mathscr{I})$.

It would be interesting to know if the assumption cf(c) = c is essential in the Lemma above.

§2. Applications

Our first application of notions and methods introduced in §1 is the following theorem, which is a solution of a problem from [4].

THEOREM 1: Suppose $\alpha(\mathcal{I}) = \mathfrak{c}$, $cf(\mathfrak{c}) = \mathfrak{c}$ and $\mathfrak{B}(\mathcal{I})/\mathfrak{I}$ satisfies C.C.C. Then there exists a proper ω_1 -complete selective field extending $\mathfrak{B}(\mathfrak{I})$.

PROOF: By Lemma 1 there is a strong Lusin set for $\mathfrak{B}(\mathfrak{I})$. Thus using Lemma 2 we get a testing mapping f for $\mathfrak{B}(\mathfrak{I})$. Define an ideal \mathfrak{I} on **R** by: $X \in \mathfrak{I}$ if $f^{-1}(X) \in NS_{\mathfrak{c}}$. Let $\mathscr{S} = \mathfrak{B}(\mathfrak{I})$. Then obviously \mathscr{S} is an ω_1 -complete field extending $\mathfrak{B}(\mathfrak{I})$. Claim 1. \mathcal{S} is proper.

Suppose not. Define a mapping $\Psi: \mathscr{P}(\mathfrak{c}) \to \mathscr{B}(\mathscr{J})/\mathscr{J}$ by $\Psi(X) = [f(X)]_{\mathscr{J}}$ for $X \in \mathscr{P}(\mathfrak{c})$. Then Ψ yields a one-to-one mapping $\Phi: \mathscr{P}(\mathfrak{c})/NS_{\mathfrak{c}} \to \mathscr{B}(\mathscr{J})/\mathscr{J}$. By Solovay's Partition Theorem (see [10]) we have $|\mathscr{P}(\mathfrak{c})/NS_{\mathfrak{c}}| > \mathfrak{c}$, consequently $|\mathscr{B}(\mathscr{J})/\mathscr{J}| > \mathfrak{c}$. On the other hand we have $|\mathscr{B}(\mathscr{J})/\mathscr{J}| \le |\mathscr{B}| = \mathfrak{c}$. This contradiction proves our Claim 1.

Claim 2. \mathcal{G} is selective.

First, consider the case when a partition \mathcal{U} of **R** is such that $\mathcal{U} \subseteq \mathcal{J}$. Then, since NS_c is selective, there exists a selector S of \mathcal{U} which has the complement in \mathcal{J} , consequently $S \in \mathcal{B}(\mathcal{J})$.

So, consider the general case, i.e. let $\mathcal{U} \subseteq \mathcal{B}(\mathcal{J})$ be any partition of **R**. Since for each $A \in \mathcal{B}$ we have $A \in \mathcal{I}$ iff $A \in \mathcal{J}$, we see that $\mathcal{B}(\mathcal{J})/\mathcal{J} = \mathcal{B}(\mathcal{I})/\mathcal{J}$. In particular $\mathcal{B}(\mathcal{J})/\mathcal{J}$ satisfies C.C.C. Consequently at most countably many members of \mathcal{U} are in $\mathcal{B}(\mathcal{J}) - \mathcal{J}$. Thus $\mathcal{U} = \{Y_n : n < \omega\} \cup \{Z_\alpha : \alpha < \mathfrak{c}\}$, where $Z_\alpha \in \mathcal{J}$ for $\alpha < \mathfrak{c}$. Let $Y = \bigcup_{n < \omega} Y_n$. Then $Y \in \mathcal{B}(\mathcal{J})$. Consider the partition $\mathcal{V} = \{Z_\alpha : \alpha < \mathfrak{c}\} \cup \{\{y\}: y \in Y\}$ of **R**. Then $\mathcal{V} \subseteq \mathcal{J}$. Thus, as we have noticed before, there is a selector S of \mathcal{V} such that $S \in \mathcal{B}(\mathcal{J})$. Let F be a selector of $\{Y_n : n < \omega\}$. Then $F \in \mathcal{B}(\mathcal{J})$. But $(S - Y) \cup F$ is a selector of \mathcal{U} which clearly belongs to $\mathcal{B}(\mathcal{J})$. This shows the selectivity of \mathcal{J} .

REMARKS: (1) In fact, in [4], the Authors stated the following (added in proof): "Let \mathscr{C} be a σ -complete field of subsets of real line 2^{ω} , which contains all Lebesgue measurable sets. Suppose that for every partition $\mathscr{V} \subseteq \mathscr{C}$ of 2^{ω} there exists a selector of \mathscr{V} in \mathscr{C} . Does $\mathscr{C} = \mathscr{P}(2^{\omega})$? Our conjecture is NO, at least in ZFC + CH".

E. Grzegorek has remarked that if $cf(\mathfrak{c}) = \omega_1 < \mathfrak{c}$, and $\beta(\mathcal{L}) = \mathfrak{c}$ then the answer is YES. Notice that the assumption that $cf(\mathfrak{c}) = \mathfrak{c}$ itself does not suffice to prove Theorem 1. Indeed, if we add \aleph_2 Cohen reals to a model for ZFC + CH then in resulted model we have $cf(\mathfrak{c}) = \mathfrak{c}$ and the answer is YES.

(2) Notice that, if we apply our Theorem 1 exactly to the case of the problem mentioned above, i.e. to $\mathscr{B}(\mathscr{L})$, then on the field \mathscr{S} constructed in the proof of Theorem 1, we can define a countably additive measure μ by: $\mu(B \triangle I) = m(B)$, where $B \in \mathscr{B}$, $I \in \mathscr{J}$, and m is the Lebesgue measure on **R**.

A next application of the method of strong Lusin sets is a theorem which improves a theorem from [12].

THEOREM 2: Let m be the Lebesgue measure on **R** and suppose that $\alpha(\mathcal{L}) = cf(\mathfrak{c}) = \mathfrak{c}$. Then there exists a countably additive invariant

- (i) if $X \in \mathcal{B}(\mathcal{L})$ then $X \in \mathcal{B}(\mathcal{I}_{\mu})$ and $\mu(X) = m(X)$;
- (ii) $\mathscr{I}_{\mu} \not\in U(\mathfrak{c});$
- (iii) \mathcal{I}_{μ} is a *P*-ideal.

PROOF: By our assumptions and Lemma 1 there exists a Hamel basis H which is a strong Lusin set for $\mathscr{B}(\mathscr{L})$. Let $H = \{h_{\alpha} : \alpha < \mathfrak{c}\}$ be an enumeration of H. By proof of Lemma 2 we can assume that for each $X \in \mathscr{B}(\mathscr{L}) - \mathscr{L}$ we have $(\alpha : h_{\alpha} \in X) \notin NS_{\mathfrak{c}}$. Let $R_{\alpha} =$ $[\{h_{\beta} : \beta < \alpha\}]$. Define a function $r : \mathbb{R} \to \mathfrak{c}$ by $r(x) = \min\{\alpha : x \in R_{\alpha}\}$. Notice that if $x \neq 0$ then $r(x) = \alpha_0$ iff there are some $s_0, s_1, \ldots, s_n \in$ $\mathbb{Q} - \{0\}$ and $\alpha_0 > \alpha_1 > \cdots > \alpha_n$ such that $x = s_0h_0 + \cdots + s_nh_n$.

Claim 1. If $N \in \mathcal{L}$ then $r(N) \in NS_{\mathfrak{c}}$.

Suppose, to get a contradiction, that there is some $N \in \mathcal{L}$ such that $r(N) \notin NS_c$. Without loss of generality, we can assume that $0 \notin N$ and that r is one-to-one on N. Then each $a \in N$ has the form $a = s_0 h_{\alpha_0} + \cdots + s_n h_{\alpha_n}$, where $s_0, \ldots, s_n \in \overline{\mathbf{Q}} = \mathbf{Q} - \{0\}$, and $r(a) = \alpha_0 > \cdots > \alpha_n$. Because we have only countably many finite sequences from $\overline{\mathbf{Q}}$, and NS_c is c-complete, without loss of generality we can assume that there are some $s_0, \ldots, s_n \in \overline{\mathbf{Q}}$ such that for each $a \in N$ we have $a = s_0 h_{\alpha_0} + \cdots + s_n h_{\alpha_n}$, where $r(a) = \alpha_0$. Define a function $f: r(N) \to c$ by $f(\alpha_0) = \alpha_1$ if there is (by our assumption exactly one) such $a \in N$ that $a = s_0 h_{\alpha_0} + s_1 h_{\alpha_1} + \cdots + s_n h_{\alpha_n}$. Since f is regressive there exists $M_1 \subseteq N$ and $\beta_1 < c$ such that $r(M_1) \notin NS_c$ and f has a constant value β_1 on $r(M_1)$.

Repeating this argument *n*-times, we get a set $M \subseteq N$ and $\beta_1 > \cdots > \beta_n$ such that $r(M) \notin NS_c$, and for each $a \in M$ we have $a = s_0 h_{\alpha_0} + s_1 h_{\beta_1} + \cdots + s_n h_{\beta_n}$. But then |M| = c. Let $C = \frac{1}{s_0} (M - (s_1 h_{\beta_1} + \cdots + s_n h_{\beta_n}))$. Then $C \in \mathcal{L}$, |C| = c and $C \subseteq H$. But this contradicts our assumption that H is a strong Lusin set for $\mathscr{B}(\mathscr{L})$. This finishes the proof of Claim 1.

Let \mathscr{J} be an ideal defined by $X \in \mathscr{J}$ iff $r(X) \in NS_c$. It is easy to see that \mathscr{J} is c-complete and, by Claim 1, $\mathscr{L} \subseteq \mathscr{J}$. Moreover for each $a \in \mathbb{R}$, each $X \subseteq \mathbb{R}$ and each $s \in \overline{\mathbb{Q}}$ we have r(X + a) - (r(a) + 1) =r(X) - (r(a) + 1) and r(sX) = r(X). Consequently \mathscr{J} is an invariant ideal on \mathbb{R} . Finally, notice that for every $X \in \mathscr{B}(\mathscr{L})$ we have $X \in \mathscr{J}$ iff $X \in \mathscr{L}$. Thus we can define a measure μ on $\mathscr{B}(\mathscr{J})$ by: $\mu(B \bigtriangleup I) =$ m(B), where $B \in \mathscr{B}$ and $I \in \mathscr{J}$. It is easy to see that μ is a countably additive invariant measure on \mathbb{R} and $\mathscr{I}_{\mu} = \mathscr{J}$. Claim 2. $\mathcal{J} \notin U(\mathfrak{c})$.

Indeed, let $\mathcal{U} = \{U_{\alpha} : \alpha < \mathfrak{c}\}$ be a partition of **R** into sets of cardinality \mathfrak{c} . Consider the family $\{r(U_{\alpha}): \alpha < \mathfrak{c}\}$. Since the coimage of any point has the cardinality less than \mathfrak{c} and $cf(\mathfrak{c}) = \mathfrak{c}$, we see that the cardinality of any set from $\{r(U_{\alpha}): \alpha < \mathfrak{c}\}$ is also \mathfrak{c} . Thus, by Sierpiński's Refining Theorem, there is a family of pairwise disjoint sets $\{V_{\alpha}: \alpha < \mathfrak{c}\}$ such that for every $\alpha < \mathfrak{c}$ we have $|V_{\alpha}| = \mathfrak{c}$ and $V_{\alpha} \subseteq r(U_{\alpha})$. Now, since $NS_{\mathfrak{c}} \notin U(\mathfrak{c})$, there is a selector S for $\{V_{\alpha}: \alpha < \mathfrak{c}\}$ which is in $NS_{\mathfrak{c}}$. But then, for each $\alpha < \mathfrak{c}, r^{-1}(S) \cap U_{\alpha} \neq \emptyset$ and $r^{-1}(S) \in \mathcal{J}$. Thus there is a selector of \mathfrak{U} in \mathcal{J} which proves our Claim 2.

Finally by a similar argument like used in the proof of Claim 2, we can show that \mathcal{J} is a *P*-ideal.

REMARK: As far as we know, extensions of the Lebesgue measure in the Kakutani-Oxtoby way (see for example [5]) have the property $U(\mathfrak{c})$.

REFERENCES

- [1] J.E. BAUMGARTNER, A.D. TAYLOR and S. WAGON: Structural properties of ideals. Dissertationes Mathematicae (in print).
- [2] L. BUKOVSKÝ: Random forcing, Set Theory and Hierarchy Theory V, Bierutowice, Poland 1976, in Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 619, (1977) 101-117.
- [3] G. FODOR: Eine Bemerkung zur Theorie der regressive Funktionen. Acta. Sci. Math. (Szeged), 17 (1956) 139-142.
- [4] E. GRZEGOREK and B. WEGLORZ: Extensions of filters and fields of sets (I). J. Austral. Math. Soc. 25 (Series A) (1978) 275-290.
- [5] E. HEWITT and K. ROSS: Abstract Harmonic Analysis, Springer-Verlag, Berlin-New York, 1970.
- [6] T.G. MCLAUGHLIN: Martin's Axiom and some classical constructions. Bulletin of the Australian Mathematical Society, 12 (1975) 351-362.
- [7] R. SIKORSKI: Boolean Algebras, Springer-Verlag, Berlin-Heidelberg-New York (1969).
- [8] W. SIERPIŃSKI: Hypotese du Continuum. Monografie Matematyczne, Vol. 4, Warszawa-Lwów (1934).
- [9] W. SIERPIŃSKI: Sur la decomposition des ensembles en sousensembles presque disjoint. Mathematica, Claj, 14 (1938) 15-17.
- [10] R.M. SOLOVAY: Real-valued measurable cardinals. Axiomatic Set Theory (A.M.S. Providence, R.I.) (1971) 397–428.
- [11] B. WEGLORZ: Some properties of filters, Set Theory and Hierarchy Theory V, Bierutowice, Poland 1976, in Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 619 (1977) 311-328.
- [12] B. WEGLORZ: Invariant ideals and fields of subsets of abstract algebras, Proceedings of the Klagenfurt Conference, Verlag Johannes Heyn, Klagenfurt 1978.

(Oblatum 21-XI-1979 & 8-X-1980)

Mathematical Institute University of Wrocław pl. Grunwaldzki 2 50-384 Wrocław (Poland)