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Given a compact Lie group G and a closed subgroup H, the

quotient space G/H is a highly symmetric smooth manifold. Fur-
thermore, if K is a closed subgroup strictly between H and G, then
one can fiber G/H over G/K with fiber K/H (compare [46]). Results
due to W. Browder, D. Gottlieb, and several others show that under
suitable conditions a converse is either true or very nearly so [2, 11 ];
namely, all smooth fiberings of G/H look much like those given by
homogeneous spaces from Lie theory. This paper is a further attempt
to discover the extent to which homogeneous fiberings of G/H can be
used to describe all "nice" fiberings (e.g., smooth fiber bundles). We
concentrate on homogeneous spaces G/H where no intermediate

subgroup exists, in which case the aim is to show there are generally
no "nice" fiberings.
One motivation for this study is a result from [2, 12], which states

that even-dimensional projective spaces over the reals, complex
numbers, quaternions, or Cayley numbers cannot be fibered nicely.
This may be viewed as a generalization of the f act that there are no
closed subgroups of the group CL(2n + 1) - where CL denotes 0, U,
or Sp - strictly between this group and CL(2n) x CL( 1 ); the latter

may be derived from the work of Borel and de Siebenthal, for

example [7]. Thus the conjecture that G/H cannot be fibered if there
are no intermediate subgroups suggests itself immediately. The prin-
cipal results of this paper give evidence in favor of this conjecture, at
least after it has been reformulated to exclude counterexamples that
are more or less predictable from Lie theory itself (see Section 2).
Specifically, we prove that the following homogeneous spaces cannot
be fibered nicely:
(i) The quotient of a compact Lie group G by the normalizer of a
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maximal torus, provided the latter is a maximal closed subgroup
(Theorem 3.1).

(ii) Grassmann manifolds of 2-planes in complex or quaternionic
n-space, n ~ 5 (Theorem 4.19).

(iii) Odd-dimensional quaternionic projective spaces except for the
quaternionic projective line (Theorem 5.1).

(iv) Grassmann manifolds of 2-planes in real n-space for all but

possibly a very sparse set of integers n (Theorem 6.13).
There are numerous other examples too, but they will be postponed
to a later paper.
Here is a more specific description of this paper’s contents: The

first section discusses the homotopy-theoretic analog of a smooth
fiber bundle (a compact fibering in Gottlieb’s terminology [23]) and
its relation to several more familiar notions. In the second section we

formulate the conjecture on fibering homogeneous spaces precisely,
and in the third section we determine the fiberability of a compact Lie
group mod the normalizer of its maximal torus. The fourth section
demonstrates the nonfiberability of complex and quaternionic
Grassmannians of 2-planes, while the fifth section discusses odd

dimensional quaternionic projective spaces. Our results on fibering
real Grassmannians of 2-planes appear in Section 6. Finally, Section 7
gives examples of fiberable homogeneous spaces G/H with H maxi-
mal when either G is noncompact (but still semisimple!) or H does
not have maximum rank, with speculations about alternate con-

jectures in such situations.
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1. Compact fiberings

Following Gottlieb [23], we define a compact fibering of a finite
complex X to be a Hurewicz fibration F ~ E - B with E homotopy
equivalent to X and F, B both homotopy equivalent to finite com-
plexes. Of course, the most obvious examples are smooth fiber bundles
with F and B compact smooth manifolds with boundary (if both
boundaries are nonempty, then E has corners). In fact, if E is a

compact finite-dimensional ANR (hence homotopic to a finite com-
plex X by results of J. West [50]), then every fiber bundle with total
space E gives rise to a compact fibering of X:

PROPOSITION 1.1: Let F - E - B be a locally trivial fiber bundle
with (say) B compact T2 (see [38] for remarks about T2). Then F and
B both have the homotopy types of finite complexes, and F - E ~ B is
exact [45] (hence is a compact fibering).

PROOF: It follows from [45, p. 96] that F-E -B is a Serre

fibration, and exactness follows if we know both F and B have the

homotopy types of complexes. Because of this and the result of West,
it suffices to prove that F and B are both compact (already known)
finite-dimensional ANR’s. This is easy for F, which is closed in E and
also is a cartesian factor of some open set in E (the latter automatic-
ally being an ANR). Furthermore, an argument of C.B. de Lyra [38]
yields this also for B ; the only changes needed in de Lyra’s argument
are to replace S2n+1 with E (all he uses is local contractibility) and to
replace the dimension-theoretic assertion with the weak statement
that P, Q compact metrizable and dim P x Q finite imply dim P finite.

a

REMARK: The following result of A. Edmonds [15] sheds still
further light on topological fiber bundles with total space a manifold:
Suppose F - E - B is a fiber bundle with E and F compact mani-

folds, and assume codim F ~ 5. Then there is a fiber bundle F ~
E ~ B’ with B’ a manifold; in fact, the latter is induced by a map
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f: B’ - B and the canonical map E = f*E ~ E is homotopic to the

identity. As noted in [15], there are many examples where B itself is
not a manifold.

While discussing the recognition of compact fiberings, we mention
another basic fact:

THEOREM 1.2: Suppose that E and B are closed CAT manifolds,
CAT = DIFF or TOP, and f : E ~ B is a CAT submersion [41, 44].
Then f is a CAT fiber bundle. ·

This is due to Ehresmann for DIFF [16] and follows from more

general results of Siebenmann for TOP [44, pp. 150-151]. It is of

course commonplace to contrast this with the corresponding results
for submersions with noncompact unbounded domains [41].
There are several other ways in which compact fiberings are

strongly related to the more common notion of a fiber bundle. One is
given by the fiber smoothing theorems of A. Casson [12], which state
that compact fiberings are equivalent to smooth bundles with fibers
that are interiors of compact manifolds with boundary, and one can
get compact manifolds with boundary if one is willing to multiply the
fiber by a suitable torus. A second link is given by a remarkable
formula first recognized by F. Quinn [42]. Following Bredon [9], we
shall use the term Poincaré-Wall complex to denote a finite complex
satisfying Poincaré duality with arbitrary local coefficients as in [49]
(these include all closed manifolds).

THEOREM 1.3: (Quinn’s Formula, Special Case). Let F - E - B be a
fibration with all three spaces homotopy equivalent to finite complexes
F’, E’, B’. Then E’ is a Poincaré-Wall complex if and only if F’ and
B’ are. Furthermore, the formal dimension of E is the sum of the
formal dimensions of B and F.

Several proofs exist; see [24] for one in print (also compare [54]).
Although the dimension formula is not stated explicitly, it follows

immediately from most if not all proofs of Quinn’s Formula. Il

Gottlieb has defined a finite complex X to be prime if the only
compact fiberings of X have either contractible fibers or contractible
bases. For connected complexes he has also considered a weaker
notion we shall call connectedwise prime complexes, for which one
considers only compact fiberings with connected fibers. Given such
definitions, the following question is an obvious one:
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(1.4) Which finite (resp., connected finite) complexes are prime
(resp., connectedwise prime)?

One’s initial intuition is that "almost all" finite complexes are

prime, but - even ignoring the question of formulating it precisely - this
question seems well beyond current skills in general. Our purpose
here is to look at some special cases where primeness can be
compared to basic mathematical patterns in other contexts; we des-
cribe this more clearly in Section 2. We shall close this section with
the simplest possible example of a prime complex:

PROPOSITION 1.5: A one point space is prime.

PROOF: If F - E - B is a compact fibering with E contractible,
then Quinn’s Formula implies B is a zero-dimensional Poincaré-Wall
complex. In addition, B is connected. But Wall has shown that all

such complexes are contractible [49]. (This can also be shown directly
in other ways.) a

This result overlaps (but does not contain) classical theorems on
the nonfiberability of Rn as a fiber bundle with compact fiber (see [47,
pp. 300-301] for a summary of the literature). Although the proof of
Proposition 1.5 is certainly quite trivial, the result does illustrate the
significance of Quinn’s formula and Wall’s result [49] for the study of
compact fiberings of closed manifolds.

2. Homogeneous spaces

We have already stated that the following result is our starting
point:

THEOREM 2.1: Let A denote the reals complex numbers, quater-
nions, or Cayley numbers. Then there are no Hurewicz fibrations
F-E-B with E homotopy equivalent to the equivalent to the

projective space AP 2n (n = 1 only for the Cayley numbers) and B, F
homotopy equivalent to noncontractible finite complexes..

Apparently at least some version of this result was known to A.
Borel many years ago. Partial results first appeared in [2], and the
result in full generality appears in [12].

Since AP 2n is the homogeneous space of a compact Lie group, by
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the remarks in the introduction we know that 2.1 generalizes known
results about CL(2n) x CL(l) being a maximal closed subgroup of
CL(2n + 1) for CL = 0, U, or Sp (see Routine Exercise 7.3). Since
the Cayley projective plane is the homogeneous space F4/Spin9 [5],
this also generalizes the fact that Spin9 is a maximal closed subgroup
of F4. However, it is too much to ask that G/H never fiber if H is a
maximal closed subgroup of G. The easiest counterexamples are the
odd-dimensional projective spaces cp2n+l = IJ(2n + 2)/U(2n + 1) x

U(1) = SU(2n + 2)/pU(2n + 1), where p : U(a) ~ U(a) x U(1) takes A
into (A, det A-’). By [7] we know pU(2n + 1) is a maximal closed

connected subgroup of SU(2n + 2), and routine matrix computations
imply it is its own normalizer (7.3). However, one has the well-known
fiber bundles

arising from the free linear S3 action on s4n+3. There is, however, a
simple group-theoretic explanation for this: The subgroup Sp(n + 1)
acts transitively on cp2n+l, so that Sp(n + 1)/pU(2n + 1) n
Sp(n + 1) = CP2n+1, but pU(2n + 1) n Sp(n + 1) ~ Sp(n) x S’ is not a

maximal closed subgroup of Sp(n + 1) because Sp (n ) x Sp(1) contains
it. One can avoid this by excluding all G/H where some closed proper
subgroup 0393 ~ G acts transitively by translation; in standard ter-

minology, wlshall consider only homogeneous spaces for which G
acts irreducibly transitively on G/H. With this in mind, we may state
the fibering problem as follows:

CONJECTURE 2.3: Let G be a connected compact Lie group, and let
H be a closed subgroup of G such that
(i) H is a maximal closed subgroup,

(ii) G acts irreducibly transitively on G/H,
(iii) H contains a maximal torus of G.
Then G/H is prime.

The third condition is needed to eliminate some counterexamples
given in Section 7, but it also serves (i) to let us use the work of Borel
and de Siebenthal on the classification of subgroups having maximum
rank, (ii) to make the following simple observation a useful tool:

PRODUCT FORMULA 2.4 (compare [2]): If F ~ E ~ B is a compact
fibering, then the Euler characteristics satisfy X(E) = ~(B)~(F). ~
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Rather than discuss other tools that are necessary, we shall proceed
to our verifications of Conjecture 2.3 in special cases. 

3. Reduced flag manifolds

For certain geometrical reasons the homogeneous space U(n)/Tn is
often called a complex flag manifold, and this has carried over to the
name (generalized) flag manifold for arbitrary homogeneous spaces
G/T with G connected compact Lie and T a maximal torus. If we let
N(T) denote the normalizer of T in G, then G/T ~ GIN (T) is a finite
covering obtained from a free action of the Weyl group W(G) =
N(T)/T on GIT, and the base has Euler characteristic one. For these
reasons we call G/N(T) a reduced flag manifold. Such manifolds are
our first test cases here; 1 wish to thank D. Gottlieb for suggesting
them as potentially simple examples.
Without loss of generality we may assume G is simple; otherwise

the splitting of some finite covering as Gl x G2 and the corresponding
splitting for the normalizer implies N(T) is not a maximal closed

subgroup.

THEOREM 3.1: Let G be a simple, connected, compact Lie group.
Then the following are equivalent :
(i) N(T) is a maximal closed subgroup.
(ii) H1(G/N(T); Z) ~ Z2
(iii) G/N(T) is prime.

PROOF: We shall prove the above theorem in the sequence

(ii) ~ (iii), (iii) ~ (i), and (i) ~ (ii). Of course (iii) ~ (i) is trivial by the
observations already made, and therefore we shall not consider it

further.

The proof of (ii) ~ (iii) begins with two basic observations:

(3.2) G/N(T) is rationally acyclic.

(3.3) If F-E-B is a compact fibering with E homotopic to

G/N(T), then the Euler characteristics of F and B are 1.

PROOF oF (3.2): The integral cohomology of G/T is torsion free,
concentrated in even dimensions, and of total rank |N(T)/T| = index
of covering G/T~ G/N(T). Therefore a transfer argument implies
that H*(G/N(T); Q) is a direct summand of H*(G/T; Q) with Euler
characteristic 1. This happens only if G/N(T) is rationally acyclic..
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PROOF oF (3.3): By 2.4 we know that 1 = X(E) = X(F)X(B), and
hence ~(F) = ~(B ) = ± 1. On the other hand, as noted in [2, 12] the
projection map H*(B; Q) ~ H*(G/N/(T); Q) is then a monomor-

phism. Since G/N(T) is rationally acyclic, the same must be true of
B, which implies ~(F) = ~(B) = 1.

These have the following simple consequence:

(3.4) Under the assumptions of 3.3, the fiber F is arcwise con-
nected.

PROOF OF (3.4): Since E = G/N(T) is arcwise connected, the exact
sequence of the fibration ends with - 03C01(B) ~ -rro(F) - 7ro(E) = {pt.}. It
follows that each component of F is homotopy equivalent to the
other, so that X(F) = n~(F0), where Fo is an arbitrary component and
n is the number of components. Since ~(F) = 1, this means n must
also equal 1. ·

We now remark that Quinn’s Formula is a powerful statement that
allows us to handle compact fiberings with the same ease as smooth
fiber bundles. For example, this allows us to form first Stiefel-

Whitney classes and oriented double coverings; specifically, the first
Stiefel-Whitney class arises from the homomorphism 03C01 ~ Z2 = {± 1}
induced by the deck transformation action of oi on a twisted orien-
tation class in the universal covering (see [49]).
With these facts at our disposal, we now prove (ii) ~ (iii). Suppose

that we have a nondegenerate compact fibering F - E - B with E
homotopy equivalent to G/N(T) and HI(GIN(T» = Z2 (Note: The
class of all G where (ii) applies is nonempty because 7Tl(SUn/N(T» is
the symmetric group on n letters and HI is the abelianization of 7FI).
Since G is simple, it is clear that dim E = dim G/N(T) &#x3E; 0. But a
connected Poincaré-Wall complex of f ormal dimension zero is con-

tractible, so in our situation the numbers b = dim B and f = dim F are
both positive (both are connected).

Since B and E are rationally acyclic and have positive dimension,
they are both nonorientable. Furthermore, the Poincaré-Hurewicz
theorem for 7TI and the connectedness of F show that Hl(E) maps
onto Hl(B). Applying the assumption HI(E) ~ Z2, we see that the
projection H1(E) ~ Hl(B) must be an isomorphism. In particular, the
pullback of the oriented double covering  ~ B to E must be the

oriented double covering Ê ~ E. It follows that the fiber inclusion

F - E lifts to Ê and the sequence E ~  ~  is again a compact
fibering.



189

Since Ê has a universal covering space homotopy equivalent to
G/T, it follows that H*(Ê, Q) injects into H*(GIT; Q), which is

concentrated in even dimensions. Also, the Euler characteristic of Ê
is 2 because it is a double covering of E = G/N(T). Therefore Ê must
be a rational cohomology sphere of algebraic dimension b + f =
dim G/N(T) (= dim E, etc.).
On the other hand, the fiber space transfer [3, 12] associated to

F-E-B shows that the projection induces a monomorphism
G*(;Q ) ~ H*(E; Q). But Hb( ; Q) = Q by orientability and

Hb(Ê; Q) = 0 by the previous paragraph combine to give us a con-
tradiction. In particular, the hypothetical compact fibering F - E ~ B
cannot exist. a

We now come to the Proof that (i) implies (ii): We shall prove the
contrapositive; namely, if H1(G/N(T))  Z2 then there is a closed

subgroup K strictly between N(T) and G. To do this, we must use
the classification theory for simple compact Lie groups to determine
the possibilities for H,(G/N(T)).

(3.5) Let G be a connected compact Lie group. Then H1(G/N(T)) ~

Z2 if G is of type An, Dn, E6, E7, or Eg, and H1(G/N(T)) ~ Z2 EB Z2 if G
is of type Bn, Cn, F4, or G2.

PROOF: The group HI(GIN(T» is merely the abelianized Weyl
group W"(G), and this may be computed quite easily using the

Coxeter presentation (a very accessible treatment appears in [4]). It

follows from the specifics of the Coxeter presentation that W’(G) is
generated by symbols v,, ..., Vr corresponding to the vertices of the
Dynkin diagram of G, with relations 2vi = 0 and cij(vi + v;) = 0, where
the cij are also expressible via the Dynkin diagram; namely, ci; = 3 if a
single line joins vi to vj and cii is even otherwise. It follows that

Hl = W#(G) = Z2 if the Dynkin diagram of G has only single lines
(the A, D, and E cases), while HI = W#(G) = Z2 ~ Z2 in the remaining
cases (the B, C, F, and G cases). ·

In each of the cases Bn, Cn, F4, and G2 we shall exhibit an explicit
subgroup strictly between N(T) and G. Consider first the Bn case,
where we may take G = S02n+h n 2:: 2. In this case N(T) is isomor-
phic to the wreath product En f 02; the latter is being embedded in
S02n,l ç 02n+l by the map j~ det(j): 1, f O2 ~ 02n X 01 ç 02n+h
where j: 1, f O2 ~ O2n is inclusion and "det" refers to the deter-

minant map. This embedding extends to an embedding
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id ~ det(id): O2n ~ O2n X 01 ç 02n+1 which also factors through S02,+I,
and therefore the subgroup 02n is strictly between N(T) and S02n+l.
Next consider the Cn case, where G = Spn. If N(S’ : S3) denotes the
normalizer of S in S3, then N(T) is isomorphic to the wreath product
In f N(S1: S3). But this group is contained in the larger wreath
product En f S3 C Spn. This disposes of the classical cases.
As one would expect, the exceptional cases must be treated more

specifically. Since the case G2 is easier, we shall do it first. Consider
the transitive linear action of G2 on S6 with isotropy subgroup SU3.
Since G2 acts transitively and linearly on S6, it also acts transitively
on IRP6, and the isotropy group of this action must be a two com-
ponent extension DSU3 of S U3. It follows that ~(G/DSU3) = 1 ; we
claim that DSU3 contains the normalizer of T. To see this, let N’(T)
denote the normalizer of T in DSU3. The maximal torus theorem

implies that ~(G/N(T)) = 1 even if G is disconnected (N(T) meets

every component of G [30]), and from this it follows that the order of
N’(T)/T has order ~(DSU3/T) = ~(G2/T) = order N(T)/T. Since

N’(T)/T is a subgroup of N(T)/T, this implies they are equal, from
which N(T) = N’(T) C DSU3 follows.

For the case of F4, considerably more is required. We use the
standard realization of F4 as the automorphism group of the excep-
tional Jordan algebra M83, whose elements are Hermitian 3 x 3 matrices
over the Cayley numbers [32]. Let H be the subgroup of F4 that
leaves the 3-dimensional subspace of diagonal matrices pointwise
fixed. Then H is of type D4 (compare [32,33]); moreover, the

representation of H on M83 splits as a 3-dimensional trivial represen-
tation plus three mutually inequivalent 8-dimensional irreducible

representations (see [32, p. 144] and [33, p. 18] for the Lie algebra
version of this statement). It follows from this and the work of [31, 34]
that H must be isomorphic to the simply connected group Sping.
Define a group N Sping to be the subgroup of automorphisms that
leave the diagonal matrix subspace setwise fixed, the action of each
element corresponding to a fixed permutation of coordinates on R3.
This group is strictly larger than Sping, for it contains a copy of 13
acting on Mg by permuting the rows and columns. In fact, N Sping is
a semidirect product of Sping with 13. Elementary computations show
that X(F4/Spin8) = 6, and consequently X(F4/N Spin8) = 1. It now fol-
lows as in the case G = G2 that N Sping contains N(T).

(3.6) FINAL REMARKS: The argument for (ii) ~ (iii) actually shows
more: If Mm is a closed manifold that is rationally acyclic,
nonorientable, and has Hl(Mm) = Z2, then Mm is prime. The homo-
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geneous spaces G/K constructed above - with K strictly between
N(T) and G - all have this property. Of course, if G has type Bn, then
G/K = RP2n, while if G has type G2, then G/K = RP6. However, in
the other cases (Cn, F4) this yields new examples of prime homo-
geneous spaces..

4. Manifolds of complex and quaternionic two planes

In many respects, Grassmann manifolds give the dominant exam-
ples of homogeneous spaces G/H with H a maximal subgroup of
maximum rank. For instance, suppose we consider the following
alternate to Problem 2.4.

PROBLEM 4.1: Let G be a connected compact simple Lie group, and
suppose that H is a connected subgroup of maximum rank. Further-
more, assume that no closed CONNECTED subgroup lies strictly
between H and G, and G acts irreducibly transitively on G/H. Is G/H
connectedwise prime ?

REMARKS: If G is only semisimple, then H splits into factors

corresponding to the simple factors of G [7], and thus the question
above has maximum generality. On the other hand if G = SU4 and
H = U2 x U2 ~ SU4, then H is a maximal connected subgroup whose
normalizer is generated by H and the matrix switching the first and
last two coordinates in C4.
The pairs (G, H) satisfying the conditions except irreducible tran-

sitivity are exactly those listed by Borel and de Siebenthal in a table
at the end of [7]. Specifically, their work shows that G/H must be a
Grassmann manifold of quaternionic, complex, or oriented real k-

planes (with not both the dimension and codimension odd in the latter
case), a Hermitian symmetric space of the form SPn/Un, a homo-
geneous space Fn = SO2n/Un, or one of about 15 exceptional cases
such as G2/S04 or F4/Spin9 = Cayp2. It is well known that Fn fibers
over S2n-2 with fiber F2n-h and this fibration corresponds to the fact
that the subgroup SO2n-, 1 acts transitively on Fn by translation. Thus
Grassmann manifolds, the much smaller family Spn/Un, and a finite
list of remaining cases are the only objects that arise in connected
fibering problem 4.1.
Of course, projective spaces are special cases of Grassmann mani-

folds, and accordingly one is led directly to ask if the nonfiberability
results of [2, 12] can be pushed just a little further - say to the
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remaining projective spaces and to manifolds of two-planes. Since the
complex and quaternionic two-plane manifolds are the easiest to

study, we shall deal with them in the present section.
The following consequence of work done by D. Gottlieb [20, 21] is

very useful for our purposes:

LEMMA 4.2: Let X be a finite complex, and let F E ~ B be a
compact fibering of X. Assume that the Euler characteristic of X is
nonzero. Then i*: 7Tl(F, *) ~ 7r,(E, *) is a monomorphism. In parti-
cular, if F is connected and X is 1-connected, then F and B are also
1-connected.

PROOF: Since O ~ x(X) = X(B)X(F) by 2.4, we know that X(F) is
also nonzero. By [20, 21, 22], the latter implies that the boundary map
03C02(B) ~ 03C01(F) is trivial, and the assertion about i* follows im-

mediately from the homotopy exact sequence of a fibration..

Given the relative ease with which one can handle simply con-
nected spaces in general, the final statement of Lemma 4.2 is quite
helpful in studying fiberability problems such as the following one:

THEOREM 4.3: If n 2:: 4, the Grassmann manifolds Gn,2(F), where
F = C or K, is connectedwise prime.
Note. If n = 3 the Grassmann manifold is a projective plane, and if
n = 2 it is a point.

PROOF: Only finitely many of the rational homotopy groups of a
1-connected homogeneous space are nonzero, and accordingly such
spaces can be studied using results of S. Halperin [25, 26].
Specifically, a minimal model for the rational homotopy type of

Gn,2(F) has polynomial generators in dimensions d and 2d (where
d = dimR F), exterior generators in dimensions nd - 1 and nd - d - 1,
and differentials on the exterior generators corresponding to the two
polynomial relations in H*(Gn,2(F); 0).
Suppose we are given a compact fibering of Gn,2(F) with connected

fiber. The work of Halperin on rational fibrations imposes some very
strong conditions [26]. For example, F and B (which are 1-connected
by 4.2) both have finite rational homotopy, the Serre spectral
sequence for F ~ E ~ B collapses over the rationals, and if P(X)
denotes the rational Poincaré polynomial of a finite complex X, we
have
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It follows that

The dimension of Gn,2(F) is d(2n - 4), which is divisible by 4
because d = 2 or 4. Consequently we may consider the signature of
this manifold, at least up to sign. Since everything is 1-connected, an
argument due to Chern, Hirzebruch, and Serre [13] implies that

(4.6) sgn(E) = sgn(B) sgn(F),

where E = Gn,2(F). The latter may be given as follows:

(4.7) The signature of Gn,2(F) is equal to [n 2] (brackets denoting the
greatest integer function), which is also dim oHd(n-2)(Gn,2(F); 0).
Consequently, the cup product form in the middle dimensions is

(positive or negative) definite.

REMARKS ON (4.7): There are several different methods for proving
4.7. For example, the Schubert calculus implies that the dual Schubert
classes [j, n - j - 1]* form an orthonormal basis of the middle dimen-
sional cohomology (to do this, combine some results from [29] -
specifically, Theorem II on p. 352, Theorem 1 on p. 327, and Theorem
II on p. 331). In the complex case one can use Hodge theory, first
noting that all cohomology has type (k, k) and then using the Hodge
signature theorem (compare [28]); the quaternionic case then follows
by analogy. Finally, one can do this directly from the cohomology of
the Grassmann manifold and the flag manifold Un/Un-2 X Ut X Ut
which fibers over it; this approach has been carried out by L. Smith,
who also mentioned to me that a general signature formula for

Grassmann manifolds was known to R. Stong. ·

In particular, (4.7) implies that the signatures of Gn,2(F), B, and F
are all nonzero; this has another obvious consequence:

(4.8) The dimensions of F and B are both divisible by four.
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A further consequence of (4.8) is the following:

(4.9) One of the numbers r, s in (4.4) is even, and the other is odd.

PROOF oF (4.9): Let u = td, so that P(F) is in fact a polynomial in u.
Because of this, we know that (1 + u ) divides the product (1 - ur)(1 -
US), which can only happen if at least one of r, s is even. On the other
hand, dim F = d(r + s - 3) must be divisible by 4 if F = C to ensure
sgn Fd 0, and likewise it must be divisible by 8 if F = K (if dim F 1
4 mod 8 in the quaternionic case, the middle dimension has no rational
cohomology). In any case r + s - 3 is even, and therefore not both r
and s are even..

The balance of the proof of Theorem 4.3 involves a close scrutiny
of the conditions imposed on the middle dimensional rational

cohomology of Gn,2(F) by the compact fibering. This begins with some
conclusions about the cohomology of F and B near their middle

dimensions.

(4. 10) The group H dk(F; Q) is nonzero if 0 ~ k :5 r + s - 3.

This follows immediately by inspection of the Poincaré polynomial.
a

(4.11) Let M be defined by 2dM = dim B (hence M = n -

1 2(r + s + 1)). Then Hdj(B; Q) = 0 if 0  |j - M| ~ (r + s - 3)/2.

If (4.11) were false, then the collapse of the Serre spectral sequence
for F ~ E ~ B, (4.10), Poincaré duality, and the multiplicative pro-
perties of the Serre spectral sequence would yield a nonzero subspace
of the middle dimensional cohomology of Gn,2(1F) that would be self

orthogonal under cup product..

Of course, the rational cohomology of B is fully given by (4.4), and
the objective now is to prove that (4.4) and (4.11) are inconsistent.
Here is the first step:

(4.12) Suppose that j ~ n - 2. Then Hdj(B) ~ 0 if and only if j =
xr + ys, where x, y ~ 0 are integers.

REMARK: It follows that x  (n - 1)/r and y  (n - 1)/s, but these
are not really important.
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PROOF OF 4.12:

Case A. Suppose r, s ~ n - 2. Then the minimal model gives a

(dn - d - 1)-connected map

which in turn gives the Poincaré polynomial of B through dimension
dn - d - 2. Inspection of the polynomial shows the assertion of (4.12)
to be true.

Case B. At least one of r, s 2:: n - 1; if both are, then B is rationally
acyclic and therefore contractible (being a Poincaré complex), and we
are done. So let us assume r ~ n - 1 &#x3E; s. Then one has a (dn - d - 1)-
connected map B ~ Q ~ K(Q, ds), and using this one can again verify
the given assertion. ·

CONCLUSION OF PROOF OF THEOREM 4.3: We let M be given as in
(4.11). If dim F = 0, then it follows that F is contractible (satisfying
Poincaré duality) and we are done. Thus in any case we may assume
dim F 2:: 4, and, since all rational cohomology lies in dimensions

divisible by d, in the quaternionic case we may assume dim F ~ 8. In
other words, we may assume dim F 2:: 2d. It follows that dim B :5

d (2n - 6), and accordingly M :5 n - 3. Thus (4.12) applies with j = M,
so that M = xr + ys with x, y 2:: 0.

Case A. M can be written as a positive multiple of r or a positive
multiple of s, but not both, and M ~ xr + ys with both x and y positive.
Inspection of the Poincaré polynomial of B implies that H dM(B ; 0) is
one-dimensional, and therefore the signature of B is ±1. It follows

that the middle dimensional cohomology of F must have dimension at

least sgn Gn,2(F) = n But the middle dimension for F is d(r + s -
3). Look at P(F) to estimate its coefficient in that dimension. An

upper estimate is given by

By the reasoning as before, dim B is at least 4d ; it follows that
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which implies the greatest integers satisfy

Therefore sgn F  sgn Gn,2(F), which contradicts sgn B = ± 1 and

(4.6). This eliminates Case A.

Case B. Either M = xr + ys with both x, y &#x3E; 0 or M = xr = ys with
both x, y &#x3E; 0. It follows from (4.12) that both H d(M -r)(B ; 0) and
Hd(M-s)(B; 0) are nonzero. Therefore (4.11) implies

which in turn imply |s - ri  3. But s - r is an odd integer by (4.9), and
accordingly Is - ri = 1.
For the sake of convenience let us assume r = s + 1 and M =

xr + ys with y &#x3E; 0. Then M - 1 = (x + l)r + (y - 1)s where x + 1, y -
1 ~ 0, and accordingly

by (4.12). According to (4.11), this can only happen if

which translates to 5 &#x3E; r + s, or 3 ~ r + s (which is odd). Since r and s,
are positive integers with one even and the other odd, this implies
r = 1 and s = 2. Hence (4.4) implies that P(F)=1, from which it

follows that F is contractible. Therefore we have shown that Gn,2(F)
is connectedwise prime. ·

REMARK: For n = 4 this was proved first in [26]; for n = 8 this was
first proved in a letter from S. Halperin to the author.
Once one knows that Gn,2(F) is connectedwise prime, it is not too

difficult to determine its compact fiberability more or less completely.

THEOREM 4.19: If n ~ 5, then Gn,2(F) is prime, where F = C or K. If
n = 4, let T be the free involution on Gn,2(F) sending a 2-plane W C F4
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into its orthogonal complement (with respect to the usual dot product
y - y = 1 x;ÿ;). Then G,,2(F)/T is prime.

REMARK: The normalizer N of CL(2) x CL(2) in CL(4) - where
CL = U or Sp - is a two component group, and T represents the
action of N/CL(2)2 = Z2 on Gn,2.

PROOF: The first step is to show that if Gn,2(F) admits a non-

degenerate compact fibering (i.e., neither B nor F is contractible),
then this fibering is equivalent to a finite covering on a finite complex
homotopic to Gn,2(F).
Suppose that F ~ E ~ B is a compact fibering of Gn,2(F). Then the

exact sequence of homotopy implies that 7Tt(B) is in 1-1 cor-

respondence with the necessarily finite set 7To(F). Thus if B denotes
the (finite!) universal covering of B, we also have a related compact
fibering

By Theorem 4.3 either Fo or B is contractible. If B is contractible,
then we have a finite complex which is contractible and has a free
action of the finite group 7Tl(B). By P.A. Smith theory, this happens
only if 7r,(B) is trivial [6, 8]; but then B is contractible. On the other
hand, if Fo is contractible, then E is homotopy equivalent to B, and
we have a finite complex K with a free action of oi(B) that is

homotopy equivalent to E or equivalently Gn,2(F).
Therefore, to prove Gn,2(F) is prime if n a 5, it is only necessary to

check that every periodic self-map of a finite complex K homotopic
to Gn,2 (F) has a fixed point. The most fundamental tool for such
investigations is the Lefschetz Fixed Point Theorem [45], and the
natural idea is to determine how much can be said on that basis. This

problem has been studied extensively by H. Glover and his coworkers
[10,19,40], and their results give us all we need. Specifically, the
results of [19, 40] establish the fixed point property if n ~ 6, while
results of S. Brewster determine cohomological self maps determined
by self-equivalences more generally [10]. The only possible zero

Lefschetz number occurs if n = 4, in which case we indeed have the
free involution sending W to its orthogonal complement. On the other
hand, it turns out that this involution provides the only possible
endomorphism from a periodic self-map aside from the identity [10].
To conclude the argument for n = 4, suppose F-E-B is a

compact fibering of Gn,2(F)/T. Then the composite É - E - B (where
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É = universal 2-fold covering) is a compact fibration, and it follows

that the fiber F’ is either

(i) a double cover of F,
(ii) half of F - i.e., F is homotopic to F’ II F’.
By what we already know, F’ is contractible and É - B corresponds
to a finite covering if F ~ E ~ B is nondegenerate. Smith theory now
shows that (i) is impossible, so that E - B is also homotopically a
covering space, with half as many sheets as É - B. The results on
Lefschetz numbers now imply that É - B must be a double covering
homotopically; thus E - B must be a homotopy equivalence, and F
must be contractible. Therefore G4,2(F)/T is prime as claimed.

5. Quaternionic projective spaces

In this section we shall answer the fiberability question for those
projective spaces not covered in [2, 12]. The method of proof will also
be useful in later sections, and for this purpose we shall reformulate
our calculations in a highly abstract way (Proposition 5.4).

THEOREM 5.1: The quaternionic projective spaces KP 2n+l are prime
for n - 1.

PROOF: We begin by proving they are connectedwise prime. In this
connection the rational theory of Halperin tells us that for any

compact fibering F ~ E ~ B of kP2n+1 with connected fiber we have

It follows that X(F) = d and d divides 2n + 2. To ensure the fibration
is nondegenerate, assume that d ~ 2n + 2.
The map 03C0* : H*(B; Zp) ~ H*(KP2n+1; Zp) is a monomorphism for

all p not dividing d (compare [3]). Therefore, by the torsion freeness
of H*(KPm; Z) and (5.2) we know that H*(B;Zp) is the subalgebra
generated by xd, where x E H4 (lKp2n+l; Zp) is a generator.

Let P’ be the first Steenrod power operation for the prime p ; then
P’xd = 2dxd+[(p-1)/2] [48], and by the naturality of pl we see that the
odd primes can be put into three distinct categories:

CATEGORY I. The odd primes p dividing d = X(F).
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CATEGORY II. The odd primes p such that d + 1(p - 2 1) ~ 2n + 2.
CATEGORY III. The odd primes p such that d divides (p - 1)/2.

To verify this trichotomy, suppose p is not in the first two cate-

gories. Then P1xd is nonzero. But xd generates the image of 7r*

multiplicatively, so that xd+[(p-1)/2] = Kx md for some K, m. From this it
is immediate that p falls into Category III.

Since d is a proper divisor of 2(n + 1), it follows that d - n + 1.

Using this it is easy to verify that p - d for Category 1 and p &#x3E; 2d for

Categories II and III. Hence no odd prime p satisfies d  p  2d. On
the other hand, the following result is a standard fact in number

theory, and a proof may be found in (say) [27] or [37]:

BERTRAND’s HYPOTHESIS: If d &#x3E; 1, there is a prime p so that

d  p  2d ; if d &#x3E; 3, thelt 2d is replaceable by 2d - 2 [27, p. 373].
Thé only possibility is that d = 1. Hence KP2n+1 is always con-

nectedwise prime. If F ~ E ~ B is a compact fibering of KP2n+’ we
may now proceed as in Section 4, considering the compact fibering
F0 ~ E ~ , where Fo is a component of F (all are homotopy
equivalent to each other) and B is the (finite) universal covering of B.
As before, if B is contractible then Smith theory implies B = B and
the fibering is degenerate, while if Fo is contractible then the fibering
is equivalent to a finite covering E - B with B a finite complex and E
homotopic to KP2n+1. However, it is well known that KP2n+1 has the
fixed point property if n ~ 1 (see [8] or [17]), and the same Lefschetz
number argument works for any finite complex of the same homotopy
type. Therefore KP 

2"+1 
must be prime if n - 1.

Since the algebra in this proof is so simple and appears again when
one tries to fiber G2n+1,2(R), we shall recast the proof in an abstract
setting. Recall that the Becker-Gottlieb transfer T: B+ ~ E+ of a

compact fibering F - E  B is really an S-map, and hence it com-

mutes with all stable cohomology operations. In particular, it follows
that if h* is a cohomology theory in which X(F) is a unit, then the
map ir* induced by projection is split monic over the algebra A(h*) of
stable cohomology operations (compare [3]). For such cohomology
theories the map T*7T* is an automorphism; therefore we can define
an idempotent

by the formula E = 7T*( T*7T*)-tT*. The basic properties of transfer
then imply



200

(5.2) The map E is an s1(h *)-module map.
(5.3) The map E is an h*(B)-module map; specifically,

E(x . 7T*(Y» = E(x) 7T*(Y) for y E h*(B).
Using this, we can abstractify the proof of Theorem 5.1 as follows:

PROPOSITION 5.4: Let B* ~ H *(KPm ; Z[1 2]) be a subalgebra whose
rank divides rn + 1, and let E be an idempotent operator on B * OR,
where R denotes the integers with 2 and d = m + 1/rkB* inverted.

Assume that E satisfies (5.3) for singular cohomology with coefficients
in R and all its localizations and finite quotients, and assume that
e 0 Zp satisfies (5.2) for ordinary cohomology over all primes p in R.
Then B* ~ R is either zero or all of H *(KP m ; R).

PROOF: The only substantial point that needs checking is that

B* ~ R is generated by xd; given this, everything proceeds as in S.1.
But suppose B4e is the first nonzero group in positive degree. Then
the idempotent e implies that B4e ~ R = H4e ~ R, so that xe ~

B4e ~ R. It follows that ~ (xj) = 0 if 1 ~ j  e and ~ (xe) = xe. Repeated
application of (5.3) shows that e is nonzero precisely in dimensions
divisible by e. Suppose we write m + 1 = qe - r, where 0 ~ r  e. Then

rkB * = q is immediate. But qd = m + 1 by assumption, and therefore
r = 0 and d = e must hold.

REMARK 5.5: D. Gottlieb has suggested that an alternate proof of
5.1 is possible using the following diagram, whose rows and columns
are all compact fiberings up to homotopy:

If F is connected, then so is Y and Browder’s results [11] imply that
Y = S1, S3, or S’. With further work one can proceed in this fashion;
in fact, Y is homotopic to S’, n 2, and F is homotopic to S4. (In
[11] there is a slight misstatement about spaces with cohomology a
truncated polynomial algebra on an 8-dimensional class; actually, the
Adem relations for p = 3 show that the third power must be zero).
From there the necessary calculations are almost trivial. Of course,
Browder’s proof uses 2-primary information very heavily, and ac-
cordingly this alternate method is not applicable to the problems in
Section 6.
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6. Manifolds of real two-planes

We now turn to the remaining cases involving Grassmann mani-
folds of 2-planes - namely, those over the real numbers. Actually,
there are two related but distinct questions in this case. The first is
whether the Grassmann manifold Gn,2(R) is prime, and the second is
whether its double covering G+n,2(R) - the manifold of oriented 2-

planes in Rn - is connectedwise prime. As in the previous sections, an
answer to the second question will lead to an answer to the first.

Unfortunately, we have not been able to answer the second question
completely for odd values of n, but we can say that S2 is the only
possible connected fiber in any case (see Theorem 6.11). From this we
are able to show that Gn,2(R) is always prime if n + 1 is not a power of
two. Actually, one can fiber G7,2(R) over G2/S04 with fiber Rp2; this
follows from the fact that G2 acts transitively on V7,2(R) via the

standard representation on R7 as automorphisms of pure Cayley
numbers (see Example 6.14). Thus any study of Gn,2(R) for n + 1 =

2r, r ~ 4, must necessarily be more delicate than ours here (some
further comments appear in Remark 6.19).
We begin with G!n,2(1R). A clear, thorough discussion of this mani-

fold’s cohomology and its well-known identification with the non-

singular complex hyperquadric in CP 2n have been given by H.F. Lai
[35]. In particular, its integral cohomology is generated by c E H2 and
03C9 E H2n with relations 203C9c = Cn+ ’ and 03C92 = (1 + (-1)n)cn03C9.

THEOREM 6.1: The manifold G+2n+2,2(R) is connectedwise prime,
n ~ 2.1

PROOF: The first step is to see how far we can get by rational
homotopy methods as in Section 4. The Poincaré series for the base
and fiber must take the forms

If we make the change of variables u = t2 and note that P(F), P(B) are
both polynomials, it is immediate that n divides either a or b, the

’ The proof given here is incomplete if n = 3, 5. Corrections for these cases will appear
shortly.
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number a divides either 2n or n + 1, and similarly for b. Thus if we
assume that n divides a, it follows that a must divide 2n ; hence either
a = n or a = 2n must hold. We shall call these two possibilities Case 1
and Case II respectively.
The following observation is extremely helpful in understanding

(6.2) and (6.3):

(6.4) The number b divides n + 1. In Case II this is immediate from
(6.3) and the linear factorizations of all polynomials over the complex
numbers.

Case 1 is not quite so easy, for one must exclude the possibility that b
divides 2n ; however, this can be done by a similar but more delicate
argument.

Elimination of Case II. We know that P(B) = 1 + u  + ··· + un+1-b,
where u = t2. In particular, either b = n + 1 or else dim B ~ 2n and

H *(B ; Q) contains the rationalization of cb. The case b = n + 1 im-

plies that dim B = 0 and hence B is contractible. But in the latter case
0 ~ cn+1 is a power of c b because b divides n + 1, contradicting the
fact that H *(B ; Q) is a subalgebra of H*(G2n+2,2(R); Q). Thus Case II
is impossible and Case 1 must apply.

Elimination of Case 1, b ~ n + 1. In this case

It follows that H2j(B; Q) = 0 for all j strictly between n and n + b.
But again we know that H2(n+1) ~ 0 as in Case II, which means b must
equal 1. Hence dim F = 0 and the fibering is again degenerate.

Elimination of Case I, b = n + 1. In this case B is a simply connected
cohomology 2n-sphere over all coefficients such that n + 1 = x(F) is
invertible. If n is even, then the signature of Gin+2,2(1R) is 2 (use Lai’s
calculations or the Hodge signature theorem), and the Chern-Hirze-
bruch-Serre Theorem shows that no fibering over such a B (with zero
signature) exists.

If n is odd, more work is needed. First of all we observe that for an
odd prime p the Steenrod operations satisfy

(6.5) P 1(W) = 2P 1(W) = P’(cn), provided 2(p - 1) ~ 2n - 2. To see

this, use the identity 203C9c = cn+1 plus the Cartan formula. Now let p
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be an odd prime such that

This exists by Bertrand’s Hypothesis since n is odd; it follows that p
does not divide n + 1 = X(F). Let

be a generator for the image of H2n(B; Zp) (recall the fibration

projection induces a strongly split monomorphism). Of course P’ a
must be zero, which means that a must be a multiple of 2w - cn by
(6.5). On the other hand, from the Serre spectral sequence we can
conclude that H*(G+2n+2,2(R); Zp) is a free H*(B; Zp)-module on

1, c, ..., c n. Since 203C9 - cn annihilates c in particular, this gives a
contradiction. ·

REMARK 6.6: Since G+4,2(R) = S04/S02 x S02 = S3  S3/S1 X S1 =
S2 X S2, the restriction n ;::: 2 is appropriate.
Although G’M,2(R) is not prime because it double covers Gm,2(1R), it is

still important to study all cyclic covering spaces over finite com-
plexes with total space homotopic to G+m,2(R). Here is the basic

application of the Lefschetz theorem we need:

THEOREM 6.7: Let T be a free periodic map on a finite complex
homotopic to G+m,2(R), where m ~ 5. Then T is an involution, and the
induced map in rational cohomology coincides with that induced by
the involution that reverses orientations of 2-planes.

PROOF: Since the particulars are very routine, we shall simply
summarize the steps. First of all, in dimension 2 we must have

T* = - 1 to ensure periodicity and a zero Lefschetz number. In

particular, T must be an involution.
We now consider the case where m = 2n + 2 is even; the other case

will be very easy once we make some standard observations. Observe
that n a 2. The only ambiguity in the cohomological action of T* lies
in dimension 2n. Here, however, we know that T* must preserve the
cup product form and have trace (-1)"- 1. It follows that the only
algebraic possibility is
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To dispose of the case G+~+1,2(R), we note the following elementary
fact:

(6.10) Away from the prime 2, the space G+2n+1,2(R) has the same

cohomology as CP 2n-l.

One way of seeing this is to notice that G+2n+1,2(R) = V2n+1,2(R)/S1 =
S02 and the Stiefel manifold V2,11,2(R) is equivalent to s4n-l away
from 2 (compare [43]; E. Friedlander has given extensive generaliza-
tions of this).
Once we know (6.10), it is immediate that T * c = - c must occur for

a zero Lefschetz number, and the balance of the argument follows
familiar lines. ~

Observation (6.10) is quite useful in studying the fiberability of
G’ 11,2(R) further. Unfortunately, our results are significantly less

complete than for G!n+2,2(1R).

THEOREM 6.11: Suppose that F - E - B is a nondegenerate com-

pact fibering of G+2n+2,2(R) with connected fiber. Then F is homotopic
to S2.

REMARK: If E = G+2n+2,2(R) and the fibering is actually a bundle,
then (i) the fiber is actually S2 because it is a two-dimensional

manifold factor and two-dimensional manifold factors are manifolds

[52] (ii) the subgroup 03 is a deformation retract of the full

homeomorphism group of S2 (Kneser’s Theorem; compare [18]).

PROOF oF THEOREM 6.11: Let A* ~ H*(G+2n+1,2(R); Z[1 2]) be

generated by the class c2 ~ H4: we use the identification with
H *(CP 2n-1) by (6.10). Denote the intersection of A* with the image of
H*(B; Z[1 2]) by X*. It follows from (6.10) that X* satisfies the

conditions of Proposition 5.4, and consequently X* = A* must hold.
Therefore we know that B must have dimension at least 4n - 4 =

dim G+2n+1,2(R) - 2. Hence dim F ~ 2. But X(F) is nonzero and F is

simply connected, which mean that F is either contractible or S2. ~

REMARK 6.12: It is possible to prove that G+2n+1,2(R) is connected-
wise prime for infinitely many n - f or example, whenever n ~ 5(6). The
methods are similar to others in this paper, and we shall not burden

the reader with the rather unenlightening specifics.
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Despite the limited nature of 6.11, we can settle the fiberability
question for G,,,,2(R) except in a relatively sparse set of cases.

THEOREM 6.13: The manifold Gm,2(R) is prime if m ~ 5 and m + 1 is

not a power of two.

EXAMPLE 6.14: The restriction m + 1 ~ 2N is not totally removable,
for G7,2(R) is not prime. If G2 acts on R7 via automorphisms of pure
Cayley numbers, then G2 inherits a transitive action on V7,2(R). Using
this, one can fiber G7,2(R) over G2/S04 with fiber RP2; similarly, the
oriented Grassman manifold fibers with fiber S2. Of course, this does
not contradict 2.3. It seems plausible that m = 7 is the only exception.
However, as noted in Remark 6.19, more sophisticated techniques -
perhaps tied to real K-theory - will be needed, even if m = 15 or 31.

PROOF: As before, the essential part of the proof is to show that
Gm,2(R) is connectedwise prime. Suppose that F - E - B is a compact
fibering of Gm,2(R), and let  ~  ~  be the induced maps of uni-
versal coverings; the latter is a compact fibering of G+m,2(R). It follows
that the latter is nondegenerate only if m is odd and F is homotopic
to S2. There are now two possibilities. One is that F is homotopic to
Rp2 and B is simply connected, and the other is that  ~ B is a

double covering and F is homotopic to S2.
The latter possibility may be eliminated as follows: Consider the

subalgebras of H*(G2n+1,2(R); Z[2-1]) ~ H*(CP2n-1; Z[2-11) generated
by H*(B), H*(É), and H*(Gn,2(R)), all with Z[Z-1] coefficients. By 5.4
the subalgebra generated by H*() consists of all classes in dimen-
sions divisible by 4, while 6.7 and a transfer argument show the same
is true for H *(G2n+1,2(R» H*(lKpn-l). If we apply Proposition 5.4 to
the image of H*(B), it follows that the latter is all of H*(G2,,+1,2(R».
Hence X(B) = ~(G2n+1,2(R)), which implies that X(F) = 1; using this
one can deduce that F is homotopic to Rp2.

Since X(IRP2) = 1, one can use the Becker-Gottlieb transfer and its
consequences (5.2) and (5.3) for Z2 cohomology. It follows that the
mod 2 Serre spectral sequence collapses, the fiber being totally non-
homologous to zero. Using (5.2) and (5.3) systematically one finds that
H 2(B ; Z2) and H3(B ; Z2) are one dimensional. If we write

with deg ui = j, then the respective classes in H *(B ; Z2) are
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Furthermore, through dimension 2n - 2 we have that x and y satisfy
no relations, and in all dimensions they generate H*(B; Z2) alge-
braically.

For the sake of simplicity we eliminate the case 2n + 1 = 5 now.
Since the Serre spectral sequence collapses, over Z2 we have

as graded Z2 vector spaces. Since dim H*(RP2) = 3 and

dim H*(G5,2(R)) = 10, this is impossible.
We wish to deduce information about B and H*(B; Z2) until we

obtain a contradiction. The previous calculations show that

H*(G2n+l,2(!R» - all coefficients in this context are Z 2 - is a free H *(B)-
module over 1, ai, and ai, with multiplicative relation a31 = a1x + y.
From this it is routine to calculate the Wu classes of E in terms of the

Wu classes of B. The formula is

where Sqz = Sq’ z + Sq 2z + ··· (one uses the free H*(B) module
structure plus the Cartan formula with the definition V(M)a ~ [M] =
Sqa rl [M]). Since W = SqV, the above formula tells us that

However, by results of K.Y. Lam [36] we know

and combining this we deduce in our situation, with m = 2n + 1, that

The coefficients of a ir and a2s2 in the above are
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Suppose we assume r = 2. Then we get 1T*W2(B) = (n + l)a1; but
03C0*w2(B) is also a multiple of x = a; + a2, and this can happen only if
n + 1 = 0 (2). Hence n must be odd.

If we set r = 2t and s = 2t-l where 2t - n - 1, then we obtain further
restrictions on n in the same way. For the standard basis of H2t+l(B)
obtained from monomials in x and y has an obvious property: The

only monomial requiring either a2t+11 or a2t in its expansion is x2t =
a2t+11 + a2t2. Therefore the coefficients of a r+1 and a2t2 in expression

(6.18) must agree. For instance, if t = 1 this yields n - 1 (2), which
combined with n ~ 1 (2) yields n ~ 3 (4). Proceeding by induction on
t, we discover that n - 1 ~ 2t always implies n ~ -1(2t+1). Putting
these together, we see that n + 1 must be a power of two. This shows
that Gm,2(1R) is connectedwise prime unless m + 1 is a power of two.
To prove that Gm,2(R) is prime under these circumstances, assume

that F ~ E - B is a nondegenerate compact fibering. Then there is a
finite covering  ~ B such that F0 ~ E ~ B is also a compact fibering,
with Fo being one of the (homotopically equivalent) components of F.
By what we know, either Fo or B is contractible, and the usual

argument shows that the only genuine possibility is that Fo is con-
tractible and Gm,2(1R) is homotopically a finite covering of B. But then
the universal covering of B is homotopy equivalent to G+m,2(R), and by
6.7 we know the latter is at most a twofold covering space. It follows
that the covering up to homotopy Gm,2(R) ~ B must be homotopically
one-sheeted; i.e., a homotopy equivalence. Thus F is contractible,
contradicting the assumed nondegeneracy of F - E - B. ·

REMARK 6.19: Since the above argument is rather unmotivated,
here is an explanation of the underlying causes. The mod 2

cohomology of Gm,2(R) has two generators ai (i = 1, 2) in dimension i,
and two relations r2n, r2n+ = sq’r2n· If we have a fibering RP2 ~ E ~ B
with E homotopic to G2,,11,2(R), then it follows that r2n and r2n+1 must
be polynomials in ir*x = a21 + a2 and 03C0*y = a1a2; furthermore, if this

is true, then no contradiction can be derived from mod 2 cohomology.
Our manipulations with Wu and Stiefel-Whitney classes are just a
short way of proving that r2n is not a polynomial in 03C0*x and 03C0*y. If
2n + 1 = 7, the existence of a nondegenerate compact fibering of

G7,2(R) shows that r6 must be a polynomial in ir*x and 03C0*y; in fact, it
is 03C0*(x3 + y 2). Further computations for n = 7 and n = 15 show that r14
and r3o are also polynomials in 1T*X and ir*y, and therefore it is clear
that our methods break down in those instances. (For example,
rl4 = 1T*(X 7 + x4y2 + xy4».
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7. Some examples

In this final section we include some simple examples to show that
the conditions in 2.3 regarding compactness of G and maximal rank
of H are necessary to avoid counterexamples. We conclude with
possible alternate conjectures if G is (semi)simple and G/H is com-
pact.

Since the closed subgroups of S03 are so well understood [4, 51],
we begin by considering the maximal proper subgroups not of

maximum rank. These are the orientation preserving symmetry
groups of the regular icosahedron (dually, dodecahedron) and cube
(dually, octahedron); the tetrahedron group lies inside the cube group
(consider the convex hull of the vertices (±1, ±1, 1) and (±1, ±1, -1)
in [-1, 1]3). We shall call these maximal finite groups the maximal
Platonic groups.

PROPOSITION 7.1: Let,H ç S03 be a maximal Platonic group. Then
S03/H is connectedwise prime but not prime.

PROOF: Let H c S3 be the inverse image of H under the covering
homomorphism S3 ~ SO3, so that S3/ ~ S03/H. But it is immediate
from the classification of free linear representations on S3 that the
free H action induced on S3 extends to a free H x Z, action where r
is prime to the order of H (compare [39, 1]). Thus S03/H is not

prime.
On the other hand, suppose F - E - B is a compact fibering of S03

with F connected. Then exactly one of B, F is one-dimensional, and
by Wall’s classification of one-dimensional Poincaré-Wall complexes
[49] we know that exactly one of B, F must be homotopic to S’.
Consider the exact homotopy sequence:

Clearly 7Tl(B) is finite, and hence B is two dimensional with universal
cover  ~ S2 and 1Tl(B) at most Z2. Therefore F = S’ by our previous
remarks. It follows that H has a composition series with a factor
Z/Image ~ = Zq and 03C01(B) ~ Z2. Since H has a unique subgroup of
order two, it follows that H must contain an element of order at least
|H|/2. But this is patently false for the maximal Platonic groups. Il
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Although G/H is connectedwise prime in the previous example, the
next one (suggested by J.C. Becker) shows that G/H need not be so
even if H is maximal.

PROPOSITION 7.2: Let n ~ 3 and let 0  k ~ n be odd. Then the

Grassmann manifolds G+2n,k(R) and G2n,k(fR) admit free differentiable
circle actions and consequently are not prime. However, SOk X S02n-k
is a maximal connected closed subgroup of S02n, and Ok X 02n-k is a

maximal closed subgroup of 02n.

PROOF: We first construct the SI action. Let p : S1 ~ Un C S02n be
the representation with n copies of the standard representation down
the diagonal. Then the action (z, xH) ~ 03C1(z)xH has an ineffective

kernel of Z2, and the resulting action of S1/Z2 = SI is free (it is here
that we must assume k is odd - otherwise S’ acts trivially). However,
this gives us a smooth bundle S1 ~ X ~ X/S1 where X is the ap-

propriate Grassmann manifold.
The proof that SOk  S02n-k is a maximal connected subgroup of

SO2n follows readily from the work of Dynkin on maximal subgroups
[14], the only problem being the transition from complex to real Lie
algebra. Since SO2n is simple, it follows that a closed subgroup strictly
between Ok  02n-k and 02n must be at most a finite extension of the
former. We may conclude the proof with an appeal to the following:

ROUTINE EXERCISE 7.3: Let CL = 0 or U. Then the normalizer of
CL(p) x CL(q) in CL(p + q) is CL(p) x CL(q) itself if p ~ q and the
wreath product Z2 l. CL(p) if p = q. ~

We now consider compact homogeneous spaces G/H with B con-
nected simple but noncompact, H a closed subgroup, and

~(G/H) ~ 0. Since all Riemannian 2-manifolds are conformally
equivalent to surfaces of constant curvature [51], it follows that

closed surfaces of genus a2 give a basic class of examples.
Motivated by this, we summarize the basic facts about compact
fiberings of such manifolds.

(7.4) The only possible compact fiberings of a compact surface with
negative Euler characteristic are finite coverings up to homotopy.

This follows from Wall’s classification of one-dimensional Poincaré

complexes. The following elementary results contain all we need

about finite coverings up to homotopy:
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(7.6) If Sh is an oriented (resp., unoriented) compact surface of
genus h and g satisfies h - 1 = n(g - 1) for some integer n ~ 1, then Sh
is an n-fold covering space of the oriented (resp., unoriented) surface
Sg. Conversely, if both Sg and Sh are orientable or nonorientable, the
above condition is necessary for the existence of a covering. ~

(7.7) Suppose X and Y are Poincaré-Wall complexes of the same
dimension and X is a finite cover of Y. If X is nonorientable, then so is
Y. ·

If Sg is a Riemannian manifold of genus ~2 with constant cur-
vature, then its universal cover is the hyperbolic plane H, and it

follows that Sg = Iso(H)/0393, where Iso H denotes the Lie group of
isometries of H. The latter group has two components, and its identity
component is isomorphic to SL(2, R); in fact, the identity component
may also be viewed as the set of all holomorphic automorphisms of
H, taking the latter as the open unit disk in C (the other component of
Iso H corresponds to antiholomorphic automorphisms). In fact, if S*g
denotes the oriented single or double covering of Sg (depending on
whether Sg is orientable), then S*g inherits a natural complex structure
in this process.
The group SL(2,R) in fact acts irreducibly transitively on S*g. To

see this, notice that any closed proper subgroup that acted transitively
would be two-dimensional and there are no two-dimensional Lie

subalgebras of the Lie algebra (2, R).
Now suppose that Sg is nonorientable, being expressed as Iso(H)/r.

It is immediate that the identity component SL(2, R) of Iso(H) acts
transitively on the connected manifold Sg, and accordingly we may
write Sg = SL(2, R))/SF, where ST = SL(2, R ) n r. As in the oriented
case, the action must be irreducibly transitive. We want to know
when T can be a maximal proper subgroup of SL(2, R). Of course S2
has Euler characteristic -1 and cannot finitely cover anything, so S2
is prime by (7.7) and thus Sr must be maximal). In view of this we
shall assume g - 3 henceforth; by (7.7) we know that sr has finite
index in any proper closed subgroup à D Sr.

LEMMA 7.8: In the above notation, assume that S* 9 with its asso-
ciated complex structure is not a finite unramified holomorphic cover-
ing space for a Riemann surface of lower genus. Then sr is a

maximal closed subgroup of SL(2, R).

PROOF: There is a closed subgroup roc sr of index 2 so that
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S*g = SL(2, R)/ro. By (7.6) we know that Sg is an n-sheeted covering
of the nonorientable surface Sh = SL(2, R)/0394. Let ào C a be the index
two subgroup corresponding to the oriented surface S*h. Then we
have an n = |03940/03930| sheeted holomorphic covering S*g ~ S*h, and by
assumption this implies 1 = n = |03940o/0393| = |0394/S0393|. Hence 0394 = S0393 as

claimed.

The usefulness of 7.8 for showing that ST may be maximal if g ~ 3
depends strongly on the fact that a Riemann surface of type S* 9
usually is not a multiple-sheeted holomorphic covering space of

anything else. 1 am indebted to W. Neumann for proposing this proof
and to D. Drasin, A. Weitsman, and P. Sipe for help in filling in some
details.

PROPOSITION 7.9: Let S*g be an oriented surface of genus g. Then
there are uncountable many distinct complex structures e on S g for
which (S*g, 03BE) does not holomorphically cover a Riemann surface of
lower genus.

PROOF: (Sketch) Let IIg denote the Teichmüller space of complex
structures on S*g (see [1] for example), and let Ag denote the (count-
able) mapping class group of S*g. Then IIg is naturally a (3g - 3)-
dimensional complex manifold [1, pp. 143-144], and Ag acts analytic-
ally and properly discontinuously on IIg (compare [53]). If h is chosen
so that g - 1 = n(h - 1), then passage to n-sheeted coverings defines a
map from IIh to IIg. Since dim IIh  dim IIg if h ~ 2, it suffices by
Sard’s theorem to prove that the geometrically defined map 03A0h ~ 03A0g is
smooth. For then IIg - U h Image Ag x IIh is dense, where h runs over
all integers with h - 1| g - 1.

To see this, observe that local real analytic coordinates for llk may
be given as follows: Consider the representation of

in SL(2, R) induced by the complex structure (i.e., elements of 1Tl

determine elements of Hol. Aut. (.S!) = Hol. Aut. (H)). Then the
6k - 6 real coordinates may be taken to come from the entries of the

2 x 2 unimodular matrices associated to x2, y2, ..., xk, yk (compare [1,
p. 143]). But if S*g is topologically an n-sheeted covering of S*h, then
03C01(S*g) is contained in 03C01(S*h). Thus if we let ai, bi correspond to x;, y;
in (7.10) for k = g and pi, qi to xi, y; for k = h, it follows that ai and b;
can be expressed rationally in the p’s and q’s. Thus the entries of ai
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and bi are merely rational in the entries of the p’s and q’s, which

implies the desired smoothness assertion. ~

From this we obtain our desired examples:

THEOREM 7.11: There exist (uncountably many nonconjugate)
closed maximal subgroups r C SL(2, R) such that SL(2, 1R)lr is a

surface of fixed genus g - 3. Consequently, Conjecture 2.3 is false for
compact homogeneous spaces of noncompact semisimple Lie groups,
even with x( 01 H) :¡f 0 replacing condition (iii).

PROOF: Let e be any complex structure on S*g so that (Sg, e) does
not holomorphically cover anything else, and let 03930 ~ SL(2, R) be
chosen so that (S*g, 03BE) = SL(2, R)/03930. By Lemma 7.9 the only possible
closed subgroup between ro and SL(2, R) is a group h with 1 rIrai = 2
and SL(2, R)/0393 sg (unoriented). In any case either ro or the hypo-
thetical group r is maximal. Verification that one gets uncountably
many nonconjugate examples in this way is left to the reader..

Given the importance of commensurability in the study of discrete
subgroups of Lie groups, the anomalies involving finite coverings are
not a complete surprise. Thus some optimistic conjectures in the

noncompact case may be the following:

(7.12A) Suppose G is a semisimple Lie group and H is a maximal
closed subgroup such that G acts irreducibly transitively on G/H by
translation, 01 H is compact, and ~(G/H) ~ 0. Is G/H connectedwise
prime?

(7.12B) Under the above conditions, are all the compact fiberings of
G/H equivalent to finite coverings ?

(7.12C) If either of these is false for G semisimple, is it nevertheless

true for G simple ?

Of course, the fundamental group of G/H must be infinite if G is
noncompact, and accordingly one would expect the fundamental

group to be quite important in the noncompact case.
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