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1. Introduction

Throughout this paper C will denote a compact non-hyperelliptic
Riemann surface of genus g &#x3E; 2.

Let H°(C, Kc) be the vector space of holomorphic differentials on
C. The image of C under the canonical map

is a non-degenerate, non-singular curve of degree 2g - 2. By a fun-
damental result due to Max Noether, the canonical curve ~K(C) is

projectively normal. In particular the homomorphism

is surjective. From this one deduces that there are exactly

linearly independent quadrics through ’PK (C).
Set

Another beautiful and classical result due to K. Petri (see [8] and [10])
is the following

0010-437X/81050145-35$00.20/0
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(1.2) THEOREM: The homogeneous ideal o f ’PK(C) is generated by 12
with only two exceptions

a) when C is trigonal, b) when C is isomorphic to a plane smooth
quintic. (In these cases the ideal of ’PK(C) is generated by quadrics and
cubics.)

Following Petri’s analysis one also sees that it is possible to choose
a basis of 12 consisting of quadrics of rank at most 6.

It is then natural to ask whether one can always find a basis of 12
consisting of quadrics of smaller rank. This question acquires a real
significance as soon as one brings into the picture Riemann’s theta
function.

Let a,, ..., ag, b,, ..., bg be a sympletic system of generators for
H,(C, Z). It is then well known that one may choose a basis

of H°(C, Kc) such that the period matrix

is of the form

where z is a symmetric matrix with positive imaginary part. Let
A C Cg be the integral lattice generated by the columns of the period
matrix. The divisor 0 of the Riemann theta function

defines a principal polarization on the Jacobian of C, that is on the
complex torus

Let Cd denote the d-fold symmetric product of C. Fixing a base
point po E C, one can define a mapping

by letting
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Riemann proved (see, for example [1]) that there is a point kpo E J(C)
such that the image of C,-,, under the map

is exactly the theta divisor:

and that, given D E Cg-l, then

Moreover he proved that

Let us denote by 0,, the singular locus of 0. It can also be proved
(see, for example [1], p. 209) that

and that

The general point of every component of @Sg is a double point for 0.

Andreotti and Mayer in [1], and Kempf in [6] proved the following

(1.4) THEOREM: Let |D| = g’-i be a complete linear series of degree
g - 1 and dimension 1 on C and consider the corresponding double
point of O

Then the projectified tangent cone to 19 at 1T(D) is a quadric of rank
less than or equal to 4 which contains the curve and which can be
described as follows

Moreover the quadric (1.5) is of rank 3 precisely when 12DI = ikcl.
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Vice versa a quadric Q of rank less than or equal to four, passing
through C, comes from a tangent cone to e (i. e. is of the form ( 1.5)) if
(and only if) one of its rulings cuts out on C a complete linear series
of degree g - 1 and dimension 1, (the base locus of this series being
contained in the vertex of Q).
Let now

be the linear system of quadrics through the canonical curve ’PK(C).
Let

be the subvariety of lJc(2)1 whose points correspond to the pro-
jectivized tangent cones to the double points of 0. Let

be the subvariety at lJc(2)1 whose points correspond to quadrics of
rank less than or equal to 4. Denote by

the linear spans at WC(4) and WC,03B8, respectively in lJc(2)1.
It may be remarked here that, a priori, there is a significant

distinction between the loci Wc(4) and WC,03B8. The former is defined in
terms of the geometry of the curve C, while the latter is determined

solely by the principally polarized Jacobian (J(C), 0) of C. Thus, for
example, if it were the case that WC,03B8 = l0398(2)| for every curve, the
Torelli theorem for non-hyperelliptic, non-trigonal curves would be an
immediate consequence: such curve C would simply be the intersection
at the tangent cones to its theta-divisor at double points

Andreotti and Mayer proved that

(1.6) THEOREM: If C is a general curve of genus g then

In this paper we undertake a general analysis of the locus WC(4)
and, in particular, of its relation with Vco. We obtain the following
two principal results.
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(1.7) THEOREM: Let C be a non-hyperelliptic curve of genus g &#x3E; 2,
then

(1.8) THEOREM: Let C be a non-hyperelliptic curve of genus g Z 6
then

(the case g = 6 being the first non-trivial case).

The approach taken here is to introduce a family of varieties

containing a canonical curve, called rational normal scrolls. They
serve effectively as intermediaries between the curve and the

quadrics containing it, in the sense that one can describe fairly
completely the linear system of quadrics containing a scroll, and that
every quadric of rank less than or equal to 4 containing the canonical
curve contains one of these scrolls.

The next two sections of this paper are in fact devoted to a study of
rational normal scrolls and the quadrics containing them. In the

following sections we apply these results to scrolls containing the
canonical curve, to prove our first main result.

Finally in the last section we analyze completely the geometry of
the locus Wc(4) for any canonical curve of genus 6 and prove our
second result.

We end this introduction by establishing notation and terminology.
Let X be an algebraic variety. We shall make no distinction

between line bundles and invertible sheaves on X.

If X is non-singular we shall denote by Kx the canonical sheaf on
X.

Given a sheaf F and a divisor D on X we shall set

and

If
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is a subvariety we shall let

be the linear span of X in P" and we shall say that X is non-

degenerate if X = pn. We shall also let

be the ideal sheaf of X and

will denote the linear system of hypersurfaces of degree r containing
X. We also set

A quadric hypersurface in P" will be simply called a quadric in pn.
Consider the linear system of quadrics in P"

For any positive integer r we shall let

denote the subvariety whose points correspond to quadrics in P" of
rank less than or equal to r. If

is a subvariety we set

Finally by a k-plane in P" we shall mean a k-dimensional linear
sub-space in P".
We would like to thank Maurizio Cornalba, David Eisenbud, Phillip

Griffiths and David Morrison for many fruitful conversations and

especially Herbert Clemens who introduced us to this problem. We
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would also like to express our appreciation to the referee whose
numerous suggestions effectively helped improve our presentation.

2. The geometry of rational normal scrolls

A rational normal scroll of dimension k in pn may be described in
three ways.

First, take k complementary linear subspaces

with

and such that not all the ai’s are equal to zero. If ai ~ 0 choose a
rational normal curve

and an isomorphism

If a; = 0, set

and let

be the constant map. The variety

swept out by the (k - 1)-planes spanned by the corresponding points
of the Ci’s is then called a rational normal scroll.

Alternatively the variety Xa1,..., ak may be described as the image of
the projective bundle
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under the map given by the dual of the tautological bundle on P(E).
Then, for each i, the image of the direct summand P1(- ai) of E maps
to the rational curve Ci.

It is not hard to see that the degree of the scroll Xa1,...,ak is given by

This is the smallest possible degree of an irreducible non-

degenerate k-fold in Pn. Conversely in [9], p. 607, and [5] it is proved
that

(2.3) THEOREM: Any irreducible non-degenerate k-fold of degree
n - k + 1 in pn is either a rational normal scroll, a cone over the
Veronese surface in P5, or a quadric of rank greater than 4.

There is, finally, a third way of describing the scroll Xa1,...,ak which
has the advantage of very clearly exhibiting the defining ideal of
Xa1,.. .,ak in Pn. Assume that a1 = ··· = ah = 0, ai ~ 0, i = h, ..., k, where
h is less than k. Choose in Pn homogeneous coordinates

in such a way that

are homogeneous coordinates in Vi, i = 1, ..., k. Consider the matrix

We claim that

in the sense that

(2.6) The ideal of Xa,,,,,,ak is generated by the 2 by 2 minors of the
matrixma ak. 

To show this we first notice that equality (2.5) holds in the set-

theoretical sense. This follows immediately from the definition (2.1)
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and from the very well known fact that, up to a change of coor-
dinates, the rational normal curve

is given by

The set theoretical equality in (2.5) implies, in particular, that the
determinantal variety

has the "correct" codimension and this in turn implies that Y is

Cohen-Macaulay (see, for example [3] p. 1022). In order to establish
(2.5) it then suffices to show that the degree of Y is equal to the
degree of X (i.e. equal to n - k + 1). To show this it suffices to check
that, if Yij, i = 1, 2, j = 1, ..., n - k + 1 are homogeneous coordinates in
P2n-2k+1, then the determinantal variety

has degree equal to n - k + 1. This is a straightforward computation
(see, for instance [6], p. 184).

It may be instructive to introduce the matrix (2.4) in a more

intrinsic way. For this set

and let L be the restriction to X of the hyperplane bundle on Pn. The
scroll X is ruled by a pencil of (k - 1)-planes which we denote by lE 1.
We then have

The second equality follows from the first and from the linear

normality of X (see (2.9)). Let us consider the multiplication map
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It is then easy to show that, with a suitable choice of bases, the

transpose of the matrix (2.4) represents the dual map

From now on we shall write the matrix (2.4) in the following simpler
form

One of the basic properties of rational normal scrolls is given by
the following

(2.9) PROPOSITION: A rational normal scroll is projectively normal.

PROOF: Let X C pn be a k-dimensional rational normal scroll. The

case k = 1 is well known and we proceed by induction on k. Given an

integer v, the cohomology sequency of

shows that the Proposition is equivalent to the statement

Let H be a general hyperplane section. According to (2.3), X fl H is
again a scroll. The vanishing statement (2.10) follows then from the
induction hypothesis by looking at the cohomology sequence of

Let us consider the particular case v = 2. Since X is non-

degenerate we have that h’(X, X(1)) = 0. From (2.10) and (2.11) we
get an injection

By taking the intersection of X with a general (n - k)-plane we then
see that the dimension of Ix(2) equals the number of linearly in-

dependent quadrics in P"-’ passing through n - k + 1 points in general
position. Hence
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Combining this with (2.6) we obtain the following

(2.14) PROPOSITION: Let X be a k-dimensional rational normal

scroll contained in pn. Then there exists a matrix of linear forms in pn.

such that the ideal Ix of X is generated by the 2 by 2 minors of M.

Moreover the (n - 2 k + ) quadrics

are linearly independent and (therefore) from a basis of IX(2).

The linear independent quadrics (2.15) are quadrics of rank less
than or equal to 4 containing the scroll X. We would now offer a
geometrical picture of how these quadrics sit inside the linear system
Ilx(2)1 of quadrics through X.
As usual we let L be the hyperplane bundle on X and JE the pencil

of (k - 1)-planes sweeping out X. Consider the projective space

of all quadrics in pn. Let

be defined as in (1.11).
Now set

and let Eo and El be the divisors on lEI defined by
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Consider the vector spaces

Of course {~1,..., ~n-k+1} is a basis of Vo and {~’1,..., ~’n-k+1} is a basis
of Vi. Fix sections mo E Vo and m ~ Vi. The multiplication by mo and
ml, respectively, gives isomorphisms

We then define a linear map

by setting

From the definition of ao and a, it follows that

is a quadric of rank less than or equal to 4, in P’, containing X, and in
fact Proposition (2.14) exactly says that a induces an isomorphism

Consider now the Grassmannian Gr(2, V) of lines in PV. If v and w
are independent vectors in V we let vw denote the line in P V joining the
points [v] and [w]. We then define a map

by letting
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By definition q is the composition of the Plücker embedding of
Gr(2, V) in P A 2V and the linear isomorphism

induced by a.
We shall call the subvariety

the principal locus of quadrics of rank less than or equal to 4

containing X, or simply the principal locus of WX(4). We just proved
that

(2.18) PROPOSITION: Let X be a rational normal scroll of dimension
k contained in Pn. Let L be the hyperplane bundle on X and lEI the
pencil of (k - 1)-planes on X. Set V = H°(X, L(-E)). Then the prin-
cipal locus of quadrics of rank less than or equal to 4 containing X
sits, inside |X(2)|~P(n-k+1 2 )-1, as the image of the Grassmannian

Gr(2, V) under the Plücker embedding. Moreover the quadrics of the
principal locus generate the ideal of X.

We finally wish to characterize, in an intrinsic way, the quadrics of
the principal locus at WX(4) among all quadrics in WX(4).

Let Q be a quadric of rank 4 through X. The two rulings of Q cut
out on X, away from the vertex of Q, two pencils of divisors

where V (resp. V’) is a 2-dimensional subspace of H°(X, (D)) (resp.
H0(X, (D’))), such that

where F is the divisor cut out on X by the vertex of Q. If Q is of
rank 3 then the ruling of Q cuts out on X a pencil of divisors

such that
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Also, since X is non-degenerate, there is no quadric of rank less than
3 through X.

It then follows from the definition of the map q (see (2.17)) that

(2.19) The quadrics of rank 4 belonging to the principal component
of WX(4) are exactly those for which

and

(or vice versa). The quadrics of rank 3 belonging to the principal
component of WX(4) are exactly those for which

3. Examples of scrolls

The geometry of scrolls, specifically of the quadrics containing
them, does not become interesting until the codimension of the scroll
is 3 or more.

A scroll of codimension 1 is just a quadric of rank three (X20...0) or
four (X110...0).

In codimension 2, if we disregard the operation of coning, there are
three scrolls. The twisted cubic X3 C P3, the Steiner surface X21 C p4,
(classically the Steiner surface is actually the projection of X21 in p3)
and the Segre threefold X1l1 C P5. Each of these three lies on a

2-dimensional system of quadrics, all of which are of rank 4 or less,
(what distinguishes these three linear systems is the locus of quadrics
of rank 3, which is a plane conic, a point and the empty set,

respectively).
As examples of the general phenomenon described in Section 2, we

want to offer a brief and informal discussion of the geometry of the
surfaces X22 and X31 in p5.
To begin with

is described as the locus of lines joining corresponding points on two
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conics Ci and C2, lying in complementary 2-planes in P5. Alter-

natively, it may be described as the image of a non-singular quadric
surface in P3

under the embedding in P5 given by the linear system

of curves of type (2, 1) on Q. In these terms the fibers over the first
factor map to the lines of the ruling

of S, while the fibers over the second factor map to a pencil of conics

of which the coincs Ci and C2 are members.

By Proposition (2.14) and (2.19) the quadrics of the principal locus
of Wx(4) correspond to the pencils in the system 10(1,1)1 = |L(-E)|.
Equivalently, once we realize X as the quadric Q C p3, the quadrics of
the principal locus correspond to the pencil of hyperplanes in P3 or,
what is the same, to the lines in p3. Alternatively, a quadric of rank 4
of the principal locus can be described as follows. Take two points p
and q on X not lying on one line at the ruling JE 1. Projection from the
line pq maps X birationally to a quadric surface T C p3. The cone
projecting T from pq is then a quadric of the principal component.

These, however, are not the only quadrics of rank 4 through X.
Consider the variety

This variety is the scroll

based on any three of the lines of IEI. Therefore Y lies on a 2-plane
of quadrics, all of which are of rank 4. These quadrics are readily
described: Y is abstractly P1  P2 and, under the embedding in p5, the
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fibers over the second factor are carried into lines (some of which are
the lines of X). The cone over Y through any such line is a quadric of
rank 4 through Y. Any such quadric belongs to the principal locus of

WY(4) and therefore one of its rulings cuts out, on Y, the pencil
{C : C ~ P V} and hence, on X, the pencil PV. The second ruling will
then cut out on X a pencil consisting of pairs of lines. We will call
this 2-plane the secondary locus of WX(4). Its intersection with the
principal locus consists of a conic h whose points correspond to
quadrics of rank 4 through X whose vertex is a line of X.

If we realize X as a quadric Q in P3 and view the quadrics of the
principal locus as the lines in ¡p3, then the points of r correspond to
the lines of one ruling at Q.

In this context, it may be noted that the quadrics of rank 3 through
X are just the cones over X through the plane C of one of the conics
C. These also form a conic curve on the principal component. They
correspond, in the above picture, to the lines of the other ruling of Q.
Using this picture we may say what happens when the surface X22

degenerates into the surface X31 (cf. [5], p. 34 for a description of this
degeneration):

The quadric Q C p3 becomes a quadric cone.
-The locus of rank 3 quadrics and the intersection of the principal

and secondary component come together.
-The secondary component, in the limit, lies on the principal com-
ponent.
The scheme of quadrics of rank less than or equal to 4 through

X31 C P5 is thus a quadric hypersurface in P5 (or equivalently a

Grassmannian G(2, 4)) with an embedded 2-plane.
Finally, because of the lack of a suitable reference, we wish to

describe the locus of quadrics of rank less than or equal to 4

containing a Veronese surface

First of all we show that

(3.1) Every singular quadric Q containing S has rank less than or
equal to 4.

To see this, let p be a singular point of Q, and irp the projection
from p to a hyperplane H C P5 not passing through p. Let Q and S be
the images under 03C0 of Q and S, respectively.
A priori three cases are possible.
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a) p does not lie on the chordal variety of S. This implies that S is
smooth. Suppose Q non-singular. Then S would be a smooth divisor
on the non-singular hypersurface Q, and hence S would be a com-
plete intersection. This is absurd since S is the regular projection of
another variety of the same degree. Therefore Q is singular. But now
projecting S from the vertex of Q would give a regular 2-1 map of
S = P2 to a quadric surface. This is again absurd so that case (a) does
not occur.

b) p lies on the chordal variety of S but not on S. In this case S
has a double line L which is the image under 7rp of a conic in S lying
on a 2-plane containing p. Moreover S is the intersection of a pencil
of quadrics, all of which are singular, being the cones over S through
the points q E L.

c) p lies on S. Here S is the Steiner surface,

and, as we have noticed, X21 lies on a net of quadrics, all of which are
singular. In conclusion Q is singular and therefore Q is of rank less
than or equal through 4. Q.E.D.

We can now prove the following

(3.2) PROPOSITION: Let S C p5 be the Veronese surface. Then

WS(4) C |S(2)| is a cubic hypersurface.

PROOF: Recall that in the linear system

the locus lli(5) of singular quadrics is a sextic which is singular along
the locus W(4). Moreover a quadric Q of rank 4 is a double point for
W(5) and the tangent cone to W(5) at Q consists of the quadrics
tangent to the vertex of Q. By (3.1) we have

so that

Moreover by (a) and (b) above we know that
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Since W(5) is a sextic double along W(4)BW(3) it now suffices to

show that a general line in |S(2)| meets W(5) in W(4)BW(3) and
transversly there. Because of (3.3) a general line in lJs(2)1 meets
WS(4) outside Ws(3). Finally since there is at most one quadric
through S with a given line as a vertex, the quadrics whose vertices
are tangent lines to S form a family of dimension at most 3. Therefore
a general line in |S(2)| will not be contained in any tangent cone to
lli(5) at a point of W(4)BW(3), proving the transversality statement.

4. Tangent cônes to theta-divisors

In this section we are going to prove Theorem (1.7). Before doing
this we need to make some preliminary remarks. Let

be a non-hyperelliptic canonical curve of genus g. Let D be a divisor
on C of degree d ~ g - 1 with h°(C, Ù(D)) = r + 1 ~ 2. Consider a

2-dimensional subspace

and the corresponding pencil

we then define

(4.1)

and

(4.2)

Clearly

(4.3)

and, if h°(C, (D)) = 2
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It is shown in [4], p. 345, that, in this case XD is a rational normal
scroll of dimension d - 1.

The proof of Theorem (1.7) is based on the following two lemmas.

(4.5) LEMMA: Let |0394| be a complete linear series on C of dimension
r à 1. Let

Then the image of F(0394) under the Plücker embedding of Gr(2, r + 1) is
non-degenerate.

PROOF: For any divisor E ~ |0394| the pencils containing E form a
linear subspace

It will then suffice to show that for a general E E 1L11 the intersection
of AE with F(0394) is non-degenerate. Let B be the fixed divisor of 1L11 
and set

so that

Let E be a general divisor in là so that

Since any r of the points pa impose independent conditions on 1L11 thé
intersection 11E n F(0394) consists exactly of the pencils in 1L11 with r - 1
base points from among the pa’s. Finally if the intersection 11E n FO(d)
were degenerate there would exist a proper linear subsystem

containing every divisor in là which contains r - 1 of the points pa.
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But this is not possible. In fact since the points p03B1’s impose in-

dependent conditions on |0394|, for at least one Pa the series |0394 - p03B1|
does not lie in H. Since any r - 1 of the points |p03B2}03B2~2 impose
independent conditions on |0394 - p03B1|, for at least one pp the series

|0394 - p03B1 - p03B2| does not lie in H, and so on. Q.E.D.

(4.6) LEMMA: Let |D| be a complete linear series on C with

hO(C, O(D» = 2. Then the linear system of quadrics containing the
scroll XD is spanned by projective tangent cones to e C T(C) at double
points, i.e.

PROOF: We denote by L the hyperplane bundle on XD and let

be the pencil of (d - 2)-planes at XD. We then have an identification of
(g - d + 1)-dimensional vector spaces

Recalling (2.17), Proposition (2.18) and (2.19) the natural map

coincides with the Plücker embedding and the image is the principal
locus of WXD(4). On the other hand, by Theorem (1.4), given a point
[ V] E Gr(2, g - d + 1) then

if and only if the pencil PV ~ |KC(-D)| has g - d - 1 base points
Pi.....Pg-d-i and

Setting (0394) = KC(-D), the lemma follows now from Lemma (4.5).
We are now going to prove Theorem (1.7).

PROOF OF THEOREM (1.7): We must prove that
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Given a quadric Q of rank 4 (resp. 3) one of its rulings (resp. its
ruling) cuts out on C a pencil

where D is a divisor of degree d ~ g - 1 and V a 2-dimensional
subspace of H°(C, (D)). Recalling the definitions (4.1) and (4.2) we
have

It therefore suffices to show that

Exactly as in Section 1, given two linearly independent sections so
and s 1 of C(D) the multiplication by so and s1, respectively, gives
injective homomorphisms

We also have a linear map

defined by

Clearly

and we can define a morphism

by letting
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where sos (resp. toti) denotes the 2-plane generated by so and s (resp.
to, t1). From the definition of XD it follows that

Of course starting from two linearly independent sections to, tl of

Kc(-D) and from the multiplication maps

we could have defined, in complete analogy with (4.12), a linear map

and it is immediate to check that

This shows that the restriction maps

are obtained by composing the Plücker embedding with a linear map.
It then follows from Lemma (4.5) that

On the other hand from Lemma (4.6) it follows that

The relation (4.9), and therefore Theorem (1.7) follows now from
(4.11), (4.13) and (4.14).

Q.E.D.
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5. Curves of genus g ~ 6

In this section we shall prove Theorem (1.8). In view of Theorem
(1.7) and of the fact that the trigonal case has been extensively
studied in [1], it suffices to prove the following.

(5.1) THEOREM: Let C be a non-hyperelliptic, non-trigonal,
canonical curve of genus g ~ 6, then

PROOF: Since for g ~ 4 the curve C is trigonal we only have to
consider two cases, and the case g = 5 is more or less trivial.

Let then C be a non-hyperelliptic, non-trigonal canonical curve of
genus 5. C is then a complete intersection of three quadrics, so that

On the other hand the locus

of singular quadrics in ¡p4, is a quintic hypersurface. Therefore the
only way that WC(4) = i’V’(4) n |C(2)| could fail to span |C(2)| is if

Wc(4) were a line, and in this case there would be no point at which
W(4) and |C(2)| would meet transversely. Let us show that this

cannot happen. Since the theta-characteristics are in finite number
and since dim O,g = 1, there exists a quadric Q, through C, of rank
equal to 4. It is well known, and easy to see, that the tangent
hyperplane H to V(4) at Q is the linear system of quadrics passing
through the vertex p of Q. To say that W(4) does not meet the 2-plane
|C(2)| transversally at the point corresponding to Q means that

|C(2)| C H. This implies that every quadric through C contains P so that
p lies on C. This however cannot be the case: the projection 1Tp, from p,
would map C to a septic curve in p3lying on the quadric Q = 03C0p(Q), and
at least one of the rulings of Q would cut on C a pencil of degree 3 or less.
This is contrary to our assumptions. Therem (5.1) is therefore proved in
case g = 5.

Now, and for the rest of this paper, we turn our attention to curves
of genus 6.

Let then



168

be a non-hyperelliptic, non-trigonal canonical curve of genus 6.
From the fundamental theorem on the existence of special divisors,

(see [7] and [4], p. 358) we know that there exists, on C, a complete
linear series |D| such that

Since C is non-hyperelliptic, Clifford’s theorem implies that

Let then

be the morphism defined by |D|. We claim that, under our hypotheses,
only the following three cases can occur

a) cp(C) is a smooth plane quintic and cp is an isomorphism.
b) cp(C) is a smooth plane cubic and cp is a 2-sheeted ramified

covering.
c) cp(C) is an irreducible plane sextic with no point of multiplicity

greater than 2 and cp is a birational map.

Indeed the hypothesis that C is non-hyperelliptic implies that the series
|D| has, at most, one fixed point. If |D| has one fixed point we are
obviously in case (a). Suppose then that |D| has no fixed point. In this
case cp (C) could, a priori, be an irreducible conic, an irreducible cubic
or an irreducible sextic. Certainly the first case cannot occur since,
otherwise, cp would exhibit C as a trigonal curve. If ~(C) is an

irreducible cubic, it must also be non-singular since otherwise C

would be, via cp, a 2-sheeted covering of a rational curve. Therefore if
cp(C) is a cubic we are in case (b). Suppose finally that cp(C) is an
irreducible sextic. Then cp is a birational map. By the genus formula
~(C) cannot have points of multiplicity greater than three. On the
other hand if ~(C) had a point p of multiplicity three, the preimage
under cp of the variable part of the series cut out on cp(C) by the
pencil of lines through p would be a g1 3 on C, contrary to our

hypothesis. This means that we are in case (c).
We are now going to prove Theorem (S.1) in each of the cases (a),

(b), (c).

Case a: If cp(C) is a smooth plane quintic the canonical series on
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~(C) is cut out by conics in P2. The canonical map

is then the restriction to cp (C) of the Veronese map P2 ~ P5. Theref ore
C lies on a Veronese surface S. Moreover the linear system of

quadrics through C is just the linear system of quadrics through S,
and, as we have seen in Proposition (3.2), WS(4) is a cubic hypersur-
face in this linear system. This proves Theorem (5.1) in case (a).

Case b : In this case

is a 2-sheeted covering of a plane non-singular (elliptic) cubic E.
Given a point r E E, set

and let t, be the linear span, in P5, of the divisor p + q (i.e. the line
joining p and q, if p and q are distinct, the tangent line to C at p, if
p = q). Consider the surface

Let r’ be a point in E and set

Notice that

Therefore, by the Riemann-Roch theorem, we conclude that the

points p, q, p’, q’ all lie in a 2-plane. This implies that any two pair of
lines ~r, ~r’ must meet. Since C is non-degenerate, this can happen
only if all the lines ér’s issue from a common point p E p5BC. Since
projection from p gives a two-to-one map of C onto an elliptic curve
É C p4 of degree
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we conclude that S is a cone over an elliptic quintic curve É contained
in p4.
Now, the linear system of quadrics through S is readily described.

To begin with, any quadric containing S is singular at p, and hence a
cone over a quadric Q C p4 containing É. On the other hand É lies on,
and is cut out by, a four dimensional linear system of quadrics
(projection from any point q E É maps É to the complete intersection
of two quadrics in P3). By an argument analagous to that given in the
case of a genus 5 canonical curve, the singular elements of this

system, (i.e. the quadrics of rank less than or equal to 4 through É)
from a non-degenerate quintic hypersurface

We then see that the cone S is cut out by a quintic threefold of
quadrics of rank less than or equal to 4:

Specifically, these are the ~1 2-planes of quadrics corresponding to
the ~1 gl’s on C pulled back from the gi’s on E. We then have

We now ask: are there quadrics of rank less than or equal to 4
containing C other than those containing S, or have we accounted for all
special linear series on C? The answer is that there are others. Let p1, p2,
p3 be three general points on C (in particular no two of them lying
over the same point of E). Let

The projection ir from the 2-plane spanned by pi, p2 and p3 maps
C to a plane septic curve r. This plane septic must then have
singularities other than the triple point 7r(qi) = 1T(q2) = 03C0(q3). If P4 and
p5 are two points on C, different from the q;’s, and mapping to the
same point in the plane, i.e. spanning, together with p 1, p2 and p3 only
a 3-plane, we see that the divisor p1 + p2 + p3 + p4 + p5 moves in a
pencil which does not factor through the map (5.4). Thus the quadric
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Q through C, (of rank less than or equal to 4) corresponding to this
pencil is not singular at p, and so does not contain S. Therefore this
quadric correspond to a point

such that

From (5.6) and (5.7) it follows that the point x together with 1 span
|C(2)|, proving the theorem in case (b).

Case c : In this case the morphism

maps C birationally onto a plane irreducible sextic having no point of
multiplicity greater than two. In general the curve r will be a sextic
with four ordinary double points (nodes), p 1, ..., p4, no three of which
are collinear. Let us start by studying this general situation.

In this case r prossesses 5 distinct g4’s; the ones cut out by the
pencils of lines through each of the points pi’s and the one cut out by
the pencil of conics through p 1, ..., P4-

Let

denote these five gl’s, (by [7] we know that these are the only gl’s on
C).
The adjoint linear system of r, i.e. the linear system of cubics

through p 1, ..., p4, cuts out on T the canonical series and also defines
a birational map

onto a Del Pezzo surface S of degree 5 containing the canonical curve
C, (here and in the sequel, by a Del Pezzo surface we shall mean the,
possibly singular, image of a rational surface under its anticanonical
map).
As in the previous cases our first question will concern the quadrics

of rank less than or equal to 4 containing S. To see what these are we
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look at the five gl’s on r which we previously described, and consider
the corresponding scrolls

We claim that

(5.8) Each of the scrolls XD, contains the Del Pezzo surface S.

This is readily seen: under the map tp lines t in p2 through pi are
carried into plane conics and the corresponding scroll XD, is swept out
by the 2-planes spanned by the four points on C which correspond to
the four points of intersection of t with T other than pi, i.e. XD, is

swept out by the planes of the conics in this pencil. Likewise, the
conics in p2 through all four of the points p;’s are mapped to conics in
P5, and the union of their span is the scroll XDS associated to the
pencil they cut out on r.

Our second observation is that

(5.9) The intersection of any two of the scrolls XD, is just the

surface S.

Let X and X2 be any two of the five scrolls XD/s. Let V C P5 be a
general 3-plane containing a point p E P5BS. Each of the scrolls

Xi, i = 1, 2, intersects V in a twisted cubic curve Fi C V. Since

X1 ~ X2 these two twisted cubics are distinct. But we know that

Fi n F2 contains the five points of intersection of V with the quintic
surface S. If Fi and F2 had a sixth point in common they would be
equal. Thus Fi meets F2 only in the points of VOS. Hence p E
Xi n X2. Q.E.D.

We then see that the linear system

contains five 2-planes of quadrics of rank less than or equal to 4

these being the nets of quadrics through the five scrolls X,,’s. We
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next note that these are all the quadrics of rank less than or equal to 4
through S, i.e.

In fact if Q C P5 is any quadric of rank 4 (resp. 3) through S, its two
rulings (resp. its ruling) cut (resp. cuts) out on S two pencils (resp.
one pencil) of divisors, the sum of whose degrees (resp. the double of
whose degree) is at most five. Therefore one of these pencils (resp.
this pencil) must consist of conics. But the only pencil of conics on
the Del Pezzo S are the images, under tp, of the pencils of lines
through the pi’s, and of the pencil of conics through all four p;’s. If
the planes of our ruling (resp. of the ruling) of Q cut out one of these
pencils then Q must contain the corresponding scroll XD,, proving
(5.9).
The five planes 03C01,..., IT5 meet pairwise in points. These ten points

correspond to the ten quadrics that are obtained by projecting S from
any of the 10 lines on S, i.e., whose vertex lies on S. From this and
(5.10) it follows that

Finally observe that since C is of genus 6 then

On the other hand by the second part of Theorem (1.4), by the proof
of Lemma (4.5) and by our description of Vs(4), we see that only ~1

projectivized tangent cones to e, at double points, are among the
quadrics containing S. Therefore there is a quadric Q of rank 4
containing C but not S. Let

be the point corresponding to Q. Then

This together with (5.11) implies that
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proving Theorem (5.1) in this case/
Consider now how the plane sextic T may degenerate and how this

will affect our argument. Eliminating the possibility that T acquires a
triple point, a possiblility which is excluded in case (c), we see that
under any degeneration it is still the case that the adjoint system of 0393

maps the plane birationally to a quintic Del Pezzo surface S ~ P5,
containing the canonical curve C. It is also the case that the quadrics
of rank less than or equal to 4 through S are exactly the quadrics
containing one of the threefold scrolls XD corresponding to the gl’s
on C. Again, as in (5.9), any two of the scrolls XD can intersect only in
S so that: the above argument continues to hold as long as C

possesses two or more gl’s.
We then see that the only curves C for which the above argument

fails to work are those for which the five gl’s all come together or
equivalently those for which the plane model h of C is a sextic with
four infinitely near double points three of which are collinear.

It remains then to treat this one last case. Unfortunately, this

requires a somewhat more delicate analysis than the previous ones,
since the (degenerate) Del Pezzo surface S containing C is not cut
out by quadrics of rank less than or equal to 4. Indeed by our
previous analysis (see the proof of (5.8)) the only quadrics of rank
less than or equal to 4 containing S contain the threefold scroll XD
associated to the unique

on C.

We start with the scroll XD. As before of the net of quadrics
containing XD only ~1 are actually projectivized tangent cones to e,
so that there must be a projectivized tangent cone

for some (double) point À E Osg, not containing the scroll XD. Let

’ 
It is amusing to note that the sixth component of Vc(4) (the one coming from 0,,)

meets each of the planes 7ri in a sextic curve, these curves are in fact the five images of
C in p2 under the maps given by the nets |KC(- Di)|, i = 1,..., 5.
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be the surface of intersection. The procedure now will be to study T,
until we know enough to conclude that the quadrics of rank less than
or equal to 4 through C do indeed span |C(2)|.
To begin with we claim that:

(5.14) C does not lie on any surface 1 of degree 4 or 5 except the

degenerate Del Pezzo surface S.

To see this note that a general hyperplane section S’ = H n S of S
is an elliptic normal curve which is, as mentioned above, cut out by
quadrics. If the hyperplane section 03A3’ = H ~ C had degree 4, every
quadric containing S’, and hence meeting 03A3’ in the 10 points of
(H ~ C) c (S’ fl 03A3’), would contain 1’. Similarly, if 03A3’ had degree 5, any
quadric containing S’ and one point p E 2’BS would contain 1’. Since
S’ lies on five linearly independent quadrics this means that there are
four linearly independent quadrics containing both S’ and 1’. This is

impossible: three quadrics in p4 whose intersection contains an irre-
ducible non-degenerate curve of degree

intersect in an irreducible non-degenerate surface, whose degree is

necessarily 3. The fourth quadric, then, would cut this surface in a
curve of degree at most 6. This contradiction proves (5.14).

Let us go back to the surface T defined in (5.13). Since every
quadric of rank less than or equal to 4 containing S also contains XD,
the surface T cannot contain S. Therefore, by (5.14) we conclude
that:

(5.15) T is an irreducible surface of degree 6.

We now look at the pencil of curves cut out on T by the 2-planes of
XD. We ask whether they may all be reducible, that is if T may be

projectively ruled. If this were the case, each line would have to meet
C twice. This in turn would imply that singular points of the conics of
the pencil are variable (if two lines from different planes of XD met,
there would be a second g1 4 on C) so that T would be singular along a
curve. But then the general hyperplane section of T, which is,
birationally, the base of the ruled surface T, would be a singular
sextic curve in p4 and so a curve of genus 0 or 1. Therefore C would
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be either hyperelliptic or elliptic-hyperelliptic, contrary to our hypo-
thesis.

The conclusion, then, is that the conics cut out on T by the

2-planes of XD are generically irreducible. Therefore by Noether’s
Lemma we have that:

(5.16) T is rational.

Next we note that if T were the regular projection of a non-
degenerate surface t C p6, the inverse image Û C t of C, would still
be a canonical curve of genus 6 and hence lie in a hyperplane section
of T. But the degree of Û would be again given by

and this is absurd. We conclude that:

(5.17) T is not the regular projection of a surface f C ¡p6.

Finally we may use the above properties to determine the genus of
a general hyperplane section

of T. Let

denote the desingularization of T, and set

Consider the exact sheaf sequence

The linear system I’CÊ(Ê)I, has degree 6 and dimension at least 4; thus
by Clifford’s theorem is non-special. From (5.16) we get

while (5.17) gives
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Therefore the long exact cohomonology sequence of (5.18) gives

Applying the Riemann-Roch theorem, we find that the genus of É is
equal to 2. It follows that

so that the complete linear series IOÉ(É)1 gives an embedding of É.
We can then conclude that:

(5.19) The general hyperplane section E of T is a smooth curve of
genus 2.

At this point we may quote a result of Castelnuovo (see [2] and [8],
p. 155) which gives us a complete description of T:

(5.20) Any surface T satisfying (5.15), (5.16), (5.17) and (5.19) is the
image of P2, in P5, under the rational map q given by a fixed-
component-free linear system of plane quartics having a double point
q and passing through six points p1,..., P6.

The surface T, being the complete intersection of XD with the (rank
4) quadric Q, lies on a 3-dimensional linear system of quadrics. We
then have the following picture

We now ask what are the quadrics of rank less than or equal to 4 in
1-OT(2)1. Again to answer this question we look for pencils of curves of
low degree on T. We easily find that

(i) T contains no pencil of lines.
(ii) T contains one pencil of conics. This is the pencil cut out by the
2-planes of XD, or, in other terms, the images under the map q of the
pencil of lines through the point q.
(iii) T contains finitely many pencils of twisted cubic curves. These
are the images under q of the pencils of lines through each of the
points pi, i = 1, ..., 6, of the pencils of conics through q and three of
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the points pi’s, and of the pencils of cubics, double at q and passing
through five of the points pl’s.
(iv) T contains no pencil of plane cubics.

Now if Q’ is any quadric of rank less than or equal to 4 containing
T, the planes of at least one of its rulings must cut out on T a pencil
of curves of degree 3 or less. If this pencil is the pencil of conics, then
Q’ simply belongs to the net of quadrics through XD. On the other
hand, if this pencil is of degree 3, then it determines Q’. The
conclusion then is that, apart from the net |XD(2)|, T lies on only
finitely many quadrics of rank less than or equal to 4. We therefore
have

In particular we also have that:

(5.24) The point

corresponding to the quadric Q is one of the isolated points of WT(4).

In view of (5.21) and (5.23) in order to conclude the proof of
Theorem (5.1) it suffices to show that VC,03B8 and IOT(2)1 are not both
contained in a hyperplane of |C(2)| ~ P5. But this is clear, since
otherwise WC,03B8, which is of pure dimension 2, would not intersect the
3-plane |T(2)| in any isolated point, contrary to what we just proved
in (5.24). The proof of Theorem (5.1) is now complete.
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