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Introduction

Let X be a minimal surface of general type. Its two fundamental
discrete invariants are given by the Chern numbers CT(X) and C2(X).
It is well known that they characterize a surface up to a finite number
of familles.

The Chern numbers satisfy the arithmetic condition

which is made explicit by Noether’s formula

c21 + C2 = 12X (X the holomorphic Euler characteristics).

It will now be more convenient to use ~ and c21 as our basic discrete
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invariants, and they will henceforward be referred to, by slight abuse
of terminology, as the Chern invariants of the surface.
The Chern invariants cannot be arbitrary. In fact they are restricted

by the following inequalities:

The first three are fairly elementary and known already to the Old
Italians.
The last c21 ~ 9x (or equivalently ci - 3C2) is much less so, and only

very recently proved (1976). It is due to Bogomolov, Miyaoka on one
hand and Yau on the other.

The main purpose of this article is to investigate to what extent the
above inequalities are the only restrictions.

In other words, given x, y, suitably restricted, can we find a minimal
surface of general type X, with c21(X) = y, ~(X) = x.
We present the following partial results :

THEOREM 2: Let x, y be positive integers satisfying

(where k = 2, or k is odd and 1 ~ k ~ 15 or k = 19).
Then there exists a minimal surf ace of general type X, with c21(X) =

y, ~(X) = x.
Furthermore X can be assumed to be a genus two fibration.

The surfaces exhibited, have been chosen in view of their relative
simplicity of construction and do not reftect the "typical" surface
with the given Chern invariants.

THEOREM 3 : Let x, y be positive integers satisfying

Then there exists a simply connected minimal surface of general
type X, which is a double covering of a rational surface, with

c21(X) = y, ~(X) = x.

In view of the result that the intersection form on a surface is
determined by ~, c21 ; and that the intersection form determines the
homotopy type of a simply connected surface if c)Q0(2) or if
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C’ = 0(2) in connection with the primitivity of K- the canonical divisor
(i.e. if K = 2C or not for some divisor C); there is much less a degree
of arbitrariness of the surfaces constructed (see [4]).

It is widely believed that there exists homotopically equivalent but
yet non-diffeomorphic surfaces (a four-dimensional counterexample
to Smale). Furthermore it is not held unlikely that there exists totally
unrelated diffeomorphic surfaces.
No example of either phenomena has yet been found.
The next step would be to describe all surfaces as opposed to just

one example with given Chern invariant (X, c21).
For very special cases, e.g. (3, 1); (4, 2) this can be done explicitly,

but in general it seems hardly feasible.
Setting ones aims lower, one would hope to establish effective

bounds for the number of different families, corresponding to a given
pair of Chern invariants. Even this seems quite hard, and it is

suggested, by the proofs of the theorems above, that those bounds
may be quite high.
The subsidiary purpose of this article, is to address itself to

questions, of what 1 would like to call, geography of surfaces of
general type.
One can ask whether additional restrictions on the surfaces (e.g. of

topological nature, simply connectedness, irregularity; of complex
analytical nature, canonical embeddability, etc.) is reflected in the

possible Chern invariants.
Or, conversely, if further restrictions on the Chern invariants,

force additional properties of the surfaces.
This is not the place to give a comprehensive survey of those

"geographical" questions.
Suffices it to indicate some basic features.

The line C2 = 8X does in many ways act as a watershed. At our
present state of knowledge, the region 8X  c21 ~ 9~, could rightly be
termed arctic. Only sporadic examples of surfaces have been found
there. The notable cases being, compact quotients of the unit ball in
C2 (Hirzebruch-Borel) whose invariants satisfy c; = 9X (by Yau, those
are in a sense the only examples on that line), certain non-degenerate
fibrations (Kodaira [7]) and now very recently some examples by
Miyaoka.
The major conjecture, mainly supported by the lack of evidence to

the contrary*, is

* Added in proof: It has recently been announced by Holzapfel (Berlin) that simply
connected surfaces exist with c;/c2 arbitrarily close to 3.
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CONJECTURE: If X is simply connected, then c21  8X.

In Proposition 4.5 we exhibit simply connected surfaces with high
ci.

It seems to be a basic feature, that the smaller C2 is, the more
special is the surface and hence more amendable to explicit study.
Horikawa has shown ([5]) the possibility to elucidate in detail the

structure of the surfaces for which c21 = 2~ - 6 (or more generally
c21 = 2~ - k, k = 5, 4 etc.). In particular, they turn out to be simply
connected genus two fibrations.

Beauville has proved ([2]) that if c21  3X - 10, then the surface is by
necessity a double covering of a ruled surface. In particular, a

canonically embeddable surface must satisfy c21 ~ 3X - 10.
Reid has recently indicated ([15]) that some hold can be gotten for

surfaces with c21 ~ 4~.
For higher C2 the situation becomes rapidly more chaotic, due to

the great profusion of surfaces encountered.
Bearing in mind that surfaces fibered with genus two curves should

in some sense be considered the most special surfaces of general
type, we present the following

THEOREM 1’: Let X be a surface of general type, with a pencil of
genus two curves, then CI  7X.

The proof presented is very simple minded and rather crude, 1

believe a more sophisticated and careful approach would yield a

much sharper bound.
On the other hand, we have

PROPOSITION 3.12’: There exists an infinite family of surfaces of
general type, with rationally based genus two fibrations and with
c21 = 4~ - 4.

And also an example due to Oort and Peters ([10]) of a Campedelli
surface with C2=X = 1, with a genus two fibration.
For general genus two fibrations we cannot hope for more than the

conjecture below, in view of Theorem 2.

CONJECTURE: If X is a surface of general type, and with a genus
two fibration, then c21 ~ 8x.

We have only been able to verify the conjecture for those irregular
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pencils based over elliptic or genus two curves (Theorem 1).
The methods are too weak to give any interesting corresponding

bounds for higher genus hyperelliptic fibrations.
The plan of the paper will be as follows:

1. Double coverings
As there does not exist a standard reference for double coverings, 1

will briefly set down the conventions 1 adhere to, and state the main
facts. For a fuller treatment along the same lines the reader is

referred to [12].
The major part of this section is devoted to the singularities of

double coverings, stemming from singularities of the branch locus. In
this context we elaborate on the well-known concept of inessential

sigularities of the branch locus, and the characterization of the

resulting surface singularities as rational double points. All of this is
of course known, but due to the centrality of the concept we find it
worthwhile to give a systematic account.
We also treat in detail the simplest essential singularity, that of the

so called infinitely close triple point, due to its importance in the
methods of the proofs of the main theorems.

Finally we touch upon more global aspects, and compute the Chern
invariants of some double coverings, to be used later.

2. Estimates o f Genus Two Fibrations.
In this section we recall the characterization of genus two fibra-

tions, as double coverings of ruled surfaces along sextic branch loci,
whose only essential singularities can be assumed to be infinitely
close triple points.
A straightforward but crude estimate of their number then yields

the bound on c21 spelled out in Theorem 1.
We also indicate some partial results on the opposite question, of

giving bounds on c 1 forcing a surface to have a genus two fibration.

3. A Family o f Genus Two Fibrations.
Here we will recall, refine, and also develop and put into context

the construction presented provisionally in [13]. We hope also that the
Family constructed here also will have some independent interest, as
a source of various phenomena. Its function in this paper is both to
supplement the constructions in the next section, and to give a simple
foretaste of the techniques elaborated there.

4. The Main Theorems.
Here we prove Theorems 2 and 3. The strategy in both cases is
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quite similar. The first step is to exhibit a family of surfaces, whose
invariants are truly spread out. Those constructions act as a scaffold-
ing, a skeleton, to be fleshed out and completed. This constitutes the
last step, and entails imposing singularities. This presupposes com-
plete control of their nature and number, and presents in my view the
main difficulty. Our solution consists in working with double cover-
ings, and inducing the singularities via singularities of the branch
curve. This not only reduces it to a one-dimensional problem, but
also, due to that fortunate quirk of nature, the encompassing notion of
inessential singularity, makes the constructions get off ground.

1 am indebted to Professor D. Mumford for exciting my "geographi-
cal" interest in surfaces of general type at a talk at Avignon (1977).

1 also would like to thank Professor B. Moishezon and his student
K. Chakiris for many stimulating discussions and encouragement
during the initial phase of this work. To them 1 also owe the statement
and proof of the pivotal lemma 3.20.

1 have also had fruitful discussions with Professor Van de Ven at
the final reworking.

Finally 1 would like to thank Mrs. Sylvia Carleson for excellent
typing.

Part of this work was done at Columbia University under grant No.
MCS77-07660.

1. Double Coverings

The material is standard, but unfortunately there exists no standard
reference. (Each author hence tends to nourish his own notations and
idiosyncracies, the present author being no exception.)
A fuller treatment along the same lines is to be found in [12].
By a double covering 03C0 : Y ~ X is meant a finite map of degree

two, or equivalently an involution on Y with no isolated fixpoints.
The Data of the covering is given by X a nonsingular surface, C an

even branchcurve and finally a square root, i.e. a divisor B (up to
linear equivalence) such that C E |2B|.
Given these Data a surface Y is easily constructed, either as
1. Spec(x~x(B)), where a ringstructure is imposed by the

embedding of x(- 2B) = x(-B)~x(-B) into X via C.
or

2. given by the equation Z2 = f in the linebundle [B] on X, where f
are the local equations of C in [2B] and z the fiber co-ordinate.
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PROPOSITION: 1.1: Y is normal iff Chas no multiple components. Y is
nonsingular iff C is nonsingular.

PROOF: See [12].

In the second case we have the following.

PROPOSITION 1.2: If Y is non-singular, then

and finally we note

PROOF: Standard. See e.g. [12].

Notice that if D is a component of the branchlocus C, then 03C0*(D)
is double and if Do denotes its reduced part, Do = 1/2 D 2

This might be the place to insert the following observation.

PROPOSITION 1.3: If Y is non-ruled, its exceptional divisors are of
two kinds :

(a) pullbacks of exceptional divisors of X (those always come in
pairs)

(b) reduced pullbacks of rational components with self -intersection
-2, of the branch curve C.

PROOF: Given an exceptional divisor on Y, look at its image under
the involution. This is a new exceptional divisor, which is either

disjoint from the original (case a)) or coincides (case b)). Note also
that in case a) the exceptional divisors are pullbacks of exceptional
divisors disjoint from the branch curve.

We will now study two aspects of local nature.
First we will investigate the nature of the surface singularities of Y
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stemming from singularities of the branch curve, and specifically how
Proposition 1.2. has to be modified. This leads us to the very im-

portant technical concept of inessential singularities of the branch-
locus. As a digression we will show how this ties up with the classical
notion of rational double points. We will also elucidate in detail the
simplest, and perhaps most basic essential singularity, that of an
infinitely close triple point.

Secondly we will describe how singularities located on the non-
singular branchlocus will change when the corresponding curves are
pulled back. This will constitute another technical tool.
The isolated surface singularities of double coverings stemming

from curve singularities of the branchlocus can easily be charac-
terized locally.

PROPOSITION 1.4: An isolated singularity P of a surface S is

equivalent to a branch induced singularity iff

P is a hypersurface singularity (the embedding dimension of P is
three) of multiplicity two. i.e. S is given locally be an equation
F(x, y, z) = 0, with multiplicity of F at P equal to two.

PROOF: The only if part is immediate (cf. Proposition 1.2.). And the
if part follows almost equally directly. Indeed by a change of coor-
dinates we can write F under the form z2 - f(x, y), locally.

Thus branch induced singularities compromise the simplest case of
isolated singularities. But extensive enough to include e.g. all the

rational double points.
They are very accessible to explicit study, as they can be directly

related to the corresponding branch curve singularity. There is indeed
a simple and well-known algorithm for their resolution in terms of the
resolution of the corresponding curve singularity. This algorithm
hinges on the following concept (cf. also [5]).

DEFINITION 1.5: The pair (X’, C’) is said to be the even resolution
of the pair (X, C), where C is an even curve without multiple com-
ponents on a smooth surface X, if (X’, C’) = (X~, C~) where (Xk, Ck),
0 S k S aJ is defined inductively as follows

i) (Xo, Co) = (X, C)
ii) given (Xk, Ck) define (Xk+I, Ck,i) = (Xk, Ck) if Ck is non-singular,

otherwise pick a singular point on Ck, let 1Tp: Xk+1 ~ Xk be the
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blow up with exceptional divisor Epo And let Ck+l = 03C0*p(Ck) -
2[m/2]Ep, where m is the multiplicity of Ck at p.
(Note that Ep is a component of Ck+l iff m is odd).

iii) If (Xk+1, Ck+1) = (Xk, Ck), let (X~, Cm) = (Xk, Ck).

Note. It should of course be checked that this process ultimately
stabilizes-to make sense of (X~, C.). And also that (X’, C’) is in-

dependent of the particular choices of singular points p in ii). This is
safely left to the reader.
We are now able to give the explicit resolution of any branch

induced singularity. For simplicity we will assume a global setting. It
is left to the reader to translate this into a local one.

DEFINITION 1.6: Let X be a non-singular surface and C an even
(possibly singular) curve with no multiple components. By the resolu-
tion Î’ o f the double covering Y o f X along C is meant the mini-

malization of the double covering Y’ of X’ along C’, (X’, C’) being the
even resolution of (X, C). (In the minimalization, only exceptional
divisors in the fibers of Y’ ~ Y are blown down).

We are now ready to define the important technical concept of
inessential singularity.

DEFINITION 1.7: A branch curve C is said to have only inessential
singularities iff c21(Y) = ci(Y); X(Y) = X(Y).

Note. The right sides are defined by Proposition 1.2. by interpret-
ing g(C) as the (formal) arithmetic genus.

There is a local characterization of inessential singularities, which
can then be taken as the definition in a more general setting.

PROPOSITION 1.8: A branch curve Chas only inessential sin-

gularities iff all its singularities have multiplicity less than three, and
no infinitely close points have multiplicity more than two.

PROOF: Standard, see e.g.·[5]. The reader can supply his own by
characterize those C for which 03C0*(KX + B) = 1T’*(Kx’ + B’) (where
the ’ is selfexplanatory). This observation will be taken up below.

In other words, double points (with arbitarily high order of contact)
and triple points for which not all three branches are tangent, are all
inessential.
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PROPOSITION 1.9: The singularities stemming from inessential sin-
gularities o f the branchcurve are all rational double points.

PROOF: See e.g. [5], or notice that the characterization in Prop. 1.8.
shows that the resolution does not contribute to the canonical divisor,
and thus appeal to a standard characterization of rational double
points. See [1].
Below we will give an additional independent proof of 1.9. using the

characterization of inessential singularities of 1.8. and the explicit
algorithm of even resolutions.

In order to appreciate the connection between 1.9 and 1.7. the

reader should bear in mind Brieskorn’s result on the simultaneous

resolution of rational double points [3]. Hence in the future branch
curves with only inessential singularities can be treated for all intents
and purposes as smooth.

The simplest essential singularity, that of an infinitely close triple
point, will play a pivotal role in our future constructions. It will be

treated in detail, its elucidation involves a typical application of the
algorithm of even resolutions.

DEFINITION 1.10: A singularity is called an infinitely close triple
point, iff it consists o f three tangent branches no longer simul-

taneously tangent after one blow up.

PROPOSITION 1.11: If Y the standard resolution (see 1.6) of a
double covering Y, branched along a curve with one infinitely close
triple point. Then

PROOF: The arguments are best described by the following tables
and diagrams.
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After one blow up. On X1:
Branchcurve Ci = (C - 3E) + E
Square root B - E

Canonical divisor K + B

After two blow ups. On X2 = X’:
Branchcurve C’ = C2 = (C - 3E) + E - 4E’
Square root B - E - 2E’

Canonical divisor K + B - E’

Now C’ is smooth, the even resolution of C, furthermore g(C’) =
g(C) - 7, and C2(X’) = c2(X) + 2. Thus using Prop. 1.2., c1(Y’) =
2(K + B - E’)2 = c21(Y) - 2 and c2( Y’) = c2(Y) - 10. By Noether’s

formula ~(Y’) = ~(Y) - 1. But the pullback of E - E’ is exceptional
on Y’ by Prop. 1.3. To form Y it has to be blown down, and hence
c21(Y) = C2(y) _ 1; ~(Y) = X(Y) - 1.

Note 1.12: The minimal resolution of a singularity stemming from
an infinitely close triple point consists of an elliptic curve with

selfintersection -1.

Note 1.13: As the local equation for an infinitely close triple point
can be given by x3 + y6 = 0, the local equation for the above surface
singularity can be represented by Z2 + x3 + yl = 0 (cf. [8] p27).

Note 1.14: There is also the concept of higher order infinitely
close triple points. They will naturally appear in the future, and
sometimes sloppily be referred to as infinitely close triple points.

A curve singularity is said to be an infinitely close triple point of
order k if it turns into an ordinary triple point after k successive blow
ups.
The generalization of Proposition 1.11. now becomes
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Thus we can think of an infinitely close triple point of order k as
[(k + 1)/2] ordinary (i.e. of order 1) infinitely close triple points
(infinitely close).

In general we have the notion of so called specialization vector of a
singular branchcurve.

DEFINITION 1.15: To a singular branchcurve C is associated a so
called specialization vector (-a, -b)(cf. [12]) defined by ~(Y) =
X(Y) - a, c21(Y) = c21(Y) - b, where we recall that Y denotes the stan-
dard desingularization of Y.

The determination of specialization vectors can be done purely
mechanically (cf. proof of Prop. 1.11.) and hence they will be presen-
ted in the future when needed without explicit proof.
The following observation is helpful. (We are conserving the ter-

minology of Definition 1.6.)

OBSERVATION 1.16: Let Yk be the (possibly singular) double

covering o f Xk along Ck, and n = [m/2], then

Note 1.17: To compute the invariants of Ym, we only have to keep
track of the multiplicities that occur in the even resolution. Finally to
compute the invariants of Y, we have to look for exceptional divisiors
in the resolution, which is slightly more subtle.
We are now going to list in a table, all the possible inessential

TABLE 1.18



15

singularities of a branch curve on the left side, and on the right side
their characterization as isolated surface singularities.

This is straightforward combinatorics, and is a nice exercise of the
above methods and proves Proposition 1.9. (cf. also Proposition 2.8.
in [14]).

To cover our second aspect of local nature of double coverings we
present the following two elementary but useful observations,

LEMMA 1.19: Let Dl and D2 be two curve branches transversal at a

point p to the branchcurve C of a double covering 03C0 : Y~X.

Assume that Di and D2 have contact of order k at p (i.e. k blow ups
are needed to separate them). Then the pullbacks 03C0*D1 and 03C0*D2
have contact o f order 2k at 03C0*(p).

PROOF: Separate Di and D2 by k blow ups of X.

The exceptional divisors are all part of the branch locus because of
evenness. Hence k further blow ups are necessary for the even

desingularization of the branch locus.
By taking the double covering of the last configuration, we end up

with

and we are done.

We will mainly be interested in the special case of k = 1. I.e.

transversal intersections on the branchlocus become tangential up-
stairs. The most important application will be

COROLLARY 1.20: An ordinary triple point located on the branch
locus becomes an infinitely close triple point when pulled up.
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LEMMA 1.21: Let D be a curve branch with contact of order (a) 2k
(b) 2k + 1 with the branch curve C.

Then the pullback 7r*D becomes (a) a tacnode of order k - 1
(1, 1 ~ 2 ~... 2) (k arrows) and with contact of order 2k with C or (b)
a cuspidal o f order k (2 ~ ... 2) (k arrows) and with contact o f order
2k + 1 with C.

PROOF: The following sequence of diagrams should be self-

explanatory by now.

Step I (Separation)

Step II (Pullback and reduction)

As before the main case of interest will be k = 1.

COROLLARY 1.22: A branch tangential to the branchcurve becomes
an ordinary double point with branches transversal to the ramification
curve.

A branch flexed to the branchcurve becomes a cusp, tangent to the
ramification curve.

Finally we will consider some global aspects. Namely the com-
putation of Chern numbers of some simple but basic double cover-
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ings, by straightforward application of Proposition 1.2. These cal-

culations will be used in the final and main section of this paper.

EXAMPLE 1.23: As the minimal rationally ruled surfaces will play
an important role, it might be appropriate to review them quickly and
to establish some notations.

They are classified by the positive integers, and to each N cor-
responds the so called Hirzebruch surface of type N, which we will
denote by FN.
FN can be realized as the completion of the linebundle P1(N) on pl, by

adding a section at infinity.
The Picard group of FN is freely generated by a section S, charac-

terized by S2 = N, and a fiber F.
By JaS + bF)N we will denote the linear system PH0(FN, aS + bF)

(If no confusion can arise, the subscript N is suppressed). Note that
in order for this to be non-empty, then a, b ~ 0 with one important
exception.

Indeed if N &#x3E; 0, there exists a unique section Soo == S - NF on FN.
This will be referred to as the minimal section, or sometimes the
infinity section, because to present FN as a completed linebundle is
equivalent to give two disjoint sections. One of those has to be Sx and
the other an element So e 1 SI’. (Where 1 SI’ denotes the Zariski open
subset of irreducible (or equivalent smooth) sections). (Observe that
the reducible sections of ISIN will have Soc as transversal component
and N fibers. Thus they are parametrized by the sections of P1(N)).
Given So, Soo disjoint and z a section of H0(FN, S) defining So, then

FN - Soc is a line-bundle with z as fiber coordinate.
We can now define an involution on FN via z ~ - z. This will have

as ramification locus So U Soo, and its quotient will be F2N. Thus we can
exhibit FN as a double covering of F2N branched at two disjoint
sections.

This simple observation will be important for future constructions.
Finally we observe that the natural double covering 1T: FN ~ F2N

induces a map 1T*: Pic F2N ~ Pic FN and via the identification Z2 -
Pic FN((a, b) ~ aS + bF) 03C0* defines the endomorphism (a, b) ~ (2a, b).

In particular the pullback of a section of F2N becomes a bisection of
FN.

EXAMPLE 1.24: The classification theory for irrational minimal
ruled surfaces gets progressively complicated. Let it be sufficient to
mention the following facts.
Crude invariants for a minimal ruled surface R are given by (1) the
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genus q of the basecurve (q turns out to be also the irregularity of R).
(2) the minimal positive selfintersection N of a section.
Such surfaces will be denoted by Fq+1N.
For q &#x3E; 0, the Picard group becomes unwieldy, but its discrete

part-the Neron-Severi group (divisors modulo numerical

equivalence) is still freely generated by a section S, S2 = N and a fiber
F.

We are now ready to compute the Chern invariants of some double
coverings.

PROPOSITION 1.25: Let R be as above, with S2 = N and q(R) = q,
and let C be an even branch curve of type 2mS + 2nF (or (2n, 2m) for
short.) Let Y be the double cover of R along C, then:

PROOF: As K = -2S + (N + 2q - 2)F and (K + C)C = 2g - 2 and
c2(R ) = 4 - 4q, this becomes a straightforward application of Pro-
position 1.2.

COROLLÀRY 1.26: If Y is branched along a sextic (m = 3) branch-
curve, then we have the following invariants :

EXAMPLE 1.27: We start with P’ x P1(= F0) and two curves Ci and
C2 of type (2a, 2b) and (2c, 2d) respectively.
Let YI be the double covering 03C01: Y1 ~ Fo branched at Ci, and let

Y = Y2 be the double covering 7F2: Y2 - Yi branched at 1T *1(C2).

PROPOSITION 1.28: The invariants of Y are given by

where A = a + c, B = b + d, 0(a, b) = (A - a)(B - b) + ab.

PROOF: The canonical divisor K on Fo is given by (-2, -2) then
apply Proposition 1.2.
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EXAMPLE 1.27: We replace Fo by FN obtaining a surface Y(N):

PROPOSITION 1.28: The invariants of Y(N) are given by

EXAMPLE 1.29: We once again start with Fo and now n curves Ck
of type (2ak, 2bk). Define inductively Yk as the double covering
03C0k : Yk ~ Yk-1 branched at 7Tt-l(Ck) where Yo = Fo and 7ro = identity.

PROPOSITION 1.30: The invariants of Y = Yn are given by

where A = 03A3ak, B = 03A3bk and 03A6 = 03A3akbk.

PROOF: Clear by induction and Proposition 1.2.

2. Estimâtes of Genus Two Fibrations

The following should be clear.

PROPOSITION 2.1: Let Y be a hyperelliptic fibration. Then Y is the
double covering of a ruled surface.

COROLLARY 2.2: Let Y be a genus two fibration. Then Y is the

double covering of a ruled surface along a sextic branch locus.

The ruled surface is uniquely determined by the fibration, but not
by the surface itself, which can have many hyperelliptic fibrations.
The typical example is constructed as follows,

EXAMPLE 2.3: Let E be an elliptic curve, and consider the trivial
ruled surface E x pl. Choose a curve C of type 6S + 2F, where S is a
horizontal section (S2 = 0) and F a vertical (rational) fiber. C could
simply be the union of vertical and horizontal fibers, and as such
having only inessential singularities. Now let Y be the resolution of
E x Pal branched along C. Note that Y has two différent genus two
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fibrations, the second one arising from the horizontal sections. (A
double cover of an elliptic curve branched at two points is a genus
two curve), and determines a rational ruled surface.
Thus the question of distinguishing surfaces arisen as double

coverings of ruled surfaces is a hard and perhaps subtler one than
might at first been thought.
On the other hand, in view of the canonical algorithm of resolving

singularities of double coverings, as expounded in the previous sec-
tion, a surface is uniquely determined by a choice of minimal model
and the push down of the branch locus. Now for fixed fibrations there
is a canonical choice of minimal model minimizing the singularities of
the pushdown of the branchcurve.

In particular we have,

PROPOSITION 2.4: If Y is a genus two fibration, then Y is the

resolution of a double covering of a minimal ruled surface branched
along a sextic branch curve whose only essential singularities are

infinitely close triple points.

PROOF: Consult [6]. (Note that the infinitely close triple points
could be of arbitrary order, cf. note 1.14:)

REMARK: The keytool in the proof is the use of so called elemen-
tary transformations of a ruled surface. These enable us to reduce the

multiplicities of a branchcurve singularity to m for a branchcurve of
type (*, 2m). (See e.g. [9], [11]) As we will explicitly use this notion in
the future it might be convenient to define it explicitly.
DEFINITION 2.5: By an elementary transformation at a point p on a

ruled surface R, is meant the blow up of p, and the blow down of the
exceptional divisor consisting of the proper transform of the fiber
through p. (This is of course ambiguous in the one case of Fo, but the
context will make clear what fibration is chosen).

We will need the following.

PROPOSITION 2.6: Let Y be a relatively minimal genus two fibration
of general type.
Then Y has at most one exceptional (necessarily transversal)

divisor, and if Y is non-minimal then c’(Y) = 0.

The key fact is the following inequality, which is the direct analo-
gue of the Cauchy-Schwarz inequality.
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INEQUALITY 2.7: (Hodge). Let X be a surface with K2 &#x3E; 0 and let C
be a curve, then

with e uality i C = (K · C) (K2) K.

PROOF: Observe K((K2)C - (K · C)K) = 0, and then exploit the
Hodge Index theorem.

PROOF OF PROPOSITION 2.6: Let X = Y(Y the minimal model of
Y) and let C be the image of a fiber of the genus two fibration of Y.
Note that if E is a transversal exceptional divisor then EC = 1 (cf.
proposition 3.7.)
Assuming Y~Y we have C2 ~ 1. By the adjunction formula KC +

C2 = 2. As Y is of general type and C is non rational KC &#x3E; 0. Thus

KC = C2 = 1.
The Hodge inequality now gives 1 = KC ~(K2), from which fol-

lows K2 = 1 and we are done.

REMARK 2.6’: The well-known example of a double covering of F2
branched along 5S + (S - 2F), gives a non-minimal genus two fibra-
tion with K2 = 0 and exactly one exceptional divisor. (This is the one
example for which 4K fails to be birational and it is also uniquely
determined by (X, C2) =(3, 1), cf. Introduction).
We are now ready to state the main theorem of this section.

THEOREM 1: Let Y be a genus two fibration over a basecurve with
genus at most two. Then we have the following estimates f or C2

a) C 2(y) 1  7X(Y), rational or elliptic base curve.
b) C 2(y) 1 :5 8X (y) genus two base curve.

PROOF: We need the following elementary lemma.

LEMMA 2.8: Let C = 6S + (a + b)F be a branchcurve in a ruled

surface of type FN+1 (see Ex. 1.24.) with b fibral components. Assume
that k is the number of infinitely close triple points. (An infinitely close
triple point of order m, is then counted with multiplicity [(m + 1)/2]).
Then we have the following estimate.
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PROOF: Write C = Co + bF, where Co has no fibral components.
The infinitely close triple points of C are of two kinds.

(i) bona fide infinitely close triple points on Co
(ii) vertical tacnodes of Co (turned into infinitely close triple points

of C by the addition of a fibral component).
Note that the resolution of an infinitely close triple point of order m

on Co reduces its arithmetic genus with 3(m + 1). For a tacnode of
order m we get a corresponding reduction of 2(m + 1).
So let there be k, points of type (i) and k2 points of type (ii) counted

with the appropriate multiplicity.
We thus get the following estimate.

(where the left side gives 2g’ - 2, where g’ is the arithmetic genus of
Co after the resolution of the points of type (i) and (ii) and the right
side gives a lower bound for 2g - 2, where g is the arithmetic genus of
the desingularization of Co, which at "worst" can be the disjoint
union of six sections).

As k2 ~ b we obtain

which clearly is the estimate of Lemma 2.6.

PROOF OF THEOREM: By Corollary 2.2. Y is the double covering of a
ruled surface along a sextic branchlocus. By Proposition 2.4. we can
"descend" to a minimal ruled surface, such that the pushdown C of
the branchcurve has only infinitely close triple points as essential

singularities.
Let C be as in the previous lemma, and let k be its number of

infinitely close triple points (counted appropriately).
Using Proposition 1.11. (with note 1.14.) and Corollary 1.26. the

invariants of Y are given by
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Introducing

we can write

by Lemma

If q = 0, 1 (*) shows immediately c21  7~ and if q = 2 we get
c21 ~8~.

Note 2.9: If q &#x3E; 2, we cannot a priori conclude 03B8 ~ 0.
The cone of effective divisors in the Neron-Severi group can be

quite complicated for high q, and in particular a can be very negative.
But it is conceivable that for a sharper estimate of w, one could push
through the arguments for higher q.

Note 2.10: If q = 2, equality CI = 8X can occur. It occurs exactly
when (in the terminology of the proof) 0 = w = b = 0, examples of
which are

EXAMPLE 2.10.1. Let D be a curve of genus two, and let C be six

disjoint sections of D x pl. The double cover then becomes the trivial
fibered surface D x D’ where D’ is another genus two curve (a double

covering of P1 branched at C. F).

EXAMPLE 2.10.2. Let once again D be a curve of genus two, and let
d ~ 0 be a divisor on D such that 6d ~ 0. Let R be the completion of
the linebundle D(d), and let C be defined as the union of all the

sixth-roots of unity. C will then be irreducible (two disjoint, three
disjoint components) if neither 2d, nor 3d are trivial (3d ~ 0, 2d = 0)
and define unramified sextic (triple, double) coverings onto D.

The corresponding double covering will have isomorphic fibers, but
will not be a direct product like in example 2.10.1. This phenomena
occurs because of monodromy. If we pullback the fibration via an
irreducible component of C, we will obtain a trivial fibration.
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It would no doubt be possible to classify all cases for which

03B8 = 03C9 = b = 0, and hence all genus two fibrations over a genus two
curve with c21=8~ (using the classification of ruled surfaces of

irregularity two, e.g. in the spirit of [9]).

Note 2.11. As observed above, the estimate of (J) is very naive and
hence rather crude. Thus for genus two fibrations over rational or

elliptic curves, it seems possible to sharpen significantly, the sectors
wherein they live. Results in the opposite direction will be presented
in the next section.

One may observe the following corollary of Theorem 1.

COROLLARY 2.11: Let Y be a surface of general type, and assume
c21(Y) ~ 7X(Y), and let C be a curve of genus two inside Y, then

(i) C2 ~ 0 (ii) C does not move.

PROOF: (i) follows directly from the circle of ideas around the

Hodge inequality (2.9.) and (ii) needs no comment.
The above corollary fits into the picture, that the more "general" a

surface is, the less likely there is to find curves of small genera.
The same method as above also yields

PROPOSITION 2.12: Let Y be a hyperelliptic fibration, fibered with
curves of genus g over a curve of genus q, then

PROOF: By Proposition 2.1. Y is the resolution of the double

covering of a ruled surface of genus q, along a branchcurve inter-
secting each fiber in 2m points, where m = g + 1.

If the branchcurve has no essential singularities, then Proposition
1.25. gives equality in the above proposition.

In general we can assume that the singularities of the branchcurve
have at most multiplicity m. (cf. Proposition 2.4. and Definition 2.5.)

Recalling the notion of specialization vector (Definition 1.15.) we
can state

LEMMA 2.13. The specialization vector of a singularity of multi-
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plicity k, has a slope bounded by

PROOF: Immediate from observation 1.16. Note that the presence
of exceptional divisors would only improve the estimates.

We observe that the bounds given form an increasing sequence.
Thus we have universally the bound 4[(m - 2)/m ] (m even or not).
Now as clearly 4[(m - 2)/rn]  4[(m - 2)/(m - 1)] = 4[(g - l)/g], we are
done.

The significance of Proposition 2.12. is due to the following result
of Beauville.

THEOREM: If C 2(y) 1  3X(Y) - 10, then Y is a double covering of a
ruled surface (i.e. a hyperelliptic fibration).

PROOF: see [2] (or [12]).

PROPOSITION 2.14: If X is a surface of general type, irregularly
fibered, and C2(X)  (16/6)X, then the fibration is a genus two fibration.

PROOF: Immediate from the above theorem and proposition 2.12.

Unfortunately we cannot strengthen Proposition 2.12. so as to

prove Proposition 2.14. also for linearly fibered surfaces. In fact such
endeavours are doomed to fail, as is suggested by the possibility of
blowing up the base points of any linear system of curves of any
genus on any surface.

Instead one can, following M. Reid, consider the canonical images
as embedded ruled surfaces in the appropriate xN. The inequalities
between c21, ~ allows a straightforward translation into inequalities
concerning N and the degree d of the image. By projective algebraic
methods one can obtain bounds for d in terms of N, forcing the image
to be ruled by bona fide lines. As the canonical image of any higher
hyperelliptic curve never can be a line, we will be done.
We will not pursue these methods further, however, as they lie

outside the scope and limited intentions of the present section.
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3. A Family of Genus Two Fibrations

We will now present a simple construction of sextic branchcurves
of FN with many infinitely close triple points.

This will be applied to the exhibition of a family of genus two
fibrations, to complement later constructions.
The ideas and techniques used in this section also constitute a

foretaste of their elabouration in the next (the essence of this material
has already appeared in provisional form in [13]). The main point is
contained in the following construction:

PROPOSITION 3.1: Given N, a and k, with 0 S k S 2N + 2[2a/3], then
there exists on FN a curve CN,k,a equivalent to 6S + 2aF (where S is the
section with S2 = N, and F the fiber (see Ex. 1.23.)) with exactly k
infinitely close triple points and no other essential singularities.

PROOF: Choose two disjoint sections S0 ~ |S| and S~~|S-NF|.
They define an involution on FN, and in fact presents FN as a double
covering of F2N (cf. Ex. 1.23.).

Let b S [2a/3]. Choose points qi, q2, ... q2N+b on So and

q2N+b+l, ... q2N+2b on S~, with no two points on the same fiber.
For any subset of k points ql, q2’, ... q’k of the qi’s it is now possible

to find three distinct (irreducible) sections S,, S2, S3 (distinct from So)
in S + bFI on F2N, such that their only common intersection points on
So U Soc are ql, Q2, ... qk. (If b = 0, we can think of the sections as
given by polynomials of degree 2N and with only k common (pre-
assigned) zeroes).
Now the pullbacks 03C0*Si(i = 1, 2, 3) are bisections of FN and with

common vertical tangents at 03C0*(q’i) (Lemma 1.19. and Corollary 1.20.).
Thus CN,k,a = 03A3i03C0*Si + (2a - 3b)F (where the fibers have been

chosen generic) will satisfy the requirements.
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Note 3.2: To appreciate the power of the preceeding construction,
we might observe that there are twelve conditions to specify an
infinitely close triple point with given tangent direction. Furthermore
dim|6S + 2aF|N = 21N + 14a + 6.

In view of the observations below, the above particular con-

struction may not be as arbitrary as it first appears.

LEMMA 3.3: Given C ~ |2S|, C irreducible. Then there is So E ISI,
such that C is invariant under the involution defined by So.

In other words C is a pullback via 7T: FN ~ F2N for a suitable

section. As such all its vertical tangents lie on a section, in fact on the
appropriate So. Hence the following corollary.

COROLLARY 3.4: Given C ~ |2S| all its vertical tangents lie on a
section S E ISI.

PROOF: As observed each So E IS lN defines a map 03C0:FN-F2N.
Pullbacks of sections of IS12N become bisections of |2S|N. Those
bisections have vertical tangents at their intersections with So, which
is hence recaptured.

Finally the observation, based on Riemann-Roch, that dim|2S|N =
3N + 2, dim|S|N = N + 1, and dim|S|2N = 2N + 1 is highly suggestive.
The argument can be made precise, but becomes then somewhat

involved. For completeness and its intrinsic geometric interest it will
be given, but due to its length and being somewhat peripheral, it will
be relegated to Appendix B.
We are thus authorized to claim and guess respectively.

COROLLARY 3.5: The construction of Proposition 3.1. is the best

possible using unions of bisections.

Note that in [10] the authors exhibit on F1 a slightly more efficient
construction, while not restricting themselves to bisections. But

anyway 1 venture

CONJECTURE: The construction is the best possible for vertical

infinitely close triple points.

The above construction has the following applications to the con-
struction of surfaces.

In fact construct surfaces accordingly.
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DEFINITION 3.6: Let XN,k,a be the resolution of the double covering
o f FN along CN,k,a (in the sense o f Definition 1.6.).

We will mainly be interested in those XN,k,a which are minimal and
of general type.

PROPOSITION 3.7: XN,k,a is minimal under the following circum-
stances

PROOF: In order to check minimality, we will restrict ourselves to
surfaces with effective canonical divisor. As is well-known excep-
tional divisors then show up as fixed components of the canonical

system.
The canonical divisor of XN,k,a is given by the pullback of

(where the Ei are the exceptional divisors stemming from the blow up
of the qi and Ei the blow ups of the infinitely close points to the q’i,
(in the notation of Proposition 3.1)) and the subsequent blow down of
the exceptional divisors arising from pullbacks of 03A3i~k(Ei - Ei) (cf.
Proposition 1.11.)

This is an immediate consequence of Proposition 1.2. From the

same we infer that all effective canonical divisors of XN,k,a are

invariant under the involution, as H0(K) = 0 for rational surfaces.
Thus to find effective divisors in the canonical system on XN,k,a is

equivalent to find effective divisors in 1 K + B| where 2B = CN,k,a.
Let b = [2a/3] as in Proposition 3.1. Recall from the construction,

that if k S 2N + b, all the ql’s can be chosen to lie on So.
Thus S - 03A32N+bi=1Ei is always effective.
To take care of the case k &#x3E; 2N + b, we have to add fibral com-

ponents N - Ei, with i &#x3E; 2N + b, corresponding to points q’i neces-
sarily on S’oo (there is at most "b" such points).

In other words N - 2 + a gives the number of additional points on
S~ that can be "taken care of".

One easily checks a ~ b, a ~ b - 1 if a ~ 1, a ~ b - 2 if a ~ 4. Thus
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effective canonical divisors can be found in case

We also note that in addition to the above obvious cases, we can

also add

It is not hard, albeit slightly cumbersome, to prove that these are
the only cases leading to effective divisors in the system K + B, and
hence to pg &#x3E; 0.

The candidates for exceptional divisors on XN,k,a are the pullbacks
of

(a) the fibral components F - Ei (i &#x3E; 2N + b)
(b) the transversal component S - 03A3i~k0 Ei ko:5 2N + b.
The former have self intersection zero (in fact they are part of the

induced fibration) and are hence automaticallly dismissed.
In the latter case, the self intersection is given by 2(N - ko) + ko =

2N - ko, and it is ramified at 6N + 2a - 2ko points.
Thus we get two cases

i) 6N+2a-2ko=0; 2N-ko=-2
ii) 6N+2a-2ko=2;2N-ko=-1.

The first case leads to ko = 2N + 2, 2a = 4 - 2N - 4. As a * 3 by the
first equality, we get a contradiction.

In the second case we get ko = 2N + 1, 2a = 4 - 2N, with the only
possibility N = 0, a = 2 and hence ko = l.
To check the additional case (N = 1, a = k = 0) we observe that

S - F is exceptional and disjoint from the branch curve c1,0,0. Thus
upstairs we obtain two exceptional divisors.

This completes the proof of the proposition.

PROPOSITION 3.8: The Chern invariants of XN,k,a are given by
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PROOF: Clear from Corollary 1.26. and Proposition 1.11.

OBSERVATION 3.9: By looking at N, k, a for which ~(XN,k,a) ~ 2 we
get sufficient conditions for the surfaces XN,k,a to have effective
canonical divisors. The list incidentally coincides with the one given in
the proof of Proposition 3.7.

Note 3.10: It might be instructive to give the list of the remaining
cases, discarded in Proposition 3.7. and see how they fit into the

general classification of surfaces.

The quickest way is simply to look at the pluricanonical divisors,
and use classification of surfaces.
An entertaining task could be to find rulings directly. E.g. in case

(1, 2, 0), a ruling is obtained by looking at the pullback of the linear
system |2S - E1 - E2 - E’1 - E’2|1. In other words at the bisections of
type 2S with vertical tangents at qi and q2 in the terminology of
Proposition 3.1. One can then easily check all the degenerate fibers
and get in that way an independent calculation of C21. A challenge
would be to find elliptic sections of the ruling explicitly!

Note 3.11: Not all the minimal surfaces described in Proposition
3.7. are of general type. The exceptions are listed below.

As to the surfaces of general type, in the families XN,k,a, we have

PROPOSITION 3.12: Given x, y positive integers, satisfying 2x - 6 ~
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y ~ 4x - 4, y ~ 4x - 5, then there exists a minimal surface XN,k,a (a = 0,
1, 2) with c21(XN,k,a) = y ; X(XN,k,a) = x.

PROOF: Consider for each a = 0, 1, 2 the linear maps given by

The image points are characterized by y - x == 2a - 1(3). Further-
more restrict them to the sectors given by 0 ~ k ~ 2N + 2b, N ~ 0
where b = 0 a = 0, 1 ; b = 1 a = 2 (cf. Proposition 3.1.) Those will be
mapped onto sectors bounded below by y ~ 2x - 6 and above by
y ~ 4x - 4, (4x - 8, 4x - 6) for a = 0 (1,2).

Alternatively we can recapture N and k from x, y by N =

y - x + 7 - (2a/3), k = y - 2x + 6. The above bounds on x, y ensures
0~k~2N+b.

Note 3.13: The "lower line" alluded to in the proof of the

previous proposition, is obtained by putting k = 0 and corresponds to
y = 2x - 6. This is the well-known Horikawa line. This is also a lower

limit for all surfaces of general type (cf. Introduction). And the
surfaces corresponding to its invariants have been exhaustively
classified by Horikawa (see [5]).

Note 3.14: By allowing all a no new invariants are obtained.
In fact

In particular we see that a given pair in the sector described in
Proposition 3.12. can be obtained in many different ways as the Chern
invariants of a surface XN,k,a.
One can easily estimate the number of different ways d(x, y) a pair

of Chern invariants (x, y) can be covered in the above manner.
It is easy to compute d(x, y), using the alternative observation of

3.12. and the equalities above. In fact

with a = 0, 1, 2 chosen appropriately.
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It would be very interesting to know to what extent those ways
correspond to different families of surfaces, i.e. of different defor-
mation type.

Note 3.15: The explicit construction of the branchcurves CN,k,a in
Proposition 3.1. allows a variety of specializations.
The fundamental ones are the following.

i) the acquisition of a new infinitely close triple point.

ii) the coalescence of two infinitely close triple points lying on So

ii)’ the coalescence of two infinitely close triple points lying on Soc

iii) the coalescence of a fibral component with an infinitely close
triple point on So

iiiy the coalescence of a fibral component with an infinitely close
triple point on Soc

The verifications of the surface degenerations are a straightforward
application of Lemma 1.19, 1.20. and Proposition 2.4.
One has a natural partial order on the XN,k,a by means of speci-

alization. This partial order is made explicit by the above.
E.g. XN-,k’,a’ is a specialization of XN,k,O iff a = 0, N’~ N, k’~

k+N’-N.

PROPOSITION 3.16: We have
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PROOF: As H1(XN,k,a, 0) = H1(FN, 0)~ H1(FN, -B) (with 2B ==

CN,k,a) by Leray spectral sequence (see e.g. [12]).
It suffices to compute H1(-B) as H1(FN, 0) = 0.

By Serre duality Hl(- B) = H1(K + B), the computation of the

latter is intimately connected with the computation of H0(K + B)
(which incidentally is equal to pg(XN,k,a))·
Now recall K + B = S + (N - 2 + a)F -03A3ki=1 1 en ; (cf. proof of Pro-

position 3.7.)
Denote by h0k(N, a) = dim H0(K + B ) ( = P,(XN,k,,,» and by hl(N, a) =

dim H1(K + B ) ( = q (XN,k,a)).
The crucial observation is that h0k -1~h0k+1 ~h0k which follows

because the requirement that curves should go through an assigned
point imposes at most one condition.
By Riemann-Roch it is immediate that the two different cases are

related to the behaviour of hl. In fact

Those are easy to compute when k = 0 (we are then working on
minimal FN). In fact

On the other extreme if k ? 2N - 1 + a, So becomes a fixed com-

ponent of any effective divisor in K + B, and the only moving part
will consist of fibers. This makes the computation of h0k exceedingly
simple.

In fact

and

We conclude
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and

This implies by (1)

(3) (together with (2)) then proves the proposition.

Note 3.17: In particular we note that although XN,2N,o and XN-2,2N,3
have the same Chern numbers, they correspond to altogether
différent f amilies.

One should extract one interesting observation from the proof
above. Namely, in its terminology So being a fixed component of the
linear system K + B, means that the canonical divisor of the double

covering is composite with a pencil.

COROLLARY 3.18: If k ~ 2N - 1 + a and 0 ~ a ~ 3, then the

canonical map of the surface XN,k,a is composite with a pencil.

Note that the condition a - 3 is necessary, as according to our
construction we can only impose 2N + b infinitely close triple points
on So. Thus b ~ a - 1.

This has as a consequence (cf. conjecture R.5 in [15])

PROPOSITION 3.19: If x,y are positive integers satisfying 4x - 10~
y ~4x -4, y~4x - 5.
Then there exists a genus two fibration X, whose canonical mapping

is composite with a pencil (of genus two) and such that ci(X) = y,
~(X) = x.

After this digression, we return to our main concern. As pointed
out in the introduction it is of some interest to find out which of the

XN,k,a are simply connected.
The following topological lemma will enable us to give sufficient

conditions.

LEMMA 3.20: Let X be a real four dimensional manifold with a
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fibration 03C0 : X ~ B onto a real two dimensional simplyconnected
manifold, with path connected fibers.
Assume that there are no multiple fibers and that there exists at

least one simply connected fiber.
Then X is simply connected.

PROOF: See Appendix A.

PROPOSITION 3.21: We have

PROOF: In the above cases the branchcurves CN,k,a can be chosen
to have fibral components. If a ~ 0(3) this is always the case, if

a ~ 0(3) a ~3 and k ~ 2N + (4a/3) - 2, then there exist CN,k,a-t, and
CN,k,a-1 + 2F ~ CN,k,a, where the fibers are chosen generically.
The genus two fibration of XN,k,a will hence have at least one

rational fiber.

Note 3.22: It would be interesting to compute the fundamental
group in the remaining cases, i.e. for XN,k,O k :5 2N - 1 and XN,2N+4a/3,a,
XN,2N+(4al3)-I,a for a ~ 0(3) a - 3.
Some of those cases are already known by classification theory for

surfaces, in fact all the examples in note 3.10. which are regular
(q = 0) are also simply connected.

We are now ready to state the main proposition of this section.

PROPOSITION 3.23: Given x,y with 2x - 6 ~ y ~ 4x - 8, then there
exists a (minimal) simply connected surface X of general type, such
that c21(X) = y, ~(X) = x.
Furthermore X can be chosen to be a genus two fibration.

PROOF: This is now an immediate consequence of Propositions
3.12. and 3.21.

4. The Main Theorems

The strategy of the proofs of the main theorems boils down to the
following.
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First there is the exhibition of a family of surfaces whose invariants
are truly spread out, and reasonably densly so. In fact one has the
notion of density of a spread, a notion which can be made very
precise in a specified context. (cf. Lemmas 4.13 and 4.2.1)
The second step consists in imposing singularities of specified

nature and number upon the surfaces. Their desingularizations will
provide new invariants, and for technical purposes it is important to
have simple relations between the imposed invariants and the original
ones. We are, as has been mentioned in the introduction, working
with double coverings and with singularities induced from the

branchcurves.

We will exclusively restrict ourselves to infinitely close triple
points, where the relations are exceedingly simple (recall Proposition
1.11.)
Now we are forced to consider the notion of content of a surface,

or of a pair of invariants. It essentially gives the range of the number
of singularities that can controllably be imposed. In its context it can
be made quite precise (cf. Lemmas 4.1.6. (table 4.1.9(’) and 4.2.3.)
The basic problem is now to find sufficiently large regions in the

plane of invariants, where the contents of the invariants of the initial
family "matches up" with its density.
To be more specific let us concentrate on the proof of Theorem 3.

(The proof of Theorem 2 is sufficiently simple minded for us to

disregard the articulation above in its elucidation).
We are now constructing surfaces by taking repeated double

coverings of pl x P’. The corresponding spread of invariants is then
easy to compute (Propositions 1.28. and 1.30.)
We take great care to ensure that the surfaces constructed comply

with the conditions set forth in Lemma 3.20. This will then also be
true for the imposed surfaces, ensuring that all the surfaces con-
structed are simply connected. For brevity this is left to be implicit in
the all-over presentation, but dealt with explicitly in the proof of
Lemma 4.2.3.

We now establish regions, in fact sectors, in the plane of invariants,
where the densities match up with the contents. Specifically we
consider potential invariants (x,y) such that there is an integer t such
that (x + t, y + t) is a pair of invariants of a surface (in the initial

family) allowing exactly t infinitely close triple points to be imposed.
Proposition 1.11. now shows that (x,y) is a pair of invariants for some
surface.

Finally we exploit the method of repeated double coverings to give
examples of simply connected surfaces with high c21.
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We are now ready to proceed with the proofs.

THEOREM 2: Let x, y be integers satisfying

and y ~ 8x - k (where f or even k, k = 2 and f or odd 1~k~15,
k = 19).
Then there exists a minimal surface X of general type, such that

c21(X) = y, ~(X) = x.
Furthermore X can be assumed to be a genus two fibration.

We will first select an appropriaté family of surfaces, whose Chern
invariants are densely spread out.

DEFINITION 4.1.1: By a surface of type XN,ia,c is meant a double
covering of a ruled surface over a curve of genus a - 1, along a
branchcurve of type 6S + 2(2c + i)F where S is a section with

selfintersection N, and F a fiber. 

The surfaces above have the following Chern invariants.

LEMMA 4.1.2: 

where A = a + c. (Note that X0,0a,a is simply example 1.27. specialized to
b = 0, d = 3).

Note also that it is sufficient to let N, i = 0, 1. This will tacitly be
assumed in the future. 

The Chern invariants of the surfaces XN,ia,c, form a subset S of the
integral lattice.
More precisely

1 LEMMA 4.1.3: The subset S is the intersection o f the sector 2x - 6 ~
y ~ 8x with a sublattice (of the integral lattice) with coarea six.

The following reformulation turns out to be convenient.

LEMMA 4.1.4: The integers x, y are the Chern invariants of a
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surface of type XN,i iff y = 8x - 6p (p ~ 0, p ~ 1) and y ~ 2x - 6, where

PROOF: c21 = 8~ - 6(4c + 3N + 2i) (from Lemma 4.1.2), 8~ - 6p ~
2x - 6 is equivalent to ~ ~ p - 1, but by Lemma 4.1.2. X = a - 2 + p,
and any a ~ 1 is used.

In order to fill up the gaps, we will have to impose essential

singularities on the surfaces XN,i. As those are given by double
coverings, we will obtain those by imposing given numbers of

infinitely close triple points, and no other essential singularities on the
branchcurves.

Let us call a surface XN,i of type (p) if its Chern invariants satisfy
c; = 8X - 6p.

LEMMA 4.1.5: Let X be a surface of type (p), and assume that we
on X impose k infinitely close triple points and no other essential
singularities. Then the Chern invariants of the corresponding desin-
gularized surface X satisfy

The strategy will now simply be, given p what numbers of infinitely
close triple points can be imposed.
We remind the reader of Proposition 2.4. which shows that it is

pointless to impose other kinds of essential singularities.
In particular if we can prove the following, the bulk of Theorem 2

will follow immediately.

LEMMA 4.1.6: There is a po such that if p - po, then for any k,
1 ~ k S 5 we can impose on a surface of type (p) exactly k infinitely
close triple points and no other essential singularities.

The above lemma is an immediate corollary of the following
universal construction.

PROPOSITION 4.1.7: On a ruled surface of type FaN (see Example
1.24.) with N = 0, 1 ; there exists for every k, such that 0:5 k ~ 2c’ + N,
a curve of type (6, 6c’) (i.e. 6S + 6c’F) with exactly 2k infinitely close
triple points and no other essential singularities.
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We can also find for every k, such that 1 ~ k ~ 2c’ + 1- N a curve
of type (6, 6c’ + (-l)N 3) with exactly 2k - 1 infinitely close triple
points (and no other essential singularities).

Before proving the above proposition, let us show how it implies
Lemma 4.1.6.

Let c~4, then 2(2c + i) ~ 6c’ + 3, with c’ ~ 2. Thus we can find
branchcurves of type (6, 2(2c + i)) on Fa with exactly k infinitely
close triple points, for 0~k~5, by using Proposition 4.1.7. and if

necessary, adding generic fibers. Now if p~4·4+3·1+2=21, then
necessarily c ~ 4, and we are done.
The bound po = 21 given above is of course rather crude, with more

care it can be sharpened. It suffices to give the following preliminary
version of the theorem.

THEOREM 2’: Let x, y be integers satisfying

Then there exists a (minimal) surface X of general type, such that
c21(X) = y, ~(x) = x.

The rest of this subsection is hence devoted to trying to fill in as

many of the finite number of missing lines.
This boils down to the rather pedantic task of trying to represent

low numbers on the form 6p - 7k, where the allowable k depend on p.
For that purpose, we will squeeze out more precise information out

of Proposition 4.1.7, present it in tabular form. And supplement the
universal construction by a few ad hoc constructions.

Ideally we would have liked to fill in all the missing lines, but this
becomes progressively harder the smaller we want 6p - 7k, until it

becomes a challenge we were unable to meet. Hopefully this will be
done in the future.

But first we will present the delayed proof of Proposition 4.1.7,
which will follow by the lemma below.

LEMMA 4.1.8: There exists for every k; 0:5 k ~ 2c’ + N, a pencil of
sections of type (1, c’) on FN, such that exactly k o f its basepoints
(which can all be assumed simple) lie on the union of two given
disjoint sections So and S~.

PROOF: Choose an irreducible section Si of type (1, c’) intersecting
So and Soc transversally.
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Si intersects So in c’+N distinct points p,, p2, ... Pc’+N and it

intersects Soc in c’ distinct points qi, q2, ... qc,.
Clearly no two points lie on the same fiber.
Construct another (reducible) section S2 of type (1, c’) as follows.

i) If k - c’, choose a section S of type (1, 0) not passing through
any of the points p1, p2, ... Add fibers passing through k of the
points q 1, q2, ... and in addition add c’ - k generic fibers.

ii) If k ~ c’, start out with S~(=(1, -N)), add (k - c’) fibers passing
through k - c’ of the points Pl, P2, ... and 2c’ + N - k generic
fibers.

The pencil generated by SI&#x26;S2 will have the required properties.
We are now ready to construct the curves in Proposition 4.1.7.
For this purpose we consider the following sequence of double

coverings

The branchcurve of 7T2 is given by 2a judiciously chosen fibers of
FN.
The branchcurve of 1T1 is given by the pullback of two disjoint

sections of FN, denoted by So, 500 below (cf. Example 1.23.)
On FN choose three distinct generic curves C1, C2, C3 in a pencil

with exactly k base points on So U Sco. (This is possible by Lemma
4.1.8.)
Choose the branch locus of lr2 to be disjoint from the basepoints.

On F2N we have three sections 1T2*Ci (i = 1, 2, 3) of type (1, 2c’)
meeting in 2k points lying on the branch locus of 1T1.

In the final pullback 03C01*03C02*Ci are bisections of type (2, 2c’) and
their union has exactly 2k infinitely close triple points (cf. Corollary
1.20.)
To construct an odd number of infinitely close triple points, we

perform an elementary transformation (Definition 2.5.) at a base point
of the pencil lying outside the branch locus of 1T1 (this is possible
exactly when k is short of its maximal possible value), by our
construction there will be another triple point on the same fiber, now
turned exceptional, which will turn into an infinitely close triple point.

In case N = 0, an elementary transformation has the effect of

changing a curve of type (2, 2c’) into (2, 2c’ - 1), and in case N = 1, it
changes (2, 2 c’) into (2, 2 c’ + 1).
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In our applications below we want the curves to be even, that is
easily achieved by adding the appropriate number of generic fibers. It
is now easy to establish the following tables:

TABLE 4.1.9. Even specializations

TABLE 4.1.9’. Odd specializations

We can first observe that from the tables above it is clear that if

p ~ 10 any number up to five of infinitely close triple points can be
imposed. Thus any line y = 8x - k is covered for k ? 60.
A more careful study reveals that we can cover all the lines with

the exception of for even k, k = 2, 6, 10 and 14 and odd k, 1 :5 k s 15,
k = 19, 23, 27 and 31.
To sharpen our result we have to resort to ad-hoc constructions.

The following supplement the universal construction of Proposition
4.1.7.

LEMMA 4.1. l0: On a ruled surface o f type F’ we can find a curve of
type (6, 2(2c + i)) with exactly k infinitely close triple points and no
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other essential singularities. In the following cases

PROOF: As in thé proof of Proposition 4.1.7, we are making use of
the sequence of double coverings

Start with Fo. Consider two generic sections of type (1, 2) and (1, 1)
respectively. They intersect in three points p1, p2 and p3. Choose a
third section C3 through the points pi, i = 1, 2, 3. Now we can choose
So and S~ such that p 1 E So and P2ES but p3 ~ S0, S.

(a) Let the branchlocus of 7r2 pass through pi and p3 but not
through p2.

(b) Let the branchlocus of 7r2 pass through all points pi, i = 1, 2, 3

(note a - 2).
In case (a) the total pullback of the sections Ci has one six-tuple

point (see Corollary 1.22.) and four infinitely close triple points
stemming from p2 and p3. Perform an elementary transformation at
the six-tuple point and we have the first case of Lemma 4.1.10.

In case (b) the total pullback of the sections Ci has two six-tuple
points stemming from p and p2 and two infinitely close triple points
stemming from p3. Perform two elementary transformations at the
two six-tuple points respectively. And we have the second case of
Lemma 4.1.10.

Finally let the branchlocus of IF2 be (a’) totally disjoint from pi, (b’)
containing p but not p2 and p3, and (c’) passing through pli and p2 but
not p3.

In all three cases there will be two ordinary triple points stemming
from p3. Perform an elementary transformation at one of them,
turning the other into an infinitely close triple point.

In case (b’) there will be a six-tuple point as well, above p 1, perform
an additional elementary transformation at that point.

In case (c’) there will be two six-tuple points above pi and p2.
Perform two elementary transformations at those points.

Note 4.1.11: It is now trivial to check the values of 6p - 7k in the
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five examples above. They turn out to be 14, 10, 31, 27, and 23

respectively.

Note 4.1.12: It seems hard to press those results further while

restricting oneself to sextic branchcurves. The natural step would be
to consider higher degree branchcurves, giving rise to higher genus
fibrations. But even then results do no follow easily.

LEMMA 4.1.13: On a ruled surface of type Fa1 (a ~ 3) one can find a
curve of type (8, 2) with 6 infinitely close triple points and no other
essential singularities.

Note 4.1.14: It is straightforward to compute the Chern in-

variants of a double covering Y of a ruled (type F?) along a branch-
curve of type (8, 2). In fact Proposition 1.25. yields:

Thus c21 = 8X - 48. The imposition of 6 infinitely close triple points
gives

which covers the line y = 8X - 6!

PROOF oF LEMMA 4.1.13: As usual we consider the sequence of

double coverings

This time with N = 0. On Fo we choose generically four points pi,
p2, P3 and p4, conditioned to p l, p4 lying on a horizontal section.
Through p 1 and p2 we choose a (unique) section Ci, of type (1, 1),

and similarly we choose C2 of type (1, 1) through p3 and p4.
Ci and C2 will intersect at two potnts q and q2.
Consider all sections of type (1, 2) passing through the points p1, p2,

p3 and p4. They form a linear pencil.
In the pencil choose Di to pass through qi and D2 to pass through

q2.
Now let the branchcurve of IT2 consist of fibers, six of which (it is

here we need a ~ 3) pass through qi, q2, p1, p2, p3 and p4.
As the branchcurve of 1T1, we consider the pullbacks 1T1(So) U
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03C0*2(S~) of two disjoint sections So, Soc on Fo, chosen such that qi E Soc.
Let 1T = IFIlr2, and C = C1~C2~D1~D2.
It is clear that ir*(C) is a curve of type (8, 12) on Fô, having three

six-tuple points above qi, p and p4 respectively, and also having two
infinitely close triple points above each point p2, p3 and q2.
We now perform elementary transformations at the six tuple points

of 03C0*(C). This defines a rational map: e : Fa0~Fa1.
The proper image e*03C0*(S~) = S~, becomes a section with self-

intersection - 1.

It is elementary to check the intersections (S~·e*03C0*(Ci)) =
(S~·e*03C0*(D1)) = 0 and (800. *03C0*(D2)) = 2.
Thus (S~·e*03C0*(C))=2 and e*03C0*(C) is of type (8,2) with six

infinitely close triple points and no other essential singularities.

Note 4.1.15: Variations of the above construction do not, un-

fortunately, lead to anything new. E.g. if we in the proof of Lemma
4.1.13. demand that p2 and p3 as well lie on a horizontal section,
choosing that instead as our So; we will, after the appropriate ele-
mentary transformations, end up with a curve of type (8, 4) in Fô
(a ~ 3) with four infinitely close triple points. The corresponding
double coverings will have their Chern invariants on the line y =

8x - 4, which, however, was covered earlier.
Note also that our constructions are fairly efficient in producing an

even number of infinitely close triple points. But far less so in

exhibiting an odd number.

Note 4.1.16: For completeness we should observe that all the

double coverings considered above are minimal. If a &#x3E; 1 this is

obvious, because then our surfaces are fibered over non-rational

curves, and there is no need to worry about the transversal exceptional
divisors. If a = 1, then we are simply considering subcases of Pro-
position 3.7.

Note 4.1.17: The observant reader has noticed that on the line
8x - 6, we have missed (due to the condition a ? 3 in Lemma 4.1.3.)
the two cases (1, 2) and (3,18).
The first is a wellknown invariant e.g. the Campedelli double plane.

The second is left to the same observant reader.

Let us now turn to the more involved proof of the more interesting
result.
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THEOREM 3: Let x and y be positive integers satisfying

Then there exists a simply-connected minimal surface of general
type X, with c21(X) = y and X(X) = x.
Furthermore X can be assumed to be a double covering of a

rational surface.

PROOF: To get our skeleton of surfaces, we will consider the family
of Example 1.27. specialized to b = 1. The intermediate surfaces

(depending on the parameter a) will then be rational, and the inter-
mediate branchcurve will turn into 4d-sections. As we have great
freedom in vàrying the branchcurve, we can assume it to contain
fibral components. By Lemma 3.20. the corresponding double cover-
ings will be simply connected.
The invariants of the surfaces will according to Proposition 1.28. be

given by

where we recall A = a + c and 0  c  A.
It is now convenient to consider a parameter space (a, c, d) on one

hand, and the invariant space (x, y) (=(~, c21)) on the other.
For each fixed d, (*) defines a linear mapping Ld from the (a, c)

plane into the (x, y) plane. (It takes e.g. slanted lines a + c = A onto
horizontal lines y = 8(A - 2)(d -1)).
The image of the integral (a, c)-lattice will be a translated sublattice

of the integral (x, y)-lattice.
From (*) one readily sees that (x, y) is in the image iff it satisfies

y = 0(8(d -1)), x --- A(d - 1) where A - 2 = (y/8(d - 1)).
Thus the coarea of the sublattice is equal to 8(d - 1)’.
In fact we have the f ollowing more precise statement.

LEMMA 4.2.1. Given (x, y) then there exists an integer t, which can
be assumed to satisfy 0 s t  8(d - 1)2, such that (x + t, y + t) lies in
the image of the integral (a, c)-lattice under the linear map Ld.

PROOF: Put t = 8(d - 1)(x - y - 2) - y + 8(d -1)2m !

Now we are only interested in the sector given by a, c &#x3E; 0. Because
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those are the parameter values giving rise to surfaces. The cor-

responding values of the invariants lie in a sector described below.

LEMMA 4.2.: A given (x, y) is in the image under Ld of the first
quadrant of the (a, c)-lattice, iff it is in the image of the (a, c)-lattice
and satisfies the inequalities below.

PROOF: The left and right lines, giving the lower and upper bound
respectively, are just the images of the lines a = 1 and c = 1, under
Ld.

The strategy is now clear. In order to fill out the sectors, we will

have to impose given numbers of infinitely close triple points. If

sufficient numbers can be constructed we are assured of success due

to Lemma 4.2.1.

However, not all parameter values will give rise to surfaces allow-
ing a suflicient number of essential singularities to be imposed,
More precisely,

LEMMA 4.2.3: For any k, 0 ~ k ~ 8(d - 1)2, we can impose exactly k
infinitely close triple points and no other essential singularities on the
final branchcurve, provided

In order not to disrupt the general flow of the argument, we will
postpone its proof.
The conditions of the previous lemma define displaced quadrants

Qd in the (a, c) plane; parametrizing so to speak sufficiently effective
surfaces. We will also introduce the shifted quadrant Qd by c a
9(d - 1) + 2 3a ~ 8(d - 1)2 + 3(6d - 2). Let us denote their images un-
der Ld by Sd and Sd respectively. They form sectors in the (x, y)
plane of invariants.
We observe

LEMMA 4.2.4: If (x, y) E Sd, then (x + t, y + t) E Sd, provided 0~ t ~

8(d -1)2.

We can now conclude by 4.2.1. and 4.2.3.
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PROPOSITION 4.2.5: If an integral lattice point (x, y) E Sd, then there
is a simply connected surface X (which can be assumed to be a
double covering of a rational surf ace) C2(X) = y, ~(X) = x.

What is left, modulo the proof of 4.2.3. is to describe the region
S = U dSd in the (x, y) plane.

LEMMA 4.2.6: The region S contains the region defined by

PROOF: Let ld(x) denote the linear function whose graph is the

image under Ld of the line c = 9(d - 1)2, similarly let md(x) be asso-
ciated to 3a = 8(d -1)2 + 3(6d - 2).

It is clear that ld and md define the upper and lower bounds

respectively of the sector Sd.

The most interesting aspect is to compute an effective lower bound
on s(x) = SUPd ld(X).
A straightforward computation yields

Note that the slopes 8(d - 1/d) increase as d increases. Further-
more if xd satisfies ld(xd) = ld+1(xd), then

xd = 18d3 + 2d2 -16d + 9, which forms an increasing sequence.

Thus s (x) is a monotonically increasing piecewise linear function.
We want a bound of type s(x) ~ A(x - Cx’). (A &#x3E; 0). The right hand

function is convex for 0  t  1, thus it is sufficient to check the

inequality for the values xd.
Now

Thus

with
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Finally we compute

Tedious calculations show that the vertex of the sector Sd+i is

contained in Sd (d ~ 3). As the vertex of 93 lies below 4x - 8, and the
slopes of l3 and m3 are strictly bigger and strictly less than four
respectively, we are done.

Now to the proof of Lemma 4.2.3. It will be worthwhile to isolate
the following elementary observation.

OBSERVATION 4.2.7: Let S be a set of N points on Fo, generic in the
sense* that each fiber (regardless of the fibration) contains at most
two points of S. If L is a complete linear system of bisections, with
dim|L| ~ N, then the generic element of L passing through the points
o f S, contains no fibral components.

PROOF: The key point is that there are three conditions for a linear
system of bisections to contain a given fiber as a fixed component.

COROLLARY 4.2.9: Let S be a set of N points on Fo, generic in the
sense** that each fiber contains at most one point of S. If L is a
complete linear system of bisections, with dim|L|~ 2N, then one can
find for each subset S’ of S, an element of L, with no fibral com-
ponents, and passing through the points of S’ but avoiding all points
of S-S’.

PROOF: Construct a set T generic in the sense* and disjoint from
S - S’, by adding to S’ two points from each fiber passing through
S - S’. The cardinality of T is then at most 2N, an application of
Observation 4.2.7. exhibits an element of L, with no fibral com-

ponents, passing through T. Such an element cannot pass through any
points of S - S’, as it can only intersect each fiber twice.

Note that the dimension requirement for L in the corollary can no
doubt be weakened for "generic" generic points. We prefer, however,
to play safe, and it is sufficient for our purposes.
Now to the proof of Lemma 4.2.3.

PROOF: The main branchcurve on the intermediate surface will be
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constructed as the pullback of three distinct non singular curves in a
pencil on Fo of type (c’, d’) plus the appropriate number of generic
horizontal and vertical fibers to make up a curve of type (2c, 2d).
We will choose c’ and d’ such that 2c-2~3c’+1~2c and 2d -

2~3d’~2d.

The three curves will be assumed to intersect transversally (i.e.
having distinct base points) and no two on the same fiber.

If c~9(d - 1)+2 the number of intersections will be (c’, d’)2 =
2c’d’ ~ (8/9)(c - 3/2)(d -1) ~ 8(d -1)2.
Now by counting constants and applying Corollary 4.2. we see that

if 3a ~ 8(d - 1)2, we can find an initial branchcurve, without fibral
components, on Fo of type (2a, 2) passing through exactly k of the
basepoints. By Corollary 1.20. we have produced a branchcurve on
the intermediate rational surface, with the required essential sin-

gularities.
Notice also that by our carefulness, the final double covering will

satisfy the requirements of Lemma 3.20.

Finally, for completeness we should indicate why the surfaces

constructed are minimal.

LEMMA 4.2.10: On each of the surfaces contructed above one can
find a canonical divisor with no rational components.

COROLLARY 4.2.10: All the surf aces constructed are minimal.

PROOF: Choose a curve of type (c’, d’) of Fo, in the terminology of
the proof of Lemma 4.2.3. passing through all the push downs of the
infinitely close triple points upstairs (on the intermediate double

coverings). Now add the required number of vertical and horizontal
fibers to add up to (a + c - 2, d - 1), choosing the fibers generically. It
is clear that the pullback will indeed be the canonical divisor (cf.
Proposition 1.2.), and the check that it has no rational components is
straightforward.
The corollary follows from the well known fact (cf. Proposition

3.7.) that all exceptional divisors show up as fixed components of the
canonical divisor.

REMARK 4.3: In the above case we have not used the full force of

our spread. Rather than looking at each d seperately, we could have
considered them simultaneously. This would ostensibly have in-

creased the "density" of the spread of invariants, and hence lessened
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the demands on "content", which of course would have allowed
wider sectors to be covered.

But to actually show that the densities do increase, one is lead to
considering certain number theoretical lemmas, which 1 have been
unable to deal with. The type or results needed is indicated below.

In the interval Id = [d, d2] consider the union A(d) of all additive

subgroups Ak = {nk : n ~Z} for d S k S 2d.
A value x E Id "A (d) is said to be a gap value. And we say we have

a gap of length 1, if there is 1 consecutive numbers x, x + 1, ... x + l - 1
E IdBA(d).
We are now interested in asymptotic bounds of 1 in terms of d.

CONJECTURE: If 1 is the length of a gap, then

1 ~ d03B5, for arbitrarily small e, provided d large enough.

If the conjecture is true, we can replace the exponent 2/3 in

Theorem 3 with (1/2) + E.
We are lead to believe that Theorem 3 cannot be significantly

sharpened, by the methods presented here. There might of course
exist totally different approaches.

If we are not primarily interested in filling out sectors of invariants,
but just to exhibit simply connected surfaces with high c21, we may
state

PROPOSITION 4.4: There exists simply connected surf aces X, with
c2(X) = y, ~(X) = x, such that y ~ 8(x - 2x1/2) for arbitrarily large x.

PROOF: We simply put c = 1, a = d in our construction for

Theorem 3, letting the final branchcurve have two vertical com-

ponents. By Lemma 3.20. the resulting surfaces will be simply con-
nected and their Chern invariants will be given by C2 = 8(a - 1)2,
X = a2 + 1, and we are done!

It would be interesting to know whether the exponent 1/2 that
comes up, merely reflects a deficiency in the method of constructing
surfaces or if it is charged with deeper significance.

Appendix A

We are now going to give the proof of the purely topological
Lemma 3.20. 1 am indebted to Prof. Moishezon for supplying the
arguments.
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Recall the situation of a map f : V ~ P1, where V is a 4-dimR
manifold. Let a1, .... an denote the critical values of f, i. e. cor-

responding to the singular fibers f-1(ai).
Assume (a) none of the singular fibers is multiple.

(b) at least one fiber is simply connected.
The claim is now that V is simply connected.

PROOF: Let S’ = P1B U ni={ai}, V’ = f-1(S’), f ’ = f1v’: V’- S’. We first
observe that we have a natural surjection 03C01(V’)~03C01(V) (Any loop in
V can be removed from the singular fibers, those having real codi-
mension two).
Now let F denote a generic fiber in V. F being connected we obtain

the following exact sequence.

Let C1,... ck be generators of 1T1(F) and di,... dn be generators of
1T1(S’) corresponding to small loops around the critical points ai.

Now let ii be elements in 03C01(V’) such that sidi = di. Because of
surjectivity of y, we note that 03B3(di), -ya(ci) generate 03C01(V).
Let Di be disks with boundary aDi = d;. We can choose loops

representing ii, such as to be boundaries aDi of local sections of f
over Di. (No multiple fibers are assumed to exist). This shows yd; = 0.

Finally we observe that f-1(D1) is homotopically equivalent to

f-1(a1) (a deformation retract), as the latter is assumed to be simply
connected we have 03C01(f-1(0,1)) = 0. Now the generic fiber F in (*) can
be assumed to be f-1(t) where t is a generic point in Di (i.e. t ~ a,). By

we observe -ya(ci) = 0. Hence 03C01(V) = 0.
In order to be able to apply Lemma 3.20. in Proposition 3.21,

Theorem 3 and Proposition 4.4, we have to check the nature of the
critical fibers. Specifically we have to show that fibers have reduced
components, and that the fibers arising from our constructions with
fibral components are indeed simply connected.
The latter follows from the following lemma.
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LEMMA: Let f:X~P1 be a rational fibration, and let C be a

branchcurve with a fibral component F = f-1(a). The corresponding
(desingularized) double covering Y will then get an induced fibration
over Pl.

We then have g-’(a) = 2F + 03A3Ei, where F, Éi are rational curves and
F·Ei =pi and 03A303C0*pi=C · F.

In particular, g-’(a) is simply connected.

PROOF: Consider

where X’ is the even desingularization of X, cf. Definition 1.5.
If C = Co + F, we can represent C’ (locally along F) as C’ =

(C0 - 03A3Ei) + (F - 03A3Ei), where Ei are the exceptional divisors cor-

responding to the points Co - F (= C - F).
Thus f-1(a) = (F - 03A3Ei) + 03A3Ei, where the first component F’ is part

of the branchlocus C’.

Letting F = 03C0’-1(F’) and Êi = 03C0’-1(Ei) we obtain g-’(a) = 2F + 03A3Ei.

Finally to show that the remaining critical fibers of the fibrations
considered do have reduced components it is sufficient to check the

following

LEMMA: Let f:X - D be a fibration, and assume that f -’(a) con-
tains a reduced component not part of the branchlocus C. Then the
fiber g-’(a) of the corresponding double cover Y with its induced

fibration, also contains a reduced component.

PROOF: Conserve the notation of the proof of the previous lemma.
If F denotes a reduced component of f-1(a) not part of C, then p-’(F)
will be a reduced component of f’-’(a) not part of C’. Thus 1T-l(F)
will be a reduced component of g-’(a).
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We finally observe that in the relevant cases (3.2.1, 3.4.4) we
construct double coverings of rationally fibered surfaces, all of whose
fibers have but reduced components.
The above lemmas together with the proof of 3.20. then shows that

the surfaces so constructed are indeed simply connected.

Appendix B

We are now going to make the suggested arguments following
Lemma 3.3. more precise.

In order not to be too lengthy we will not give all the details, but
because of the beautiful geometry involved we will make occasional

digressions.
The plan of the proof is as follows,
We will exhibit a rational map

where P is some compact (although mildly singular) parameter space,
which will parametrize all double coverings 03A0:FN ~ F2N (cf. ex. 1.23.)
We will then show :

(1) There is a Zariski open subset Po of P such that

(a) 03A6 : PO X 1 S 12N ~ 12S IN is given by the pullback of sections of F2N.
(b) (lm 03A6 (P BP0) x ISI2N) n |2S|0N c (lm 03A6 (P0)) n |2S|0N where 12SI£

denotes the non-singular bisections of type 2S.
(2) If z is a generic element of the image of 4l,

Now (2) (which is essentially the suggestive counting of constants)
shows that 0 is surjective. The crucial fact (1b) shows

and finally (la) completes the arguments for the validity of Lemma 3.3.

PROOF: We can clearly assume N &#x3E; 0 (N = 0 there being nothing
to prove).
There are now unique projections PN:FN~P1, those have

"canonical" sections SN:P1~FN given by the minimal sections Soo.

(cf. ex. 1.23.)
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We can now form the fiberproduct

The space P will be defined as follows.

Let p = (03C8, 03B6) E H0(FN, X) X H0(F2N, S) define a C* action by tp =
(t03C8, t2e) , and quotient out to get P. P will clearly be proper.
We will now show how P parametrizes all the involutive maps

1T : FN ~ F2N.
First we define a subvariety II C P x FNxllF2N. Choose two non-

zero sections .po E H0(FN, S - NF) and ’0 E H0(F2N, S - 2NF) fixed
from now on.

A moments thought shows that this is indeed well-defined.
Now let Po be the open subset of P, consisting of (03C8, e) with 03C8, 03B6

defining irreducible sections.
If p E Po, IIp Ç F NxplF 2N defines an involutive map IIp : FN ~ F2N.
The branch locus of F2N is given by the minimal section and the

section (03B6 = 0) ; similarly the ramification locus on FN is given by its
minimal section and the section (03C8 = 0).
The subset Po is the first part of a natural stratification P =

Po U Pi U P2 U Pi2 of disjoint locally closed sets, where in addition to
Po

In our analysis which follows Pi2 will be subjected to a further,
finer stratification.

The subvariety II will be unnecessarily big and we will consider
H - the transversal irreducible component of II. (Note that JT = II
above P - P12).
Using fI- we can exhibit the rational map

it will be defined as follows.
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It will become clear that 0 is indeed a rational map and that its

image is indeed contained in |2S|N.
First, however, we observe that if p E Po, then 03A6(p, s) = 03A0*p(s)

which shows (la).
The proof of (1), which incidentally verifies the claim above, will

follow from a detailed study of H on Pi, P2 and P12 respectively.
It is convenient to make the preliminary observation, (cf. ex. 1.23.)

that if § E H°(FN, S) defines a reducible section, we can write ~ =
03B3~0, with oo E H0(FN, S - NF) and y E H0(FN, NF) ~ H0(P1, N).

If CPo is fixed, this sets up a 1 - 1 correspondence between reducible
sections and sections of the appropriate line bundle on P’ (the
geometric interpretation, independent of the choice of CPo, in terms of
divisors on the minimal section is obvious).

(A) p EPI 1 Hp = Hp
Hp reduces into a sum 2 V + W, where V projects onto the minimal

section of FN and W projects onto a section of type S on F2N.

(B) p E P2 IIP HP
IIp reduces into a sum V + W, where V projects onto a bisection of

type 2S on FN and W projects onto the minimal section of F2N
The projection of V onto FN is defined by a section of type if 2 s 2 0.

In its projection onto the minimal section, it is ramified exactly when
s = 0, along points given by its intersection with the section (03C8 = 0).
(cf. Corollary 3.4.) [Conversely a bisection whose vertical tangents lie
on a section (03C8 = 0) can be defined by a section as above].

(C) Now 03C8, 03B6 being both reducible, we can write tp = 03B103C80, 03B6 = s03B60 with
a E H0(P1, N), s E HO(p1, 2N).

i) Consider the open subset P?2CPi2 where 03B12~s. Then 03A0p =
03A0p = V + 2W + 03A3niEi, where V, W project onto the minimal
sections of F2N and FN respectively.
And Ei = P1  pl projects onto pi on the common minimal

section. The divisor Enipi is the zero divisor of the section 03B12 - s
of ûpl(2N).

ii) Consider P12 = P12BP012 where s = a 2.
In order to study Hp we will consider the normal directions to Pi2 in
P.

Thus pick 03C81 E H0(FN, S) ; (1 E H0(F2N, S) and consider the seg-
ments p(e) = (03C8(03B5), (e» where 03C8(03B5) = 03B103C80 + 03B503C81 ; (e) = 03B1203B60 + ECI.
We are now going to compute lim~~003A0p(03B5) = JIp(o) which after
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straightforward manipulation comes out accordingly.

(a) Assume neither 03C81, 03B61 reduces.

where V projects onto the minimal section of F N and W sets up
a birational correspondence between FN and F2N.

W projects naturally onto the common minimal section, which is a
section of W as well.

W cannot be minimal ruled its fibers become reducible exactly
when a vanishes. In fact W is non-singular and sets up the birational
morphism of N elementary transformations along the divisor of a.

(b’) Assume 03C8’ = s03C80, 03B6’ irreducible.

where V projects onto the minimal section of FN, and W projects
onto the section given by 03B6 - 2as(o.

(b") Assume C’= 03B303B60, 03C8’ irreducible.

where Vi projects onto the minimal section of FiN, i = 1, 2, and W

projects onto the section given by 2a«/1’ - 03B303C80 on FN.

(c) Assume 03C8’ = s03C80, 03B6’ = 03B303B60.

with V, W self-explanatory by now and Ei = P1 x pl projecting
onto p;, Zn;p; = div(2as - y).

Finally if 2as = y, then the corresponding p(E) is not normal to P,2!
It is now easy to check the behaviour of O. It has already been

done on Po, so let us now do it systematically.

(A) If s is a section of type 18 12N, then its image under W will be
2Sx + 2NF, where the 2N fibers come from the intersection of s with the

projection of W.
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In case s coincide with the projection of W, 03A6 is not well defined via
(**). But it is straightforward to compute the images, which are all of the
above type.

(B) If s is a section of type |S|2N, then 0 maps it onto the projection
of V, which is a pullbacked bisection of F N. (As shown earlier its

vertical tangents lie on a section, which defines the involution).

(C) The images of a section of type IS12N become respectively

i) 2S~ + 2NF, (the 2N fibers defined by div(a 2 - s ))
ii) (a) S~ + (S + NF)

(b)’ 2S~ + (2NF)
(b)" S~ + (S + NF)
(c) 2S~ + (2NF)

In particular they are all reducible, and this list proves (1b).
Finally to prove (2) we note first

dim P = dim H0(FN, S) + dim H0(F2N, S) -1.

Furthermore if z is a generic element of the image of 4Y, z E |2S|N, it
determines uniquely a section s E ISIN passing through its 2N

ramification points with respect to its projection. Thus dim 0-’(z) =
dim H0(F2N, S) (because the involution on FN is determined by s,

leaving as the only free parameter 03B6 cf def (*)).
By Riemann-Roch

dim HO(FN, S) = N + 2
dim HO(F2N, S) = 2N + 2
dim H0(FN, 2S)=3N+3.

A simple calculation then gives (2).
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