Compositio Mathematica

J. Bourgain

A counterexample to a complementation problem

Compositio Mathematica, tome 43, no 1 (1981), p. 133-144
http://www.numdam.org/item?id=CM_1981__43_1_133_0
© Foundation Compositio Mathematica, 1981, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

A COUNTEREXAMPLE TO A COMPLEMENTATION PROBLEM

J. Bourgain*

Abstract

The existence is shown of subspaces of L^{1} which are isomorphic to an $L^{1}(\mu)$-space and are not complemented. A more precise local statement is also given.

1. Introduction

The question we are dealing with is the following:

Problem 1: Let μ and ν be measures and $T: L^{1}(\mu) \rightarrow L^{1}(\nu)$ an isomorphic embedding. Does there always exist a projection of $L^{1}(\nu)$ onto the range of T ?
and was raised in [1], [4], [5] and [21].
This problem has the following finite dimensional reformulation (cfr. [4]).

Problem 2: Does there exist for each $\lambda<\infty$ some $C<\infty$ such that given a finite dimensional subspace E of $L^{1}(\nu)$ satisfying $d\left(E, \ell^{1}(\operatorname{dim} E)\right) \leq \lambda(d=$ Banach-Mazur distance $)$, one can find a projection $P: L^{1}(\nu) \rightarrow E$ with $\|P\| \leq C$?

In [4], L. Dor obtained a positive solution to problem 1 provided $\|T\|\left\|T^{-1}\right\|<\sqrt{2}$. It was shown by L. Dor and T. Starbird (cfr. [5]) that

[^0]any l^{1}-subspace of $L^{1}(\nu)$ which is generated by a sequence of probabilistically independent random variables is complemented. A slight improvement of this result will be given in the remarks below, where we show that problem 2 is affirmative under the additional hypothesis that E is spanned by independent variables. Our main purpose is to show that the general solution to the above questions is negative. Examples of uncomplemented l^{p}-subspaces of $L^{p}(1<p<\infty)$ were already discovered (see [24] for the cases $2<p<\infty$ and $1<p<4 / 3$ and [1] for $1<p<2$).

2. The Example

We first introduce some notation. For each positive integer N, denote G_{N} the group $\{1,-1\}^{N}$ equipped with its Haar measure m_{N}.

For $1 \leq n \leq N$, the $n^{\text {th }}$ Rademacker function r_{n} on G_{N} is defined by $r_{n}(x)=x_{n}$ for all $x \in G_{N}$. To each subset S of $\{1,2, \ldots, N\}$ corresponds a Walsh function $w_{S}=\Pi_{n \in S} r_{n}$ and $L^{1}\left(G_{N}\right)$ is generated by this system of Walsh functions.

For fixed $0 \leq \epsilon \leq 1$, let $\mu=\otimes_{n} \mu_{n}$ be the product measure on G_{N}, where $\mu_{n}(1)=\frac{1+\epsilon}{2}$ and $\mu_{n}(-1)=\frac{1-\epsilon}{2}$ for all $n=1, \ldots, N$. This measure μ is called sometimes the ϵ-biased coin-tossing measure (cfr. [30]).

Let now $T_{\epsilon}: L^{1}\left(G_{N}\right) \rightarrow L^{1}\left(G_{N}\right)$ be the convolution operator corresponding to μ. Thus $\left(T_{\epsilon} f\right)(x)=\left(f * \mu(x)=\int_{G_{N}} f(x, y) \mu(d y)\right.$ for all $f \in L^{1}\left(G_{N}\right)$.

It is clear that T_{ϵ} is a positive operator of norm 1 and easily verified that $T_{\epsilon}\left(w_{S}\right)=\epsilon^{|S|} w_{s}$, where $|S|$ denotes the cordinality of the set S. Another way of introducing T_{ϵ} is by using Riesz-products.

Before describing the example, we give some lemma's.
Lemma 1: If $f \in L^{1}\left(G_{N}\right)$, then $\left\|T_{\epsilon} f\right\|_{2} \leq\left|\int f \mathrm{~d} m_{N}\right|+\epsilon\|f\|_{2}$.

Proof: Take $f=a_{\phi}+\Sigma_{S \neq \phi} a_{S} w_{S}$ the Walsh expansion of f. Then

$$
T_{\epsilon} f=a_{\phi}+\sum_{S \neq \phi} a_{S} \epsilon^{|S|} w_{S}
$$

and hence $\left\|T_{\epsilon} f\right\|_{2}^{2}=\left|a_{\phi}\right|^{2}+\sum_{s \neq \phi}\left|a_{S}\right|^{2} \epsilon^{2|S|} \leq\left|a_{\phi}\right|^{2}+\epsilon^{2}\|f\|_{2}^{2}$.

The required inequality follows.

Lemma 2: Let f_{1}, \ldots, f_{d} be functions in $L^{1}\left(G_{N}\right)$ such that for each $i=1, \ldots, d$

1. $\int f_{i} \mathrm{~d} m_{N}=0$.
2. $\int_{A_{i}}\left|f_{i}\right| \mathrm{d} m_{N} \geq \delta\left\|f_{i}\right\|_{1}$ where $A_{i}=\left[\left|f_{i}\right| \geq d\left\|f_{i}\right\|_{1}\right]$.

Then

$$
\int_{G_{N} \times \cdots \times G_{N}}\left|f_{1}\left(x_{1}\right)+\cdots+f_{d}\left(x_{d}\right)\right| \mathrm{d} m_{N}\left(x_{1}\right) \ldots \mathrm{d} m_{N}\left(x_{d}\right) \geq \frac{\delta}{6} \sum_{i=1}^{d}\left\|f_{i}\right\|_{1} .
$$

Proof: For $i=1, \ldots, d$, take $D_{i}=G_{N} \backslash A_{i}$ and let C_{i} be the subset of $\quad G_{N} \times \cdots \times G_{N} \quad$ defined by $C_{i}=B_{1} \times \cdots \times B_{i-1} \times A_{i} \times$ $B_{i+1} \times \cdots \times B_{d}$. Remark that $m_{N}\left(A_{i}\right) \leq 1 / d$ and hence $m_{N}\left(B_{i}\right) \geq 1-1 / d$. Let r_{1}, \ldots, r_{d} be Rademacker functions on $[0,1]$. By unconditionality, we get

$$
\begin{aligned}
& \int_{G_{N} \times \cdots \times G_{N}}\left|\sum_{i=1}^{d} f_{i}\left(x_{i}\right)\right| \mathrm{d} m_{N}\left(x_{1}\right) \ldots \mathrm{d} m_{N}\left(x_{d}\right) \\
& \quad \geq \frac{1}{2} \int_{0}^{1} \int_{G_{N} \times \cdots \times G_{N}}\left|\sum_{i=1}^{d} r_{i}(t) f_{i}\left(x_{i}\right)\right| \mathrm{d} m_{N}\left(x_{1}\right) \ldots \mathrm{d} m_{N}\left(x_{d}\right) \mathrm{d} t \\
& \quad \geq \frac{1}{2} \sum_{i} \int_{C_{i}}\left|f_{i}\left(x_{i}\right)\right| \mathrm{d} m_{N}\left(x_{1}\right) \ldots \mathrm{d} m_{N}\left(x_{d}\right) \\
& \quad \geq \frac{1}{2}\left(1-\frac{1}{d}\right)^{d-1} \sum_{i} \int_{A_{i}}\left|f_{i}(x)\right| \mathrm{d} m_{N}(x) \geq \frac{\delta}{6} \sum_{i}\left\|f_{i}\right\|_{1},
\end{aligned}
$$

as required.
For each $\nu \in G_{N}$, define the function $e_{\nu}=\prod_{n=1}^{N}\left(1+\nu_{n} r_{n}\right)$ on G_{N}. Thus $\left(e_{\nu}\right)_{\nu \in G_{N}}$ generates $L^{1}\left(G_{N}\right)$ and is isometrically equivalent to the $\ell^{1}\left(2^{N}\right)$-basis.

Lemma 3: For fixed $0 \leq \epsilon \leq 1$ and $\kappa>0$, the following holds

$$
m_{N}\left[T_{\epsilon}\left(e_{\nu}\right)>\kappa\right]<\kappa^{-1 / 2}\left(1-\frac{\epsilon^{2}}{4}\right)^{N / 2} .
$$

Proof: It is easily verified that $T_{\epsilon}\left(e_{\nu}\right)=\prod_{n=1}^{N}\left(1+\epsilon \nu_{n} r_{n}\right)$. If we let $\Gamma=\Pi_{n=1}^{N}\left(1+\epsilon r_{n}\right)$, then by independency

$$
\int \sqrt{\Gamma} \mathrm{d} m_{N}=2^{-N}(\sqrt{1+\epsilon}+\sqrt{1-\epsilon})^{N}<\left(1-\frac{\epsilon^{2}}{4}\right)^{N / 2}
$$

and thus

$$
m_{N}\left[T_{\epsilon}\left(e_{\nu}\right)>\kappa\right]=m_{N}[\sqrt{\Gamma}>\sqrt{\kappa}]<\kappa^{-1 / 2}\left(1-\frac{\epsilon^{2}}{4}\right)^{N / 2} .
$$

We use the symbol \oplus to denote the direct sum in ℓ^{1}-sense. For fixed N and d, take

$$
X=\underbrace{L^{1}\left(G_{N}\right) \oplus \cdots \oplus L^{1}\left(G_{N}\right)}_{d \text { copies }} \text { and } Y=\underbrace{L^{1}\left(G_{N} \times \cdots \times G_{N}\right)}_{d \text { factors }} .
$$

Consider the maps

$$
\begin{aligned}
& \alpha: X \rightarrow \ell^{1}(d) \\
& \beta: X \rightarrow Y
\end{aligned}
$$

and for $0 \leq \epsilon \leq 1$

$$
\gamma_{\epsilon}: X \rightarrow X
$$

defined by

$$
\begin{aligned}
& \alpha\left(f_{1} \oplus \cdots \oplus f_{d}\right)=\left(\int f_{1} \mathrm{~d} m_{N}, \ldots, \int f_{d} \mathrm{~d} m_{N}\right) \\
& \beta\left(f_{1} \oplus \cdots \oplus f_{d}\right)=\sum_{i=1}^{d}\left(f_{i}\left(x_{i}\right)-\int f_{i} \mathrm{~d} m_{N}\right)
\end{aligned}
$$

where $\left(x_{1}, \ldots, x_{d}\right) \in G_{N} \times \cdots \times G_{N}$ is the product variable

$$
\gamma_{E}\left(f_{1} \oplus \cdots \oplus f_{d}\right)=\left(f_{1}-T_{\epsilon} f_{1}\right) \oplus \cdots \oplus\left(f_{d}-T_{\epsilon} f_{d}\right)
$$

Obviously $\|\alpha\| \leq 1,\|\beta\| \leq 2$ and $\left\|\gamma_{\epsilon}\right\| \leq 2$.
Let $\Lambda_{\epsilon}: x \rightarrow \ell^{1}(d) \oplus Y \oplus X$ be the map $\alpha \oplus \beta \oplus \gamma_{\epsilon}$, clearly satisfying $\left\|\Lambda_{\epsilon}\right\| \leq 5$.

Lemma 4: Under the above notations, $\left.\left\|\Lambda_{\epsilon}(\varphi)\right\| \geq \frac{1}{24} \right\rvert\, \varphi \|_{1}$ for each $\varphi \in X$, whenever $0<\epsilon \leq 1 / 4 d$.

Proof: Assume $\varphi=f_{1} \oplus \cdots \oplus f_{d}$ and take for each $i=1, \ldots, d$

$$
g_{i}=f_{i}-\int f_{i} \mathrm{~d} m_{N}
$$

$A_{i}=\left[\left|g_{i}\right| \geq d\left\|g_{i}\right\|_{1}\right], B_{i}=G_{N} \backslash A_{i}, g_{i}^{\prime}=g_{i} \chi_{A_{i}}$ and $g_{i}^{\prime \prime}=g_{i} \chi_{B_{i}}$.
Let further $I=\left\{i=1, \ldots, d ;\left\|g_{i}^{\prime}\right\|_{1}>\frac{1}{4}\left\|g_{i}\right\|_{1}\right\}$ and $J=\{1, \ldots, d\} \backslash I$.
Using Lemma 2, we find that

$$
\begin{aligned}
\left\|\beta\left(f_{1} \oplus \cdots \oplus f_{d}\right)\right\|_{1} & \geq \int_{G_{N} \times \cdots \times G_{N}}\left|\sum_{i \in 1} g_{i}\left(x_{i}\right)\right| \mathrm{d} m_{N}\left(x_{1}\right) \ldots \mathrm{d} m_{N}\left(x_{d}\right) \\
& \geq \frac{1}{24} \sum_{i \in I}\left\|g_{i}\right\|_{1} .
\end{aligned}
$$

On the other hand, by Lemma 1

$$
\left\|T_{\epsilon} g_{i}\right\|_{1} \leq\left\|T_{\epsilon} g^{\prime}\right\|_{1}+\left|\int g_{i}^{\prime \prime} \mathrm{d} m_{N}\right|+\epsilon\left\|g_{i}^{\prime \prime}\right\|_{2} \leq 2\left\|g_{i}^{\prime}\right\|_{1}+\epsilon d\left\|g_{i}\right\|_{1}
$$

and hence for $i \in J$

$$
\left\|f_{i}-T_{\epsilon} f_{i}\right\|_{1}=\left\|g_{i}-T_{\epsilon} g_{i}\right\|_{1} \geq\left\|g_{i}\right\|_{1}-\left\|T_{\epsilon} g_{i}\right\|_{1} \geq \frac{1}{4}\left\|g_{i}\right\|_{1} .
$$

Consequently

$$
\left\|\gamma_{\epsilon}\left(f_{1} \oplus \cdots \oplus f_{d}\right)\right\|_{1} \geq \sum_{i \in J}\left\|f_{i}-T_{\epsilon} f_{i}\right\|_{1} \geq \frac{1}{4} \sum_{i \in J}\left\|g_{i}\right\|_{1} .
$$

Combination of these inequalities leads to

$$
\left\|\Lambda_{\epsilon}(\varphi)\right\|_{1} \geq \sum_{i=1}^{d}\left|\int f_{i} \mathrm{~d} m_{N}\right|+\frac{1}{24} \sum_{i=1}^{d}\left\|g_{i}\right\|_{1} \geq \frac{1}{24} \sum_{i=1}^{d}\left\|f_{i}\right\|_{1}=\frac{1}{24}\|\varphi\|_{1}
$$

proving the lemma.
Corollary 5: Again under the above notations, denote R_{ϵ} the range of Λ_{ϵ}. Then $d\left(R_{\epsilon}, \ell^{1}\left(d .2^{N}\right)\right) \leq \frac{1}{120}$ provided $0<\epsilon \leq 1 / 4 d$.

Our next aim is to show that R_{ϵ} is a badly complemented subspace of $\ell^{1}(d) \oplus Y \oplus X$ for a suitable choice of N, d and ϵ.

Lemma 6: Fix any positive integer $d \geq 4$, take $N=d^{6 d}$ and let $\epsilon=1 / 4 d$. Then $\left||P| \geq d / 384\right.$ for any projection P from $\ell^{1}(d) \oplus Y \oplus X$ onto R.

Proof: Define for each $\nu \in G_{N}$

$$
\xi_{\nu}=\frac{1}{d} \sum_{j=0}^{d-1} T_{\epsilon}\left(e_{\nu}\right) \quad \text { and } \quad A_{\nu}=\left[\xi_{\nu}>\frac{1}{4}\right] .
$$

Since $A_{\nu} \subset \cup_{j=0}^{d-1}\left[T_{\epsilon^{j}}\left(a_{\nu}\right)>\frac{1}{4}\right]$, application of Lemma 3 gives that

$$
m_{N}\left(A_{\nu}\right) \leq \sum_{j=0}^{d-1} m_{N}\left[T_{\epsilon^{i}}\left(e_{\nu}\right)>\frac{1}{4}\right] \leq 2 d\left(1-\frac{\epsilon^{2 d}}{4}\right)^{N / 2}
$$

and hence, by the choice of N and ϵ

$$
m_{N}\left(A_{\nu}\right)<\frac{1}{2}
$$

as an easy computation shows.
It follows that if $\psi_{\nu}=\xi_{\nu}-1$, then

$$
\left\|\psi_{\nu}\right\|_{1} \geq \int_{A_{\nu}} \xi_{\nu} \mathrm{d} m_{N}-m_{N}\left(A_{\nu}\right) \geq \int \xi_{\nu} \mathrm{d} m_{N}-\frac{1}{4}-m_{N}\left(A_{\nu}\right)>\frac{1}{4} .
$$

Assuming P a projection from $\ell^{1}(d) \oplus Y \oplus X$ onto R_{ϵ}, one may consider the operator $Q=\Lambda_{\epsilon}^{-1}$ from $\ell^{1}(d) \oplus Y \oplus X$ into X.

For each $i=1, \ldots, d$ and $\nu \in G_{N}$, let φ_{ν}^{i} be ψ_{ν} seen as element of the $i^{\text {th }}$ component $L^{1}\left(G_{N}\right)$ in the direct sum X. Thus $\alpha\left(\varphi_{\nu}^{i}\right)=0$, $\beta\left(\varphi_{\nu}^{i}\right)=\psi_{\nu}\left(x_{i}\right)$ and $\gamma\left(\varphi_{\nu}^{i}\right)=\varphi_{\nu}^{i}-T_{\epsilon}\left(\varphi_{\nu}^{i}\right)$.

By well-known results concerning operators on L^{1}-spaces, we get

$$
\begin{aligned}
& d \int \sum_{\nu}\left|\psi_{\nu}\right| \mathrm{d} m_{N} \\
& =\int \max _{i}\left(\sum_{\nu}\left|Q \Lambda_{\epsilon}\left(\varphi_{\nu}^{i}\right)\right|\right) \mathrm{d} m_{N} \oplus \cdots \mathrm{~d} m_{N} \\
& \leq \int \max _{i}|Q|\left(\sum_{\nu}\left|\Lambda_{\epsilon}\left(\varphi_{\nu}^{i}\right)\right| \mathrm{d} m_{N} \oplus \cdots \oplus \mathrm{~d} m_{N}\right. \\
& \leq\|Q\|\left\{\int \max _{i}\left(\sum_{\nu}\left|\psi_{\nu}\left(x_{i}\right)\right|\right) \mathrm{d} m_{N}\left(x_{1}\right) \ldots \mathrm{d} m_{N}\left(x_{d}\right)\right. \\
& \left.\quad+\sum_{i} \sum_{\nu} \int\left|\varphi_{\nu}^{i}-T_{\epsilon}(\varphi)\right| \mathrm{d} m_{N}\right\} .
\end{aligned}
$$

Remark that, by symmetry, $\Sigma_{\nu}\left|\psi_{\nu}\right|$ is a constant function. Because $\frac{1}{4}<\left\|\psi_{\nu}\right\|_{1} \leq 2$ and

$$
\left\|\psi_{\nu}-T_{\epsilon}\left(\psi_{\nu}\right)\right\|_{1}=\left\|\xi_{\nu}-T_{\epsilon}\left(\xi_{\nu}\right)\right\|_{1}=\frac{1}{d}\left\|e_{\nu}-T_{\epsilon^{d}}\left(e_{\nu}\right)\right\|_{1} \leq \frac{2}{d},
$$

we find using Lemma 4

$$
d \sum_{\nu}\left\|\psi_{\nu}\right\|_{1} \leq 24\|P\|\left(\sum_{\nu}\left\|\psi_{\nu}\right\|_{1}+2^{N+1}\right)
$$

and hence

$$
\|P\| \geq d \frac{\frac{1}{4} 2^{N}}{24\left(2^{N+1}+2^{N+1}\right)}=\frac{d}{384}
$$

completing the proof.
From Corollary 5 and Lemma 6, it follows that

Theorem 7: There exists a constant $0<C<\infty$ such that whenever $\tau>0$ and D is a positive integer which is large enough, one can find a D-dimensional subspace E of L^{1} satisfying $d\left(E, \ell^{1}(D)\right) \leq C$ and $\|P\| \geq$ $C^{-1}(\log \log D)^{1-\tau}$ whenever P is a projection from L^{1} onto E.

This provides in particular a negative solution to Problem 1 and Problem 2 stated in the Introduction.

3. Remarks and Questions

1. Following L. Dor, one may define local and uniform moduli for functions and subspaces of an $L^{1}(\mu)$-space.

For a function f in $L^{1}(\mu)$ and $\rho>0$, take

$$
\alpha(f, \rho)=\inf \left\{\mu(A) ; \int_{A}|f| \mathrm{d} \mu \geq \rho\|f\|_{1}\right\} .
$$

If now E is a subspace of $L^{1}(\mu)$ and $\rho>0$, let

$$
\alpha(E, \rho)=\sup \{\alpha(f, \rho) ; f \in E\}
$$

and

$$
\beta(E, \rho)=\inf \left\{\mu(A) ; \int_{A}|f| \mathrm{d} \mu \geq \rho\|f\|_{1} \text { for each } f \in E\right\} .
$$

Call $\alpha(E, \rho)$ a local modulus and $\beta(E, \rho)$ a uniform modulus of the space E.

Based on the ideas presented in the preceding section, the following can be proved

Lemma 8: There exist a sequence $\left(E_{n}\right)$ of finite dimensional subspaces of L^{1} and constants $C<\infty$ and $c>c$, such that

1. $d\left(E_{n}, \ell^{1}\left(\operatorname{dim} E_{n}\right)\right) \leq C$.
2. $\lim _{n \rightarrow \infty} \alpha\left(E_{n}, c\right)=0$.
3. For each $\rho>0, \inf _{n} \beta\left(E_{n}, \rho\right)>0$.

As was pointed out by Dor [6], this leads to the existence of a non-complemented ℓ^{1}-subspace of L^{1}.
2. In fact, one may choose the spaces E_{n} of Lemma 8 in such a way that they are well-complemented and probabilistically independent. This allows us to construct a non-complemented ℓ^{\prime}-direct sum of uniformly complemented, independent, uniform ℓ^{1}-isomorphs. Thus the next result concerning independent functions can not be extended to independent ℓ^{1}-copies.

Theorem 9: If E is an ℓ^{1}-subspace of $L^{1}(\mu)$ spanned by independent variables, then E is complemented in $L^{1}(\mu)$ by a projection P whose norm $\|P\|$ can be bounded in function of $d\left(E, \ell^{1}(\operatorname{dim} E)\right)(c f r$. [5]).

There is an easy reduction to the case where E is generated by a sequence (f_{k}) of normalized, independent and mean zero variables. Using then the uniqueness up to equivalence of unconditional bases in ℓ^{1}-spaces (see [14]), it turns out that this sequence $\left(f_{k}\right)$ is a "good" ℓ^{1}-bases for E, or more precisely there is some constant $M<\infty, M$ only depending on $d\left(E, \ell^{1}(\operatorname{dim} E)\right)$, so that

$$
M^{-1} \sum_{k}\left|a_{k}\right| \leq\left\|\sum_{k} a_{k} f_{k}\right\| \leq \sum_{k}\left|a_{k}\right|
$$

whenever $\left(a_{k}\right)$ is a finite sequence of scalars.
Assume $\mathscr{E}_{k}(k=1,2, \ldots)$ independent σ-algebra's such that f_{k} is \mathscr{E}_{k} measurable. The main ingredient of the next lemma is the result [4].

Lemma 10: There exists a sequence $\left(A_{k}\right)$ of μ-measurable sets, satisfying

1. $A_{k} \in \mathscr{C}_{k}$ for each k,
2. $\int_{A_{k}} f_{k} \mathrm{~d} \mu \geq \rho$ for each k,
3. $\Sigma_{k} \mu\left(A_{k}\right) \leq K$,
where $\rho>0$ and $K<\infty$ only depend on M and hence only on $d\left(E, \ell^{1}(\operatorname{dim} E)\right)$.

The proof of this lemma is contained in [5], Section 3. So we will not give it here. Let us now pass to the

Proof of Theorem 9: We may clearly make the additional assumption that $\mu\left(A_{k}\right)<\frac{1}{3}$.

For each k, let $\mathscr{F}_{k}=\mathscr{G}\left(\mathscr{E}_{1}, \ldots, \mathscr{E}_{k}\right)$ the σ-algebra generated by $\mathscr{E}_{1}, \ldots, \mathscr{E}_{k}$.

Take

$$
B_{1}=A_{1} \quad \text { and } \quad B_{k}=A_{k} \mid \cup_{\ell<k} A_{\ell} \quad \text { for } k>1 .
$$

Clearly $B_{k} \in \mathscr{F}_{k}$ for each k. Remark also that

$$
\int_{B_{k}} f_{k} \mathrm{~d} \mu=\int f_{k} \chi_{A_{k}} \prod_{\ell<k}\left(1-\chi_{A_{\ell}}\right)=\prod_{\ell<k}\left(1-\mu\left(A_{\ell}\right)\right) \int_{A_{k}} f_{k}
$$

and hence

$$
\int_{B_{k}} f_{k} \mathrm{~d} \mu=\sigma_{k} \geq \exp (-3 K) \rho
$$

Define

$$
\Delta_{1}[f]=E\left[f \mid \mathscr{F}_{1}\right] \quad \text { and } \quad \Delta_{k}[f]=E\left[f \mid \mathscr{F}_{k}\right]-E\left[f \mid \mathscr{F}_{k-1}\right] \text { for } k>1 .
$$

Thus

$$
\Delta_{k}\left[f_{\ell}\right]=\delta_{k, \ell} f_{\ell}
$$

Next, take $P: L^{1}(\mu) \rightarrow E$ given by $P(f)=\Sigma_{k} \sigma_{k}^{-1}<\Delta_{k}[f], B_{k}>f_{k}$. It is clear that P is a projection. We estimate its norm

$$
\begin{aligned}
\|P\| & \leq\left\|\sum_{k} \sigma_{k}^{-1} \mid \Delta_{k}\left[\chi_{B_{k}}\right]\right\|_{\infty} \\
& \leq \frac{\exp 3 K}{\rho}\left\|\sum_{k} \chi_{B_{k}}+\sum_{k} \mu\left(A_{k}\right)\right\|_{\infty} \\
& \leq(1+K) \frac{\exp 3 K}{\rho}
\end{aligned}
$$

3. Our example leaves the following questions unanswered

Problem 3: What is the biggest λ such that problem 1 has a positive solution provided $\|T\|\left\|T^{-1}\right\|>\lambda$?

For E subspace of L^{1}, define

$$
\pi(E)=\inf \left\{\|P\| ; P: L^{1} \rightarrow E \text { is a projection }\right\} .
$$

Take further for fixed $n=1,2, \ldots$ and $\lambda<\infty$

$$
\gamma(n, \lambda)=\sup \left\{\pi(E) ; \operatorname{dim} E=n \text { and } d\left(E, \ell^{1}(n)\right) \leq \lambda\right\} .
$$

Problem 4: Find estimations on the numbers $\gamma(n, \lambda)$. At this point, it does not seem even clear that for fixed $\lambda<\infty$ the following holds

$$
\lim _{\nu \rightarrow \infty} \frac{\gamma(n, \lambda)}{\sqrt{n}}=0 .
$$

Let us mention the following fact, which may be of some interest for further investigations

Proposition 10: Given $\lambda<\infty$, one can find constants $c>0$ and $C<\infty$ such that if E is a finite dimensional subspace of L^{1} satisfying $d\left(E, \ell^{1}(\operatorname{dim} E)\right) \leq \lambda$, then E has a subspace F for which the following holds:

1. $d\left(F, \ell^{1}(\operatorname{dim} F)\right) \leq \lambda$
2. $\operatorname{dim} F \geq c \operatorname{dim} E$
3. There exists a projection $P: L^{1} \rightarrow F$ with $\|P\| \leq C$.

4

Problem 5: Let G be an uncountable compact abelian group and E a translation invariant subspace of $L^{1}(G)$, such that E is isomorphic to $L^{1}(G)$. Must E be complemented?

Related to this question is the following one, due to G. Pisier [19].
Problem 6: Let G be the Cantor group and define E as the subspace of $L^{1}(G)$ generated by the Walsh-functions w_{s} where $|S| \geq 2$.
Obviously, E is uncomplemented. What about the following
a. Is E an \mathscr{L}^{1}-space?
b. Is E isomorphic to $L^{1}(G)$?

It can be shown that E satisfies the Dunford-Pettis property (see [13] for definition and related facts).

Easy modifications of the construction given in the second section also allow us to obtain badly complemented $\ell^{p}(n)$-subspaces of L^{p} for $1<p<2$.

REFERENCES

[1] B. Bennett, L.E. Dor, V. Goodman, W.B. Johnson and C.M. Newman: On uncomplemented subspaces of $L_{p}, 1<p<2$. Israel J. Math. 26 (1977) 178-187.
[2] J. Bretagnolle and D. Dacunha-Castelle: Application de l'étude de certaines formes linéaires aléatoires au plongement d'espaces de Banach dans des aspaces L^{p}. Ann. Sci. Ecole Normale Supérieure 4e ser. 2 (1969) 437-480.
[3] D.L. BURKHOLDER: Martingale transforms. Annals of Math. Stat. 37 (1966) 1494-1504.
[4] L.E. Dor: On projections in L_{1}. Annals of Math. 102 (1975) 483-474.
[5] L.E. DOR and T. Starbird: Projections of L_{p} onto subspaces spanned by independent random variables. Compositio Math. (to appear).
[6] L. DOR: Private communication.
[7] I.T. Gohberg and A.S. Markus: On the stability of bases in Banach and Hilbert spaces. Izv. Adad. Nauk Mold. SSR 5 (1962) 17-35.
[8] W.B. Johnson, D. MaUrey, G. Schechtman and L. Tzafriri: Symmetric structures in Banach spaces.
[9] W.B. Johnson and E. Odell: Subspaces of L_{p} which embed into ℓ_{p}. Compositio Math. 28 (1974) 37-49.
[10] M.J. KADEC: On conditionally convergent series in the spaces L^{p}. Compositio Math. 28 (1974) 37-49.
[11] M.J. Kadec and A. Pelczynski: Bases, lacunary sequences and complemented subspaces of L_{p}. Studia Math. 21 (1962) 161-176.
[12] J.L. Krivine: Sous-espaces de dimension finie des espaces de Banach reticulés. Ann. of Math. 104 (1976) 1-29.
[13] J. Lindenstrauss and L. Tzafriri: Classical Banach spaces, Lecture Notes in Mathematics, Springer Verlag, Berlin 1973.
[14] J. Lindenstrauss and L. Tzafriri: Classical Banach spaces, I, Ergenbnisse der Mathematik Grenzgebiete 92, Springer Verlag, Berlin 1977.
[15] J. Lindenstrauss and A. Pelcynski: Absolutely summing operators in \mathscr{L}_{p} spaces and their applications. Studia Math. 29 (1968) 275-326.
[16] V.D. Milman: Geometric theory of Banach spaces. Part I, theory of basic and minimal systems. Uspehi Met. Nauk 25:3 (1970) 113-174 (Russian).
[17] W. Orlicz: Über unbedingte Konvergenz in Functionenraumen I/II. Studia Math. 4 (1933) 33-37, 41-47.
[18] A. Pelczynski and H.P. Rosenthal: Localization techniques in L_{p} spaces. Studia Math. 52 (1975) 263-289.
[19] G. Pisier: Oral communication.
[20] H.P. Rosenthal: On a theorem of J.L. Krivine concerning block finite representability of ℓ_{p}-spaces in general Banach spaces. J. Functional Analysis.
[21] H.P. Rosenthal: On relatively disjoint families of measures, with some applications on Banach space theory. Studia Math. 37 (1970) 13-36.
[22] H.P. Rosenthal: On subspaces of L_{p}. Annals of Math. 97 (1973) 344-373.
[23] H.P. Rosenthal: On the span in L^{p} of sequences of independent random variables (II), Proceedings VI Berkeley Symp. Math. Stat. Prob. Vol. II (1970/1) 149-167.
[24] H.P. Rosenthal: On the subspaces of $L^{p}, p>2$ spanned by sequences of independent random variables. Israel J. Math. 8 (1970) 273-303.
[25] H.P. Rosenthal: Projections onto translation-invariant subspaces of $L^{p}(G)$. Memoirs A.M.S. 63 (1966).
[26] W. Rudin: Trigonometric series with gaps. J. Math. Mech. 9 (1960) 203-227.
[27] A. Szankowski: A Banach lattice without the approximation property. Israel J. Math. 24 (1976) 329-337.
[28] J.Y.T. Woo: On modular sequence spaces. Studia Math. 48 (1973) 271-289.
[29] A. Zygmund: Trigonometric Series. Vol. I, 2nd edition. Cambridge Univ. Press, Cambridge, England, 1959.
[30] H.P. Rosenthal: Convolution by a biased coin, The Altgeld book 1975/76, University of Illinois.
(Oblatum 20-II-1980 \& 13-VIII-1980)
Vrije Universiteit Brussel Pleinlaan 2 F-7
1050 Brussels

[^0]: * Aangesteld Navorser, N.F.W.O., Belgium Vrije Universiteit Brussel.

