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Let G denote the set of F-points of a connected, semi-simple,
algebraic group defined over a p-adic field F. Let T be a Cartan

subgroup of G and denote the set of regular elements in T by T’. Let
T, be the maximal F-split torus contained in T and let dg be a
G-invariant measure on the quotient TSBG. For f E C,(G), the smooth
functions of compact support on G, and x E T’, the integral

converges and is called an orbital integral. Let fl be the set of

unipotent conjugacy classes in G and for each u ~ 03A9, let di£u be a
G-invariant measure on u. The integral u(f) =  fd03BCu converges for
f E C~c(G). According to a theorem of [6], there are functions 1" on
T’, one for each u ~ 03A9, called germs with the following property: for
all f E C~c(G), there is a neighborhood N(f) of 1 in G such that

Denote the germ associated to u = {1} by ri and define 1(f) = f (1).
The theorem which we state below and prove in this paper was

conjectured by Harish-Chandra [4] and Shalika [6].

THEOREM: Let iro denote the special representation of G and let d(03C00)
be its f ormal degree. Assume that T is a compact Cartan subgroup.
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Then:

In [5], Howe proved, in the case G = GL(n), that rr is a constant
which is independent of the compact Cartan subgroup and Harish-
Chandra extended his result to arbitrary G in [4]. Our method is

entirely different from the methods of [4] and [5]. The main tool used
here is the Bruhat-Tits building associated to G. We ime that the
reader is familiar with the theory and terminology of buildings as pre-
sented in [3]. The assumption that F is of characteristic zero is essen-
tial because the exponential map is needed to prove the main lemmas.
Let X be the Bruhat-Tits building associated to the simply-connected

covering group of G and let X’ be the set of vertices in X. If p E X, we
denote the stabilizer of p in G by Gp and if W is a subset of G, the set of
points in X which are fixed by all of the elements in W is denoted by
S(W). If M is any set, #(M) will denote the cardinality of M.

LEMMA 1: Let g E G be an elliptic regular element. Then S(g) is a
compact subset of G.

PROOF: Let Y be the building of parabolic subgroups associated to G.
Theorem 5.4 of [2] asserts that there is a topology on the set

Z = X II Y which extends the topology defined by the metric on X
and with respect to which Z is compact and the action of G is

continuous. Suppose that g E G is elliptic and regular. Certainly S(g)
is a closed subset of X. If it is not bounded, there is a sequence pj,
j = 1, 2, ..., of points in S(g) which is contained in no bounded subset
of X. But since Z is compact, there is a subsequence of the pj which
converges to a point z E Y. The action of g on Z being continuous, g
fixes z and hence lies in a parabolic subgroup of G. This contradicts
the assumption that g is elliptic and regular. Therefore S(g) is
bounded and hence compact.
Assume from now on that T is a compact Cartan subgroup of G.

Let J be the Lie algebra of T, let OF be the ring of integers of F, and
choose a prime element T in OF. There is an open neighborhood * of
O in J such that OF,* ~ &#x26;* and such that exp: &#x26;* ~ T is defined.

Choose x E T’ in the image exp(b*), say x = exp(H) for H E &#x26;*. For
each non-negative integer m, put Um = exp(TmOFH). If mi * m2, then
Um1 ~ U-2 and [ Um2 : U.,] = qm1-m2 where q is the cardinality of the
residue field of F. Furthermore, ~m~0 Um = 1. Since Uo is a compact
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subgroup of G, it stabilizes a point po E X’.
For p and q in X, let d(p, q) be the geodesic distance from p to q.

Restricted to any apartment of X, d( , ) is a Euclidean metric [3]. For
d ~ 0, Bd will denote the set f p E X : d(p, p0) ~ d}.

LEMMA 2: For each d 0, there is a positive integer m such that Um
fixes all points p E Bd.

PROOF: Let W be the set of vertices of x which lie in some chamber
which intersects Bd. Since #(W) is finite, Uo n ( ~ p~W Gp ) is an open
subgroup of Uo, hence contains Um for some m. So Um fixes point-
wise all chambers which intersect Bd and in particular, all points in
Bd.

LEMMA 3: Let x E Uo and assume that x ~ 1. Then there is an

integer k 2:: 0 such that S(xUk) = S(x) and if xyp = p for some p E X
and some y C Uk, then p E S(x).

PROOF: Since x ~ 1, it is elliptic regular and S(x) is compact by
lemma 1. By lemma 2, there is a d ~ 0 and an integer k ? 0 such that
Uk fixes all points in Bd and such that S(x) is contained in the interior
of Bd. For this k, S(x) C S(xUk). Now suppose that p E X is fixed by
xy for some y E Uk. We must show that p E S(x). This is clearly so if
p E S( Uk). If p ~ S’(Uk), let L be the geodesic line joining p and po. It
is fixed by xy since xy fixes po and lies in an apartment A of X.
Furthermore, L passes through a point on the boundary of the

Euclidean ball Bd ~ A, say q. Then xy and y both fix q, hence x does
also - a contradiction to the assumption on Bd.

COROLLARY: If a sequence {xj} o f elements o f Uo converges to

x ~ 1, then there is an N 2:: 0 such that S(xj) = S(x) for all j ~ N.

PROOF: If xj ~ vx, then the sequence yj = x-ix; approaches 1. By the
previous lemma, there is a k ~ 0 such that S(x;) = S(x) if yj E Uk. Choose
N so that yj E Uk for all j 2:: N.

LEMMA 4: For each positive integer m, there is a d ~ 0 such that

Op n Uo C Um for all p E X such that p ~ Bd.

PROOF: It suffices to show that for each infinite sequence {pj} of
points in X which is not bounded, there is an N ~ 0 such that
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Gp n Uo ~ Um for all j * N. If not, there is such a sequence p; and

elements x; E Uo - Um such that x; fixes pj. Since Uo is compact, we
may, passing to a subsequence if necessary, assume that x; converges
to x E Uo - Um. By the previous corollary, there is an N ~ 0 such that
S(xj) = S(x) for all j ~ N. But S(x) is compact - contradiction.

LEMMA 5: For each positive integer s, there is a d ~ 0 such that

#(U0p) ~ 0 mod q for all p E X such that p~ Bd.

PROOF: By lemma 4, there is a d ? 0 such that Gp fl Uo C u, for all
p~ Bd. Hence q = [ Uo : Us] divides #( Uop) if p ~ Bd.

When T is compact, Ts = {1} and the orbital integral is defined by
giving a normalization of Haar measure on G. The statement of the
theorem is independent of this choice because the germs are propor-
tional and the f ormal degrees are inversely proportional to a change
of normalization of dg. Let 1 be a fixed Iwahori subgroup of G and let
CI be the chamber in X which is pointwise fixed by I. We choose the
Haar measure dg on G which assigns measure one to I. Let Go be the
largest subgroup of G which acts on X by special automorphisms, i.e.,
which preserve the type of a face. Then Go is normal and of finite index
in G [1]; let #(G/G0) = n and let (go = 1, gl,.. -, gn-1} be a set of

representatives for G/Go. We may assume that the gj normalize I
because the Iwahori subgroups of G are all conjugate under the action of
Go [1]. For the rest of the paper, put x = exp(H) for some regular
H ~&#x26;*, and put xt = exp(t2H) for t E OF. Let f o be the characteristic
function of I.

LEMMA 6: Let c(t) = the number of chambers in X which are fixed
by xt. Then 0(xt, fo) = nc(t).

PROOF: First of all, I is contained in Go, so

since all Iwahori subgroups of G are conjugate in Go and, in particular,
have measure one. Thus

because of the assumption that the gj normalize 1.
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Let d(u) be the dimension of u for u E fl. We recall from [4] that the
T û satisfy the following property:

for all t E OF. For t E OF, v(t) will denote the valuation of t, so that

ITIF = q-v(t). Let m; = 03A3d(u)=j u(f0)0393Tu(x). There are only finitely many

unipotent conjugacy classes in G. Let M = sup d(u). Furthermore,

there is only one unipotent conjugacy class of dimension zero, hence
mo = 0393T1(x) since f0(1) = 1. By lemma 6, (*), and the germ expansion
principle, there exists a 5 &#x3E; 0 such that

LEMMA 7: Let Q be the rational numbers and let Z+ be the set of
positive integers. Let ao,..., aN be complex numbers and suppose that

F(n) = 03A3Nj=0 ajqjn lies in Q for almost all n E Z+. Then aj E Q for
j = 0, 1,..., n.

PROOF: We use induction on the degree, N, of F(n). The lemma is
certainly true if N = 0. If N &#x3E; 0, let

F’(n) has degree N - 1 and F’(n) E Q for almost all n E Z+ since this
is true for F. By induction, aj ~ Q for j = 1,..., N and this also

implies that ao E Q.
We apply lemma 7 to (**) to conclude that the mj E Q: nc(t) is

obviously an integer for all t E OF and (**) holds if v(t) is sufficiently
large. The next lemma follows immediately.

LEMMA 8: Let p be the rational prime dividing q. Then the p-adic limit
lim|t|F~0 03A6 (xt, f0) exists and is equal to mo.

Let (W, S) be the Coxeter system associated to the Tits system for Go
[1]. As in [1], let T = {ts}s~S be a family of indeterminates indexed by
elements of S and for each w E W, let tW = ts, ... tS where (SI, ..., s ) is a
reduced decomposition for w, si E S. The monomial tw is independent
of the reduced decomposition of w. The formal power series W(T) =

03A3w~W tw is called the Poincaré series of (W, S). For w E W, let
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qw = #(I0wI0/I0); it is a power of q and the value tw(Q) is equal to qw,
where Q denotes the substitution ts = qs.

LEMMA 9: 1) W(T) is a rational function of T which is defined at
the points Q and Q-1.

2) W(Q-1) = (-1)rW(Q).
3) d(03C00) = 1/nw(Q-1) = (-I)rln W(Q).

PROOF: 1) and 2) are due to Serre [7], and 3) appears in [1].

The series G = 03A3w~W qw converges in the p-adic topology because
qw is a power of q which tends to infinity as the length 1(w) (the
number of elements in a reduced decomposition of w) approaches
infinity. As a f ormal power series, W(T) is equal to a rational

function which is defined at T = Q by the previous lemma. It is easy
to see from this that the series G converges p-adically to the value
W(Q).
To complete the proof of the theorem, we shall show that the

p-adic limit, as 1 t IF - 0, of c(t) is equal to W(Q). This is sufficient, in
view of lemma 8 which says that the p-adic limit, as ITIF ~ 0, of nc(t)
is equal to 0393T1(x).

Let B(d) be the union of all closed chambers in X which are of the
form C = gCl for some g E IwI with 1(w) ~ d. Then B(d) C B (d’) if
d ~ d’ and U d~0 B(d) = X. It is clear that for each d ~ 0, there is a
d’ ~ 0 such that B(d) Ç Bd, and for each d ~ 0, there is a d’ ~ 0 such
that Bd C B(d’). Therefore all of the lemmas involving Bd also hold for
B(d) - mutatis mutandis. Let N(d) be the number of chambers con-
tained in B(d). Then N(d) is a partial sum of the series G; it is equal

to L qw and hence limd~~ N(d) = W(Q) in the p-adic topology.
wE W
l(w):5d

We may assume, without loss of generality, that Uo C I. Let Ch(t)
be the set of chambers in X which are fixed by xt ; #(Ch(t)) = c(t).
Then

Since Uo commutes with xt, it stabilizes the set Ch(t) and the above
assumption on Uo implies that the action of Uo on Ch(t) preserves the
two sets in the disjoint union of (***). Lemma 5 implies that, given a
positive integer s, there is a positive d, which tends to infinity with s,
such that #(U0C) is divisible by qs for all CÉ B(ds). By lemma 2,
there is a positive ~S ~ 0 as s ~ ~, such that Xt fixes all of the
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chambers in B(d,) for |t|F ~ Es. Let s tend to infinity and apply (***)
to ds and ts where |ts|F ~ ES. We have shown that the cardinality of the
first term on the right hand side of (***) approaches W(Q) p-adically
while the cardinality of the second term approaches zero p-adically.

QED.
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