COMPOSITIO MATHEMATICA

JONATHAN D. ROGAWSKI
An application of the building to orbital integrals

Compositio Mathematica, tome 42, n°3 (1980), p. 417-423
<http://www.numdam.org/item?id=CM_1980__42_3 417_0>

© Foundation Compositio Mathematica, 1980, tous droits réservés.

L’acces aux archives de la revue « Compositio Mathematica » (http:
/http://www.compositio.nl/) implique 1’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation
commerciale ou impression systématique est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=CM_1980__42_3_417_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

COMPOSITIO MATHEMATICA, Vol. 42, Fasc. 3, 1981, pag. 417-423
© 1981 Sijthoff & Noordhoff International Publishers — Alphen aan den Rijn
Printed in the Netherlands

AN APPLICATION OF THE BUILDING
TO ORBITAL INTEGRALS

Jonathan D. Rogawski*

Let G denote the set of F-points of a connected, semi-simple,
algebraic group defined over a p-adic field F. Let T be a Cartan
subgroup of G and denote the set of regular elements in T by T’. Let
T, be the maximal F-split torus contained in T and let dg¢ be a
G-invariant measure on the quotient T\G. For f € C7(G), the smooth
functions of compact support on G, and x € T’, the integral

®(x, f) = fT fe " xg)dg

converges and is called an orbital integral. Let (2 be the set of
unipotent conjugacy classes in G and for each u € (2, let du, be a
G-invariant measure on u. The integral A,(f) = [ fdu, converges for
f € C3G). According to a theorem of [6], there are functions I'T on
T', one for each u € (, called germs with the following property: for
all f € C7(G), there is a neighborhood N(f) of 1 in G such that

P(x,f)= AT T(x) foralxeNEINT'.

u€fd

Denote the germ associated to u ={1} by I'T and define A,(f) = f(1).
The theorem which we state below and prove in this paper was
conjectured by Harish—-Chandra [4] and Shalika [6].

THEOREM: Let my denote the special representation of G and let d(,)
be its formal degree. Assume that T is a compact Cartan subgroup.
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Then:

I'T= fi—ql-r) ; where r = the F-rank cf G.
0

In [5], Howe proved, in the case G = GL(n), that I'T is a constant
which is independent of the compact Cartan subgroup and Harish-
Chandra extended his result to arbitrary G in [4]. Our method is
entirely different from the methods of [4] and [5]. The main tool used
here is the Bruhat-Tits building associated to G. We 1me that the
reader is familiar with the theory and terminology of buildings as pre-
sented in [3]. The assumption that F is of characteristic zero is essen-
tial because the exponential map is needed to prove the main lemmas.

Let X be the Bruhat-Tits building associated to the simply-connected
covering group of G and let X’ be the set of vertices in X. If p € X, we
denote the stabilizer of p in G by G, and if W is a subset of G, the set of
points in X which are fixed by all of the elements in W is denoted by
S(W). If M is any set, #(M) will denote the cardinality of M.

LEMMA 1: Let g € G be an elliptic regular element. Then S(g) is a
compact subset of G.

ProoOF: Let Y be the building of parabolic subgroups associated to G.
Theorem 5.4 of [2] asserts that there is a topology on the set
Z=X1UY which extends the topology defined by the metric on X
and with respect to which Z is compact and the action of G is
continuous. Suppose that g € G is elliptic and regular. Certainly S(g)
is a closed subset of X. If it is not bounded, there is a sequence p;,
j=1,2,..., of points in S(g) which is contained in no bounded subset
of X. But since Z is compact, there is a subsequence of the p; which
converges to a point z € Y. The action of g on Z being continuous, g
fixes z and hence lies in a parabolic subgroup of G. This contradicts
the assumption that g is elliptic and regular. Therefore S(g) is
bounded and hence compact.

Assume from now on that T is a compact Cartan subgroup of G.
Let © be the Lie algebra of T, let Or be the ring of integers of F, and
choose a prime element 7 in Or. There is an open neighborhood $* of
O in 9 such that Or9* C $* and such that exp: D*—> T is defined.
Choose x € T' in the image exp(9*), say x = exp(H) for H € $*. For
each non-negative integer m, put U, = exp(v"OrH). If m, = m,, then
Um, C Um, and [Un,: Un] = q™ ™ where q is the cardinality of the
residue field of F. Furthermore, () =0 U, = 1. Since U, is a compact
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subgroup of G, it stabilizes a point p, € X'.

For p and q in X, let d(p, q) be the geodesic distance from p to g.
Restricted to any apartment of X, d( , ) is a Euclidean metric [3]. For
d =0, B, will denote the set {p € X :d(p, po) = d}.

LeEMMA 2: For each d =0, there is a positive integer m such that U,
fixes all points p € B,.

Proor: Let W be the set of vertices of x which lie in some chamber
which intersects B,. Since #( W) is finite, Uy N ( N ,ew G,) is an open
subgroup of Uy, hence contains U, for some m. So U, fixes point-
wise all chambers which intersect B; and in particular, all points in
Bd.

LEMMA 3: Let x € Uy, and assume that x# 1. Then there is an
integer k =0 such that S(xU,)= S(x) and if xyp = p for some p € X
and some y € U,, then p € S(x).

Proor: Since x# 1, it is elliptic regular and S(x) is compact by
lemma 1. By lemma 2, there is a d =0 and an integer k =0 such that
U, fixes all points in B; and such that S(x) is contained in the interior
of B,. For this k, S(x) C S(xU,). Now suppose that p € X is fixed by
xy for some y € U,. We must show that p € S(x). This is clearly so if
p € S(U)). If p& S(U,), let L be the geodesic line joining p and p,. It
is fixed by xy since xy fixes p, and lies in an apartment A of X.
Furthermore, L passes through a point on the boundary of the
Euclidean ball B; N A, say g. Then xy and y both fix q, hence x does
also — a contradiction to the assumption on B,.

CoroOLLARY: If a sequence {x;} of elements of U, converges to
x# 1, then there is an N =0 such that S(x;) = S(x) for all j = N.

Proor: If x; - vx, then the sequence y; = x~'x; approaches 1. By the
previous lemma, there is a k = 0 such that S(x;) = S(x) if y; € Ui. Choose
N so that y; € U for all j = N.

LEMMA 4: For each positive integer m, there is a d =0 such that
G, N U,C U, for all p € X such that p& B,.

Proor: It suffices to show that for each infinite sequence {p;} of
points in X which is not bounded, there is an N =0 such that
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G,, N Uy, C U, for all j=N. If not, there is such a sequence p; and
elements x; € Uy— U, such that x; fixes p;. Since U, is compact, we
may, passing to a subsequence if necessary, assume that x; converges
to x € U, — U,,. By the previous corollary, there is an N = 0 such that
S(x;) = S(x) for all j= N. But S(x) is compact — contradiction.

LEMMA 5: For each positive integer s, there is a d =0 such that
# Uyp) =0 mod q° for all p € X such that pZ B,.

PrOOF: By lemma 4, there is a d =0 such that G, N U, C U; for all
pé& B,. Hence q° =[U,: U,] divides #(U,p) if p&Z B,.

When T is compact, T, ={1} and the orbital integral is defined by
giving a normalization of Haar measure on G. The statement of the
theorem is independent of this choice because the germs are propor-
tional and the formal degrees are inversely proportional to a change
of normalization of dg. Let I be a fixed Iwahori subgroup of G and let
C; be the chamber in X which is pointwise fixed by I. We choose the
Haar measure dg on G which assigns measure one to I. Let G, be the
largest subgroup of G which acts on X by special automorphisms, i.e.,
which preserve the type of a face. Then Gy is normal and of finite index
in G [1]; let #(G/Goy)=n and let {go=1,g1,...,8.-1} be a set of
representatives for G/Go. We may assume that the g normalize I
because the Iwahori subgroups of G are all conjugate under the action of
Gy [1]. For the rest of the paper, put x = exp(H) for some regular
H € 9$*, and put x, = exp(t’H) for t € Or. Let f, be the characteristic
function of L

LEMMA 6: Let c(t) = the number of chambers in X which are fixed
by x,.. Then ®(x,, f;) = nc(t).

Proor: First of all, I is contained in Gy, so

fao fog'x,g)dg = y.; ’ 1=c(t)

x Eyly !

since all Iwahori subgroups of G are conjugate in Gy and, in particular,
have measure one. Thus

n—1
OGf0=3 [ follem) x(eg dg =n [ fulg ') dg = nc(®
j=0 7 Go Go

because of the assumption that the g; normalize I
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Let d(u) be the dimension of u for u € 2. We recall from [4] that the
I'T satisfy the following property:

(%) I'T(x,)=|t|*“Ii(x)

for all t € Of. For t € Of, v(t) will denote the valuation of t, so that

[t|lr = q7°®. Let m; = D 4uy=j Au(fo) 'L (x). There are only finitely many

unipotent conjugacy classes in G. Let M =sup d(u). Furthermore,
ue

there is only one unipotent conjugacy class of dimension zero, hence

my = I'T(x) since fo(1)=1. By lemma 6, (*), and the germ expansion

principle, there exists a § > 0 such that

M
(%) D(x,, fo) = Z mq”® + my= nc(t) if |t|r <é.
=

LeEmMA 7: Let Q be the rational numbers and let Z* be the set of
positive integers. Let a, . . ., ay be complex numbers and suppose that
F(n)=2f’=0 aq™ lies in Q for almost all n € Z*. Then a;€Q for
j=0,1,...,n

Proor: We use induction on the degree, N, of F(n). The lemma is
certainly true if N =0. If N >0, let

N
F’(n) = q“”(F(n) - F(n —_ 1)) = El a](l — q‘j)q(j—l)n'
j=

F'(n) has degree N —1 and F’(n) € Q for almost all n € Z* since this
is true for F. By induction, q;€Q for j=1,...,N and this also
implies that gy € Q.

We apply lemma 7 to () to conclude that the m; € Q: nc(t) is
obviously an integer for all t € O and (**) holds if v(t) is sufficiently
large. The next lemma follows immediately.

LEMMA 8: Let p be the rational prime dividing q. Then the p-adic limit
limyy|, o @ (x;, fo) exists and is equal to m.

Let (W, S) be the Coxeter system associated to the Tits system for Gy
[1]. As in [1], let T = {t;};es be a family of indeterminates indexed by
elements of S and foreachw € W, lett, =t ...t, where (sy,...,s)isa
reduced decomposition for w, s; € S. The monomial ¢, is independent
of the reduced decomposition of w. The formal power series W(T) =

zwew t. is called the Poincaré series of (W, S). For we W, let
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qw = #(Iowly/Iy); it is a power of q and the value t,(Q) is equal to q.,
where Q denotes the substitution t, = g;.

LEMMA 9: 1) W(T) is a rational function of T which is defined at
the points Q and Q7.
2) W(Q)=(-1yYW(Q).
3) d(mo) = 1/nw(Q™") =(=1)/nW(Q).

PrROOF: 1) and 2) are due to Serre [7], and 3) appears in [1].

The series G =, ,cw g, converges in the p-adic topology because
q. is a power of g which tends to infinity as the length 1(w) (the
number of elements in a reduced decomposition of w) approaches
infinity. As a formal power series, W(T) is equal to a rational
function which is defined at T = Q by the previous lemma. It is easy
to see from this that the series G converges p-adically to the value
W(Q).

To complete the proof of the theorem, we shall show that the
p-adic limit, as [t|r >0, of c(¢) is equal to W(Q). This is sufficient, in
view of lemma 8 which says that the p-adic limit, as |t|z >0, of nc(¢)
is equal to I'T(x).

Let B(d) be the union of all closed chambers in X which are of the
form C = gC; for some g € Iwl with 1(w)=<d. Then B(d) C B(d') if
d=d' and | 49 B(d)=X. It is clear that for each d =0, there is a
d' =0 such that B(d) C By and for each d =0, there is a d' =0 such
that B; C B(d’). Therefore all of the lemmas involving B, also hold for
B(d) — mutatis mutandis. Let N(d) be the number of chambers con-
tained in B(d). Then N(d) is a partial sum of the series G; it is equal

to > g, and hence lim,... N(d) = W(Q) in the p-adic topology.
wEW
1(w)=d
We may assume, without loss of generality, that U, C I. Let Ch(t)
be the set of chambers in X which are fixed by x,; #(Ch(t)) = c(t).
Then

(%) Ch(t) = (Ch(t) N B(d)) U (Ch(#) - (Ch(t) N B(d)).

Since U, commutes with x,, it stabilizes the set Ch(¢) and the above
assumption on U, implies that the action of U, on Ch(¢) preserves the
two sets in the disjoint union of (###). Lemma 5 implies that, given a
positive integer s, there is a positive d; which tends to infinity with s,
such that #(U,C) is divisible by q° for all CZ B(d,). By lemma 2,
there is a positive ¢,>0 as s>, such that x, fixes all of the
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chambers in B(d,) for |t|r <€, Let s tend to infinity and apply (sxx)
to d, and t, where |t;|r =< €. We have shown that the cardinality of the
first term on the right hand side of («*%) approaches W(Q) p-adically
while the cardinality of the second term approaches zero p-adically.

QED.
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