Compositio Mathematica

Jonathan D. Rogawski
 An application of the building to orbital integrals

Compositio Mathematica, tome 42, no 3 (1980), p. 417-423
http://www.numdam.org/item?id=CM_1980__42_3_417_0
© Foundation Compositio Mathematica, 1980, tous droits réservés.
L'accès aux archives de la revue «Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numbam

AN APPLICATION OF THE BUILDING TO ORBITAL INTEGRALS

Jonathan D. Rogawski*

Let G denote the set of F-points of a connected, semi-simple, algebraic group defined over a p-adic field F. Let T be a Cartan subgroup of G and denote the set of regular elements in T by T^{\prime}. Let T_{s} be the maximal F-split torus contained in T and let $d \dot{g}$ be a G-invariant measure on the quotient $T_{s} \backslash G$. For $f \in C_{c}^{\infty}(G)$, the smooth functions of compact support on G, and $x \in T^{\prime}$, the integral

$$
\Phi(x, f)=\int_{T_{s} \mid G} f\left(g^{-1} x g\right) d g
$$

converges and is called an orbital integral. Let Ω be the set of unipotent conjugacy classes in G and for each $u \in \Omega$, let $\mathrm{d} \mu_{u}$ be a G-invariant measure on u. The integral $\Lambda_{u}(f)=\int f \mathrm{~d} \mu_{u}$ converges for $f \in C_{c}^{\infty}(G)$. According to a theorem of [6], there are functions Γ_{u}^{T} on T^{\prime}, one for each $u \in \Omega$, called germs with the following property: for all $f \in C_{c}^{\infty}(G)$, there is a neighborhood $N(f)$ of 1 in G such that

$$
\Phi(x, f)=\sum_{u \in \Omega} \Lambda_{u}(f) \Gamma_{u}^{T}(x) \quad \text { for all } x \in N(f) \cap T^{\prime}
$$

Denote the germ associated to $u=\{1\}$ by Γ_{1}^{T} and define $\Lambda_{1}(f)=f(1)$.
The theorem which we state below and prove in this paper was conjectured by Harish-Chandra [4] and Shalika [6].

Theorem: Let π_{0} denote the special representation of G and let $d\left(\pi_{0}\right)$ be its formal degree. Assume that T is a compact Cartan subgroup.

[^0]Then:

$$
\Gamma_{1}^{T}=\frac{(-1)^{r}}{d\left(\pi_{0}\right)} \quad \text { where } r=\text { the } F \text {-rank cf } G
$$

In [5], Howe proved, in the case $G=G L(n)$, that Γ_{1}^{T} is a constant which is independent of the compact Cartan subgroup and HarishChandra extended his result to arbitrary G in [4]. Our method is entirely different from the methods of [4] and [5]. The main tool used here is the Bruhat-Tits building associated to G. We ıme that the reader is familiar with the theory and terminology of buildings as presented in [3]. The assumption that F is of characteristic zero is essential because the exponential map is needed to prove the main lemmas.

Let X be the Bruhat-Tits building associated to the simply-connected covering group of G and let X^{\prime} be the set of vertices in X. If $p \in X$, we denote the stabilizer of p in G by G_{p} and if W is a subset of G, the set of points in X which are fixed by all of the elements in W is denoted by $S(W)$. If M is any set, $\#(M)$ will denote the cardinality of M.

Lemma 1: Let $g \in G$ be an elliptic regular element. Then $S(g)$ is a compact subset of G.

Proof: Let Y be the building of parabolic subgroups associated to G. Theorem 5.4 of [2] asserts that there is a topology on the set $Z=X \amalg Y$ which extends the topology defined by the metric on X and with respect to which Z is compact and the action of G is continuous. Suppose that $g \in G$ is elliptic and regular. Certainly $S(g)$ is a closed subset of X. If it is not bounded, there is a sequence p_{j}, $j=1,2, \ldots$, of points in $S(g)$ which is contained in no bounded subset of X. But since Z is compact, there is a subsequence of the p_{j} which converges to a point $z \in Y$. The action of g on Z being continuous, g fixes z and hence lies in a parabolic subgroup of G. This contradicts the assumption that g is elliptic and regular. Therefore $S(g)$ is bounded and hence compact.

Assume from now on that T is a compact Cartan subgroup of G. Let \mathscr{S}_{B} be the Lie algebra of T, let O_{F} be the ring of integers of F, and choose a prime element τ in O_{F}. There is an open neighborhood \mathscr{S}^{*} * of O in $\mathfrak{5}$ such that $O_{F} \mathfrak{S}^{*} \subseteq \mathfrak{S}^{*}$ and such that exp: $\mathfrak{S}^{*} \rightarrow T$ is defined. Choose $x \in T^{\prime}$ in the image $\exp \left(\mathfrak{S}^{*}\right)$, say $x=\exp (H)$ for $H \in \mathfrak{S}^{*}$. For each non-negative integer m, put $U_{m}=\exp \left(\tau^{m} O_{F} H\right)$. If $m_{1} \geq m_{2}$, then $U_{m_{1}} \subseteq U_{m_{2}}$ and $\left[U_{m_{2}}: U_{m_{1}}\right]=q^{m_{1}-m_{2}}$ where q is the cardinality of the residue field of F. Furthermore, $\bigcap_{m \geq 0} U_{m}=1$. Since U_{0} is a compact
subgroup of G, it stabilizes a point $p_{0} \in X^{\prime}$.
For p and q in X, let $d(p, q)$ be the geodesic distance from p to q. Restricted to any apartment of $X, d($,$) is a Euclidean metric [3]. For$ $d \geq 0, B_{d}$ will denote the set $\left\{p \in X: d\left(p, p_{0}\right) \leq d\right\}$.

Lemma 2: For each $d \geq 0$, there is a positive integer m such that U_{m} fixes all points $p \in B_{d}$.

Proof: Let W be the set of vertices of x which lie in some chamber which intersects B_{d}. Since $\#(W)$ is finite, $U_{0} \cap\left(\bigcap_{p \in W} G_{p}\right)$ is an open subgroup of U_{0}, hence contains U_{m} for some m. So U_{m} fixes pointwise all chambers which intersect B_{d} and in particular, all points in B_{d}.

Lemma 3: Let $x \in U_{0}$ and assume that $x \neq 1$. Then there is an integer $k \geq 0$ such that $S\left(x U_{k}\right)=S(x)$ and if xyp $=p$ for some $p \in X$ and some $y \in U_{k}$, then $p \in S(x)$.

Proof: Since $x \neq 1$, it is elliptic regular and $S(x)$ is compact by lemma 1. By lemma 2, there is a $d \geq 0$ and an integer $k \geq 0$ such that U_{k} fixes all points in B_{d} and such that $S(x)$ is contained in the interior of B_{d}. For this $k, S(x) \subseteq S\left(x U_{k}\right)$. Now suppose that $p \in X$ is fixed by $x y$ for some $y \in U_{k}$. We must show that $p \in S(x)$. This is clearly so if $p \in S\left(U_{k}\right)$. If $p \notin S\left(U_{k}\right)$, let L be the geodesic line joining p and p_{0}. It is fixed by $x y$ since $x y$ fixes p_{0} and lies in an apartment A of X. Furthermore, L passes through a point on the boundary of the Euclidean ball $B_{d} \cap A$, say q. Then $x y$ and y both fix q, hence x does also - a contradiction to the assumption on B_{d}.

Corollary: If a sequence $\left\{x_{j}\right\}$ of elements of U_{0} converges to $x \neq 1$, then there is an $N \geq 0$ such that $S\left(x_{j}\right)=S(x)$ for all $j \geq N$.

Proof: If $x_{j} \rightarrow \nu x$, then the sequence $y_{j}=x^{-1} x_{j}$ approaches 1 . By the previous lemma, there is a $k \geq 0$ such that $S\left(x_{j}\right)=S(x)$ if $y_{j} \in U_{k}$. Choose N so that $y_{j} \in U_{k}$ for all $j \geq N$.

Lemma 4: For each positive integer m, there is a $d \geq 0$ such that $G_{p} \cap U_{0} \subseteq U_{m}$ for all $p \in X$ such that $p \notin B_{d}$.

Proof: It suffices to show that for each infinite sequence $\left\{p_{j}\right\}$ of points in X which is not bounded, there is an $N \geq 0$ such that
$G_{p_{j}} \cap U_{0} \subseteq U_{m}$ for all $j \geq N$. If not, there is such a sequence p_{j} and elements $x_{j} \in U_{0}-U_{m}$ such that x_{j} fixes p_{j}. Since U_{0} is compact, we may, passing to a subsequence if necessary, assume that x_{j} converges to $x \in U_{0}-U_{m}$. By the previous corollary, there is an $N \geq 0$ such that $S\left(x_{j}\right)=S(x)$ for all $j \geq N$. But $S(x)$ is compact - contradiction.

Lemma 5: For each positive integer s, there is a $d \geq 0$ such that $\#\left(U_{0} p\right) \equiv 0 \bmod q^{s}$ for all $p \in X$ such that $p \notin B_{d}$.

Proof: By lemma 4, there is a $d \geq 0$ such that $G_{p} \cap U_{0} \subseteq U_{s}$ for all $p \notin B_{d}$. Hence $q^{s}=\left[U_{0}: U_{s}\right]$ divides $\#\left(U_{0} p\right)$ if $p \notin B_{d}$.

When T is compact, $T_{s}=\{1\}$ and the orbital integral is defined by giving a normalization of Haar measure on G. The statement of the theorem is independent of this choice because the germs are proportional and the formal degrees are inversely proportional to a change of normalization of dg. Let I be a fixed Iwahori subgroup of G and let C_{I} be the chamber in X which is pointwise fixed by I. We choose the Haar measure $d g$ on G which assigns measure one to I. Let G_{0} be the largest subgroup of G which acts on X by special automorphisms, i.e., which preserve the type of a face. Then G_{0} is normal and of finite index in G [1]; let $\#\left(G / G_{0}\right)=n$ and let $\left\{g_{0}=1, g_{1}, \ldots, g_{n-1}\right\}$ be a set of representatives for G / G_{0}. We may assume that the g_{j} normalize I because the Iwahori subgroups of G are all conjugate under the action of G_{0} [1]. For the rest of the paper, put $x=\exp (H)$ for some regular $H \in \mathfrak{S}^{*}$, and put $x_{t}=\exp \left(t^{2} H\right)$ for $t \in O_{F}$. Let f_{0} be the characteristic function of I.

Lemma 6: Let $c(t)=$ the number of chambers in X which are fixed by x_{t}. Then $\Phi\left(x_{t}, f_{0}\right)=n c(t)$.

Proof: First of all, I is contained in G_{0}, so

$$
\int_{G_{0}} f_{0}\left(g^{-1} x_{t} g\right) \mathrm{d} g=\sum_{\substack{y \in G_{J I I} \\ x_{t} \in y l y}} 1=c(t)
$$

since all Iwahori subgroups of G are conjugate in G_{0} and, in particular, have measure one. Thus

$$
\Phi\left(x_{t}, f_{0}\right)=\sum_{j=0}^{n-1} \int_{G_{0}} f_{0}\left(\left(g g_{j}\right)^{-1} x_{t}\left(g g_{j}\right)\right) \mathrm{d} g=n \int_{G_{0}} f_{0}\left(g^{-1} x_{t} g\right) \mathrm{d} g=n c(t)
$$

because of the assumption that the g_{j} normalize I.

Let $d(u)$ be the dimension of u for $u \in \Omega$. We recall from [4] that the Γ_{u}^{T} satisfy the following property:

$$
\begin{equation*}
\Gamma_{u}^{T}\left(x_{t}\right)=|t|_{F}^{-d(u)} \Gamma_{u}^{T}(x) \tag{*}
\end{equation*}
$$

for all $t \in O_{F}$. For $t \in O_{F}, v(t)$ will denote the valuation of t, so that $|t|_{F}=q^{-v(t)}$. Let $m_{j}=\sum_{d(u)=j} \Lambda_{u}\left(f_{0}\right) \Gamma_{u}^{T}(x)$. There are only finitely many unipotent conjugacy classes in G. Let $M=\sup _{u \in \Omega} d(u)$. Furthermore, there is only one unipotent conjugacy class of dimension zero, hence $m_{0}=\Gamma_{1}^{T}(x)$ since $f_{0}(1)=1$. By lemma 6, (*), and the germ expansion principle, there exists a $\delta>0$ such that

$$
\begin{equation*}
\Phi\left(x_{t}, f_{0}\right)=\sum_{j=1}^{M} m_{j} q^{j v(t)}+m_{0}=n c(t) \quad \text { if }|t|_{F}<\delta \tag{**}
\end{equation*}
$$

Lemma 7: Let Q be the rational numbers and let Z^{+}be the set of positive integers. Let a_{0}, \ldots, a_{N} be complex numbers and suppose that $F(n)=\sum_{j=0}^{N} a_{j} q^{j n}$ lies in Q for almost all $n \in Z^{+}$. Then $a_{j} \in Q$ for $j=0,1, \ldots, n$.

Proof: We use induction on the degree, N, of $F(n)$. The lemma is certainly true if $N=0$. If $N>0$, let

$$
F^{\prime}(n)=q^{-n}(F(n)-F(n-1))=\sum_{j=1}^{N} a_{j}\left(1-q^{-j}\right) q^{(j-1) n}
$$

$F^{\prime}(n)$ has degree $N-1$ and $F^{\prime}(n) \in Q$ for almost all $n \in Z^{+}$since this is true for F. By induction, $a_{j} \in Q$ for $j=1, \ldots, N$ and this also implies that $a_{0} \in Q$.

We apply lemma 7 to (**) to conclude that the $m_{j} \in Q: n c(t)$ is obviously an integer for all $t \in O_{F}$ and (**) holds if $v(t)$ is sufficiently large. The next lemma follows immediately.

Lemma 8: Let p be the rational prime dividing q. Then the p-adic limit $\lim _{|t|_{F} \rightarrow 0} \Phi\left(x_{t}, f_{0}\right)$ exists and is equal to m_{0}.

Let (W, S) be the Coxeter system associated to the Tits system for G_{0} [1]. As in [1], let $T=\left\{t_{s}\right\}_{s \in S}$ be a family of indeterminates indexed by elements of S and for each $w \in W$, let $t_{w}=t_{s_{1}} \ldots t_{s}$ where $\left(s_{1}, \ldots, s\right)$ is a reduced decomposition for $w, s_{i} \in S$. The monomial t_{w} is independent of the reduced decomposition of w. The formal power series $W(T)=$ $\sum_{w \in W} t_{w}$ is called the Poincaré series of (W, S). For $w \in W$, let
$q_{w}=\#\left(I_{0} w I_{0} / I_{0}\right)$; it is a power of q and the value $t_{w}(Q)$ is equal to q_{w}, where Q denotes the substitution $t_{s}=q_{s}$.

Lemma 9: 1) $W(T)$ is a rational function of T which is defined at the points Q and Q^{-1}.
2) $W\left(Q^{-1}\right)=(-1)^{r} W(Q)$.
3) $d\left(\pi_{0}\right)=1 / n w\left(Q^{-1}\right)=(-1)^{r} / n W(Q)$.

Proof: 1) and 2) are due to Serre [7], and 3) appears in [1].
The series $G=\sum_{w \in W} q_{w}$ converges in the p-adic topology because q_{w} is a power of q which tends to infinity as the length $1(w)$ (the number of elements in a reduced decomposition of w) approaches infinity. As a formal power series, $W(T)$ is equal to a rational function which is defined at $T=Q$ by the previous lemma. It is easy to see from this that the series G converges p-adically to the value $W(Q)$.

To complete the proof of the theorem, we shall show that the p-adic limit, as $|t|_{F} \rightarrow 0$, of $c(t)$ is equal to $W(Q)$. This is sufficient, in view of lemma 8 which says that the p-adic limit, as $|t|_{F} \rightarrow 0$, of $n c(t)$ is equal to $\Gamma_{1}^{T}(x)$.

Let $B(d)$ be the union of all closed chambers in X which are of the form $C=g C_{I}$ for some $g \in I w I$ with $1(w) \leq d$. Then $B(d) \subseteq B\left(d^{\prime}\right)$ if $d \leq d^{\prime}$ and $\bigcup_{d \geq 0} B(d)=X$. It is clear that for each $d \geq 0$, there is a $d^{\prime} \geq 0$ such that $B(d) \subseteq B_{d^{\prime}}$ and for each $d \geq 0$, there is a $d^{\prime} \geq 0$ such that $B_{d} \subseteq B\left(d^{\prime}\right)$. Therefore all of the lemmas involving B_{d} also hold for $B(d)$ - mutatis mutandis. Let $N(d)$ be the number of chambers contained in $B(d)$. Then $N(d)$ is a partial sum of the series G; it is equal to $\sum_{\substack{w \in W \\ 1(w) \leq d}} q_{w}$ and hence $\lim _{d \rightarrow \infty} N(d)=W(Q)$ in the p-adic topology.

We may assume, without loss of generality, that $U_{0} \subseteq I$. Let $\operatorname{Ch}(t)$ be the set of chambers in X which are fixed by $x_{t} ; \#(\mathrm{Ch}(t))=c(t)$. Then

$$
\begin{equation*}
\operatorname{Ch}(t)=(\operatorname{Ch}(t) \cap B(d)) \cup(\operatorname{Ch}(t)-(\operatorname{Ch}(t) \cap B(d)) . \tag{**}
\end{equation*}
$$

Since U_{0} commutes with x_{t}, it stabilizes the set $\mathrm{Ch}(t)$ and the above assumption on U_{0} implies that the action of U_{0} on $\mathrm{Ch}(t)$ preserves the two sets in the disjoint union of ($* * *$). Lemma 5 implies that, given a positive integer s, there is a positive d_{s} which tends to infinity with s, such that $\#\left(U_{0} C\right)$ is divisible by q^{s} for all $C \nsubseteq B\left(d_{s}\right)$. By lemma 2 , there is a positive $\epsilon_{s} \rightarrow 0$ as $s \rightarrow \infty$, such that x_{t} fixes all of the
chambers in $B\left(d_{s}\right)$ for $|t|_{F} \leq \epsilon_{s}$. Let s tend to infinity and apply (***) to d_{s} and t_{s} where $\left|t_{s}\right|_{F} \leq \epsilon_{s}$. We have shown that the cardinality of the first term on the right hand side of (***) approaches $W(Q) p$-adically while the cardinality of the second term approaches zero p-adically.

QED.

REFERENCES

[1] A. Borel: Admissible Representations of a Semi-simple Group over a Local Field Inventiones Mathematicae 35 (1976) 233-259.
[2] A. Borel and J.P. SERRE: Cohomologie D'Immeubles et de Groupes S-Arithmetiques. Topology 15, No. 3, (1976) 211-232.
[3] F. Bruhat and J. Tits: Groupes Réductifs sur un Corps Local. Publ. Math. IHES 25 (1972).
[4] Harish-Chandra: Admissible Invariant Distributions on Reductive p-adic Groups. Lie Theories and applications, Queen's papers in pure and applied mathematics 48 (1978) 281-347.
[5] R. Howe: The Fourier Transform and Germs of Characters. Math. Annalen 208 (1974) 305-322.
[6] J.A. Shalika: A Theorem on Semi-simple p-adic Groups. Annals of Math. 95, No. 1 (1972) 226-242.
[7] J.P. Serre: Cohomologie des Groupes Discrets. Prospects in Mathematics Annals of Math. Studies 70. Princeton University Press 1970.
(Oblatum 24-IV-1980)
Department of Mathematics
Princeton University
Princeton NJ 08540
U.S.A.

[^0]: * Supported by an NSF graduate Fellowship.

