COMPOSITIO MATHEMATICA

JONATHAN D. ROGAWSKI An application of the building to orbital integrals

Compositio Mathematica, tome 42, nº 3 (1980), p. 417-423

<http://www.numdam.org/item?id=CM_1980__42_3_417_0>

© Foundation Compositio Mathematica, 1980, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 42, Fasc. 3, 1981, pag. 417–423 © 1981 Sijthoff & Noordhoff International Publishers – Alphen aan den Rijn Printed in the Netherlands

AN APPLICATION OF THE BUILDING TO ORBITAL INTEGRALS

Jonathan D. Rogawski*

Let G denote the set of F-points of a connected, semi-simple, algebraic group defined over a p-adic field F. Let T be a Cartan subgroup of G and denote the set of regular elements in T by T'. Let T_s be the maximal F-split torus contained in T and let dg be a G-invariant measure on the quotient $T_s \setminus G$. For $f \in C_c^{\infty}(G)$, the smooth functions of compact support on G, and $x \in T'$, the integral

$$\Phi(x,f) = \int_{T_s \setminus G} f(g^{-1}xg) dg$$

converges and is called an orbital integral. Let Ω be the set of unipotent conjugacy classes in G and for each $u \in \Omega$, let $d\mu_u$ be a G-invariant measure on u. The integral $\Lambda_u(f) = \int f d\mu_u$ converges for $f \in C_c^{\infty}(G)$. According to a theorem of [6], there are functions Γ_u^T on T', one for each $u \in \Omega$, called germs with the following property: for all $f \in C_c^{\infty}(G)$, there is a neighborhood N(f) of 1 in G such that

$$\Phi(x, f) = \sum_{u \in \Omega} \Lambda_u(f) \Gamma_u^T(x) \text{ for all } x \in N(f) \cap T'.$$

Denote the germ associated to $u = \{1\}$ by Γ_1^T and define $\Lambda_1(f) = f(1)$.

The theorem which we state below and prove in this paper was conjectured by Harish-Chandra [4] and Shalika [6].

THEOREM: Let π_0 denote the special representation of G and let $d(\pi_0)$ be its formal degree. Assume that T is a compact Cartan subgroup.

* Supported by an NSF graduate Fellowship.

0010-437X/81/03417-07\$00.20/0

Then:

$$\Gamma_1^T = \frac{(-1)^r}{d(\pi_0)}$$
 where $r =$ the *F*-rank cf *G*.

In [5], Howe proved, in the case G = GL(n), that Γ_1^T is a constant which is independent of the compact Cartan subgroup and Harish-Chandra extended his result to arbitrary G in [4]. Our method is entirely different from the methods of [4] and [5]. The main tool used here is the Bruhat-Tits building associated to G. We Ime that the reader is familiar with the theory and terminology of buildings as presented in [3]. The assumption that F is of characteristic zero is essential because the exponential map is needed to prove the main lemmas.

Let X be the Bruhat-Tits building associated to the simply-connected covering group of G and let X' be the set of vertices in X. If $p \in X$, we denote the stabilizer of p in G by G_p and if W is a subset of G, the set of points in X which are fixed by all of the elements in W is denoted by S(W). If M is any set, #(M) will denote the cardinality of M.

LEMMA 1: Let $g \in G$ be an elliptic regular element. Then S(g) is a compact subset of G.

PROOF: Let Y be the building of parabolic subgroups associated to G. Theorem 5.4 of [2] asserts that there is a topology on the set $Z = X \amalg Y$ which extends the topology defined by the metric on X and with respect to which Z is compact and the action of G is continuous. Suppose that $g \in G$ is elliptic and regular. Certainly S(g) is a closed subset of X. If it is not bounded, there is a sequence p_j , $j = 1, 2, \ldots$, of points in S(g) which is contained in no bounded subset of X. But since Z is compact, there is a subsequence of the p_j which converges to a point $z \in Y$. The action of g on Z being continuous, g fixes z and hence lies in a parabolic subgroup of G. This contradicts the assumption that g is elliptic and regular. Therefore S(g) is bounded and hence compact.

Assume from now on that T is a compact Cartan subgroup of G. Let \mathfrak{F} be the Lie algebra of T, let O_F be the ring of integers of F, and choose a prime element τ in O_F . There is an open neighborhood \mathfrak{F}^* of O in \mathfrak{F} such that $O_F \mathfrak{F}^* \subseteq \mathfrak{F}^*$ and such that $\exp: \mathfrak{F}^* \to T$ is defined. Choose $x \in T'$ in the image $\exp(\mathfrak{F}^*)$, say $x = \exp(H)$ for $H \in \mathfrak{F}^*$. For each non-negative integer m, put $U_m = \exp(\tau^m O_F H)$. If $m_1 \ge m_2$, then $U_{m_1} \subseteq U_{m_2}$ and $[U_{m_2}: U_{m_1}] = q^{m_1-m_2}$ where q is the cardinality of the residue field of F. Furthermore, $\bigcap_{m \ge 0} U_m = 1$. Since U_0 is a compact

418

subgroup of G, it stabilizes a point $p_0 \in X'$.

For p and q in X, let d(p, q) be the geodesic distance from p to q. Restricted to any apartment of X, d(,) is a Euclidean metric [3]. For $d \ge 0$, B_d will denote the set $\{p \in X : d(p, p_0) \le d\}$.

LEMMA 2: For each $d \ge 0$, there is a positive integer m such that U_m fixes all points $p \in B_d$.

PROOF: Let W be the set of vertices of x which lie in some chamber which intersects B_d . Since #(W) is finite, $U_0 \cap (\bigcap_{p \in W} G_p)$ is an open subgroup of U_0 , hence contains U_m for some m. So U_m fixes pointwise all chambers which intersect B_d and in particular, all points in B_d .

LEMMA 3: Let $x \in U_0$ and assume that $x \neq 1$. Then there is an integer $k \ge 0$ such that $S(xU_k) = S(x)$ and if xyp = p for some $p \in X$ and some $y \in U_k$, then $p \in S(x)$.

PROOF: Since $x \neq 1$, it is elliptic regular and S(x) is compact by lemma 1. By lemma 2, there is a $d \ge 0$ and an integer $k \ge 0$ such that U_k fixes all points in B_d and such that S(x) is contained in the interior of B_d . For this k, $S(x) \subseteq S(xU_k)$. Now suppose that $p \in X$ is fixed by xy for some $y \in U_k$. We must show that $p \in S(x)$. This is clearly so if $p \in S(U_k)$. If $p \notin S(U_k)$, let L be the geodesic line joining p and p_0 . It is fixed by xy since xy fixes p_0 and lies in an apartment A of X. Furthermore, L passes through a point on the boundary of the Euclidean ball $B_d \cap A$, say q. Then xy and y both fix q, hence x does also – a contradiction to the assumption on B_d .

COROLLARY: If a sequence $\{x_j\}$ of elements of U_0 converges to $x \neq 1$, then there is an $N \ge 0$ such that $S(x_i) = S(x)$ for all $j \ge N$.

PROOF: If $x_j \to \nu x$, then the sequence $y_j = x^{-1}x_j$ approaches 1. By the previous lemma, there is a $k \ge 0$ such that $S(x_j) = S(x)$ if $y_j \in U_k$. Choose N so that $y_j \in U_k$ for all $j \ge N$.

LEMMA 4: For each positive integer m, there is a $d \ge 0$ such that $G_p \cap U_0 \subseteq U_m$ for all $p \in X$ such that $p \notin B_d$.

PROOF: It suffices to show that for each infinite sequence $\{p_j\}$ of points in X which is not bounded, there is an $N \ge 0$ such that

 $G_{p_i} \cap U_0 \subseteq U_m$ for all $j \ge N$. If not, there is such a sequence p_i and elements $x_j \in U_0 - U_m$ such that x_j fixes p_j . Since U_0 is compact, we may, passing to a subsequence if necessary, assume that x_j converges to $x \in U_0 - U_m$. By the previous corollary, there is an $N \ge 0$ such that $S(x_j) = S(x)$ for all $j \ge N$. But S(x) is compact – contradiction.

LEMMA 5: For each positive integer s, there is a $d \ge 0$ such that $\#(U_0p) \equiv 0 \mod q^s$ for all $p \in X$ such that $p \notin B_d$.

PROOF: By lemma 4, there is a $d \ge 0$ such that $G_p \cap U_0 \subseteq U_s$ for all $p \notin B_d$. Hence $q^s = [U_0: U_s]$ divides $\#(U_0p)$ if $p \notin B_d$.

When T is compact, $T_s = \{1\}$ and the orbital integral is defined by giving a normalization of Haar measure on G. The statement of the theorem is independent of this choice because the germs are proportional and the formal degrees are inversely proportional to a change of normalization of dg. Let I be a fixed Iwahori subgroup of G and let C_I be the chamber in X which is pointwise fixed by I. We choose the Haar measure dg on G which assigns measure one to I. Let G_0 be the largest subgroup of G which acts on X by special automorphisms, i.e., which preserve the type of a face. Then G_0 is normal and of finite index in G [1]; let $\#(G/G_0) = n$ and let $\{g_0 = 1, g_1, \ldots, g_{n-1}\}$ be a set of representatives for G/G_0 . We may assume that the g_i normalize I because the Iwahori subgroups of G are all conjugate under the action of G_0 [1]. For the rest of the paper, put $x = \exp(H)$ for some regular $H \in \tilde{\mathcal{P}}^*$, and put $x_i = \exp(t^2H)$ for $t \in O_F$. Let f_0 be the characteristic function of I.

LEMMA 6: Let c(t) = the number of chambers in X which are fixed by x_t . Then $\Phi(x_t, f_0) = nc(t)$.

PROOF: First of all, I is contained in G_0 , so

$$\int_{G_0} f_0(g^{-1}x_ig) \, \mathrm{d}g = \sum_{\substack{y \in G_0/I \\ x_i \in y|y^{-1}}} 1 = c(t)$$

since all Iwahori subgroups of G are conjugate in G_0 and, in particular, have measure one. Thus

$$\Phi(x_t, f_0) = \sum_{j=0}^{n-1} \int_{G_0} f_0((gg_j)^{-1} x_t(gg_j)) \, \mathrm{d}g = n \, \int_{G_0} f_0(g^{-1} x_t g) \, \mathrm{d}g = nc(t)$$

because of the assumption that the g_i normalize I.

Let d(u) be the dimension of u for $u \in \Omega$. We recall from [4] that the Γ_u^T satisfy the following property:

(*)
$$\Gamma_u^T(x_t) = |t|_F^{-d(u)} \Gamma_u^T(x)$$

for all $t \in O_F$. For $t \in O_F$, v(t) will denote the valuation of t, so that $|t|_F = q^{-v(t)}$. Let $m_j = \sum_{d(u)=j} \Lambda_u(f_0) \Gamma_u^T(x)$. There are only finitely many unipotent conjugacy classes in G. Let $M = \sup_{u \in \Omega} d(u)$. Furthermore, there is only one unipotent conjugacy class of dimension zero, hence $m_0 = \Gamma_1^T(x)$ since $f_0(1) = 1$. By lemma 6, (*), and the germ expansion principle, there exists a $\delta > 0$ such that

(**)
$$\Phi(x_t, f_0) = \sum_{j=1}^{M} m_j q^{jv(t)} + m_0 = nc(t) \text{ if } |t|_F < \delta.$$

LEMMA 7: Let Q be the rational numbers and let Z^+ be the set of positive integers. Let a_0, \ldots, a_N be complex numbers and suppose that $F(n) = \sum_{j=0}^{N} a_j q^{jn}$ lies in Q for almost all $n \in Z^+$. Then $a_j \in Q$ for $j = 0, 1, \ldots, n$.

PROOF: We use induction on the degree, N, of F(n). The lemma is certainly true if N = 0. If N > 0, let

$$F'(n) = q^{-n}(F(n) - F(n-1)) = \sum_{j=1}^{N} a_j(1-q^{-j})q^{(j-1)n}.$$

F'(n) has degree N-1 and $F'(n) \in Q$ for almost all $n \in Z^+$ since this is true for F. By induction, $a_j \in Q$ for j = 1, ..., N and this also implies that $a_0 \in Q$.

We apply lemma 7 to (**) to conclude that the $m_j \in Q$: nc(t) is obviously an integer for all $t \in O_F$ and (**) holds if v(t) is sufficiently large. The next lemma follows immediately.

LEMMA 8: Let p be the rational prime dividing q. Then the p-adic limit $\lim_{|t|_F \to 0} \Phi(x_t, f_0)$ exists and is equal to m_0 .

Let (W, S) be the Coxeter system associated to the Tits system for G_0 [1]. As in [1], let $T = \{t_s\}_{s \in S}$ be a family of indeterminates indexed by elements of S and for each $w \in W$, let $t_w = t_{s_1} \dots t_s$ where (s_1, \dots, s) is a reduced decomposition for $w, s_i \in S$. The monomial t_w is independent of the reduced decomposition of w. The formal power series W(T) = $\sum_{w \in W} t_w$ is called the Poincaré series of (W, S). For $w \in W$, let $q_w = \#(I_0 w I_0/I_0)$; it is a power of q and the value $t_w(Q)$ is equal to q_w , where Q denotes the substitution $t_s = q_s$.

LEMMA 9: 1) W(T) is a rational function of T which is defined at the points Q and Q^{-1} .

2) $W(Q^{-1}) = (-1)^r W(Q)$.

3) $d(\pi_0) = 1/nw(Q^{-1}) = (-1)^r/nW(Q).$

PROOF: 1) and 2) are due to Serre [7], and 3) appears in [1].

The series $G = \sum_{w \in W} q_w$ converges in the *p*-adic topology because q_w is a power of *q* which tends to infinity as the length 1(w) (the number of elements in a reduced decomposition of *w*) approaches infinity. As a formal power series, W(T) is equal to a rational function which is defined at T = Q by the previous lemma. It is easy to see from this that the series *G* converges *p*-adically to the value W(Q).

To complete the proof of the theorem, we shall show that the *p*-adic limit, as $|t|_F \rightarrow 0$, of c(t) is equal to W(Q). This is sufficient, in view of lemma 8 which says that the *p*-adic limit, as $|t|_F \rightarrow 0$, of nc(t) is equal to $\Gamma_1^T(x)$.

Let B(d) be the union of all closed chambers in X which are of the form $C = gC_I$ for some $g \in IwI$ with $1(w) \leq d$. Then $B(d) \subseteq B(d')$ if $d \leq d'$ and $\bigcup_{d\geq 0} B(d) = X$. It is clear that for each $d \geq 0$, there is a $d' \geq 0$ such that $B(d) \subseteq B_{d'}$ and for each $d \geq 0$, there is a $d' \geq 0$ such that $B_d \subseteq B(d')$. Therefore all of the lemmas involving B_d also hold for B(d) – mutatis mutandis. Let N(d) be the number of chambers contained in B(d). Then N(d) is a partial sum of the series G; it is equal

to $\sum_{\substack{w \in W \\ 1(w) \le d}} q_w$ and hence $\lim_{d \to \infty} N(d) = W(Q)$ in the *p*-adic topology.

We may assume, without loss of generality, that $U_0 \subseteq I$. Let Ch(t) be the set of chambers in X which are fixed by x_t ; #(Ch(t)) = c(t). Then

(**)
$$Ch(t) = (Ch(t) \cap B(d)) \cup (Ch(t) - (Ch(t) \cap B(d)).$$

Since U_0 commutes with x_t , it stabilizes the set Ch(t) and the above assumption on U_0 implies that the action of U_0 on Ch(t) preserves the two sets in the disjoint union of (***). Lemma 5 implies that, given a positive integer s, there is a positive d_s which tends to infinity with s, such that $\#(U_0C)$ is divisible by q^s for all $C \not\subseteq B(d_s)$. By lemma 2, there is a positive $\epsilon_s \to 0$ as $s \to \infty$, such that x_t fixes all of the

422

An application of the building to orbital integrals

chambers in $B(d_s)$ for $|t|_F \le \epsilon_s$. Let s tend to infinity and apply (***) to d_s and t_s where $|t_s|_F \le \epsilon_s$. We have shown that the cardinality of the first term on the right hand side of (***) approaches W(Q) p-adically while the cardinality of the second term approaches zero p-adically. QED.

REFERENCES

- A. BOREL: Admissible Representations of a Semi-simple Group over a Local Field Inventiones Mathematicae 35 (1976) 233-259.
- [2] A. BOREL and J.P. SERRE: Cohomologie D'Immeubles et de Groupes S-Arithmetiques. *Topology* 15, No. 3, (1976) 211–232.
- [3] F. BRUHAT and J. TITS: Groupes Réductifs sur un Corps Local. Publ. Math. IHES 25 (1972).
- [4] HARISH-CHANDRA: Admissible Invariant Distributions on Reductive p-adic Groups. Lie Theories and applications, Queen's papers in pure and applied mathematics 48 (1978) 281-347.
- [5] R. HOWE: The Fourier Transform and Germs of Characters. Math. Annalen 208 (1974) 305-322.
- [6] J.A. SHALIKA: A Theorem on Semi-simple *p*-adic Groups. Annals of Math. 95, No. 1 (1972) 226-242.
- [7] J.P. SERRE: Cohomologie des Groupes Discrets. Prospects in Mathematics Annals of Math. Studies 70. Princeton University Press 1970.

(Oblatum 24-IV-1980)

Department of Mathematics Princeton University Princeton NJ 08540 U.S.A.