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Abstract

In the theory of abstract convexity, as introduced in 1951 by F.W.
Levi and further developed by D.C. Kay and E.W. Womble in 1971,
the relationships between the classical Carathéodory, Helly, and
Radon numbers have stimulated much of the work. In this paper the
various numbers for the so-called convex sum space, which is-

roughly speaking - a convexity structure on the union of sets, are
determined, and the sharpness of several relationships between the
various numbers is studied.

1. Introduction

The results in this paper are given, in general, in a convexity space
(X, ), as introduced by Levi [7], and used by Eckhoff [1], Jamison
[5], Kay and Womble [6], Sierksma [9], and others. Here X is a set
and  is a family of subsets of X, called convex sets, satisfying (a)
0, X ~ ; and (b) f1 F E OE whenever the family  ~ &#x26;. If, moreover,
(c) ~ T ~ &#x26; for each chain &#x26; ~ , (X, OE) is called an aligned space ;
see Jamison [5]. We also use OE to denote the convex hull operator on
subsets of X; that is, if S C X, then $(S) = ~{A ~&#x26;|S ~ A}. His-
torically, many of the concepts used here were first given for the
special case where X is a vector space over a totally ordered field K,
for example Rd, and the convex sets in OE are determined by the order,
i.e. A ~ $ provided 03B1x + (1 - 03B1)y ~ A for each x, y E A and each
03B1 ~ K with 0~03B1~1. When this is the case we will denote the
convex hull operator by conv and call (X, conv) an ordinary convexity
space.

0010-437X/81/03391-10$00.20/0



392

In 1968 Eckhoff [1] introduced the so-called convex product space.
The classical numbers of Carathéodory, Helly, and Radon, together
with the Exchange number - introduced by Sierksma [8] - f or the

convex product space are determined and studied extensively
in [8] and [9]. For definitions of the various numbers we refer

to [10].
A problem related to that of studying convexity on the product of

sets is that of defining convexity on the union of a collection of sets
and of investigating what the Carathéodory, Helly, Radon and
Exchange number of such a convexity space are.

It is well-known that the four numbers of the ordinary convexity
space (R’, conv) are dependent on d. However, in general, there is not
such a close connection between the numbers. On the other hand, the
close relationship between the various numbers in (Rd, conv) has
stimulated much of the work in the general case of convexity spaces;
see e.g. Eckhoff [3], Hammer [4], Kay and Womble [6], and Sierksma
[10]. For a survey of relationships we refer to [10]. One of the main
problems is to show the sharpness of all those relationships. In this
paper both the convex product and sum space are used to study the
sharpness of some of the well-known relationships.

In section 2 we derive the various numbers for the convex sum

space and in section 3 the sharpness of relationships between the
numbers if studied.

Let (XI, &#x26;1) and (X2, &#x26;2) be convexity spàces. The convex sum
space is the pair (XI U X2, &#x26;1 + &#x26;2), with

It is clear that (XI U X2, &#x26;1 + &#x26;2) is again a convexity space, and that
(XI U X2, &#x26;1 + &#x26;2) is an aligned space provided (XI, &#x26;1) and (X2, &#x26;2)
are aligned spaces. The (&#x26;1 + &#x26;2)-hull of any set S C XI U X2 is given
by (&#x26;1 + &#x26;2)(S) = [&#x26;1(S n xi)Bx2i U [@2(S n X2)BX;] U [&#x26;1(S n X1) n
0E2(S n X2)].
The following three cases can be distinguished (S C XI U X2):
(1) X, ~ X2 = . Then &#x26;1 + &#x26;2 = {A ~ B|A ~ &#x26;1, B EOE21 and (&#x26;1 +

OE2)(S)= @)(5’ n Xi) U &#x26;2(S ~ X2).
(2) X1 = X2. Then &#x26;1 + &#x26;2 = {A ~ B|A ~ &#x26;1, B ~ &#x26;2} and (&#x26;1 +

(2)(S) = &#x26;1(S) n &#x26;2(S). Note that in this case &#x26;1 + &#x26;2 = &#x26;1 V &#x26;2,
which is the so-called convex join structure on X1(=X2), see [9]
p. 11.

(3) X, C X2. Then &#x26;1 + 0E2 = f(BBXl) U (A n B) 1 A E &#x26;1, B E &#x26;2} and
(&#x26;1 + OE2)(S) = [&#x26;2(S)BX1] ~ [&#x26;1(S n Xi) n &#x26;2(S)].
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Throughout this paper we shall only deal with convex sums in case
the universal sets are disjoint, hence case (1) in the above paragraph.’

2. Carathéodory, Helly, Radon, and Exchange numbers for
convex sum spaces

THEOREM 1: Let Xl fl X2 = 0 and let (Xi, &#x26;i) be a convexity space
with Carathéodory number ci, Exchange number ei, Helly number hi,
and Radon number ri; i = 1, 2. Then the respective numbers c, e, h,
and r for the convex sum space (Xl U X2, &#x26;1 + &#x26;2) satisfy:

PROOF: (a) Take any S C X and define S ~ X1 = S1, S ~ X2 = S2.
Then, according to the definition of the Carathéodory number, we find
that (&#x26;1 + &#x26;2)(S) = &#x26;1(S1) ~ &#x26;2(S2) = [~{&#x26;1(U)|U~S1, |U|~c1}] ~
[~{&#x26;(V)|V C S2, 1 VI - c2}] = ~{&#x26;1(U) U &#x26;2(V)| U C SI, V C S2,
|U| ~ c1, |V| ~ c2} = ~{(&#x26;1 + &#x26;2)(T) |T ~ S, |T| ~ max{C1, c2}}. Hence,
c ~ max{c1, c2}. On the other hand, it is clear that c ~ max{c1, c2}.
Therefore, we have in fact that c = maxlc,, c2}.

(b) We first show that e ~ 1 + maxlcl, c2}. To that end, take any
A C Xi U X2 with 1 + max{ci, c2} ~ lAI  00 and any p E Xi U X2. Fur-
ther take any x E (&#x26;1 + &#x26;2)(A) = &#x26;1(X1 ~ A) U &#x26;2(X2 ~ A), and assume
that x E &#x26;1(X1 ~ A).
We must show that x E (&#x26;1 + @2)(p U (ABa)) for some a E A.
If A BXI =t= 0, take some a0 ~ ABX1, and we have that x E

&#x26;1(X1 n A) = &#x26;1(X1 n (Alao)) C &#x26;1(X1 n (p U (Alao))) U 0E2(X2 n (p U
(ABa0))) = (&#x26;1 + &#x26;2)(p U (ABa0)).

If ABX1 = 0, we find that A C Xi. As |A| ~ 1 + max(ci, c2} ~ 1 + ci, it
follows that &#x26;1(A) = ~{&#x26;1(ABa)|a E A}.

So, (&#x26;1 + 0E2)(A) = &#x26;1(A) U 0E2(X2 n A) = [U{&#x26;1(ABa) a E A}] U
0E2(X2 n A) C U{&#x26;1(X1 n (p U (ABa))) U 0E2(X2 n (p U (ABa))) |a E A} =
U{(&#x26;1 + 0E2)(p U (AB a» 1 a E A}. Hence, 1 ~ e ~ 1 + max{c1, c2}, We now
show that e ? 1 + max{c1, C21. Let c2 ? ci and take any p E Xi. As the

1 In two recent papers by E. Degreef, Free Univ. Brussels, the convex sum space is
studied in case the universal sets are not disjoint.
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Carathéodory number of (X2, 0E2) equals c2, there is a set A C X2 with

lAI = C2 and such that C2(A)  ~{&#x26;2(ABa) 1 a E AI. Hence, (&#x26;1 +

g2)(A) = 0E2(A) £ OEi(p) U [~{&#x26;2(ABa)|a E A}] = U{(&#x26;1 + 0E2)(p U

(ABa))| a E A}, and it follows that e ? 1 + c2 à 1 + max{c1, C21. There-
fore, we have that e = 1 + max{c1, c2}.

(c) We first show that h ~ h1 + h2. Take any S ~ X1 ~ X2 with
ISI = hl + h2+ 1. Obviously, |X1 ~ S| ~ h1 + 1 or |X2 ~ S| ~ h2 + 1.
Assume that |X1 n S| ~ hi + 1. Then it follows that

Hence, h ~ h1 + h2.
We now show that h a hi + h2. Take some S C XI U X2 with is n

X1| = h1 and |S ~ X2| = h2, and such that n{&#x26;i((S fl Xi)=x)| x E S fl
Xi} =  for each i E {1, 2}. Then it follows that

Hence, h a hi + h2, so that in fact h = h + h2.
Note that if |X1BX2| = h and |X2BX1| = h2 in the above theorem, then

we also have that h = hi + h2.
(d) We first show that r z ri + r2 - 1. Take any S C XI U X2 with

|S| ~ r1 + r2 - 1. Obviously, |X1 ~ S| ~ r| or |X2 ~ S| ~ r2. We may
assume that |X1 ~ S| ~ r1. This means that X1 ~ S has a &#x26;1-Radon
partition, say {S1, S2}. Hence, S1 ~ S2 = X1 ~ S, S1 ~ S2 = , and

&#x26;1(S1) ~ &#x26;2(S2) + 0. As

it follows that (Si U (X2 ~ S), S21 is a (Si + @2)-Radon partition of S.
Hence, r:-5 r1+r2-1.
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We now show that r ~ r1 + r2 - 1. Take some S; C X with |Si| =
ri -1 but without &#x26;i-Radon partition; i = 1, 2. Then ISI U S21 =
ri + r2 - 2, and clearly, Si U S2 has no (&#x26;1 + 6:2)-Radon partition.
Therefore we find that r &#x3E; r1 + r2 - 2. Hence, r = ri + r2 - 1.

EXAMPLE 1: Take Xl = {(x1, X2) E 1R21 1 xi  01 and X2 =

{(x1, x2) E R2 |x1 ~ 0} and &#x26;1 = &#x26;2 = conv. Then CI = C2 = 3 and, hence,
c = 3. Note that conv + conv consists of all convex sets in the

ordinary sense, together with all unions of two convex sets.

EXAMPLE 2: Take X1 = {(x1, x2)|x1  0} ~ R2 and X2 =
{(x1, X2) 1 x1 ~ 01 C R2. Further, let kh k2 E N and define &#x26;1 =

{X1} U {A|A C Xi, |A| ~ ki}, @2 = {X2} U {A|A C X2, JAI k2}. Then it
follows that el = e2 = 2, c1 = k1 + 1, and c2 = k2 + 1. Note that xi n
X2 = 0. Let k2 ? kl. We shall show that e = k2 + 2. Take any set A C X2
with 1 AI = k2 + 1, and take any p E Xl. Then (&#x26;1 + &#x26;2)(A) = &#x26;2(A) = X2,
and (&#x26;1 + &#x26;2)(p U (ABa)) = &#x26;1(p) U &#x26;2(ABa) = Ipl U ABIal for each a E
A. So, (&#x26;1 + &#x26;2)(A)  ~{(&#x26;1 + &#x26;2)(p U (ABa))|a E A}, and it follows
that e ? k2 + 2. Clearly, (&#x26;1 + &#x26;2)(A) C U{(&#x26;1 + @2)(P U (ABa))|a E A}
for each A C Xi U X2 with k2 + 2 ~ lAI  00, so that e ~ k2 + 2. Hence,
e = k2 + 2 = 1 + max{c1, C21-

The following example shows that el  00 and e2  00 does not imply
that e  00.

EXAMPLE 3: Consider the convexity spaces (X1, &#x26;1) and (X2, &#x26;2)
with Xi = {(x1, x2) xl  0} C 1R2, &#x26;1 = conv, X2 = {(x1, x2)|x1 ~ 0} C R2,
and &#x26;2 = {,X2}~{C|(n)[n~N, C  Cn]} with Ci = {(1,0)}, C2 =
{(2,0), (3, 0)1, C3 = {(4, 0), (5, 0), (6, 0)}, C4 = {(7,0), (8, 0), (9, 0), (10, 0)},
etc. (see [9] 5.5 Ex. 8). Clearly, el = 3. In [9] Ch. 6.3 it is shown that
e2 = 2. We now show that the Exchange number e of (R 2 &#x26;1 + &#x26;2) is
infinite. Take any n E N, and let p = ( -1, 0). Then (&#x26;1 + &#x26;2)(Cn) =
&#x26;2(Cn) = X2. On the other hand,

Hence, (&#x26;1 + &#x26;2)(Cn)=X2 {p} U Cn=~{(&#x26;1 + &#x26;2)(p U (CnBa)))|a E Cn}.
Therefore we find that e = oo.
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EXAMPLE 4: Take X1 = {(x1,...,xn)|x10}~Rn X2 =
{(x1, ..., xn) |x1 ~ 0} C Rn mth n E N, and let &#x26;1 = conv and &#x26;2 = conv,
the ordinary convexity structures on Xi and X2, respectively. Then it
follows that h = h2 = n + 1, and that h = h + h2 = 2 n + 2. Also note
that r = r1+r2-1=2n+3.

The concept of convex sum space can be generalized to sums of
finitely many convexity spaces. For instance the convex sum space
with basic spaces (XI, $1), (X2, $2), and (X3, $3), denoted by (Xl U
X2 U X3, Si + &#x26;2 + &#x26;3) is defined by

Note that 1 + 6:2 + 3 = . In case X f1
X =  for each i, j = 1,..., n with i ~ j we have:

Note that 1, ..., OEn C +7=1 i in case the universal sets are disjoint.
Let Xi fl Xj = 0 for each i, j = 1,..., n with i ~ j, and let (Xi, i) be a

convexity space with Carathéodory number c;, Exchange number e;,

Helly number hi, and Radon number ri; i = 1,..., n. Then it can be
shown by induction on n that the respective numbers c(n), e(n), h(n), 
and r(n) of the convex sum space (U n i=1 X, +ni=1 i) satisfy:

By a copy of the convexity space (X, CS) we mean a convexity
space (X  {i},   {i}) for some i E {1, ..., n}, with   (i) =
fA x {i}|A E }. The (OE x {i})-convex hull of any set S C X x fil is

given by (  {i})(S) = (03C0iA)  {i}, where 03C0i is the projection of
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X x {i} onto X. Furthermore, we define

and

THEOREM 2: Let c, e, h, and r be the Carathéodory, Exchange,
Helly, and Radon numbers, respectively, of the convexity space (X, ).
Let n be an integer ~ 2. Then, (Un X, +n ) is a convexity space and
the (+n OE)-hull of any set S C Un X satisfies

Moreover, the respective numbers c(n), e(n), h(n), and r (n) of
(Un X, +n ) satisfy :

PROOF: As (X x {i}) ~ (X x {j}) =  for each i, j = 1,..., n with i~ j,
and (Un X, +n ) is an n -convex sum space, the theorem follows
almost directly from the above remarks.

3. Sharpness of relationships between the various numbers

For relationships between the Carathéodory, Exchange, Helly, and
Radon numbers c, e, h, and r, respectively, we refer to Sierksma [10].
One of the interesting problems is the sharpness of those relation-
ships. It is well-known that the inequality of Levi, namely h z r - 1, is
sharp. By being sharp we mean that for each two integers h and r
with h = r - 1 there exists a convexity space such that h is the Helly
number and r the Radon number. Sharpness of other inequalities can
be defined in the same way. So it follows from Theorem 2 that the
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relation e ~ 1 + c is also sharp. In the remaining part of this paper we
study the sharpness of the ’special’ Eckhoff and Jamison inequality,
namely

provided e ~ c, and the inequality

which holds in case (X, ) is an aligned space. To that end we note
that for (Rd, ~d conv), where (Dd conv = conv ~··· EB conv (d times
the convex product of conv), the following holds: c = d, e = d + 1,
h = 2, and r = min{k ~ N|() &#x3E; 2d}. This follows directly from

Sierksma [9, Theorem 5.5, 6.10, 7.6II, and 8.3] and Eckhoff [2].

THEOREM 3: Let rn and n be integers ~ 3. Then the Carathéodory,
Helly, and Radon numbers c, h, and r, respectively, of the m-convex
sum space (U m Rn, + m ~n conv) satisfy :

PROOF: Theorem 2 implies that c = n, h = 2m, and r = m(s - 1) + 1
with s = minf k EN’ |() &#x3E; 2n}. The proof now follows directly from
the above remark for the convex product space (Rn, ~n conv). Note
that if n = 3, then c = 3, e = 4, h = 2m, and r = 4m + 1, hence that
(c-1)(h-1)+3=4m+1=r.

Note that it follows from the above theorems that e ~ c is not

necessary condition for r ~ (c-1)(h-1) + 3 to hold. Also note that
the convexity space ( U m R3, +m ~3 conv) is a non-trivial example such
that equality holds in the ’spécial’ Eckhoff and Jamison inequality.

THEOREM 4: The inequality c ~ max{h, e - 1} is sharp in case h ~
e - 1.

PROOF: First note that (~mRn, +m ~n conv) is an aligned space
(m, n ~ N). Choosing m and n such that 2m ~ n, it follows that
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h ~ e - 1 and that c = max{h,e-1} for even Helly number h. Now

consider the ’sum’ of (R n, ) with  = {, Rn} and (~m Rn, +m On conv),
i.e. (~m+1Rn, +m On conv + ). Clearly, this is again an aligned space.
As the Carathéodory, Exchange, and Helly numbers of (Rn, ) are
equal to 1, it follows for the respective numbers of (~m+1Rn,
+m On conv + ) that c = n, e = n + 1, and h = 2m + 1. Choosing 2m +
1 ~ n, it follows that h ~ e - 1, and that c = max{h, e - 1} for odd
Helly number h. Therefore, we have in fact that the inequality
c ~ max{h, e - 1} is sharp for h ~ e - 1. Sharpness of the inequality in
case h ~ e - 1 is still an open problem.

The next theorem enables us to construct convexity spaces with
Carathéodory, Helly, and Radon numbers with no ’close’ connection.

THEOREM 5: Let k, m, n be integers ? 1. Then f or the convexity
space (~m+kRn, (+m~nconv)+(+k) with ={,Rn} the Cara-

théodory, Exchange, Helly, and Radon numbers, c, e, h, and r,
respectively, the following holds :

PROOF: The proof can be given easily by induction on k.
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