Compositio Mathematica

GERARD SIERKSMA

Convexity on unions of sets

Compositio Mathematica, tome 42, no 3 (1980), p. 391-400
http://www.numdam.org/item?id=CM_1980_42_3_391_0
© Foundation Compositio Mathematica, 1980, tous droits réservés.
L'accès aux archives de la revue «Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

CONVEXITY ON UNIONS OF SETS

Gerard Sierksma

Abstract

In the theory of abstract convexity, as introduced in 1951 by F.W. Levi and further developed by D.C. Kay and E.W. Womble in 1971, the relationships between the classical Carathéodory, Helly, and Radon numbers have stimulated much of the work. In this paper the various numbers for the so-called convex sum space, which is roughly speaking - a convexity structure on the union of sets, are determined, and the sharpness of several relationships between the various numbers is studied.

1. Introduction

The results in this paper are given, in general, in a convexity space ($X, \mathfrak{(}$), as introduced by Levi [7], and used by Eckhoff [1], Jamison [5], Kay and Womble [6], Sierksma [9], and others. Here X is a set and \mathfrak{C} is a family of subsets of X, called convex sets, satisfying (a) $\emptyset, X \in \mathfrak{C}$; and (b) $\cap F \in \mathfrak{C}$ whenever the family $\mathfrak{F} \subset \mathfrak{C}$. If, moreover, (c) $\cup T \in \mathfrak{C}$ for each chain $\mathfrak{I} \subset \mathfrak{C},(X, \mathfrak{C})$ is called an aligned space; see Jamison [5]. We also use \mathfrak{C} to denote the convex hull operator on subsets of X; that is, if $S \subset X$, then $\mathfrak{G}(S)=\cap\{A \in \sqsubseteq \mid S \subset A\}$. Historically, many of the concepts used here were first given for the special case where X is a vector space over a totally ordered field K, for example \mathbb{R}^{d}, and the convex sets in \mathfrak{C} are determined by the order, i.e. $A \in \mathfrak{C}$ provided $\alpha x+(1-\alpha) y \in A$ for each $x, y \in A$ and each $\alpha \in K$ with $0 \leqq \alpha \leqq 1$. When this is the case we will denote the convex hull operator by conv and call (X, conv) an ordinary convexity space.

In 1968 Eckhoff [1] introduced the so-called convex product space. The classical numbers of Carathéodory, Helly, and Radon, together with the Exchange number-introduced by Sierksma [8]-for the convex product space are determined and studied extensively in [8] and [9]. For definitions of the various numbers we refer to [10].
A problem related to that of studying convexity on the product of sets is that of defining convexity on the union of a collection of sets and of investigating what the Carathéodory, Helly, Radon and Exchange number of such a convexity space are.

It is well-known that the four numbers of the ordinary convexity space (\mathbb{R}^{d}, conv) are dependent on d. However, in general, there is not such a close connection between the numbers. On the other hand, the close relationship between the various numbers in (\mathbb{R}^{d}, conv) has stimulated much of the work in the general case of convexity spaces; see e.g. Eckhoff [3], Hammer [4], Kay and Womble [6], and Sierksma [10]. For a survey of relationships we refer to [10]. One of the main problems is to show the sharpness of all those relationships. In this paper both the convex product and sum space are used to study the sharpness of some of the well-known relationships.
In section 2 we derive the various numbers for the convex sum space and in section 3 the sharpness of relationships between the numbers if studied.

Let $\left(X_{1}, \mathfrak{C}_{1}\right)$ and (X_{2}, \mathfrak{C}_{2}) be convexity spaces. The convex sum space is the pair $\left(X_{1} \cup X_{2}, \mathfrak{C}_{1}+\mathfrak{C}_{2}\right)$, with

$$
\mathfrak{C}_{1}+\mathfrak{C}_{2}=\left\{\left(A \backslash X_{2}\right) \cup\left(B \backslash X_{1}\right) \cup(A \cap B) \mid A \in \mathfrak{C}_{1}, B \in \mathfrak{C}_{2}\right\} .
$$

It is clear that $\left(X_{1} \cup X_{2}, \mathfrak{C}_{1}+\mathfrak{C}_{2}\right)$ is again a convexity space, and that $\left(X_{1} \cup X_{2}, \mathfrak{G}_{1}+\mathfrak{C}_{2}\right)$ is an aligned space provided ($\left.X_{1}, \mathfrak{F}_{1}\right)$ and $\left(X_{2}, \mathfrak{C}_{2}\right)$ are aligned spaces. The $\left(\mathscr{C}_{1}+\mathscr{C}_{2}\right)$-hull of any set $S \subset X_{1} \cup X_{2}$ is given by $\quad\left(\mathfrak{C}_{1}+\mathfrak{C}_{2}\right)(S)=\left[\mathfrak{C}_{1}\left(S \cap X_{1}\right) \mid X_{2}\right] \cup\left[\mathfrak{C}_{2}\left(S \cap X_{2}\right) \backslash X_{1}\right] \cup\left[\mathfrak{C}_{1}\left(S \cap X_{1}\right) \cap\right.$ $\left.\mathfrak{E}_{2}\left(S \cap X_{2}\right)\right]$.
The following three cases can be distinguished ($S \subset X_{1} \cup X_{2}$):
(1) $X_{1} \cap X_{2}=\emptyset$. Then $\mathfrak{G}_{1}+\mathfrak{C}_{2}=\left\{A \cup B \mid A \in \mathfrak{G}_{1}, B \in \mathfrak{C}_{2}\right\}$ and $\left(\mathfrak{C}_{1}+\right.$ $\left.\mathfrak{G}_{2}\right)(S)=\mathfrak{\sqsubseteq}_{1}\left(S \cap X_{1}\right) \cup \mathfrak{C}_{2}\left(S \cap X_{2}\right)$.
(2) $X_{1}=X_{2}$. Then $\mathfrak{C}_{1}+\mathfrak{C}_{2}=\left\{A \cap B \mid A \in \mathfrak{G}_{1}, B \in \mathfrak{C}_{2}\right\}$ and $\left(\mathfrak{C}_{1}+\right.$ $\mathfrak{C} 2)(S)=\mathfrak{C}_{1}(S) \cap \mathfrak{C}_{2}(S)$. Note that in this case $\mathfrak{C}_{1}+\mathfrak{C}_{2}=\mathfrak{C}_{1} \vee \mathfrak{C}_{2}$, which is the so-called convex join structure on $X_{1}\left(=X_{2}\right)$, see [9] p. 11.
(3) $X_{1} \subset X_{2}$. Then $\mathfrak{C}_{1}+\mathfrak{C}_{2}=\left\{\left(B \backslash X_{1}\right) \cup(A \cap B) \mid A \in \mathfrak{C}_{1}, B \in \mathfrak{C}_{2}\right\}$ and $\left(\mathfrak{S}_{1}+\mathfrak{C}_{2}\right)(S)=\left[\mathfrak{C}_{2}(S) \backslash X_{1}\right] \cup\left[\mathfrak{G}_{1}\left(S \cap X_{1}\right) \cap \mathfrak{C}_{2}(S)\right]$.

Throughout this paper we shall only deal with convex sums in case the universal sets are disjoint, hence case (1) in the above paragraph. ${ }^{1}$

2. Carathéodory, Helly, Radon, and Exchange numbers for convex sum spaces

Theorem 1: Let $X_{1} \cap X_{2}=\emptyset$ and let $\left(X_{i}, \Im_{i}\right)$ be a convexity space with Carathéodory number c_{i}, Exchange number e_{i}, Helly number h_{i}, and Radon number $r_{i} ; i=1,2$. Then the respective numbers c, e, h, and r for the convex sum space $\left(X_{1} \cup X_{2}, \mathfrak{C}_{1}+\mathfrak{C}_{2}\right)$ satisfy:

$$
\begin{aligned}
c & =\max \left\{c_{1}, c_{2}\right\} \\
e & =1+\max \left\{c_{1}, c_{2}\right\} \\
h & =h_{1}+h_{2} \\
r & =r_{1}+r_{2}-1 .
\end{aligned}
$$

Proof: (a) Take any $S \subset X$ and define $S \cap X_{1}=S_{1}, S \cap X_{2}=S_{2}$. Then, according to the definition of the Carathéodory number, we find
 $\left[\cup\left\{\mathscr{C}^{(}(V)\left|V \subset S_{2},|V| \leqq c_{2}\right\}\right]=\cup\left\{\bigodot_{1}(U) \cup \mathfrak{๒}_{2}(V) \mid U \subset S_{1}, V \subset S_{2}\right.\right.$, $\left.|U| \leqq c_{1},|V| \leqq c_{2}\right\}=\cup\left\{\left(\mathfrak{C}_{1}+\mathfrak{๒}_{2}\right)(T)\left|T \subset S,|T| \leqq \max \left\{c_{1}, c_{2}\right\}\right\}\right.$. Hence, $c \leqq \max \left\{c_{1}, c_{2}\right\}$. On the other hand, it is clear that $c \geqq \max \left\{c_{1}, c_{2}\right\}$. Therefore, we have in fact that $c=\max \left\{c_{1}, c_{2}\right\}$.
(b) We first show that $e \leqq 1+\max \left\{c_{1}, c_{2}\right\}$. To that end, take any $A \subset X_{1} \cup X_{2}$ with $1+\max \left\{c_{1}, c_{2}\right\} \leqq|A|<\infty$ and any $p \in X_{1} \cup X_{2}$. Further take any $x \in\left(\mathfrak{C}_{1}+\mathfrak{C}_{2}\right)(A)=\mathfrak{C}_{1}\left(X_{1} \cap A\right) \cup \mathfrak{C}_{2}\left(X_{2} \cap A\right)$, and assume that $x \in \mathfrak{C}_{1}\left(X_{1} \cap A\right)$.

We must show that $x \in\left(\mathfrak{C}_{1}+\mathfrak{§}_{2}\right)(p \cup(A \backslash a))$ for some $a \in A$.
If $A \backslash X_{1} \neq \emptyset$, take some $a_{0} \in A \backslash X_{1}$, and we have that $x \in$ $\mathfrak{๒}_{1}\left(X_{1} \cap A\right)=\mathfrak{๒}_{1}\left(X_{1} \cap\left(A \backslash a_{0}\right)\right) \subset \mathfrak{C}_{1}\left(X_{1} \cap\left(p \cup\left(A \backslash a_{0}\right)\right)\right) \cup \mathfrak{๒}_{2}\left(X_{2} \cap(p \cup\right.$ $\left.\left.\left(A \backslash a_{0}\right)\right)\right)=\left(\mathfrak{C}_{1}+\mathfrak{C}_{2}\right)\left(p \cup\left(A \backslash a_{0}\right)\right)$.

If $A \backslash X_{1}=\emptyset$, we find that $A \subset X_{1}$. As $|A| \geqq 1+\max \left\{c_{1}, c_{2}\right\} \geqq 1+c_{1}$, it follows that $\complement_{1}(A)=\cup\left\{\complement_{1}(A \backslash a) \mid a \in A\right\}$.

So, $\left(\mathfrak{C}_{1}+\mathfrak{C}_{2}\right)(A)=\mathfrak{C}_{1}(A) \cup \mathfrak{C}_{2}\left(X_{2} \cap A\right)=\left[\cup\left\{\mathfrak{C}_{1}(A \mid a) \mid a \in A\right\}\right] \cup$ $\mathfrak{C}_{2}\left(X_{2} \cap A\right) \subset \cup\left\{\mathfrak{C}_{1}\left(X_{1} \cap(p \cup(A \backslash a))\right) \cup \mathfrak{C}_{2}\left(X_{2} \cap(p \cup(A \backslash a))\right) \mid a \in A\right\}=$ $\cup\left\{\left(\mathfrak{C}_{1}+\mathfrak{C}_{2}\right)(p \cup(A \backslash a)) \mid a \in A\right\}$. Hence, $1 \leqq e \leqq 1+\max \left\{c_{1}, c_{2}\right\}$. We now show that $e \geqq 1+\max \left\{c_{1}, c_{2}\right\}$. Let $c_{2} \geqq c_{1}$ and take any $p \in X_{1}$. As the

[^0]Carathéodory number of $\left(X_{2}, \mathfrak{C}_{2}\right)$ equals c_{2}, there is a set $A \subset X_{2}$ with $|A|=c_{2}$ and such that $\mathfrak{C}_{2}(A) \not \subset \cup\left\{\mathfrak{C}_{2}(A \mid a) \mid a \in A\right\}$. Hence, $\left(\mathfrak{C}_{1}+\right.$ $\left.\mathfrak{C}_{2}\right)(A)=\mathfrak{C}_{2}(A) \not \subset \mathfrak{C}_{1}(p) \cup\left[\cup\left\{\mathfrak{C}_{2}(A \backslash \dot{a}) \mid a \in A\right\}\right]=\cup\left\{\left(\mathfrak{C}_{1}+\mathfrak{C}_{2}\right)(p \cup\right.$ $(A \mid a)) \mid a \in A\}$, and it follows that $e \geqq 1+c_{2} \geqq 1+\max \left\{c_{1}, c_{2}\right\}$. Therefore, we have that $e=1+\max \left\{c_{1}, c_{2}\right\}$.
(c) We first show that $h \leqq h_{1}+h_{2}$. Take any $S \subset X_{1} \cup X_{2}$ with $|S|=h_{1}+h_{2}+1$. Obviously, $\left|X_{1} \cap S\right| \geqq h_{1}+1$ or $\left|X_{2} \cap S\right| \geqq h_{2}+1$.

Assume that $\left|X_{1} \cap S\right| \geqq h_{1}+1$. Then it follows that

$$
\begin{aligned}
& \cap\left\{\left(\mathfrak{C}_{1}+\mathfrak{๒}_{2}\right)(S \backslash x) \mid x \in S\right\}=\cap\left\{\mathfrak{๒}_{1}\left(X_{1} \cap(S \backslash x)\right) \cup \mathfrak{๒}_{2}\left(X_{2} \cap(S \backslash x)\right) \mid x \in S\right\} \\
& =\left[\cap\left\{\mathscr{E}_{1}\left(X_{1} \cap(S \backslash x)\right) \mid x \in S\right\}\right] \cup \times \\
& {\left[\cap\left\{\mathscr{E}_{2}\left(X_{2} \cap(S \backslash x)\right) \mid x \in S\right\}\right]} \\
& =\left[\cap\left\{\bigodot_{1}\left(\left(X_{1} \cap S\right) \mid x\right) \mid x \in X_{1} \cap S\right\}\right] \cup \times \\
& {\left[\cap\left\{\mathfrak{C}_{2}\left(\left(X_{2} \cap S\right) \mid x\right) \mid x \in X_{2} \cap S\right\}\right] \neq \emptyset .}
\end{aligned}
$$

Hence, $h \leqq h_{1}+h_{2}$.
We now show that $h \geqq h_{1}+h_{2}$. Take some $S \subset X_{1} \cup X_{2}$ with $\mid S \cap$ $X_{1} \mid=h_{1}$ and $\left|S \cap X_{2}\right|=h_{2}$, and such that $\cap\left\{\bigodot_{i}\left(\left(S \cap X_{i}\right) \mid x\right) \mid x \in S \cap\right.$ $\left.X_{i}\right\}=\emptyset$ for each $i \in\{1,2\}$. Then it follows that

$$
\begin{aligned}
\cap\left\{\left(\bigodot_{1}+\bigodot_{2}\right)(S \mid x) \mid x \in S\right\}= & {\left[\cap\left\{\bigodot_{1}\left(\left(S \cap X_{1}\right) \mid x\right) \mid x \in S \cap X_{1}\right\}\right] \cup \times } \\
& {\left[\cap\left\{\mathscr{๒}_{2}\left(\left(S \cap X_{2}\right) \mid x\right) \mid x \in S \cap X_{2}\right\}\right]=\emptyset . }
\end{aligned}
$$

Hence, $h \geqq h_{1}+h_{2}$, so that in fact $h=h_{1}+h_{2}$.
Note that if $\left|X_{1}\right| X_{2} \mid=h_{1}$ and $\left|X_{2}\right| X_{1} \mid=h_{2}$ in the above theorem, then we also have that $h=h_{1}+h_{2}$.
(d) We first show that $r \leqq r_{1}+r_{2}-1$. Take any $S \subset X_{1} \cup X_{2}$ with $|S| \geqq r_{1}+r_{2}-1$. Obviously, $\left|X_{1} \cap S\right| \geqq r_{1}$ or $\left|X_{2} \cap S\right| \geqq r_{2}$. We may assume that $\left|X_{1} \cap S\right| \geqq r_{1}$. This means that $X_{1} \cap S$ has a \mathfrak{C}_{1}-Radon partition, say $\left\{S_{1}, S_{2}\right\}$. Hence, $S_{1} \cup S_{2}=X_{1} \cup S, S_{1} \cap S_{2}=\emptyset$, and $\mathfrak{C}_{1}\left(S_{1}\right) \cap \mathfrak{C}_{2}\left(S_{2}\right) \neq \emptyset$. As

$$
\begin{aligned}
& \left(\mathfrak{C}_{1}+\mathfrak{C}_{2}\right)\left(S_{1} \cup\left(X_{2} \cap S\right)\right) \cap\left(\mathfrak{C}_{1}+\mathfrak{C}_{2}\right)\left(S_{2}\right)= \\
& {\left[\mathfrak{\Im}_{1}\left(S_{1}\right) \cup \mathfrak{๒}_{2}\left(X_{2} \cap S\right)\right] \cap \mathfrak{\Im}_{1}\left(S_{2}\right)=} \\
& {\left[\Im_{1}\left(S_{1}\right) \cap ๒_{1}\left(S_{2}\right)\right] \cup \bigoplus_{2}\left(X_{2} \cap S\right) \neq \emptyset,}
\end{aligned}
$$

it follows that $\left\{S_{1} \cup\left(X_{2} \cap S\right), S_{2}\right\}$ is a $\left(\S_{1}+\Im_{2}\right)$-Radon partition of S. Hence, $r \leqq r_{1}+r_{2}-1$.

We now show that $r \geqq r_{1}+r_{2}-1$. Take some $S_{i} \subset X_{i}$ with $\left|S_{i}\right|=$ $r_{i}-1$ but without \mathfrak{C}_{i}-Radon partition; $i=1$, 2. Then $\left|S_{1} \cup S_{2}\right|=$ $r_{1}+r_{2}-2$, and clearly, $S_{1} \cup S_{2}$ has no $\left(\mathfrak{C}_{1}+\mathfrak{๒}_{2}\right)$-Radon partition.

Therefore we find that $r>r_{1}+r_{2}-2$. Hence, $r=r_{1}+r_{2}-1$.

Example 1: Take $X_{1}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}<0\right\}$ and $X_{2}=$ $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1} \geqq 0\right\}$ and $\mathfrak{C}_{1}=\mathfrak{C}_{2}=$ conv. Then $c_{1}=c_{2}=3$ and, hence, $c=3$. Note that conv + conv consists of all convex sets in the ordinary sense, together with all unions of two convex sets.

EXAMPLE 2: Take $\quad X_{1}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}<0\right\} \subset \mathbb{R}^{2} \quad$ and $\quad X_{2}=$ $\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \geqq 0\right\} \subset \mathbb{R}^{2}$. Further, let $k_{1}, k_{2} \in \mathbb{N}$ and define $\mathfrak{C}_{1}=$ $\left\{X_{1}\right\} \cup\left\{A\left|A \subset X_{1},|A| \leqq k_{1}\right\}, \mathfrak{๒}_{2}=\left\{X_{2}\right\} \cup\left\{A\left|A \subset X_{2},|A| \leqq k_{2}\right\}\right.\right.$. Then it follows that $e_{1}=e_{2}=2, c_{1}=k_{1}+1$, and $c_{2}=k_{2}+1$. Note that $X_{1} \cap$ $X_{2}=\emptyset$. Let $k_{2} \geqq k_{1}$. We shall show that $e=k_{2}+2$. Take any set $A \subset X_{2}$ with $|A|=k_{2}+1$, and take any $p \in X_{1}$. Then $\left(\mathfrak{C}_{1}+\mathfrak{C}_{2}\right)(A)=\mathfrak{C}_{2}(A)=X_{2}$, and $\left(\mathfrak{C}_{1}+\mathfrak{\sqsubseteq}_{2}\right)(p \cup(A \backslash a))=\mathfrak{C}_{1}(p) \cup \mathfrak{๒}_{2}(A \backslash a)=\{p\} \cup A \backslash\{a\}$ for each $a \in$ A. So, $\left(\mathfrak{C}_{1}+\mathfrak{C}_{2}\right)(A) \not \subset \cup\left\{\left(\mathfrak{C}_{1}+\mathfrak{C}_{2}\right)(p \cup(A \backslash a)) \mid a \in A\right\}$, and it follows that $e \geqq k_{2}+2$. Clearly, $\left(\mathfrak{C}_{1}+\mathfrak{C}_{2}\right)(A) \subset \cup\left\{\left(\mathfrak{C}_{1}+\mathfrak{C}_{2}\right)(p \cup(A \backslash a)) \mid a \in A\right\}$ for each $A \subset X_{1} \cup X_{2}$ with $k_{2}+2 \leqq|A|<\infty$, so that $e \leqq k_{2}+2$. Hence, $e=k_{2}+2=1+\max \left\{c_{1}, c_{2}\right\}$.

The following example shows that $e_{1}<\infty$ and $e_{2}<\infty$ does not imply that $e<\infty$.

Example 3: Consider the convexity spaces (X_{1}, \mathfrak{C}_{1}) and ($X_{2}, \mathfrak{\zeta}_{2}$) with $X_{1}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}<0\right\} \subset \mathbb{R}^{2}, \mathfrak{C}_{1}=\mathrm{conv}, X_{2}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \geqq 0\right\} \subset \mathbb{R}^{2}$, and $\mathfrak{C}_{2}=\left\{\emptyset, X_{2}\right\} \cup\left\{C \mid(\exists n)\left[n \cdot \in \mathbb{N}, C \underset{\mp}{\subset} C_{n}\right]\right\}$ with $C_{1}=\{(1,0)\}, C_{2}=$ $\{(2,0),(3,0)\}, C_{3}=\{(4,0),(5,0),(6,0)\}, C_{4}=\{(7,0),(8,0),(9,0),(10,0)\}$, etc. (see [9] 5.5 Ex. 8). Clearly, $e_{1}=3$. In [9] Ch. 6.3 it is shown that $e_{2}=2$. We now show that the Exchange number e of $\left(\mathbb{R}^{2}, \mathfrak{C}_{1}+\mathfrak{C}_{2}\right)$ is infinite. Take any $n \in \mathbb{N}$, and let $p=(-1,0)$. Then $\left(\mathfrak{C}_{1}+\mathfrak{C}_{2}\right)\left(C_{n}\right)=$ $\mathfrak{C}_{2}\left(C_{n}\right)=X_{2}$. On the other hand,

$$
\begin{aligned}
& \cup\left\{\left(\mathfrak{C}_{1}+\mathfrak{C}_{2}\right)\left(p \cup\left(C_{n} \backslash a\right)\right) \mid a \in C_{n}\right\}=\cup\left\{\mathfrak{C}_{1}(p) \cup \bigoplus_{2}\left(C_{n} \mid a\right) \mid a \in C_{n}\right\} \\
& =\{p\} \cup\left\{\left[\cup \bigodot_{2}\left(C_{n} \backslash a\right) \mid a \in C_{n}\right\}\right] \\
& =\{p\} \cup C_{n} \text {. }
\end{aligned}
$$

Hence, $\left(\mathfrak{C}_{1}+\mathfrak{C}_{2}\right)\left(C_{n}\right)=X_{2} \not \subset\{p\} \cup C_{n}=\cup\left\{\left(\mathfrak{C}_{1}+\mathfrak{C}_{2}\right)\left(p \cup\left(C_{n} \backslash a\right)\right) \mid a \in C_{n}\right\}$. Therefore we find that $e=\infty$.

Example 4: Take $\quad X_{1}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}<0\right\} \subset \mathbb{R}^{n}, \quad X_{2}=$ $\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1} \geqq 0\right\} \subset \mathbb{R}^{n}$ with $n \in \mathbb{N}$, and let $\mathfrak{C}_{1}=$ conv and $\mathfrak{C}_{2}=$ conv, the ordinary convexity structures on X_{1} and X_{2}, respectively. Then it follows that $h_{1}=h_{2}=n+1$, and that $h=h_{1}+h_{2}=2 n+2$. Also note that $r=r_{1}+r_{2}-1=2 n+3$.

The concept of convex sum space can be generalized to sums of finitely many convexity spaces. For instance the convex sum space with basic spaces $\left(X_{1}, \mathfrak{C}_{1}\right),\left(X_{2}, \mathfrak{C}_{2}\right)$, and $\left(X_{3}, \mathfrak{C}_{3}\right)$, denoted by $\left(X_{1} \cup\right.$ $\left.X_{2} \cup X_{3}, \mathfrak{C}_{1}+\mathfrak{C}_{2}+\mathfrak{\sqsubseteq}_{3}\right)$ is defined by

$$
\begin{aligned}
\mathfrak{\Im}_{1}+\mathfrak{\Im}_{2}+\mathfrak{\Im}_{3}= & \left\{\left[A \backslash\left(X_{2} \cup X_{3}\right)\right] \cup\left[B \backslash\left(X_{1} \cup X_{3}\right)\right] \cup \times\right. \\
& {\left[C \backslash\left(X_{1} \cup X_{2}\right)\right] \cup\left[(A \cap B) \backslash X_{3}\right] \cup\left[(A \cap C) \backslash X_{2}\right] \cup \times } \\
& {\left.\left[(B \cap C) \backslash X_{1}\right] \cup[A \cap B \cap C] \mid A \in \mathfrak{๒}_{1}, B \in \mathfrak{C}_{2}, C \in \mathfrak{\sqsubseteq}_{3}\right\} . }
\end{aligned}
$$

Note that $\mathfrak{C}_{1}+\mathfrak{C}_{2}+\mathfrak{C}_{3}=\left(\mathfrak{C}_{1}+\mathfrak{C}_{2}\right)+\mathfrak{C}_{3}=\mathfrak{C}_{1}+\left(\mathfrak{C}_{2}+\mathfrak{C}_{3}\right)$. In case $X_{i} \cap$ $X_{j}=\emptyset$ for each $i, j=1, \ldots, n$ with $i \neq j$ we have:

$$
{ }_{i=1}^{n} \mathfrak{C}_{i}=\mathfrak{G}_{1}+\cdots+\mathfrak{\sqsubseteq}_{n}=\left\{\bigcup_{i=1}^{n} A_{i} \mid A_{i} \in \mathfrak{C}_{i} \text { for each } i=1, \ldots, n\right\} .
$$

Note that $\mathfrak{C}_{1}, \ldots, \mathfrak{C}_{n} \subset+_{i=1}^{n} \mathfrak{C}_{i}$ in case the universal sets are disjoint.
Let $X_{i} \cap X_{j}=\emptyset$ for each $i, j=1, \ldots, n$ with $i \neq j$, and let $\left(X_{i}, \mathfrak{C}_{i}\right)$ be a convexity space with Carathéodory number c_{i}, Exchange number e_{i}, Helly number h_{i}, and Radon number $r_{i} ; i=1, \ldots, n$. Then it can be shown by induction on n that the respective numbers $c^{(n)}, e^{(n)}, h^{(n)}$, and $r^{(n)}$ of the convex sum space $\left(\bigcup_{i=1}^{n} X_{i},+_{i=1}^{n} \mathfrak{๒}_{i}\right)$ satisfy:

$$
\begin{aligned}
& c^{(n)}=\max _{1 \leqq i \leqq n} c_{i} \\
& e^{(n)}=1+\max _{1 \leqq i \leqq n} c_{i} \quad(n \geqq 2) \\
& h^{(n)}=\sum_{i=1}^{n} h_{i} \\
& r^{(n)}=\sum_{i=1}^{n} r_{i}-n+1 .
\end{aligned}
$$

By a copy of the convexity space $(X, \mathfrak{(})$ we mean a convexity space $(X \times\{i\}, \mathfrak{\Im} \times\{i\})$ for some $i \in\{1, \ldots, n\}$, with $\mathfrak{C} \times\{i\}=$ $\{A \times\{i\} \mid A \in \mathfrak{C}\}$. The $(\mathfrak{C} \times\{i\})$-convex hull of any set $S \subset X \times\{i\}$ is given by $(\mathfrak{C} \times\{i\})(S)=\mathfrak{G}\left(\pi_{i} A\right) \times\{i\}$, where π_{i} is the projection of
$X \times\{i\}$ onto X. Furthermore, we define

$$
+\underset{n}{ } \mathfrak{C}=\stackrel{n}{i=1}_{+}^{(\mathfrak{C} \times\{i\})}
$$

and

$$
\bigcup_{n} X=\bigcup_{i=1}^{n}(X \times\{i\})=X \times\{1, \ldots, n\}
$$

Theorem 2: Let c, e, h, and r be the Carathéodory, Exchange, Helly, and Radon numbers, respectively, of the convexity space (X, ($)$. Let n be an integer $\geqq 2$. Then, $\left(\cup_{n} X,+_{n}(\mathbb{S})\right.$ is a convexity space and the $\left(+_{n}(\mathfrak{C})\right.$-hull of any set $S \subset \cup_{n} X$ satisfies

$$
\left({ }_{n} \mathfrak{C}\right)(A)=\bigcup_{i=1}^{n}\left[\mathscr{S}_{i}\left(\pi_{i} A\right) \times\{i\}\right] .
$$

Moreover, the respective numbers $c^{(n)}, e^{(n)}, h^{(n)}$, and $r^{(n)}$ of $\left(\cup_{n} X,+_{n}^{(§)}\right.$) satisfy:

$$
\begin{aligned}
c^{(n)} & =c \\
e^{(n)} & =1+c \\
h^{(n)} & =n h \\
r^{(n)} & =n(r-1)+1 .
\end{aligned}
$$

Proof: As $(X \times\{i\}) \cap(X \times\{j\})=\emptyset$ for each $i, j=1, \ldots, n$ with $i \neq j$, and $\left(\cup_{n} X,+_{n} \mathfrak{(}\right)$ is an n-convex sum space, the theorem follows almost directly from the above remarks.

3. Sharpness of relationships between the various numbers

For relationships between the Carathéodory, Exchange, Helly, and Radon numbers c, e, h, and r, respectively, we refer to Sierksma [10]. One of the interesting problems is the sharpness of those relationships. It is well-known that the inequality of Levi, namely $h \leqq r-1$, is sharp. By being sharp we mean that for each two integers h and r with $h=r-1$ there exists a convexity space such that h is the Helly number and r the Radon number. Sharpness of other inequalities can be defined in the same way. So it follows from Theorem 2 that the
relation $e \leqq 1+c$ is also sharp. In the remaining part of this paper we study the sharpness of the 'special' Eckhoff and Jamison inequality, namely

$$
r \leqq(c-1)(h-1)+3
$$

provided $e \leqq c$, and the inequality

$$
c \leqq \max \{h, e-1\}
$$

which holds in case (X, \mathfrak{C}) is an aligned space. To that end we note that for $\left(\mathbb{R}^{d}, \bigoplus_{d}\right.$ conv), where $\bigoplus_{d} \operatorname{conv}=\operatorname{conv} \bigoplus \cdots \oplus \operatorname{conv}(d$ times the convex product of conv), the following holds: $c=d, e=d+1$, $h=2$, and $r=\min \left\{k \in \mathbb{N} \mid\left({ }_{(k / 2]}^{k}\right)>2 d\right\}$. This follows directly from Sierksma [9, Theorem 5.5, 6.10, 7.6II, and 8.3] and Eckhoff [2].

Theorem 3: Let m and n be integers $\geqq 3$. Then the Carathéodory, Helly, and Radon numbers c, h, and r, respectively, of the m-convex sum space $\left(\bigcup_{m} \mathbb{R}^{n},+_{m} \bigoplus_{n}\right.$ conv) satisfy:

$$
\begin{aligned}
& r<(c-1)(h-1)+3 \text { if } n>3 \\
& r=(c-1)(h-1)+3 \text { if } n=3 .
\end{aligned}
$$

Proof: Theorem 2 implies that $c=n, h=2 m$, and $r=m(s-1)+1$ with $s=\min \left\{k \in \mathbb{N} \mid\left(_{[k \mid 2]}^{k}\right)>2 n\right\}$. The proof now follows directly from the above remark for the convex product space ($\mathbb{R}^{n}, \bigoplus_{n}$ conv). Note that if $n=3$, then $c=3, e=4, h=2 m$, and $r=4 m+1$, hence that $(c-1)(h-1)+3=4 m+1=r$.

Note that it follows from the above theorems that $e \leqq c$ is not necessary condition for $r \leqq(c-1)(h-1)+3$ to hold. Also note that the convexity space $\left(\cup_{m} \mathbb{R}^{3},+_{m} \oplus_{3}\right.$ conv) is a non-trivial example such that equality holds in the 'special' Eckhoff and Jamison inequality.

Theorem 4: The inequality $c \leqq \max \{h, e-1\}$ is sharp in case $h \leqq$ $e-1$.

Proof: First note that ($\cup_{m} \mathbb{R}^{n},+_{m} \bigoplus_{n}$ conv) is an aligned space ($m, n \in \mathbb{N}$). Choosing m and n such that $2 m \leqq n$, it follows that
$h \leqq e-1$ and that $c=\max \{h, e-1\}$ for even Helly number h. Now consider the 'sum' of $\left(\mathbb{R}^{n}, \mathfrak{C}\right)$ with $\mathfrak{C}=\left\{\emptyset, \mathbb{R}^{n}\right\}$ and $\left(\cup_{m} \mathbb{R}^{n},+_{m} \oplus_{n}\right.$ conv), i.e. $\left(\cup_{m+1} \mathbb{R}^{n},+_{m} \bigoplus_{n}\right.$ conv $\left.+\sqrt{5}\right)$. Clearly, this is again an aligned space. As the Carathéodory, Exchange, and Helly numbers of ($\mathbb{R}^{n}, \mathfrak{C}$) are equal to 1 , it follows for the respective numbers of $\left(\cup_{m+1} \mathbb{R}^{n}\right.$, $+_{m} \oplus_{n} \operatorname{conv}+(5)$ that $c=n, e=n+1$, and $h=2 m+1$. Choosing $2 m+$ $1 \leqq n$, it follows that $h \leqq e-1$, and that $c=\max \{h, e-1\}$ for $o d d$ Helly number h. Therefore, we have in fact that the inequality $c \leqq \max \{h, e-1\}$ is sharp for $h \leqq e-1$. Sharpness of the inequality in case $h \geqq e-1$ is still an open problem.

The next theorem enables us to construct convexity spaces with Carathéodory, Helly, and Radon numbers with no 'close' connection.

THEOREM 5: Let k, m, n be integers $\geqq 1$. Then for the convexity space $\left(\cup_{m+k} \mathbb{R}^{n},\left(+_{m} \oplus_{n}\right.\right.$ conv $)+\left(+_{k}(\mathfrak{C})\right.$ with $\mathfrak{C}=\left\{\emptyset, \mathbb{R}^{n}\right\}$ the Carathéodory, Exchange, Helly, and Radon numbers, c, e, h, and r, respectively, the following holds:

$$
\begin{aligned}
c & =n \\
e & =n+1 \\
h & =2 m+k \\
r & =m(s-1)+k+1 \text { with } s=\min \{a \in N \mid([a / 2])>2 n\} .
\end{aligned}
$$

Proof: The proof can be given easily by induction on k.

REFERENCES

[1] J. Eckhoff: Der Satz von Radon in Konvexen Produktstrukturen I. Monatshefte für Math. 72 (1968) 303-314.
[2] J. ECKhoff: Der Satz von Radon in Konvexen Produktstrukturen II. Monatshefte für Math. 73 (1969) 17-30.
[3] J. Eckhoff: Radon's Theorem Revisited. Proc. des Géométrie Symp. Siegen 1978, Birkhauser Verlag Basel.
[4] R. Hammer: Beziehungen zwischen den Sätzen von Radon, Helly und Caratheodory bei axiomatischen Konvexitäten. Abhandlungen aus dem Math. Sem. der Univ. Hamburg 46 (1977) 3-24.
[5] R.E. Jamison: A General Theory of Convexity. Doct. Diss., Univ. of Washington, Seattle, 1974.
[6] D.C. Kay and E.W. Womble: Axiomatic Convexity Theory and Relationships between the Carathéodory, Helly and Radon numbers. Pacific J. of Math. 38 (1971) 471-485.
[7] F.W. Levi: On Helly's Theorem and the Axioms of Convexity. J. Indian Math. Soc. 15 (1951) 65-76.
[8] G. Sierksma: Carathéodory and Helly numbers of Convex Product Structures. Pacific J. of Math. 61 (1975) 275-282.
[9] G. Sierksma: Axiomatic Convexity Theory and the Convex Product Space. Doct. Diss., Univ. of Groningen, 1976.
[10] G. Sierksma: Relationships between Carathéodory, Helly, Radon and Exchange numbers of Convexity Spaces. Nieuw Arch. voor Wisk. (3), XXV (1977) 115-132.
(Oblatum 27-III-1980)
Econometric Institute
Dept. of Mathematics
University of Groningen
P.O. Box 800

9700 AV Groningen
The Netherlands

[^0]: ${ }^{1}$ In two recent papers by E. Degreef, Free Univ. Brussels, the convex sum space is studied in case the universal sets are not disjoint.

